drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / arch / x86 / kvm / x86.c
blob83fe0a78146fc198115aba0e76ba57ecfb1dd8d9
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
96 * Note, kvm_caps fields should *never* have default values, all fields must be
97 * recomputed from scratch during vendor module load, e.g. to account for a
98 * vendor module being reloaded with different module parameters.
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
103 struct kvm_host_values kvm_host __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_host);
106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
108 #define emul_to_vcpu(ctxt) \
109 ((struct kvm_vcpu *)(ctxt)->vcpu)
111 /* EFER defaults:
112 * - enable syscall per default because its emulated by KVM
113 * - enable LME and LMA per default on 64 bit KVM
115 #ifdef CONFIG_X86_64
116 static
117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
118 #else
119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
120 #endif
122 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
124 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
126 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
128 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
129 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
131 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
132 static void process_nmi(struct kvm_vcpu *vcpu);
133 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
134 static void store_regs(struct kvm_vcpu *vcpu);
135 static int sync_regs(struct kvm_vcpu *vcpu);
136 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
138 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
139 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
141 static DEFINE_MUTEX(vendor_module_lock);
142 struct kvm_x86_ops kvm_x86_ops __read_mostly;
144 #define KVM_X86_OP(func) \
145 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
146 *(((struct kvm_x86_ops *)0)->func));
147 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
148 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
149 #include <asm/kvm-x86-ops.h>
150 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
151 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
153 static bool __read_mostly ignore_msrs = 0;
154 module_param(ignore_msrs, bool, 0644);
156 bool __read_mostly report_ignored_msrs = true;
157 module_param(report_ignored_msrs, bool, 0644);
158 EXPORT_SYMBOL_GPL(report_ignored_msrs);
160 unsigned int min_timer_period_us = 200;
161 module_param(min_timer_period_us, uint, 0644);
163 static bool __read_mostly kvmclock_periodic_sync = true;
164 module_param(kvmclock_periodic_sync, bool, 0444);
166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
167 static u32 __read_mostly tsc_tolerance_ppm = 250;
168 module_param(tsc_tolerance_ppm, uint, 0644);
170 static bool __read_mostly vector_hashing = true;
171 module_param(vector_hashing, bool, 0444);
173 bool __read_mostly enable_vmware_backdoor = false;
174 module_param(enable_vmware_backdoor, bool, 0444);
175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
178 * Flags to manipulate forced emulation behavior (any non-zero value will
179 * enable forced emulation).
181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
182 static int __read_mostly force_emulation_prefix;
183 module_param(force_emulation_prefix, int, 0644);
185 int __read_mostly pi_inject_timer = -1;
186 module_param(pi_inject_timer, bint, 0644);
188 /* Enable/disable PMU virtualization */
189 bool __read_mostly enable_pmu = true;
190 EXPORT_SYMBOL_GPL(enable_pmu);
191 module_param(enable_pmu, bool, 0444);
193 bool __read_mostly eager_page_split = true;
194 module_param(eager_page_split, bool, 0644);
196 /* Enable/disable SMT_RSB bug mitigation */
197 static bool __read_mostly mitigate_smt_rsb;
198 module_param(mitigate_smt_rsb, bool, 0444);
201 * Restoring the host value for MSRs that are only consumed when running in
202 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
203 * returns to userspace, i.e. the kernel can run with the guest's value.
205 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207 struct kvm_user_return_msrs {
208 struct user_return_notifier urn;
209 bool registered;
210 struct kvm_user_return_msr_values {
211 u64 host;
212 u64 curr;
213 } values[KVM_MAX_NR_USER_RETURN_MSRS];
216 u32 __read_mostly kvm_nr_uret_msrs;
217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
218 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
219 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
222 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
223 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
224 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226 bool __read_mostly allow_smaller_maxphyaddr = 0;
227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
229 bool __read_mostly enable_apicv = true;
230 EXPORT_SYMBOL_GPL(enable_apicv);
232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
233 KVM_GENERIC_VM_STATS(),
234 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
235 STATS_DESC_COUNTER(VM, mmu_pte_write),
236 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
237 STATS_DESC_COUNTER(VM, mmu_flooded),
238 STATS_DESC_COUNTER(VM, mmu_recycled),
239 STATS_DESC_COUNTER(VM, mmu_cache_miss),
240 STATS_DESC_ICOUNTER(VM, mmu_unsync),
241 STATS_DESC_ICOUNTER(VM, pages_4k),
242 STATS_DESC_ICOUNTER(VM, pages_2m),
243 STATS_DESC_ICOUNTER(VM, pages_1g),
244 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
245 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
246 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
249 const struct kvm_stats_header kvm_vm_stats_header = {
250 .name_size = KVM_STATS_NAME_SIZE,
251 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
252 .id_offset = sizeof(struct kvm_stats_header),
253 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
254 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
255 sizeof(kvm_vm_stats_desc),
258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
259 KVM_GENERIC_VCPU_STATS(),
260 STATS_DESC_COUNTER(VCPU, pf_taken),
261 STATS_DESC_COUNTER(VCPU, pf_fixed),
262 STATS_DESC_COUNTER(VCPU, pf_emulate),
263 STATS_DESC_COUNTER(VCPU, pf_spurious),
264 STATS_DESC_COUNTER(VCPU, pf_fast),
265 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
266 STATS_DESC_COUNTER(VCPU, pf_guest),
267 STATS_DESC_COUNTER(VCPU, tlb_flush),
268 STATS_DESC_COUNTER(VCPU, invlpg),
269 STATS_DESC_COUNTER(VCPU, exits),
270 STATS_DESC_COUNTER(VCPU, io_exits),
271 STATS_DESC_COUNTER(VCPU, mmio_exits),
272 STATS_DESC_COUNTER(VCPU, signal_exits),
273 STATS_DESC_COUNTER(VCPU, irq_window_exits),
274 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
275 STATS_DESC_COUNTER(VCPU, l1d_flush),
276 STATS_DESC_COUNTER(VCPU, halt_exits),
277 STATS_DESC_COUNTER(VCPU, request_irq_exits),
278 STATS_DESC_COUNTER(VCPU, irq_exits),
279 STATS_DESC_COUNTER(VCPU, host_state_reload),
280 STATS_DESC_COUNTER(VCPU, fpu_reload),
281 STATS_DESC_COUNTER(VCPU, insn_emulation),
282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
283 STATS_DESC_COUNTER(VCPU, hypercalls),
284 STATS_DESC_COUNTER(VCPU, irq_injections),
285 STATS_DESC_COUNTER(VCPU, nmi_injections),
286 STATS_DESC_COUNTER(VCPU, req_event),
287 STATS_DESC_COUNTER(VCPU, nested_run),
288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
289 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
290 STATS_DESC_COUNTER(VCPU, preemption_reported),
291 STATS_DESC_COUNTER(VCPU, preemption_other),
292 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
293 STATS_DESC_COUNTER(VCPU, notify_window_exits),
296 const struct kvm_stats_header kvm_vcpu_stats_header = {
297 .name_size = KVM_STATS_NAME_SIZE,
298 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
299 .id_offset = sizeof(struct kvm_stats_header),
300 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
301 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
302 sizeof(kvm_vcpu_stats_desc),
305 static struct kmem_cache *x86_emulator_cache;
308 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
309 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
310 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
311 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
312 * MSRs that KVM emulates without strictly requiring host support.
313 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
314 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
315 * msrs_to_save and emulated_msrs.
318 static const u32 msrs_to_save_base[] = {
319 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
320 MSR_STAR,
321 #ifdef CONFIG_X86_64
322 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
323 #endif
324 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
325 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
326 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
327 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
328 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
329 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
330 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
331 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
332 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
333 MSR_IA32_UMWAIT_CONTROL,
335 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
338 static const u32 msrs_to_save_pmu[] = {
339 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
340 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
341 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
342 MSR_CORE_PERF_GLOBAL_CTRL,
343 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
345 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
346 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
347 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
348 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
349 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
350 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
351 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
352 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
353 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
355 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
356 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
358 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
359 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
360 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
361 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
362 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
364 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
365 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
366 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
369 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
370 ARRAY_SIZE(msrs_to_save_pmu)];
371 static unsigned num_msrs_to_save;
373 static const u32 emulated_msrs_all[] = {
374 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
375 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
377 #ifdef CONFIG_KVM_HYPERV
378 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
379 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
380 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
381 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
382 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
383 HV_X64_MSR_RESET,
384 HV_X64_MSR_VP_INDEX,
385 HV_X64_MSR_VP_RUNTIME,
386 HV_X64_MSR_SCONTROL,
387 HV_X64_MSR_STIMER0_CONFIG,
388 HV_X64_MSR_VP_ASSIST_PAGE,
389 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
390 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
391 HV_X64_MSR_SYNDBG_OPTIONS,
392 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
393 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
394 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
395 #endif
397 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
398 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
400 MSR_IA32_TSC_ADJUST,
401 MSR_IA32_TSC_DEADLINE,
402 MSR_IA32_ARCH_CAPABILITIES,
403 MSR_IA32_PERF_CAPABILITIES,
404 MSR_IA32_MISC_ENABLE,
405 MSR_IA32_MCG_STATUS,
406 MSR_IA32_MCG_CTL,
407 MSR_IA32_MCG_EXT_CTL,
408 MSR_IA32_SMBASE,
409 MSR_SMI_COUNT,
410 MSR_PLATFORM_INFO,
411 MSR_MISC_FEATURES_ENABLES,
412 MSR_AMD64_VIRT_SPEC_CTRL,
413 MSR_AMD64_TSC_RATIO,
414 MSR_IA32_POWER_CTL,
415 MSR_IA32_UCODE_REV,
418 * KVM always supports the "true" VMX control MSRs, even if the host
419 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
420 * doesn't strictly require them to exist in the host (ignoring that
421 * KVM would refuse to load in the first place if the core set of MSRs
422 * aren't supported).
424 MSR_IA32_VMX_BASIC,
425 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
426 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
427 MSR_IA32_VMX_TRUE_EXIT_CTLS,
428 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
429 MSR_IA32_VMX_MISC,
430 MSR_IA32_VMX_CR0_FIXED0,
431 MSR_IA32_VMX_CR4_FIXED0,
432 MSR_IA32_VMX_VMCS_ENUM,
433 MSR_IA32_VMX_PROCBASED_CTLS2,
434 MSR_IA32_VMX_EPT_VPID_CAP,
435 MSR_IA32_VMX_VMFUNC,
437 MSR_K7_HWCR,
438 MSR_KVM_POLL_CONTROL,
441 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
442 static unsigned num_emulated_msrs;
445 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
446 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
447 * feature MSRs, but are handled separately to allow expedited lookups.
449 static const u32 msr_based_features_all_except_vmx[] = {
450 MSR_AMD64_DE_CFG,
451 MSR_IA32_UCODE_REV,
452 MSR_IA32_ARCH_CAPABILITIES,
453 MSR_IA32_PERF_CAPABILITIES,
456 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
457 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
458 static unsigned int num_msr_based_features;
461 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
462 * patch, are immutable once the vCPU model is defined.
464 static bool kvm_is_immutable_feature_msr(u32 msr)
466 int i;
468 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
469 return true;
471 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
472 if (msr == msr_based_features_all_except_vmx[i])
473 return msr != MSR_IA32_UCODE_REV;
476 return false;
479 static bool kvm_is_advertised_msr(u32 msr_index)
481 unsigned int i;
483 for (i = 0; i < num_msrs_to_save; i++) {
484 if (msrs_to_save[i] == msr_index)
485 return true;
488 for (i = 0; i < num_emulated_msrs; i++) {
489 if (emulated_msrs[i] == msr_index)
490 return true;
493 return false;
496 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
497 bool host_initiated);
499 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
500 u64 *data, bool host_initiated,
501 enum kvm_msr_access rw,
502 msr_access_t msr_access_fn)
504 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
505 int ret;
507 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
510 * Zero the data on read failures to avoid leaking stack data to the
511 * guest and/or userspace, e.g. if the failure is ignored below.
513 ret = msr_access_fn(vcpu, msr, data, host_initiated);
514 if (ret && rw == MSR_TYPE_R)
515 *data = 0;
517 if (ret != KVM_MSR_RET_UNSUPPORTED)
518 return ret;
521 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
522 * advertises to userspace, even if an MSR isn't fully supported.
523 * Simply check that @data is '0', which covers both the write '0' case
524 * and all reads (in which case @data is zeroed on failure; see above).
526 if (host_initiated && !*data && kvm_is_advertised_msr(msr))
527 return 0;
529 if (!ignore_msrs) {
530 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
531 op, msr, *data);
532 return ret;
535 if (report_ignored_msrs)
536 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
538 return 0;
541 static struct kmem_cache *kvm_alloc_emulator_cache(void)
543 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
544 unsigned int size = sizeof(struct x86_emulate_ctxt);
546 return kmem_cache_create_usercopy("x86_emulator", size,
547 __alignof__(struct x86_emulate_ctxt),
548 SLAB_ACCOUNT, useroffset,
549 size - useroffset, NULL);
552 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
554 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
556 int i;
557 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
558 vcpu->arch.apf.gfns[i] = ~0;
561 static void kvm_on_user_return(struct user_return_notifier *urn)
563 unsigned slot;
564 struct kvm_user_return_msrs *msrs
565 = container_of(urn, struct kvm_user_return_msrs, urn);
566 struct kvm_user_return_msr_values *values;
567 unsigned long flags;
570 * Disabling irqs at this point since the following code could be
571 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
573 local_irq_save(flags);
574 if (msrs->registered) {
575 msrs->registered = false;
576 user_return_notifier_unregister(urn);
578 local_irq_restore(flags);
579 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
580 values = &msrs->values[slot];
581 if (values->host != values->curr) {
582 wrmsrl(kvm_uret_msrs_list[slot], values->host);
583 values->curr = values->host;
588 static int kvm_probe_user_return_msr(u32 msr)
590 u64 val;
591 int ret;
593 preempt_disable();
594 ret = rdmsrl_safe(msr, &val);
595 if (ret)
596 goto out;
597 ret = wrmsrl_safe(msr, val);
598 out:
599 preempt_enable();
600 return ret;
603 int kvm_add_user_return_msr(u32 msr)
605 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
607 if (kvm_probe_user_return_msr(msr))
608 return -1;
610 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
611 return kvm_nr_uret_msrs++;
613 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
615 int kvm_find_user_return_msr(u32 msr)
617 int i;
619 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
620 if (kvm_uret_msrs_list[i] == msr)
621 return i;
623 return -1;
625 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
627 static void kvm_user_return_msr_cpu_online(void)
629 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
630 u64 value;
631 int i;
633 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
634 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
635 msrs->values[i].host = value;
636 msrs->values[i].curr = value;
640 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
642 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
643 int err;
645 value = (value & mask) | (msrs->values[slot].host & ~mask);
646 if (value == msrs->values[slot].curr)
647 return 0;
648 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
649 if (err)
650 return 1;
652 msrs->values[slot].curr = value;
653 if (!msrs->registered) {
654 msrs->urn.on_user_return = kvm_on_user_return;
655 user_return_notifier_register(&msrs->urn);
656 msrs->registered = true;
658 return 0;
660 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
662 static void drop_user_return_notifiers(void)
664 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
666 if (msrs->registered)
667 kvm_on_user_return(&msrs->urn);
670 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
672 return vcpu->arch.apic_base;
675 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
677 return kvm_apic_mode(kvm_get_apic_base(vcpu));
679 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
681 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
683 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
684 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
685 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
686 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
688 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
689 return 1;
690 if (!msr_info->host_initiated) {
691 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
692 return 1;
693 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
694 return 1;
697 kvm_lapic_set_base(vcpu, msr_info->data);
698 kvm_recalculate_apic_map(vcpu->kvm);
699 return 0;
703 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
705 * Hardware virtualization extension instructions may fault if a reboot turns
706 * off virtualization while processes are running. Usually after catching the
707 * fault we just panic; during reboot instead the instruction is ignored.
709 noinstr void kvm_spurious_fault(void)
711 /* Fault while not rebooting. We want the trace. */
712 BUG_ON(!kvm_rebooting);
714 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
716 #define EXCPT_BENIGN 0
717 #define EXCPT_CONTRIBUTORY 1
718 #define EXCPT_PF 2
720 static int exception_class(int vector)
722 switch (vector) {
723 case PF_VECTOR:
724 return EXCPT_PF;
725 case DE_VECTOR:
726 case TS_VECTOR:
727 case NP_VECTOR:
728 case SS_VECTOR:
729 case GP_VECTOR:
730 return EXCPT_CONTRIBUTORY;
731 default:
732 break;
734 return EXCPT_BENIGN;
737 #define EXCPT_FAULT 0
738 #define EXCPT_TRAP 1
739 #define EXCPT_ABORT 2
740 #define EXCPT_INTERRUPT 3
741 #define EXCPT_DB 4
743 static int exception_type(int vector)
745 unsigned int mask;
747 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
748 return EXCPT_INTERRUPT;
750 mask = 1 << vector;
753 * #DBs can be trap-like or fault-like, the caller must check other CPU
754 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
756 if (mask & (1 << DB_VECTOR))
757 return EXCPT_DB;
759 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
760 return EXCPT_TRAP;
762 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
763 return EXCPT_ABORT;
765 /* Reserved exceptions will result in fault */
766 return EXCPT_FAULT;
769 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
770 struct kvm_queued_exception *ex)
772 if (!ex->has_payload)
773 return;
775 switch (ex->vector) {
776 case DB_VECTOR:
778 * "Certain debug exceptions may clear bit 0-3. The
779 * remaining contents of the DR6 register are never
780 * cleared by the processor".
782 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
784 * In order to reflect the #DB exception payload in guest
785 * dr6, three components need to be considered: active low
786 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
787 * DR6_BS and DR6_BT)
788 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
789 * In the target guest dr6:
790 * FIXED_1 bits should always be set.
791 * Active low bits should be cleared if 1-setting in payload.
792 * Active high bits should be set if 1-setting in payload.
794 * Note, the payload is compatible with the pending debug
795 * exceptions/exit qualification under VMX, that active_low bits
796 * are active high in payload.
797 * So they need to be flipped for DR6.
799 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
800 vcpu->arch.dr6 |= ex->payload;
801 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
804 * The #DB payload is defined as compatible with the 'pending
805 * debug exceptions' field under VMX, not DR6. While bit 12 is
806 * defined in the 'pending debug exceptions' field (enabled
807 * breakpoint), it is reserved and must be zero in DR6.
809 vcpu->arch.dr6 &= ~BIT(12);
810 break;
811 case PF_VECTOR:
812 vcpu->arch.cr2 = ex->payload;
813 break;
816 ex->has_payload = false;
817 ex->payload = 0;
819 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
821 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
822 bool has_error_code, u32 error_code,
823 bool has_payload, unsigned long payload)
825 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
827 ex->vector = vector;
828 ex->injected = false;
829 ex->pending = true;
830 ex->has_error_code = has_error_code;
831 ex->error_code = error_code;
832 ex->has_payload = has_payload;
833 ex->payload = payload;
836 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
837 unsigned nr, bool has_error, u32 error_code,
838 bool has_payload, unsigned long payload, bool reinject)
840 u32 prev_nr;
841 int class1, class2;
843 kvm_make_request(KVM_REQ_EVENT, vcpu);
846 * If the exception is destined for L2 and isn't being reinjected,
847 * morph it to a VM-Exit if L1 wants to intercept the exception. A
848 * previously injected exception is not checked because it was checked
849 * when it was original queued, and re-checking is incorrect if _L1_
850 * injected the exception, in which case it's exempt from interception.
852 if (!reinject && is_guest_mode(vcpu) &&
853 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
854 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
855 has_payload, payload);
856 return;
859 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
860 queue:
861 if (reinject) {
863 * On VM-Entry, an exception can be pending if and only
864 * if event injection was blocked by nested_run_pending.
865 * In that case, however, vcpu_enter_guest() requests an
866 * immediate exit, and the guest shouldn't proceed far
867 * enough to need reinjection.
869 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
870 vcpu->arch.exception.injected = true;
871 if (WARN_ON_ONCE(has_payload)) {
873 * A reinjected event has already
874 * delivered its payload.
876 has_payload = false;
877 payload = 0;
879 } else {
880 vcpu->arch.exception.pending = true;
881 vcpu->arch.exception.injected = false;
883 vcpu->arch.exception.has_error_code = has_error;
884 vcpu->arch.exception.vector = nr;
885 vcpu->arch.exception.error_code = error_code;
886 vcpu->arch.exception.has_payload = has_payload;
887 vcpu->arch.exception.payload = payload;
888 if (!is_guest_mode(vcpu))
889 kvm_deliver_exception_payload(vcpu,
890 &vcpu->arch.exception);
891 return;
894 /* to check exception */
895 prev_nr = vcpu->arch.exception.vector;
896 if (prev_nr == DF_VECTOR) {
897 /* triple fault -> shutdown */
898 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
899 return;
901 class1 = exception_class(prev_nr);
902 class2 = exception_class(nr);
903 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
904 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
906 * Synthesize #DF. Clear the previously injected or pending
907 * exception so as not to incorrectly trigger shutdown.
909 vcpu->arch.exception.injected = false;
910 vcpu->arch.exception.pending = false;
912 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
913 } else {
914 /* replace previous exception with a new one in a hope
915 that instruction re-execution will regenerate lost
916 exception */
917 goto queue;
921 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
923 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
925 EXPORT_SYMBOL_GPL(kvm_queue_exception);
927 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
929 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
931 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
933 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
934 unsigned long payload)
936 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
938 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
940 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
941 u32 error_code, unsigned long payload)
943 kvm_multiple_exception(vcpu, nr, true, error_code,
944 true, payload, false);
947 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
949 if (err)
950 kvm_inject_gp(vcpu, 0);
951 else
952 return kvm_skip_emulated_instruction(vcpu);
954 return 1;
956 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
958 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
960 if (err) {
961 kvm_inject_gp(vcpu, 0);
962 return 1;
965 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
966 EMULTYPE_COMPLETE_USER_EXIT);
969 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
971 ++vcpu->stat.pf_guest;
974 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
975 * whether or not L1 wants to intercept "regular" #PF.
977 if (is_guest_mode(vcpu) && fault->async_page_fault)
978 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
979 true, fault->error_code,
980 true, fault->address);
981 else
982 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
983 fault->address);
986 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
987 struct x86_exception *fault)
989 struct kvm_mmu *fault_mmu;
990 WARN_ON_ONCE(fault->vector != PF_VECTOR);
992 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
993 vcpu->arch.walk_mmu;
996 * Invalidate the TLB entry for the faulting address, if it exists,
997 * else the access will fault indefinitely (and to emulate hardware).
999 if ((fault->error_code & PFERR_PRESENT_MASK) &&
1000 !(fault->error_code & PFERR_RSVD_MASK))
1001 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
1002 KVM_MMU_ROOT_CURRENT);
1004 fault_mmu->inject_page_fault(vcpu, fault);
1006 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
1008 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
1010 atomic_inc(&vcpu->arch.nmi_queued);
1011 kvm_make_request(KVM_REQ_NMI, vcpu);
1014 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
1016 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
1018 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
1020 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
1022 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
1024 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
1027 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
1028 * a #GP and return false.
1030 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1032 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1033 return true;
1034 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1035 return false;
1038 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1040 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1041 return true;
1043 kvm_queue_exception(vcpu, UD_VECTOR);
1044 return false;
1046 EXPORT_SYMBOL_GPL(kvm_require_dr);
1048 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1050 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1054 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1056 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1058 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1059 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1060 gpa_t real_gpa;
1061 int i;
1062 int ret;
1063 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1066 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1067 * to an L1 GPA.
1069 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1070 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1071 if (real_gpa == INVALID_GPA)
1072 return 0;
1074 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1075 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1076 cr3 & GENMASK(11, 5), sizeof(pdpte));
1077 if (ret < 0)
1078 return 0;
1080 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1081 if ((pdpte[i] & PT_PRESENT_MASK) &&
1082 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1083 return 0;
1088 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1089 * Shadow page roots need to be reconstructed instead.
1091 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1092 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1094 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1095 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1096 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1097 vcpu->arch.pdptrs_from_userspace = false;
1099 return 1;
1101 EXPORT_SYMBOL_GPL(load_pdptrs);
1103 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1105 #ifdef CONFIG_X86_64
1106 if (cr0 & 0xffffffff00000000UL)
1107 return false;
1108 #endif
1110 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1111 return false;
1113 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1114 return false;
1116 return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1119 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1122 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1123 * indirect shadow MMUs. If paging is disabled, no updates are needed
1124 * as there are no permission bits to emulate. If TDP is enabled, the
1125 * MMU's metadata needs to be updated, e.g. so that emulating guest
1126 * translations does the right thing, but there's no need to unload the
1127 * root as CR0.WP doesn't affect SPTEs.
1129 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1130 if (!(cr0 & X86_CR0_PG))
1131 return;
1133 if (tdp_enabled) {
1134 kvm_init_mmu(vcpu);
1135 return;
1139 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1140 kvm_clear_async_pf_completion_queue(vcpu);
1141 kvm_async_pf_hash_reset(vcpu);
1144 * Clearing CR0.PG is defined to flush the TLB from the guest's
1145 * perspective.
1147 if (!(cr0 & X86_CR0_PG))
1148 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1151 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1152 kvm_mmu_reset_context(vcpu);
1154 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1156 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1158 unsigned long old_cr0 = kvm_read_cr0(vcpu);
1160 if (!kvm_is_valid_cr0(vcpu, cr0))
1161 return 1;
1163 cr0 |= X86_CR0_ET;
1165 /* Write to CR0 reserved bits are ignored, even on Intel. */
1166 cr0 &= ~CR0_RESERVED_BITS;
1168 #ifdef CONFIG_X86_64
1169 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1170 (cr0 & X86_CR0_PG)) {
1171 int cs_db, cs_l;
1173 if (!is_pae(vcpu))
1174 return 1;
1175 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1176 if (cs_l)
1177 return 1;
1179 #endif
1180 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1181 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1182 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1183 return 1;
1185 if (!(cr0 & X86_CR0_PG) &&
1186 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1187 return 1;
1189 kvm_x86_call(set_cr0)(vcpu, cr0);
1191 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1193 return 0;
1195 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1197 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1199 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1201 EXPORT_SYMBOL_GPL(kvm_lmsw);
1203 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1205 if (vcpu->arch.guest_state_protected)
1206 return;
1208 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1210 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1211 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1213 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1214 vcpu->arch.ia32_xss != kvm_host.xss)
1215 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1218 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1219 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1220 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1221 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1222 write_pkru(vcpu->arch.pkru);
1224 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1226 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1228 if (vcpu->arch.guest_state_protected)
1229 return;
1231 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1232 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1233 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1234 vcpu->arch.pkru = rdpkru();
1235 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1236 write_pkru(vcpu->arch.host_pkru);
1239 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1241 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1242 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1244 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1245 vcpu->arch.ia32_xss != kvm_host.xss)
1246 wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1250 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1252 #ifdef CONFIG_X86_64
1253 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1255 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1257 #endif
1259 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1261 u64 xcr0 = xcr;
1262 u64 old_xcr0 = vcpu->arch.xcr0;
1263 u64 valid_bits;
1265 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1266 if (index != XCR_XFEATURE_ENABLED_MASK)
1267 return 1;
1268 if (!(xcr0 & XFEATURE_MASK_FP))
1269 return 1;
1270 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1271 return 1;
1274 * Do not allow the guest to set bits that we do not support
1275 * saving. However, xcr0 bit 0 is always set, even if the
1276 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1278 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1279 if (xcr0 & ~valid_bits)
1280 return 1;
1282 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1283 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1284 return 1;
1286 if (xcr0 & XFEATURE_MASK_AVX512) {
1287 if (!(xcr0 & XFEATURE_MASK_YMM))
1288 return 1;
1289 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1290 return 1;
1293 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1294 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1295 return 1;
1297 vcpu->arch.xcr0 = xcr0;
1299 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1300 kvm_update_cpuid_runtime(vcpu);
1301 return 0;
1304 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1306 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1307 if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1308 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1309 kvm_inject_gp(vcpu, 0);
1310 return 1;
1313 return kvm_skip_emulated_instruction(vcpu);
1315 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1317 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1319 if (cr4 & cr4_reserved_bits)
1320 return false;
1322 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1323 return false;
1325 return true;
1327 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1329 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1331 return __kvm_is_valid_cr4(vcpu, cr4) &&
1332 kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1335 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1337 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1338 kvm_mmu_reset_context(vcpu);
1341 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1342 * according to the SDM; however, stale prev_roots could be reused
1343 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1344 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1345 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1346 * so fall through.
1348 if (!tdp_enabled &&
1349 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1350 kvm_mmu_unload(vcpu);
1353 * The TLB has to be flushed for all PCIDs if any of the following
1354 * (architecturally required) changes happen:
1355 * - CR4.PCIDE is changed from 1 to 0
1356 * - CR4.PGE is toggled
1358 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1360 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1361 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1362 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1365 * The TLB has to be flushed for the current PCID if any of the
1366 * following (architecturally required) changes happen:
1367 * - CR4.SMEP is changed from 0 to 1
1368 * - CR4.PAE is toggled
1370 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1371 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1372 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1375 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1377 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1379 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1381 if (!kvm_is_valid_cr4(vcpu, cr4))
1382 return 1;
1384 if (is_long_mode(vcpu)) {
1385 if (!(cr4 & X86_CR4_PAE))
1386 return 1;
1387 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1388 return 1;
1389 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1390 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1391 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1392 return 1;
1394 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1395 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1396 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1397 return 1;
1400 kvm_x86_call(set_cr4)(vcpu, cr4);
1402 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1404 return 0;
1406 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1408 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1410 struct kvm_mmu *mmu = vcpu->arch.mmu;
1411 unsigned long roots_to_free = 0;
1412 int i;
1415 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1416 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1417 * also via the emulator. KVM's TDP page tables are not in the scope of
1418 * the invalidation, but the guest's TLB entries need to be flushed as
1419 * the CPU may have cached entries in its TLB for the target PCID.
1421 if (unlikely(tdp_enabled)) {
1422 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1423 return;
1427 * If neither the current CR3 nor any of the prev_roots use the given
1428 * PCID, then nothing needs to be done here because a resync will
1429 * happen anyway before switching to any other CR3.
1431 if (kvm_get_active_pcid(vcpu) == pcid) {
1432 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1433 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1437 * If PCID is disabled, there is no need to free prev_roots even if the
1438 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1439 * with PCIDE=0.
1441 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1442 return;
1444 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1445 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1446 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1448 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1451 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1453 bool skip_tlb_flush = false;
1454 unsigned long pcid = 0;
1455 #ifdef CONFIG_X86_64
1456 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1457 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1458 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1459 pcid = cr3 & X86_CR3_PCID_MASK;
1461 #endif
1463 /* PDPTRs are always reloaded for PAE paging. */
1464 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1465 goto handle_tlb_flush;
1468 * Do not condition the GPA check on long mode, this helper is used to
1469 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1470 * the current vCPU mode is accurate.
1472 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1473 return 1;
1475 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1476 return 1;
1478 if (cr3 != kvm_read_cr3(vcpu))
1479 kvm_mmu_new_pgd(vcpu, cr3);
1481 vcpu->arch.cr3 = cr3;
1482 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1483 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1485 handle_tlb_flush:
1487 * A load of CR3 that flushes the TLB flushes only the current PCID,
1488 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1489 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1490 * and it's impossible to use a non-zero PCID when PCID is disabled,
1491 * i.e. only PCID=0 can be relevant.
1493 if (!skip_tlb_flush)
1494 kvm_invalidate_pcid(vcpu, pcid);
1496 return 0;
1498 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1500 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1502 if (cr8 & CR8_RESERVED_BITS)
1503 return 1;
1504 if (lapic_in_kernel(vcpu))
1505 kvm_lapic_set_tpr(vcpu, cr8);
1506 else
1507 vcpu->arch.cr8 = cr8;
1508 return 0;
1510 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1512 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1514 if (lapic_in_kernel(vcpu))
1515 return kvm_lapic_get_cr8(vcpu);
1516 else
1517 return vcpu->arch.cr8;
1519 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1521 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1523 int i;
1525 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1526 for (i = 0; i < KVM_NR_DB_REGS; i++)
1527 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1531 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1533 unsigned long dr7;
1535 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1536 dr7 = vcpu->arch.guest_debug_dr7;
1537 else
1538 dr7 = vcpu->arch.dr7;
1539 kvm_x86_call(set_dr7)(vcpu, dr7);
1540 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1541 if (dr7 & DR7_BP_EN_MASK)
1542 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1544 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1546 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1548 u64 fixed = DR6_FIXED_1;
1550 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1551 fixed |= DR6_RTM;
1553 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1554 fixed |= DR6_BUS_LOCK;
1555 return fixed;
1558 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1560 size_t size = ARRAY_SIZE(vcpu->arch.db);
1562 switch (dr) {
1563 case 0 ... 3:
1564 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1565 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1566 vcpu->arch.eff_db[dr] = val;
1567 break;
1568 case 4:
1569 case 6:
1570 if (!kvm_dr6_valid(val))
1571 return 1; /* #GP */
1572 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1573 break;
1574 case 5:
1575 default: /* 7 */
1576 if (!kvm_dr7_valid(val))
1577 return 1; /* #GP */
1578 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1579 kvm_update_dr7(vcpu);
1580 break;
1583 return 0;
1585 EXPORT_SYMBOL_GPL(kvm_set_dr);
1587 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1589 size_t size = ARRAY_SIZE(vcpu->arch.db);
1591 switch (dr) {
1592 case 0 ... 3:
1593 return vcpu->arch.db[array_index_nospec(dr, size)];
1594 case 4:
1595 case 6:
1596 return vcpu->arch.dr6;
1597 case 5:
1598 default: /* 7 */
1599 return vcpu->arch.dr7;
1602 EXPORT_SYMBOL_GPL(kvm_get_dr);
1604 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1606 u32 ecx = kvm_rcx_read(vcpu);
1607 u64 data;
1609 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1610 kvm_inject_gp(vcpu, 0);
1611 return 1;
1614 kvm_rax_write(vcpu, (u32)data);
1615 kvm_rdx_write(vcpu, data >> 32);
1616 return kvm_skip_emulated_instruction(vcpu);
1618 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1621 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1622 * does not yet virtualize. These include:
1623 * 10 - MISC_PACKAGE_CTRLS
1624 * 11 - ENERGY_FILTERING_CTL
1625 * 12 - DOITM
1626 * 18 - FB_CLEAR_CTRL
1627 * 21 - XAPIC_DISABLE_STATUS
1628 * 23 - OVERCLOCKING_STATUS
1631 #define KVM_SUPPORTED_ARCH_CAP \
1632 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1633 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1634 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1635 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1636 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1637 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1639 static u64 kvm_get_arch_capabilities(void)
1641 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1644 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1645 * the nested hypervisor runs with NX huge pages. If it is not,
1646 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1647 * L1 guests, so it need not worry about its own (L2) guests.
1649 data |= ARCH_CAP_PSCHANGE_MC_NO;
1652 * If we're doing cache flushes (either "always" or "cond")
1653 * we will do one whenever the guest does a vmlaunch/vmresume.
1654 * If an outer hypervisor is doing the cache flush for us
1655 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1656 * capability to the guest too, and if EPT is disabled we're not
1657 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1658 * require a nested hypervisor to do a flush of its own.
1660 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1661 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1663 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1664 data |= ARCH_CAP_RDCL_NO;
1665 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1666 data |= ARCH_CAP_SSB_NO;
1667 if (!boot_cpu_has_bug(X86_BUG_MDS))
1668 data |= ARCH_CAP_MDS_NO;
1669 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1670 data |= ARCH_CAP_RFDS_NO;
1672 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1674 * If RTM=0 because the kernel has disabled TSX, the host might
1675 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1676 * and therefore knows that there cannot be TAA) but keep
1677 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1678 * and we want to allow migrating those guests to tsx=off hosts.
1680 data &= ~ARCH_CAP_TAA_NO;
1681 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1682 data |= ARCH_CAP_TAA_NO;
1683 } else {
1685 * Nothing to do here; we emulate TSX_CTRL if present on the
1686 * host so the guest can choose between disabling TSX or
1687 * using VERW to clear CPU buffers.
1691 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1692 data |= ARCH_CAP_GDS_NO;
1694 return data;
1697 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1698 bool host_initiated)
1700 WARN_ON_ONCE(!host_initiated);
1702 switch (index) {
1703 case MSR_IA32_ARCH_CAPABILITIES:
1704 *data = kvm_get_arch_capabilities();
1705 break;
1706 case MSR_IA32_PERF_CAPABILITIES:
1707 *data = kvm_caps.supported_perf_cap;
1708 break;
1709 case MSR_IA32_UCODE_REV:
1710 rdmsrl_safe(index, data);
1711 break;
1712 default:
1713 return kvm_x86_call(get_feature_msr)(index, data);
1715 return 0;
1718 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1720 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1721 kvm_get_feature_msr);
1724 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1726 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1727 return false;
1729 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1730 return false;
1732 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1733 return false;
1735 if (efer & (EFER_LME | EFER_LMA) &&
1736 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1737 return false;
1739 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1740 return false;
1742 return true;
1745 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1747 if (efer & efer_reserved_bits)
1748 return false;
1750 return __kvm_valid_efer(vcpu, efer);
1752 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1754 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1756 u64 old_efer = vcpu->arch.efer;
1757 u64 efer = msr_info->data;
1758 int r;
1760 if (efer & efer_reserved_bits)
1761 return 1;
1763 if (!msr_info->host_initiated) {
1764 if (!__kvm_valid_efer(vcpu, efer))
1765 return 1;
1767 if (is_paging(vcpu) &&
1768 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1769 return 1;
1772 efer &= ~EFER_LMA;
1773 efer |= vcpu->arch.efer & EFER_LMA;
1775 r = kvm_x86_call(set_efer)(vcpu, efer);
1776 if (r) {
1777 WARN_ON(r > 0);
1778 return r;
1781 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1782 kvm_mmu_reset_context(vcpu);
1784 if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1785 (efer & EFER_SVME))
1786 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1788 return 0;
1791 void kvm_enable_efer_bits(u64 mask)
1793 efer_reserved_bits &= ~mask;
1795 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1797 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1799 struct kvm_x86_msr_filter *msr_filter;
1800 struct msr_bitmap_range *ranges;
1801 struct kvm *kvm = vcpu->kvm;
1802 bool allowed;
1803 int idx;
1804 u32 i;
1806 /* x2APIC MSRs do not support filtering. */
1807 if (index >= 0x800 && index <= 0x8ff)
1808 return true;
1810 idx = srcu_read_lock(&kvm->srcu);
1812 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1813 if (!msr_filter) {
1814 allowed = true;
1815 goto out;
1818 allowed = msr_filter->default_allow;
1819 ranges = msr_filter->ranges;
1821 for (i = 0; i < msr_filter->count; i++) {
1822 u32 start = ranges[i].base;
1823 u32 end = start + ranges[i].nmsrs;
1824 u32 flags = ranges[i].flags;
1825 unsigned long *bitmap = ranges[i].bitmap;
1827 if ((index >= start) && (index < end) && (flags & type)) {
1828 allowed = test_bit(index - start, bitmap);
1829 break;
1833 out:
1834 srcu_read_unlock(&kvm->srcu, idx);
1836 return allowed;
1838 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1841 * Write @data into the MSR specified by @index. Select MSR specific fault
1842 * checks are bypassed if @host_initiated is %true.
1843 * Returns 0 on success, non-0 otherwise.
1844 * Assumes vcpu_load() was already called.
1846 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1847 bool host_initiated)
1849 struct msr_data msr;
1851 switch (index) {
1852 case MSR_FS_BASE:
1853 case MSR_GS_BASE:
1854 case MSR_KERNEL_GS_BASE:
1855 case MSR_CSTAR:
1856 case MSR_LSTAR:
1857 if (is_noncanonical_address(data, vcpu))
1858 return 1;
1859 break;
1860 case MSR_IA32_SYSENTER_EIP:
1861 case MSR_IA32_SYSENTER_ESP:
1863 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1864 * non-canonical address is written on Intel but not on
1865 * AMD (which ignores the top 32-bits, because it does
1866 * not implement 64-bit SYSENTER).
1868 * 64-bit code should hence be able to write a non-canonical
1869 * value on AMD. Making the address canonical ensures that
1870 * vmentry does not fail on Intel after writing a non-canonical
1871 * value, and that something deterministic happens if the guest
1872 * invokes 64-bit SYSENTER.
1874 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1875 break;
1876 case MSR_TSC_AUX:
1877 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1878 return 1;
1880 if (!host_initiated &&
1881 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1882 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1883 return 1;
1886 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1887 * incomplete and conflicting architectural behavior. Current
1888 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1889 * reserved and always read as zeros. Enforce Intel's reserved
1890 * bits check if the guest CPU is Intel compatible, otherwise
1891 * clear the bits. This ensures cross-vendor migration will
1892 * provide consistent behavior for the guest.
1894 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1895 return 1;
1897 data = (u32)data;
1898 break;
1901 msr.data = data;
1902 msr.index = index;
1903 msr.host_initiated = host_initiated;
1905 return kvm_x86_call(set_msr)(vcpu, &msr);
1908 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1909 bool host_initiated)
1911 return __kvm_set_msr(vcpu, index, *data, host_initiated);
1914 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1915 u32 index, u64 data, bool host_initiated)
1917 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1918 _kvm_set_msr);
1922 * Read the MSR specified by @index into @data. Select MSR specific fault
1923 * checks are bypassed if @host_initiated is %true.
1924 * Returns 0 on success, non-0 otherwise.
1925 * Assumes vcpu_load() was already called.
1927 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1928 bool host_initiated)
1930 struct msr_data msr;
1931 int ret;
1933 switch (index) {
1934 case MSR_TSC_AUX:
1935 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1936 return 1;
1938 if (!host_initiated &&
1939 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1940 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1941 return 1;
1942 break;
1945 msr.index = index;
1946 msr.host_initiated = host_initiated;
1948 ret = kvm_x86_call(get_msr)(vcpu, &msr);
1949 if (!ret)
1950 *data = msr.data;
1951 return ret;
1954 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1955 u32 index, u64 *data, bool host_initiated)
1957 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1958 __kvm_get_msr);
1961 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1963 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1964 return KVM_MSR_RET_FILTERED;
1965 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1967 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1969 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1971 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1972 return KVM_MSR_RET_FILTERED;
1973 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1975 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1977 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1979 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1981 EXPORT_SYMBOL_GPL(kvm_get_msr);
1983 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1985 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1987 EXPORT_SYMBOL_GPL(kvm_set_msr);
1989 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1991 if (!vcpu->run->msr.error) {
1992 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1993 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1997 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1999 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2002 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2004 complete_userspace_rdmsr(vcpu);
2005 return complete_emulated_msr_access(vcpu);
2008 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2010 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2013 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2015 complete_userspace_rdmsr(vcpu);
2016 return complete_fast_msr_access(vcpu);
2019 static u64 kvm_msr_reason(int r)
2021 switch (r) {
2022 case KVM_MSR_RET_UNSUPPORTED:
2023 return KVM_MSR_EXIT_REASON_UNKNOWN;
2024 case KVM_MSR_RET_FILTERED:
2025 return KVM_MSR_EXIT_REASON_FILTER;
2026 default:
2027 return KVM_MSR_EXIT_REASON_INVAL;
2031 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2032 u32 exit_reason, u64 data,
2033 int (*completion)(struct kvm_vcpu *vcpu),
2034 int r)
2036 u64 msr_reason = kvm_msr_reason(r);
2038 /* Check if the user wanted to know about this MSR fault */
2039 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2040 return 0;
2042 vcpu->run->exit_reason = exit_reason;
2043 vcpu->run->msr.error = 0;
2044 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2045 vcpu->run->msr.reason = msr_reason;
2046 vcpu->run->msr.index = index;
2047 vcpu->run->msr.data = data;
2048 vcpu->arch.complete_userspace_io = completion;
2050 return 1;
2053 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2055 u32 ecx = kvm_rcx_read(vcpu);
2056 u64 data;
2057 int r;
2059 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2061 if (!r) {
2062 trace_kvm_msr_read(ecx, data);
2064 kvm_rax_write(vcpu, data & -1u);
2065 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2066 } else {
2067 /* MSR read failed? See if we should ask user space */
2068 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2069 complete_fast_rdmsr, r))
2070 return 0;
2071 trace_kvm_msr_read_ex(ecx);
2074 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2076 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2078 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2080 u32 ecx = kvm_rcx_read(vcpu);
2081 u64 data = kvm_read_edx_eax(vcpu);
2082 int r;
2084 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2086 if (!r) {
2087 trace_kvm_msr_write(ecx, data);
2088 } else {
2089 /* MSR write failed? See if we should ask user space */
2090 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2091 complete_fast_msr_access, r))
2092 return 0;
2093 /* Signal all other negative errors to userspace */
2094 if (r < 0)
2095 return r;
2096 trace_kvm_msr_write_ex(ecx, data);
2099 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2101 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2103 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2105 return kvm_skip_emulated_instruction(vcpu);
2108 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2110 /* Treat an INVD instruction as a NOP and just skip it. */
2111 return kvm_emulate_as_nop(vcpu);
2113 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2115 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2117 kvm_queue_exception(vcpu, UD_VECTOR);
2118 return 1;
2120 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2123 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2125 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2126 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2127 return kvm_handle_invalid_op(vcpu);
2129 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2130 return kvm_emulate_as_nop(vcpu);
2132 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2134 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2136 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2138 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2140 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2142 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2144 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2146 xfer_to_guest_mode_prepare();
2147 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2148 xfer_to_guest_mode_work_pending();
2152 * The fast path for frequent and performance sensitive wrmsr emulation,
2153 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2154 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2155 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2156 * other cases which must be called after interrupts are enabled on the host.
2158 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2160 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2161 return 1;
2163 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2164 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2165 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2166 ((u32)(data >> 32) != X2APIC_BROADCAST))
2167 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2169 return 1;
2172 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2174 if (!kvm_can_use_hv_timer(vcpu))
2175 return 1;
2177 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2178 return 0;
2181 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2183 u32 msr = kvm_rcx_read(vcpu);
2184 u64 data;
2185 fastpath_t ret;
2186 bool handled;
2188 kvm_vcpu_srcu_read_lock(vcpu);
2190 switch (msr) {
2191 case APIC_BASE_MSR + (APIC_ICR >> 4):
2192 data = kvm_read_edx_eax(vcpu);
2193 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2194 break;
2195 case MSR_IA32_TSC_DEADLINE:
2196 data = kvm_read_edx_eax(vcpu);
2197 handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2198 break;
2199 default:
2200 handled = false;
2201 break;
2204 if (handled) {
2205 if (!kvm_skip_emulated_instruction(vcpu))
2206 ret = EXIT_FASTPATH_EXIT_USERSPACE;
2207 else
2208 ret = EXIT_FASTPATH_REENTER_GUEST;
2209 trace_kvm_msr_write(msr, data);
2210 } else {
2211 ret = EXIT_FASTPATH_NONE;
2214 kvm_vcpu_srcu_read_unlock(vcpu);
2216 return ret;
2218 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2221 * Adapt set_msr() to msr_io()'s calling convention
2223 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2225 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2228 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2230 u64 val;
2233 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2234 * not support modifying the guest vCPU model on the fly, e.g. changing
2235 * the nVMX capabilities while L2 is running is nonsensical. Allow
2236 * writes of the same value, e.g. to allow userspace to blindly stuff
2237 * all MSRs when emulating RESET.
2239 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2240 (do_get_msr(vcpu, index, &val) || *data != val))
2241 return -EINVAL;
2243 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2246 #ifdef CONFIG_X86_64
2247 struct pvclock_clock {
2248 int vclock_mode;
2249 u64 cycle_last;
2250 u64 mask;
2251 u32 mult;
2252 u32 shift;
2253 u64 base_cycles;
2254 u64 offset;
2257 struct pvclock_gtod_data {
2258 seqcount_t seq;
2260 struct pvclock_clock clock; /* extract of a clocksource struct */
2261 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2263 ktime_t offs_boot;
2264 u64 wall_time_sec;
2267 static struct pvclock_gtod_data pvclock_gtod_data;
2269 static void update_pvclock_gtod(struct timekeeper *tk)
2271 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2273 write_seqcount_begin(&vdata->seq);
2275 /* copy pvclock gtod data */
2276 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2277 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2278 vdata->clock.mask = tk->tkr_mono.mask;
2279 vdata->clock.mult = tk->tkr_mono.mult;
2280 vdata->clock.shift = tk->tkr_mono.shift;
2281 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2282 vdata->clock.offset = tk->tkr_mono.base;
2284 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2285 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2286 vdata->raw_clock.mask = tk->tkr_raw.mask;
2287 vdata->raw_clock.mult = tk->tkr_raw.mult;
2288 vdata->raw_clock.shift = tk->tkr_raw.shift;
2289 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2290 vdata->raw_clock.offset = tk->tkr_raw.base;
2292 vdata->wall_time_sec = tk->xtime_sec;
2294 vdata->offs_boot = tk->offs_boot;
2296 write_seqcount_end(&vdata->seq);
2299 static s64 get_kvmclock_base_ns(void)
2301 /* Count up from boot time, but with the frequency of the raw clock. */
2302 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2304 #else
2305 static s64 get_kvmclock_base_ns(void)
2307 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2308 return ktime_get_boottime_ns();
2310 #endif
2312 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2314 int version;
2315 int r;
2316 struct pvclock_wall_clock wc;
2317 u32 wc_sec_hi;
2318 u64 wall_nsec;
2320 if (!wall_clock)
2321 return;
2323 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2324 if (r)
2325 return;
2327 if (version & 1)
2328 ++version; /* first time write, random junk */
2330 ++version;
2332 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2333 return;
2335 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2337 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2338 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2339 wc.version = version;
2341 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2343 if (sec_hi_ofs) {
2344 wc_sec_hi = wall_nsec >> 32;
2345 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2346 &wc_sec_hi, sizeof(wc_sec_hi));
2349 version++;
2350 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2353 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2354 bool old_msr, bool host_initiated)
2356 struct kvm_arch *ka = &vcpu->kvm->arch;
2358 if (vcpu->vcpu_id == 0 && !host_initiated) {
2359 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2360 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2362 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2365 vcpu->arch.time = system_time;
2366 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2368 /* we verify if the enable bit is set... */
2369 if (system_time & 1)
2370 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2371 sizeof(struct pvclock_vcpu_time_info));
2372 else
2373 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2375 return;
2378 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2380 do_shl32_div32(dividend, divisor);
2381 return dividend;
2384 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2385 s8 *pshift, u32 *pmultiplier)
2387 uint64_t scaled64;
2388 int32_t shift = 0;
2389 uint64_t tps64;
2390 uint32_t tps32;
2392 tps64 = base_hz;
2393 scaled64 = scaled_hz;
2394 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2395 tps64 >>= 1;
2396 shift--;
2399 tps32 = (uint32_t)tps64;
2400 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2401 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2402 scaled64 >>= 1;
2403 else
2404 tps32 <<= 1;
2405 shift++;
2408 *pshift = shift;
2409 *pmultiplier = div_frac(scaled64, tps32);
2412 #ifdef CONFIG_X86_64
2413 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2414 #endif
2416 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2417 static unsigned long max_tsc_khz;
2419 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2421 u64 v = (u64)khz * (1000000 + ppm);
2422 do_div(v, 1000000);
2423 return v;
2426 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2428 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2430 u64 ratio;
2432 /* Guest TSC same frequency as host TSC? */
2433 if (!scale) {
2434 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2435 return 0;
2438 /* TSC scaling supported? */
2439 if (!kvm_caps.has_tsc_control) {
2440 if (user_tsc_khz > tsc_khz) {
2441 vcpu->arch.tsc_catchup = 1;
2442 vcpu->arch.tsc_always_catchup = 1;
2443 return 0;
2444 } else {
2445 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2446 return -1;
2450 /* TSC scaling required - calculate ratio */
2451 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2452 user_tsc_khz, tsc_khz);
2454 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2455 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2456 user_tsc_khz);
2457 return -1;
2460 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2461 return 0;
2464 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2466 u32 thresh_lo, thresh_hi;
2467 int use_scaling = 0;
2469 /* tsc_khz can be zero if TSC calibration fails */
2470 if (user_tsc_khz == 0) {
2471 /* set tsc_scaling_ratio to a safe value */
2472 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2473 return -1;
2476 /* Compute a scale to convert nanoseconds in TSC cycles */
2477 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2478 &vcpu->arch.virtual_tsc_shift,
2479 &vcpu->arch.virtual_tsc_mult);
2480 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2483 * Compute the variation in TSC rate which is acceptable
2484 * within the range of tolerance and decide if the
2485 * rate being applied is within that bounds of the hardware
2486 * rate. If so, no scaling or compensation need be done.
2488 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2489 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2490 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2491 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2492 user_tsc_khz, thresh_lo, thresh_hi);
2493 use_scaling = 1;
2495 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2498 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2500 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2501 vcpu->arch.virtual_tsc_mult,
2502 vcpu->arch.virtual_tsc_shift);
2503 tsc += vcpu->arch.this_tsc_write;
2504 return tsc;
2507 #ifdef CONFIG_X86_64
2508 static inline bool gtod_is_based_on_tsc(int mode)
2510 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2512 #endif
2514 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2516 #ifdef CONFIG_X86_64
2517 struct kvm_arch *ka = &vcpu->kvm->arch;
2518 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2521 * To use the masterclock, the host clocksource must be based on TSC
2522 * and all vCPUs must have matching TSCs. Note, the count for matching
2523 * vCPUs doesn't include the reference vCPU, hence "+1".
2525 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2526 atomic_read(&vcpu->kvm->online_vcpus)) &&
2527 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2530 * Request a masterclock update if the masterclock needs to be toggled
2531 * on/off, or when starting a new generation and the masterclock is
2532 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2533 * taken _after_ the new generation is created).
2535 if ((ka->use_master_clock && new_generation) ||
2536 (ka->use_master_clock != use_master_clock))
2537 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2539 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2540 atomic_read(&vcpu->kvm->online_vcpus),
2541 ka->use_master_clock, gtod->clock.vclock_mode);
2542 #endif
2546 * Multiply tsc by a fixed point number represented by ratio.
2548 * The most significant 64-N bits (mult) of ratio represent the
2549 * integral part of the fixed point number; the remaining N bits
2550 * (frac) represent the fractional part, ie. ratio represents a fixed
2551 * point number (mult + frac * 2^(-N)).
2553 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2555 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2557 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2560 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2562 u64 _tsc = tsc;
2564 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2565 _tsc = __scale_tsc(ratio, tsc);
2567 return _tsc;
2570 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2572 u64 tsc;
2574 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2576 return target_tsc - tsc;
2579 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2581 return vcpu->arch.l1_tsc_offset +
2582 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2584 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2586 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2588 u64 nested_offset;
2590 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2591 nested_offset = l1_offset;
2592 else
2593 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2594 kvm_caps.tsc_scaling_ratio_frac_bits);
2596 nested_offset += l2_offset;
2597 return nested_offset;
2599 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2601 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2603 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2604 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2605 kvm_caps.tsc_scaling_ratio_frac_bits);
2607 return l1_multiplier;
2609 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2611 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2613 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2614 vcpu->arch.l1_tsc_offset,
2615 l1_offset);
2617 vcpu->arch.l1_tsc_offset = l1_offset;
2620 * If we are here because L1 chose not to trap WRMSR to TSC then
2621 * according to the spec this should set L1's TSC (as opposed to
2622 * setting L1's offset for L2).
2624 if (is_guest_mode(vcpu))
2625 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2626 l1_offset,
2627 kvm_x86_call(get_l2_tsc_offset)(vcpu),
2628 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2629 else
2630 vcpu->arch.tsc_offset = l1_offset;
2632 kvm_x86_call(write_tsc_offset)(vcpu);
2635 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2637 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2639 /* Userspace is changing the multiplier while L2 is active */
2640 if (is_guest_mode(vcpu))
2641 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2642 l1_multiplier,
2643 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2644 else
2645 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2647 if (kvm_caps.has_tsc_control)
2648 kvm_x86_call(write_tsc_multiplier)(vcpu);
2651 static inline bool kvm_check_tsc_unstable(void)
2653 #ifdef CONFIG_X86_64
2655 * TSC is marked unstable when we're running on Hyper-V,
2656 * 'TSC page' clocksource is good.
2658 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2659 return false;
2660 #endif
2661 return check_tsc_unstable();
2665 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2666 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2667 * participates in.
2669 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2670 u64 ns, bool matched)
2672 struct kvm *kvm = vcpu->kvm;
2674 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2677 * We also track th most recent recorded KHZ, write and time to
2678 * allow the matching interval to be extended at each write.
2680 kvm->arch.last_tsc_nsec = ns;
2681 kvm->arch.last_tsc_write = tsc;
2682 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2683 kvm->arch.last_tsc_offset = offset;
2685 vcpu->arch.last_guest_tsc = tsc;
2687 kvm_vcpu_write_tsc_offset(vcpu, offset);
2689 if (!matched) {
2691 * We split periods of matched TSC writes into generations.
2692 * For each generation, we track the original measured
2693 * nanosecond time, offset, and write, so if TSCs are in
2694 * sync, we can match exact offset, and if not, we can match
2695 * exact software computation in compute_guest_tsc()
2697 * These values are tracked in kvm->arch.cur_xxx variables.
2699 kvm->arch.cur_tsc_generation++;
2700 kvm->arch.cur_tsc_nsec = ns;
2701 kvm->arch.cur_tsc_write = tsc;
2702 kvm->arch.cur_tsc_offset = offset;
2703 kvm->arch.nr_vcpus_matched_tsc = 0;
2704 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2705 kvm->arch.nr_vcpus_matched_tsc++;
2708 /* Keep track of which generation this VCPU has synchronized to */
2709 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2710 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2711 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2713 kvm_track_tsc_matching(vcpu, !matched);
2716 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2718 u64 data = user_value ? *user_value : 0;
2719 struct kvm *kvm = vcpu->kvm;
2720 u64 offset, ns, elapsed;
2721 unsigned long flags;
2722 bool matched = false;
2723 bool synchronizing = false;
2725 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2726 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2727 ns = get_kvmclock_base_ns();
2728 elapsed = ns - kvm->arch.last_tsc_nsec;
2730 if (vcpu->arch.virtual_tsc_khz) {
2731 if (data == 0) {
2733 * Force synchronization when creating a vCPU, or when
2734 * userspace explicitly writes a zero value.
2736 synchronizing = true;
2737 } else if (kvm->arch.user_set_tsc) {
2738 u64 tsc_exp = kvm->arch.last_tsc_write +
2739 nsec_to_cycles(vcpu, elapsed);
2740 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2742 * Here lies UAPI baggage: when a user-initiated TSC write has
2743 * a small delta (1 second) of virtual cycle time against the
2744 * previously set vCPU, we assume that they were intended to be
2745 * in sync and the delta was only due to the racy nature of the
2746 * legacy API.
2748 * This trick falls down when restoring a guest which genuinely
2749 * has been running for less time than the 1 second of imprecision
2750 * which we allow for in the legacy API. In this case, the first
2751 * value written by userspace (on any vCPU) should not be subject
2752 * to this 'correction' to make it sync up with values that only
2753 * come from the kernel's default vCPU creation. Make the 1-second
2754 * slop hack only trigger if the user_set_tsc flag is already set.
2756 synchronizing = data < tsc_exp + tsc_hz &&
2757 data + tsc_hz > tsc_exp;
2761 if (user_value)
2762 kvm->arch.user_set_tsc = true;
2765 * For a reliable TSC, we can match TSC offsets, and for an unstable
2766 * TSC, we add elapsed time in this computation. We could let the
2767 * compensation code attempt to catch up if we fall behind, but
2768 * it's better to try to match offsets from the beginning.
2770 if (synchronizing &&
2771 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2772 if (!kvm_check_tsc_unstable()) {
2773 offset = kvm->arch.cur_tsc_offset;
2774 } else {
2775 u64 delta = nsec_to_cycles(vcpu, elapsed);
2776 data += delta;
2777 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2779 matched = true;
2782 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2783 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2786 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2787 s64 adjustment)
2789 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2790 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2793 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2795 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2796 WARN_ON(adjustment < 0);
2797 adjustment = kvm_scale_tsc((u64) adjustment,
2798 vcpu->arch.l1_tsc_scaling_ratio);
2799 adjust_tsc_offset_guest(vcpu, adjustment);
2802 #ifdef CONFIG_X86_64
2804 static u64 read_tsc(void)
2806 u64 ret = (u64)rdtsc_ordered();
2807 u64 last = pvclock_gtod_data.clock.cycle_last;
2809 if (likely(ret >= last))
2810 return ret;
2813 * GCC likes to generate cmov here, but this branch is extremely
2814 * predictable (it's just a function of time and the likely is
2815 * very likely) and there's a data dependence, so force GCC
2816 * to generate a branch instead. I don't barrier() because
2817 * we don't actually need a barrier, and if this function
2818 * ever gets inlined it will generate worse code.
2820 asm volatile ("");
2821 return last;
2824 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2825 int *mode)
2827 u64 tsc_pg_val;
2828 long v;
2830 switch (clock->vclock_mode) {
2831 case VDSO_CLOCKMODE_HVCLOCK:
2832 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2833 tsc_timestamp, &tsc_pg_val)) {
2834 /* TSC page valid */
2835 *mode = VDSO_CLOCKMODE_HVCLOCK;
2836 v = (tsc_pg_val - clock->cycle_last) &
2837 clock->mask;
2838 } else {
2839 /* TSC page invalid */
2840 *mode = VDSO_CLOCKMODE_NONE;
2842 break;
2843 case VDSO_CLOCKMODE_TSC:
2844 *mode = VDSO_CLOCKMODE_TSC;
2845 *tsc_timestamp = read_tsc();
2846 v = (*tsc_timestamp - clock->cycle_last) &
2847 clock->mask;
2848 break;
2849 default:
2850 *mode = VDSO_CLOCKMODE_NONE;
2853 if (*mode == VDSO_CLOCKMODE_NONE)
2854 *tsc_timestamp = v = 0;
2856 return v * clock->mult;
2860 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2861 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2863 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2865 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2866 unsigned long seq;
2867 int mode;
2868 u64 ns;
2870 do {
2871 seq = read_seqcount_begin(&gtod->seq);
2872 ns = gtod->raw_clock.base_cycles;
2873 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2874 ns >>= gtod->raw_clock.shift;
2875 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2876 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2877 *t = ns;
2879 return mode;
2883 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2884 * no boot time offset.
2886 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2888 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2889 unsigned long seq;
2890 int mode;
2891 u64 ns;
2893 do {
2894 seq = read_seqcount_begin(&gtod->seq);
2895 ns = gtod->clock.base_cycles;
2896 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2897 ns >>= gtod->clock.shift;
2898 ns += ktime_to_ns(gtod->clock.offset);
2899 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2900 *t = ns;
2902 return mode;
2905 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2907 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2908 unsigned long seq;
2909 int mode;
2910 u64 ns;
2912 do {
2913 seq = read_seqcount_begin(&gtod->seq);
2914 ts->tv_sec = gtod->wall_time_sec;
2915 ns = gtod->clock.base_cycles;
2916 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2917 ns >>= gtod->clock.shift;
2918 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2920 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2921 ts->tv_nsec = ns;
2923 return mode;
2927 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2928 * reports the TSC value from which it do so. Returns true if host is
2929 * using TSC based clocksource.
2931 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2933 /* checked again under seqlock below */
2934 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2935 return false;
2937 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2938 tsc_timestamp));
2942 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2943 * so. Returns true if host is using TSC based clocksource.
2945 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2947 /* checked again under seqlock below */
2948 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2949 return false;
2951 return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2952 tsc_timestamp));
2956 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2957 * so. Returns true if host is using TSC based clocksource.
2959 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2960 * for that.
2962 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2963 u64 *tsc_timestamp)
2965 /* checked again under seqlock below */
2966 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2967 return false;
2969 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2971 #endif
2975 * Assuming a stable TSC across physical CPUS, and a stable TSC
2976 * across virtual CPUs, the following condition is possible.
2977 * Each numbered line represents an event visible to both
2978 * CPUs at the next numbered event.
2980 * "timespecX" represents host monotonic time. "tscX" represents
2981 * RDTSC value.
2983 * VCPU0 on CPU0 | VCPU1 on CPU1
2985 * 1. read timespec0,tsc0
2986 * 2. | timespec1 = timespec0 + N
2987 * | tsc1 = tsc0 + M
2988 * 3. transition to guest | transition to guest
2989 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2990 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2991 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2993 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2995 * - ret0 < ret1
2996 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2997 * ...
2998 * - 0 < N - M => M < N
3000 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3001 * always the case (the difference between two distinct xtime instances
3002 * might be smaller then the difference between corresponding TSC reads,
3003 * when updating guest vcpus pvclock areas).
3005 * To avoid that problem, do not allow visibility of distinct
3006 * system_timestamp/tsc_timestamp values simultaneously: use a master
3007 * copy of host monotonic time values. Update that master copy
3008 * in lockstep.
3010 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3014 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3016 #ifdef CONFIG_X86_64
3017 struct kvm_arch *ka = &kvm->arch;
3018 int vclock_mode;
3019 bool host_tsc_clocksource, vcpus_matched;
3021 lockdep_assert_held(&kvm->arch.tsc_write_lock);
3022 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3023 atomic_read(&kvm->online_vcpus));
3026 * If the host uses TSC clock, then passthrough TSC as stable
3027 * to the guest.
3029 host_tsc_clocksource = kvm_get_time_and_clockread(
3030 &ka->master_kernel_ns,
3031 &ka->master_cycle_now);
3033 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3034 && !ka->backwards_tsc_observed
3035 && !ka->boot_vcpu_runs_old_kvmclock;
3037 if (ka->use_master_clock)
3038 atomic_set(&kvm_guest_has_master_clock, 1);
3040 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3041 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3042 vcpus_matched);
3043 #endif
3046 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3048 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3051 static void __kvm_start_pvclock_update(struct kvm *kvm)
3053 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3054 write_seqcount_begin(&kvm->arch.pvclock_sc);
3057 static void kvm_start_pvclock_update(struct kvm *kvm)
3059 kvm_make_mclock_inprogress_request(kvm);
3061 /* no guest entries from this point */
3062 __kvm_start_pvclock_update(kvm);
3065 static void kvm_end_pvclock_update(struct kvm *kvm)
3067 struct kvm_arch *ka = &kvm->arch;
3068 struct kvm_vcpu *vcpu;
3069 unsigned long i;
3071 write_seqcount_end(&ka->pvclock_sc);
3072 raw_spin_unlock_irq(&ka->tsc_write_lock);
3073 kvm_for_each_vcpu(i, vcpu, kvm)
3074 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3076 /* guest entries allowed */
3077 kvm_for_each_vcpu(i, vcpu, kvm)
3078 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3081 static void kvm_update_masterclock(struct kvm *kvm)
3083 kvm_hv_request_tsc_page_update(kvm);
3084 kvm_start_pvclock_update(kvm);
3085 pvclock_update_vm_gtod_copy(kvm);
3086 kvm_end_pvclock_update(kvm);
3090 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3091 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3092 * can change during boot even if the TSC is constant, as it's possible for KVM
3093 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3094 * notification when calibration completes, but practically speaking calibration
3095 * will complete before userspace is alive enough to create VMs.
3097 static unsigned long get_cpu_tsc_khz(void)
3099 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3100 return tsc_khz;
3101 else
3102 return __this_cpu_read(cpu_tsc_khz);
3105 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
3106 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3108 struct kvm_arch *ka = &kvm->arch;
3109 struct pvclock_vcpu_time_info hv_clock;
3111 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3112 get_cpu();
3114 data->flags = 0;
3115 if (ka->use_master_clock &&
3116 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3117 #ifdef CONFIG_X86_64
3118 struct timespec64 ts;
3120 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3121 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3122 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3123 } else
3124 #endif
3125 data->host_tsc = rdtsc();
3127 data->flags |= KVM_CLOCK_TSC_STABLE;
3128 hv_clock.tsc_timestamp = ka->master_cycle_now;
3129 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3130 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3131 &hv_clock.tsc_shift,
3132 &hv_clock.tsc_to_system_mul);
3133 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3134 } else {
3135 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3138 put_cpu();
3141 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3143 struct kvm_arch *ka = &kvm->arch;
3144 unsigned seq;
3146 do {
3147 seq = read_seqcount_begin(&ka->pvclock_sc);
3148 __get_kvmclock(kvm, data);
3149 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3152 u64 get_kvmclock_ns(struct kvm *kvm)
3154 struct kvm_clock_data data;
3156 get_kvmclock(kvm, &data);
3157 return data.clock;
3160 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3161 struct gfn_to_pfn_cache *gpc,
3162 unsigned int offset,
3163 bool force_tsc_unstable)
3165 struct kvm_vcpu_arch *vcpu = &v->arch;
3166 struct pvclock_vcpu_time_info *guest_hv_clock;
3167 unsigned long flags;
3169 read_lock_irqsave(&gpc->lock, flags);
3170 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3171 read_unlock_irqrestore(&gpc->lock, flags);
3173 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3174 return;
3176 read_lock_irqsave(&gpc->lock, flags);
3179 guest_hv_clock = (void *)(gpc->khva + offset);
3182 * This VCPU is paused, but it's legal for a guest to read another
3183 * VCPU's kvmclock, so we really have to follow the specification where
3184 * it says that version is odd if data is being modified, and even after
3185 * it is consistent.
3188 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3189 smp_wmb();
3191 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3192 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3194 if (vcpu->pvclock_set_guest_stopped_request) {
3195 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3196 vcpu->pvclock_set_guest_stopped_request = false;
3199 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3201 if (force_tsc_unstable)
3202 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3204 smp_wmb();
3206 guest_hv_clock->version = ++vcpu->hv_clock.version;
3208 kvm_gpc_mark_dirty_in_slot(gpc);
3209 read_unlock_irqrestore(&gpc->lock, flags);
3211 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3214 static int kvm_guest_time_update(struct kvm_vcpu *v)
3216 unsigned long flags, tgt_tsc_khz;
3217 unsigned seq;
3218 struct kvm_vcpu_arch *vcpu = &v->arch;
3219 struct kvm_arch *ka = &v->kvm->arch;
3220 s64 kernel_ns;
3221 u64 tsc_timestamp, host_tsc;
3222 u8 pvclock_flags;
3223 bool use_master_clock;
3224 #ifdef CONFIG_KVM_XEN
3226 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3227 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3228 * This default behaviour led to bugs in some guest kernels which cause
3229 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3231 bool xen_pvclock_tsc_unstable =
3232 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3233 #endif
3235 kernel_ns = 0;
3236 host_tsc = 0;
3239 * If the host uses TSC clock, then passthrough TSC as stable
3240 * to the guest.
3242 do {
3243 seq = read_seqcount_begin(&ka->pvclock_sc);
3244 use_master_clock = ka->use_master_clock;
3245 if (use_master_clock) {
3246 host_tsc = ka->master_cycle_now;
3247 kernel_ns = ka->master_kernel_ns;
3249 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3251 /* Keep irq disabled to prevent changes to the clock */
3252 local_irq_save(flags);
3253 tgt_tsc_khz = get_cpu_tsc_khz();
3254 if (unlikely(tgt_tsc_khz == 0)) {
3255 local_irq_restore(flags);
3256 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3257 return 1;
3259 if (!use_master_clock) {
3260 host_tsc = rdtsc();
3261 kernel_ns = get_kvmclock_base_ns();
3264 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3267 * We may have to catch up the TSC to match elapsed wall clock
3268 * time for two reasons, even if kvmclock is used.
3269 * 1) CPU could have been running below the maximum TSC rate
3270 * 2) Broken TSC compensation resets the base at each VCPU
3271 * entry to avoid unknown leaps of TSC even when running
3272 * again on the same CPU. This may cause apparent elapsed
3273 * time to disappear, and the guest to stand still or run
3274 * very slowly.
3276 if (vcpu->tsc_catchup) {
3277 u64 tsc = compute_guest_tsc(v, kernel_ns);
3278 if (tsc > tsc_timestamp) {
3279 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3280 tsc_timestamp = tsc;
3284 local_irq_restore(flags);
3286 /* With all the info we got, fill in the values */
3288 if (kvm_caps.has_tsc_control)
3289 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3290 v->arch.l1_tsc_scaling_ratio);
3292 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3293 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3294 &vcpu->hv_clock.tsc_shift,
3295 &vcpu->hv_clock.tsc_to_system_mul);
3296 vcpu->hw_tsc_khz = tgt_tsc_khz;
3297 kvm_xen_update_tsc_info(v);
3300 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3301 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3302 vcpu->last_guest_tsc = tsc_timestamp;
3304 /* If the host uses TSC clocksource, then it is stable */
3305 pvclock_flags = 0;
3306 if (use_master_clock)
3307 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3309 vcpu->hv_clock.flags = pvclock_flags;
3311 if (vcpu->pv_time.active)
3312 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3313 #ifdef CONFIG_KVM_XEN
3314 if (vcpu->xen.vcpu_info_cache.active)
3315 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3316 offsetof(struct compat_vcpu_info, time),
3317 xen_pvclock_tsc_unstable);
3318 if (vcpu->xen.vcpu_time_info_cache.active)
3319 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3320 xen_pvclock_tsc_unstable);
3321 #endif
3322 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3323 return 0;
3327 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3328 * which it started (i.e. its epoch, when its kvmclock was zero).
3330 * In fact those clocks are subtly different; wall clock frequency is
3331 * adjusted by NTP and has leap seconds, while the kvmclock is a
3332 * simple function of the TSC without any such adjustment.
3334 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3335 * that and kvmclock, but even that would be subject to change over
3336 * time.
3338 * Attempt to calculate the epoch at a given moment using the *same*
3339 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3340 * wallclock and kvmclock times, and subtracting one from the other.
3342 * Fall back to using their values at slightly different moments by
3343 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3345 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3347 #ifdef CONFIG_X86_64
3348 struct pvclock_vcpu_time_info hv_clock;
3349 struct kvm_arch *ka = &kvm->arch;
3350 unsigned long seq, local_tsc_khz;
3351 struct timespec64 ts;
3352 uint64_t host_tsc;
3354 do {
3355 seq = read_seqcount_begin(&ka->pvclock_sc);
3357 local_tsc_khz = 0;
3358 if (!ka->use_master_clock)
3359 break;
3362 * The TSC read and the call to get_cpu_tsc_khz() must happen
3363 * on the same CPU.
3365 get_cpu();
3367 local_tsc_khz = get_cpu_tsc_khz();
3369 if (local_tsc_khz &&
3370 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3371 local_tsc_khz = 0; /* Fall back to old method */
3373 put_cpu();
3376 * These values must be snapshotted within the seqcount loop.
3377 * After that, it's just mathematics which can happen on any
3378 * CPU at any time.
3380 hv_clock.tsc_timestamp = ka->master_cycle_now;
3381 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3383 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3386 * If the conditions were right, and obtaining the wallclock+TSC was
3387 * successful, calculate the KVM clock at the corresponding time and
3388 * subtract one from the other to get the guest's epoch in nanoseconds
3389 * since 1970-01-01.
3391 if (local_tsc_khz) {
3392 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3393 &hv_clock.tsc_shift,
3394 &hv_clock.tsc_to_system_mul);
3395 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3396 __pvclock_read_cycles(&hv_clock, host_tsc);
3398 #endif
3399 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3403 * kvmclock updates which are isolated to a given vcpu, such as
3404 * vcpu->cpu migration, should not allow system_timestamp from
3405 * the rest of the vcpus to remain static. Otherwise ntp frequency
3406 * correction applies to one vcpu's system_timestamp but not
3407 * the others.
3409 * So in those cases, request a kvmclock update for all vcpus.
3410 * We need to rate-limit these requests though, as they can
3411 * considerably slow guests that have a large number of vcpus.
3412 * The time for a remote vcpu to update its kvmclock is bound
3413 * by the delay we use to rate-limit the updates.
3416 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3418 static void kvmclock_update_fn(struct work_struct *work)
3420 unsigned long i;
3421 struct delayed_work *dwork = to_delayed_work(work);
3422 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3423 kvmclock_update_work);
3424 struct kvm *kvm = container_of(ka, struct kvm, arch);
3425 struct kvm_vcpu *vcpu;
3427 kvm_for_each_vcpu(i, vcpu, kvm) {
3428 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3429 kvm_vcpu_kick(vcpu);
3433 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3435 struct kvm *kvm = v->kvm;
3437 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3438 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3439 KVMCLOCK_UPDATE_DELAY);
3442 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3444 static void kvmclock_sync_fn(struct work_struct *work)
3446 struct delayed_work *dwork = to_delayed_work(work);
3447 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3448 kvmclock_sync_work);
3449 struct kvm *kvm = container_of(ka, struct kvm, arch);
3451 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3452 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3453 KVMCLOCK_SYNC_PERIOD);
3456 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3457 static bool is_mci_control_msr(u32 msr)
3459 return (msr & 3) == 0;
3461 static bool is_mci_status_msr(u32 msr)
3463 return (msr & 3) == 1;
3467 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3469 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3471 /* McStatusWrEn enabled? */
3472 if (guest_cpuid_is_amd_compatible(vcpu))
3473 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3475 return false;
3478 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3480 u64 mcg_cap = vcpu->arch.mcg_cap;
3481 unsigned bank_num = mcg_cap & 0xff;
3482 u32 msr = msr_info->index;
3483 u64 data = msr_info->data;
3484 u32 offset, last_msr;
3486 switch (msr) {
3487 case MSR_IA32_MCG_STATUS:
3488 vcpu->arch.mcg_status = data;
3489 break;
3490 case MSR_IA32_MCG_CTL:
3491 if (!(mcg_cap & MCG_CTL_P) &&
3492 (data || !msr_info->host_initiated))
3493 return 1;
3494 if (data != 0 && data != ~(u64)0)
3495 return 1;
3496 vcpu->arch.mcg_ctl = data;
3497 break;
3498 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3499 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3500 if (msr > last_msr)
3501 return 1;
3503 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3504 return 1;
3505 /* An attempt to write a 1 to a reserved bit raises #GP */
3506 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3507 return 1;
3508 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3509 last_msr + 1 - MSR_IA32_MC0_CTL2);
3510 vcpu->arch.mci_ctl2_banks[offset] = data;
3511 break;
3512 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3513 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3514 if (msr > last_msr)
3515 return 1;
3518 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3519 * values are architecturally undefined. But, some Linux
3520 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3521 * issue on AMD K8s, allow bit 10 to be clear when setting all
3522 * other bits in order to avoid an uncaught #GP in the guest.
3524 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3525 * single-bit ECC data errors.
3527 if (is_mci_control_msr(msr) &&
3528 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3529 return 1;
3532 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3533 * AMD-based CPUs allow non-zero values, but if and only if
3534 * HWCR[McStatusWrEn] is set.
3536 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3537 data != 0 && !can_set_mci_status(vcpu))
3538 return 1;
3540 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3541 last_msr + 1 - MSR_IA32_MC0_CTL);
3542 vcpu->arch.mce_banks[offset] = data;
3543 break;
3544 default:
3545 return 1;
3547 return 0;
3550 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3552 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3554 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3557 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3559 gpa_t gpa = data & ~0x3f;
3561 /* Bits 4:5 are reserved, Should be zero */
3562 if (data & 0x30)
3563 return 1;
3565 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3566 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3567 return 1;
3569 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3570 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3571 return 1;
3573 if (!lapic_in_kernel(vcpu))
3574 return data ? 1 : 0;
3576 vcpu->arch.apf.msr_en_val = data;
3578 if (!kvm_pv_async_pf_enabled(vcpu)) {
3579 kvm_clear_async_pf_completion_queue(vcpu);
3580 kvm_async_pf_hash_reset(vcpu);
3581 return 0;
3584 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3585 sizeof(u64)))
3586 return 1;
3588 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3589 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3591 kvm_async_pf_wakeup_all(vcpu);
3593 return 0;
3596 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3598 /* Bits 8-63 are reserved */
3599 if (data >> 8)
3600 return 1;
3602 if (!lapic_in_kernel(vcpu))
3603 return 1;
3605 vcpu->arch.apf.msr_int_val = data;
3607 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3609 return 0;
3612 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3614 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3615 vcpu->arch.time = 0;
3618 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3620 ++vcpu->stat.tlb_flush;
3621 kvm_x86_call(flush_tlb_all)(vcpu);
3623 /* Flushing all ASIDs flushes the current ASID... */
3624 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3627 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3629 ++vcpu->stat.tlb_flush;
3631 if (!tdp_enabled) {
3633 * A TLB flush on behalf of the guest is equivalent to
3634 * INVPCID(all), toggling CR4.PGE, etc., which requires
3635 * a forced sync of the shadow page tables. Ensure all the
3636 * roots are synced and the guest TLB in hardware is clean.
3638 kvm_mmu_sync_roots(vcpu);
3639 kvm_mmu_sync_prev_roots(vcpu);
3642 kvm_x86_call(flush_tlb_guest)(vcpu);
3645 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3646 * grained flushing.
3648 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3652 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3654 ++vcpu->stat.tlb_flush;
3655 kvm_x86_call(flush_tlb_current)(vcpu);
3659 * Service "local" TLB flush requests, which are specific to the current MMU
3660 * context. In addition to the generic event handling in vcpu_enter_guest(),
3661 * TLB flushes that are targeted at an MMU context also need to be serviced
3662 * prior before nested VM-Enter/VM-Exit.
3664 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3666 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3667 kvm_vcpu_flush_tlb_current(vcpu);
3669 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3670 kvm_vcpu_flush_tlb_guest(vcpu);
3672 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3674 static void record_steal_time(struct kvm_vcpu *vcpu)
3676 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3677 struct kvm_steal_time __user *st;
3678 struct kvm_memslots *slots;
3679 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3680 u64 steal;
3681 u32 version;
3683 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3684 kvm_xen_runstate_set_running(vcpu);
3685 return;
3688 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3689 return;
3691 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3692 return;
3694 slots = kvm_memslots(vcpu->kvm);
3696 if (unlikely(slots->generation != ghc->generation ||
3697 gpa != ghc->gpa ||
3698 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3699 /* We rely on the fact that it fits in a single page. */
3700 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3702 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3703 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3704 return;
3707 st = (struct kvm_steal_time __user *)ghc->hva;
3709 * Doing a TLB flush here, on the guest's behalf, can avoid
3710 * expensive IPIs.
3712 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3713 u8 st_preempted = 0;
3714 int err = -EFAULT;
3716 if (!user_access_begin(st, sizeof(*st)))
3717 return;
3719 asm volatile("1: xchgb %0, %2\n"
3720 "xor %1, %1\n"
3721 "2:\n"
3722 _ASM_EXTABLE_UA(1b, 2b)
3723 : "+q" (st_preempted),
3724 "+&r" (err),
3725 "+m" (st->preempted));
3726 if (err)
3727 goto out;
3729 user_access_end();
3731 vcpu->arch.st.preempted = 0;
3733 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3734 st_preempted & KVM_VCPU_FLUSH_TLB);
3735 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3736 kvm_vcpu_flush_tlb_guest(vcpu);
3738 if (!user_access_begin(st, sizeof(*st)))
3739 goto dirty;
3740 } else {
3741 if (!user_access_begin(st, sizeof(*st)))
3742 return;
3744 unsafe_put_user(0, &st->preempted, out);
3745 vcpu->arch.st.preempted = 0;
3748 unsafe_get_user(version, &st->version, out);
3749 if (version & 1)
3750 version += 1; /* first time write, random junk */
3752 version += 1;
3753 unsafe_put_user(version, &st->version, out);
3755 smp_wmb();
3757 unsafe_get_user(steal, &st->steal, out);
3758 steal += current->sched_info.run_delay -
3759 vcpu->arch.st.last_steal;
3760 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3761 unsafe_put_user(steal, &st->steal, out);
3763 version += 1;
3764 unsafe_put_user(version, &st->version, out);
3766 out:
3767 user_access_end();
3768 dirty:
3769 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3772 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3774 u32 msr = msr_info->index;
3775 u64 data = msr_info->data;
3777 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3778 return kvm_xen_write_hypercall_page(vcpu, data);
3780 switch (msr) {
3781 case MSR_AMD64_NB_CFG:
3782 case MSR_IA32_UCODE_WRITE:
3783 case MSR_VM_HSAVE_PA:
3784 case MSR_AMD64_PATCH_LOADER:
3785 case MSR_AMD64_BU_CFG2:
3786 case MSR_AMD64_DC_CFG:
3787 case MSR_AMD64_TW_CFG:
3788 case MSR_F15H_EX_CFG:
3789 break;
3791 case MSR_IA32_UCODE_REV:
3792 if (msr_info->host_initiated)
3793 vcpu->arch.microcode_version = data;
3794 break;
3795 case MSR_IA32_ARCH_CAPABILITIES:
3796 if (!msr_info->host_initiated)
3797 return 1;
3798 vcpu->arch.arch_capabilities = data;
3799 break;
3800 case MSR_IA32_PERF_CAPABILITIES:
3801 if (!msr_info->host_initiated)
3802 return 1;
3803 if (data & ~kvm_caps.supported_perf_cap)
3804 return 1;
3807 * Note, this is not just a performance optimization! KVM
3808 * disallows changing feature MSRs after the vCPU has run; PMU
3809 * refresh will bug the VM if called after the vCPU has run.
3811 if (vcpu->arch.perf_capabilities == data)
3812 break;
3814 vcpu->arch.perf_capabilities = data;
3815 kvm_pmu_refresh(vcpu);
3816 break;
3817 case MSR_IA32_PRED_CMD: {
3818 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3820 if (!msr_info->host_initiated) {
3821 if ((!guest_has_pred_cmd_msr(vcpu)))
3822 return 1;
3824 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3825 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3826 reserved_bits |= PRED_CMD_IBPB;
3828 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3829 reserved_bits |= PRED_CMD_SBPB;
3832 if (!boot_cpu_has(X86_FEATURE_IBPB))
3833 reserved_bits |= PRED_CMD_IBPB;
3835 if (!boot_cpu_has(X86_FEATURE_SBPB))
3836 reserved_bits |= PRED_CMD_SBPB;
3838 if (data & reserved_bits)
3839 return 1;
3841 if (!data)
3842 break;
3844 wrmsrl(MSR_IA32_PRED_CMD, data);
3845 break;
3847 case MSR_IA32_FLUSH_CMD:
3848 if (!msr_info->host_initiated &&
3849 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3850 return 1;
3852 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3853 return 1;
3854 if (!data)
3855 break;
3857 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3858 break;
3859 case MSR_EFER:
3860 return set_efer(vcpu, msr_info);
3861 case MSR_K7_HWCR:
3862 data &= ~(u64)0x40; /* ignore flush filter disable */
3863 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3864 data &= ~(u64)0x8; /* ignore TLB cache disable */
3867 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3868 * through at least v6.6 whine if TscFreqSel is clear,
3869 * depending on F/M/S.
3871 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3872 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3873 return 1;
3875 vcpu->arch.msr_hwcr = data;
3876 break;
3877 case MSR_FAM10H_MMIO_CONF_BASE:
3878 if (data != 0) {
3879 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3880 return 1;
3882 break;
3883 case MSR_IA32_CR_PAT:
3884 if (!kvm_pat_valid(data))
3885 return 1;
3887 vcpu->arch.pat = data;
3888 break;
3889 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3890 case MSR_MTRRdefType:
3891 return kvm_mtrr_set_msr(vcpu, msr, data);
3892 case MSR_IA32_APICBASE:
3893 return kvm_set_apic_base(vcpu, msr_info);
3894 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3895 return kvm_x2apic_msr_write(vcpu, msr, data);
3896 case MSR_IA32_TSC_DEADLINE:
3897 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3898 break;
3899 case MSR_IA32_TSC_ADJUST:
3900 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3901 if (!msr_info->host_initiated) {
3902 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3903 adjust_tsc_offset_guest(vcpu, adj);
3904 /* Before back to guest, tsc_timestamp must be adjusted
3905 * as well, otherwise guest's percpu pvclock time could jump.
3907 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3909 vcpu->arch.ia32_tsc_adjust_msr = data;
3911 break;
3912 case MSR_IA32_MISC_ENABLE: {
3913 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3915 if (!msr_info->host_initiated) {
3916 /* RO bits */
3917 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3918 return 1;
3920 /* R bits, i.e. writes are ignored, but don't fault. */
3921 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3922 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3925 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3926 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3927 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3928 return 1;
3929 vcpu->arch.ia32_misc_enable_msr = data;
3930 kvm_update_cpuid_runtime(vcpu);
3931 } else {
3932 vcpu->arch.ia32_misc_enable_msr = data;
3934 break;
3936 case MSR_IA32_SMBASE:
3937 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3938 return 1;
3939 vcpu->arch.smbase = data;
3940 break;
3941 case MSR_IA32_POWER_CTL:
3942 vcpu->arch.msr_ia32_power_ctl = data;
3943 break;
3944 case MSR_IA32_TSC:
3945 if (msr_info->host_initiated) {
3946 kvm_synchronize_tsc(vcpu, &data);
3947 } else {
3948 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3949 adjust_tsc_offset_guest(vcpu, adj);
3950 vcpu->arch.ia32_tsc_adjust_msr += adj;
3952 break;
3953 case MSR_IA32_XSS:
3954 if (!msr_info->host_initiated &&
3955 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3956 return 1;
3958 * KVM supports exposing PT to the guest, but does not support
3959 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3960 * XSAVES/XRSTORS to save/restore PT MSRs.
3962 if (data & ~kvm_caps.supported_xss)
3963 return 1;
3964 vcpu->arch.ia32_xss = data;
3965 kvm_update_cpuid_runtime(vcpu);
3966 break;
3967 case MSR_SMI_COUNT:
3968 if (!msr_info->host_initiated)
3969 return 1;
3970 vcpu->arch.smi_count = data;
3971 break;
3972 case MSR_KVM_WALL_CLOCK_NEW:
3973 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3974 return 1;
3976 vcpu->kvm->arch.wall_clock = data;
3977 kvm_write_wall_clock(vcpu->kvm, data, 0);
3978 break;
3979 case MSR_KVM_WALL_CLOCK:
3980 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3981 return 1;
3983 vcpu->kvm->arch.wall_clock = data;
3984 kvm_write_wall_clock(vcpu->kvm, data, 0);
3985 break;
3986 case MSR_KVM_SYSTEM_TIME_NEW:
3987 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3988 return 1;
3990 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3991 break;
3992 case MSR_KVM_SYSTEM_TIME:
3993 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3994 return 1;
3996 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3997 break;
3998 case MSR_KVM_ASYNC_PF_EN:
3999 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4000 return 1;
4002 if (kvm_pv_enable_async_pf(vcpu, data))
4003 return 1;
4004 break;
4005 case MSR_KVM_ASYNC_PF_INT:
4006 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4007 return 1;
4009 if (kvm_pv_enable_async_pf_int(vcpu, data))
4010 return 1;
4011 break;
4012 case MSR_KVM_ASYNC_PF_ACK:
4013 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4014 return 1;
4015 if (data & 0x1) {
4016 vcpu->arch.apf.pageready_pending = false;
4017 kvm_check_async_pf_completion(vcpu);
4019 break;
4020 case MSR_KVM_STEAL_TIME:
4021 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4022 return 1;
4024 if (unlikely(!sched_info_on()))
4025 return 1;
4027 if (data & KVM_STEAL_RESERVED_MASK)
4028 return 1;
4030 vcpu->arch.st.msr_val = data;
4032 if (!(data & KVM_MSR_ENABLED))
4033 break;
4035 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4037 break;
4038 case MSR_KVM_PV_EOI_EN:
4039 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4040 return 1;
4042 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4043 return 1;
4044 break;
4046 case MSR_KVM_POLL_CONTROL:
4047 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4048 return 1;
4050 /* only enable bit supported */
4051 if (data & (-1ULL << 1))
4052 return 1;
4054 vcpu->arch.msr_kvm_poll_control = data;
4055 break;
4057 case MSR_IA32_MCG_CTL:
4058 case MSR_IA32_MCG_STATUS:
4059 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4060 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4061 return set_msr_mce(vcpu, msr_info);
4063 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4064 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4065 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4066 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4067 if (kvm_pmu_is_valid_msr(vcpu, msr))
4068 return kvm_pmu_set_msr(vcpu, msr_info);
4070 if (data)
4071 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4072 break;
4073 case MSR_K7_CLK_CTL:
4075 * Ignore all writes to this no longer documented MSR.
4076 * Writes are only relevant for old K7 processors,
4077 * all pre-dating SVM, but a recommended workaround from
4078 * AMD for these chips. It is possible to specify the
4079 * affected processor models on the command line, hence
4080 * the need to ignore the workaround.
4082 break;
4083 #ifdef CONFIG_KVM_HYPERV
4084 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4085 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4086 case HV_X64_MSR_SYNDBG_OPTIONS:
4087 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4088 case HV_X64_MSR_CRASH_CTL:
4089 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4090 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4091 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4092 case HV_X64_MSR_TSC_EMULATION_STATUS:
4093 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4094 return kvm_hv_set_msr_common(vcpu, msr, data,
4095 msr_info->host_initiated);
4096 #endif
4097 case MSR_IA32_BBL_CR_CTL3:
4098 /* Drop writes to this legacy MSR -- see rdmsr
4099 * counterpart for further detail.
4101 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4102 break;
4103 case MSR_AMD64_OSVW_ID_LENGTH:
4104 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4105 return 1;
4106 vcpu->arch.osvw.length = data;
4107 break;
4108 case MSR_AMD64_OSVW_STATUS:
4109 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4110 return 1;
4111 vcpu->arch.osvw.status = data;
4112 break;
4113 case MSR_PLATFORM_INFO:
4114 if (!msr_info->host_initiated ||
4115 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4116 cpuid_fault_enabled(vcpu)))
4117 return 1;
4118 vcpu->arch.msr_platform_info = data;
4119 break;
4120 case MSR_MISC_FEATURES_ENABLES:
4121 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4122 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4123 !supports_cpuid_fault(vcpu)))
4124 return 1;
4125 vcpu->arch.msr_misc_features_enables = data;
4126 break;
4127 #ifdef CONFIG_X86_64
4128 case MSR_IA32_XFD:
4129 if (!msr_info->host_initiated &&
4130 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4131 return 1;
4133 if (data & ~kvm_guest_supported_xfd(vcpu))
4134 return 1;
4136 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4137 break;
4138 case MSR_IA32_XFD_ERR:
4139 if (!msr_info->host_initiated &&
4140 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4141 return 1;
4143 if (data & ~kvm_guest_supported_xfd(vcpu))
4144 return 1;
4146 vcpu->arch.guest_fpu.xfd_err = data;
4147 break;
4148 #endif
4149 default:
4150 if (kvm_pmu_is_valid_msr(vcpu, msr))
4151 return kvm_pmu_set_msr(vcpu, msr_info);
4153 return KVM_MSR_RET_UNSUPPORTED;
4155 return 0;
4157 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4159 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4161 u64 data;
4162 u64 mcg_cap = vcpu->arch.mcg_cap;
4163 unsigned bank_num = mcg_cap & 0xff;
4164 u32 offset, last_msr;
4166 switch (msr) {
4167 case MSR_IA32_P5_MC_ADDR:
4168 case MSR_IA32_P5_MC_TYPE:
4169 data = 0;
4170 break;
4171 case MSR_IA32_MCG_CAP:
4172 data = vcpu->arch.mcg_cap;
4173 break;
4174 case MSR_IA32_MCG_CTL:
4175 if (!(mcg_cap & MCG_CTL_P) && !host)
4176 return 1;
4177 data = vcpu->arch.mcg_ctl;
4178 break;
4179 case MSR_IA32_MCG_STATUS:
4180 data = vcpu->arch.mcg_status;
4181 break;
4182 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4183 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4184 if (msr > last_msr)
4185 return 1;
4187 if (!(mcg_cap & MCG_CMCI_P) && !host)
4188 return 1;
4189 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4190 last_msr + 1 - MSR_IA32_MC0_CTL2);
4191 data = vcpu->arch.mci_ctl2_banks[offset];
4192 break;
4193 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4194 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4195 if (msr > last_msr)
4196 return 1;
4198 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4199 last_msr + 1 - MSR_IA32_MC0_CTL);
4200 data = vcpu->arch.mce_banks[offset];
4201 break;
4202 default:
4203 return 1;
4205 *pdata = data;
4206 return 0;
4209 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4211 switch (msr_info->index) {
4212 case MSR_IA32_PLATFORM_ID:
4213 case MSR_IA32_EBL_CR_POWERON:
4214 case MSR_IA32_LASTBRANCHFROMIP:
4215 case MSR_IA32_LASTBRANCHTOIP:
4216 case MSR_IA32_LASTINTFROMIP:
4217 case MSR_IA32_LASTINTTOIP:
4218 case MSR_AMD64_SYSCFG:
4219 case MSR_K8_TSEG_ADDR:
4220 case MSR_K8_TSEG_MASK:
4221 case MSR_VM_HSAVE_PA:
4222 case MSR_K8_INT_PENDING_MSG:
4223 case MSR_AMD64_NB_CFG:
4224 case MSR_FAM10H_MMIO_CONF_BASE:
4225 case MSR_AMD64_BU_CFG2:
4226 case MSR_IA32_PERF_CTL:
4227 case MSR_AMD64_DC_CFG:
4228 case MSR_AMD64_TW_CFG:
4229 case MSR_F15H_EX_CFG:
4231 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4232 * limit) MSRs. Just return 0, as we do not want to expose the host
4233 * data here. Do not conditionalize this on CPUID, as KVM does not do
4234 * so for existing CPU-specific MSRs.
4236 case MSR_RAPL_POWER_UNIT:
4237 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4238 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4239 case MSR_PKG_ENERGY_STATUS: /* Total package */
4240 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4241 msr_info->data = 0;
4242 break;
4243 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4244 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4245 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4246 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4247 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4248 return kvm_pmu_get_msr(vcpu, msr_info);
4249 msr_info->data = 0;
4250 break;
4251 case MSR_IA32_UCODE_REV:
4252 msr_info->data = vcpu->arch.microcode_version;
4253 break;
4254 case MSR_IA32_ARCH_CAPABILITIES:
4255 if (!msr_info->host_initiated &&
4256 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4257 return 1;
4258 msr_info->data = vcpu->arch.arch_capabilities;
4259 break;
4260 case MSR_IA32_PERF_CAPABILITIES:
4261 if (!msr_info->host_initiated &&
4262 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4263 return 1;
4264 msr_info->data = vcpu->arch.perf_capabilities;
4265 break;
4266 case MSR_IA32_POWER_CTL:
4267 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4268 break;
4269 case MSR_IA32_TSC: {
4271 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4272 * even when not intercepted. AMD manual doesn't explicitly
4273 * state this but appears to behave the same.
4275 * On userspace reads and writes, however, we unconditionally
4276 * return L1's TSC value to ensure backwards-compatible
4277 * behavior for migration.
4279 u64 offset, ratio;
4281 if (msr_info->host_initiated) {
4282 offset = vcpu->arch.l1_tsc_offset;
4283 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4284 } else {
4285 offset = vcpu->arch.tsc_offset;
4286 ratio = vcpu->arch.tsc_scaling_ratio;
4289 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4290 break;
4292 case MSR_IA32_CR_PAT:
4293 msr_info->data = vcpu->arch.pat;
4294 break;
4295 case MSR_MTRRcap:
4296 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4297 case MSR_MTRRdefType:
4298 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4299 case 0xcd: /* fsb frequency */
4300 msr_info->data = 3;
4301 break;
4303 * MSR_EBC_FREQUENCY_ID
4304 * Conservative value valid for even the basic CPU models.
4305 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4306 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4307 * and 266MHz for model 3, or 4. Set Core Clock
4308 * Frequency to System Bus Frequency Ratio to 1 (bits
4309 * 31:24) even though these are only valid for CPU
4310 * models > 2, however guests may end up dividing or
4311 * multiplying by zero otherwise.
4313 case MSR_EBC_FREQUENCY_ID:
4314 msr_info->data = 1 << 24;
4315 break;
4316 case MSR_IA32_APICBASE:
4317 msr_info->data = kvm_get_apic_base(vcpu);
4318 break;
4319 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4320 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4321 case MSR_IA32_TSC_DEADLINE:
4322 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4323 break;
4324 case MSR_IA32_TSC_ADJUST:
4325 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4326 break;
4327 case MSR_IA32_MISC_ENABLE:
4328 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4329 break;
4330 case MSR_IA32_SMBASE:
4331 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4332 return 1;
4333 msr_info->data = vcpu->arch.smbase;
4334 break;
4335 case MSR_SMI_COUNT:
4336 msr_info->data = vcpu->arch.smi_count;
4337 break;
4338 case MSR_IA32_PERF_STATUS:
4339 /* TSC increment by tick */
4340 msr_info->data = 1000ULL;
4341 /* CPU multiplier */
4342 msr_info->data |= (((uint64_t)4ULL) << 40);
4343 break;
4344 case MSR_EFER:
4345 msr_info->data = vcpu->arch.efer;
4346 break;
4347 case MSR_KVM_WALL_CLOCK:
4348 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4349 return 1;
4351 msr_info->data = vcpu->kvm->arch.wall_clock;
4352 break;
4353 case MSR_KVM_WALL_CLOCK_NEW:
4354 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4355 return 1;
4357 msr_info->data = vcpu->kvm->arch.wall_clock;
4358 break;
4359 case MSR_KVM_SYSTEM_TIME:
4360 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4361 return 1;
4363 msr_info->data = vcpu->arch.time;
4364 break;
4365 case MSR_KVM_SYSTEM_TIME_NEW:
4366 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4367 return 1;
4369 msr_info->data = vcpu->arch.time;
4370 break;
4371 case MSR_KVM_ASYNC_PF_EN:
4372 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4373 return 1;
4375 msr_info->data = vcpu->arch.apf.msr_en_val;
4376 break;
4377 case MSR_KVM_ASYNC_PF_INT:
4378 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4379 return 1;
4381 msr_info->data = vcpu->arch.apf.msr_int_val;
4382 break;
4383 case MSR_KVM_ASYNC_PF_ACK:
4384 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4385 return 1;
4387 msr_info->data = 0;
4388 break;
4389 case MSR_KVM_STEAL_TIME:
4390 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4391 return 1;
4393 msr_info->data = vcpu->arch.st.msr_val;
4394 break;
4395 case MSR_KVM_PV_EOI_EN:
4396 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4397 return 1;
4399 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4400 break;
4401 case MSR_KVM_POLL_CONTROL:
4402 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4403 return 1;
4405 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4406 break;
4407 case MSR_IA32_P5_MC_ADDR:
4408 case MSR_IA32_P5_MC_TYPE:
4409 case MSR_IA32_MCG_CAP:
4410 case MSR_IA32_MCG_CTL:
4411 case MSR_IA32_MCG_STATUS:
4412 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4413 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4414 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4415 msr_info->host_initiated);
4416 case MSR_IA32_XSS:
4417 if (!msr_info->host_initiated &&
4418 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4419 return 1;
4420 msr_info->data = vcpu->arch.ia32_xss;
4421 break;
4422 case MSR_K7_CLK_CTL:
4424 * Provide expected ramp-up count for K7. All other
4425 * are set to zero, indicating minimum divisors for
4426 * every field.
4428 * This prevents guest kernels on AMD host with CPU
4429 * type 6, model 8 and higher from exploding due to
4430 * the rdmsr failing.
4432 msr_info->data = 0x20000000;
4433 break;
4434 #ifdef CONFIG_KVM_HYPERV
4435 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4436 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4437 case HV_X64_MSR_SYNDBG_OPTIONS:
4438 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4439 case HV_X64_MSR_CRASH_CTL:
4440 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4441 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4442 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4443 case HV_X64_MSR_TSC_EMULATION_STATUS:
4444 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4445 return kvm_hv_get_msr_common(vcpu,
4446 msr_info->index, &msr_info->data,
4447 msr_info->host_initiated);
4448 #endif
4449 case MSR_IA32_BBL_CR_CTL3:
4450 /* This legacy MSR exists but isn't fully documented in current
4451 * silicon. It is however accessed by winxp in very narrow
4452 * scenarios where it sets bit #19, itself documented as
4453 * a "reserved" bit. Best effort attempt to source coherent
4454 * read data here should the balance of the register be
4455 * interpreted by the guest:
4457 * L2 cache control register 3: 64GB range, 256KB size,
4458 * enabled, latency 0x1, configured
4460 msr_info->data = 0xbe702111;
4461 break;
4462 case MSR_AMD64_OSVW_ID_LENGTH:
4463 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4464 return 1;
4465 msr_info->data = vcpu->arch.osvw.length;
4466 break;
4467 case MSR_AMD64_OSVW_STATUS:
4468 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4469 return 1;
4470 msr_info->data = vcpu->arch.osvw.status;
4471 break;
4472 case MSR_PLATFORM_INFO:
4473 if (!msr_info->host_initiated &&
4474 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4475 return 1;
4476 msr_info->data = vcpu->arch.msr_platform_info;
4477 break;
4478 case MSR_MISC_FEATURES_ENABLES:
4479 msr_info->data = vcpu->arch.msr_misc_features_enables;
4480 break;
4481 case MSR_K7_HWCR:
4482 msr_info->data = vcpu->arch.msr_hwcr;
4483 break;
4484 #ifdef CONFIG_X86_64
4485 case MSR_IA32_XFD:
4486 if (!msr_info->host_initiated &&
4487 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4488 return 1;
4490 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4491 break;
4492 case MSR_IA32_XFD_ERR:
4493 if (!msr_info->host_initiated &&
4494 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4495 return 1;
4497 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4498 break;
4499 #endif
4500 default:
4501 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4502 return kvm_pmu_get_msr(vcpu, msr_info);
4504 return KVM_MSR_RET_UNSUPPORTED;
4506 return 0;
4508 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4511 * Read or write a bunch of msrs. All parameters are kernel addresses.
4513 * @return number of msrs set successfully.
4515 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4516 struct kvm_msr_entry *entries,
4517 int (*do_msr)(struct kvm_vcpu *vcpu,
4518 unsigned index, u64 *data))
4520 int i;
4522 for (i = 0; i < msrs->nmsrs; ++i)
4523 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4524 break;
4526 return i;
4530 * Read or write a bunch of msrs. Parameters are user addresses.
4532 * @return number of msrs set successfully.
4534 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4535 int (*do_msr)(struct kvm_vcpu *vcpu,
4536 unsigned index, u64 *data),
4537 int writeback)
4539 struct kvm_msrs msrs;
4540 struct kvm_msr_entry *entries;
4541 unsigned size;
4542 int r;
4544 r = -EFAULT;
4545 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4546 goto out;
4548 r = -E2BIG;
4549 if (msrs.nmsrs >= MAX_IO_MSRS)
4550 goto out;
4552 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4553 entries = memdup_user(user_msrs->entries, size);
4554 if (IS_ERR(entries)) {
4555 r = PTR_ERR(entries);
4556 goto out;
4559 r = __msr_io(vcpu, &msrs, entries, do_msr);
4561 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4562 r = -EFAULT;
4564 kfree(entries);
4565 out:
4566 return r;
4569 static inline bool kvm_can_mwait_in_guest(void)
4571 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4572 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4573 boot_cpu_has(X86_FEATURE_ARAT);
4576 #ifdef CONFIG_KVM_HYPERV
4577 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4578 struct kvm_cpuid2 __user *cpuid_arg)
4580 struct kvm_cpuid2 cpuid;
4581 int r;
4583 r = -EFAULT;
4584 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4585 return r;
4587 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4588 if (r)
4589 return r;
4591 r = -EFAULT;
4592 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4593 return r;
4595 return 0;
4597 #endif
4599 static bool kvm_is_vm_type_supported(unsigned long type)
4601 return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4604 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4606 int r = 0;
4608 switch (ext) {
4609 case KVM_CAP_IRQCHIP:
4610 case KVM_CAP_HLT:
4611 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4612 case KVM_CAP_SET_TSS_ADDR:
4613 case KVM_CAP_EXT_CPUID:
4614 case KVM_CAP_EXT_EMUL_CPUID:
4615 case KVM_CAP_CLOCKSOURCE:
4616 case KVM_CAP_PIT:
4617 case KVM_CAP_NOP_IO_DELAY:
4618 case KVM_CAP_MP_STATE:
4619 case KVM_CAP_SYNC_MMU:
4620 case KVM_CAP_USER_NMI:
4621 case KVM_CAP_REINJECT_CONTROL:
4622 case KVM_CAP_IRQ_INJECT_STATUS:
4623 case KVM_CAP_IOEVENTFD:
4624 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4625 case KVM_CAP_PIT2:
4626 case KVM_CAP_PIT_STATE2:
4627 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4628 case KVM_CAP_VCPU_EVENTS:
4629 #ifdef CONFIG_KVM_HYPERV
4630 case KVM_CAP_HYPERV:
4631 case KVM_CAP_HYPERV_VAPIC:
4632 case KVM_CAP_HYPERV_SPIN:
4633 case KVM_CAP_HYPERV_TIME:
4634 case KVM_CAP_HYPERV_SYNIC:
4635 case KVM_CAP_HYPERV_SYNIC2:
4636 case KVM_CAP_HYPERV_VP_INDEX:
4637 case KVM_CAP_HYPERV_EVENTFD:
4638 case KVM_CAP_HYPERV_TLBFLUSH:
4639 case KVM_CAP_HYPERV_SEND_IPI:
4640 case KVM_CAP_HYPERV_CPUID:
4641 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4642 case KVM_CAP_SYS_HYPERV_CPUID:
4643 #endif
4644 case KVM_CAP_PCI_SEGMENT:
4645 case KVM_CAP_DEBUGREGS:
4646 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4647 case KVM_CAP_XSAVE:
4648 case KVM_CAP_ASYNC_PF:
4649 case KVM_CAP_ASYNC_PF_INT:
4650 case KVM_CAP_GET_TSC_KHZ:
4651 case KVM_CAP_KVMCLOCK_CTRL:
4652 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4653 case KVM_CAP_TSC_DEADLINE_TIMER:
4654 case KVM_CAP_DISABLE_QUIRKS:
4655 case KVM_CAP_SET_BOOT_CPU_ID:
4656 case KVM_CAP_SPLIT_IRQCHIP:
4657 case KVM_CAP_IMMEDIATE_EXIT:
4658 case KVM_CAP_PMU_EVENT_FILTER:
4659 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4660 case KVM_CAP_GET_MSR_FEATURES:
4661 case KVM_CAP_MSR_PLATFORM_INFO:
4662 case KVM_CAP_EXCEPTION_PAYLOAD:
4663 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4664 case KVM_CAP_SET_GUEST_DEBUG:
4665 case KVM_CAP_LAST_CPU:
4666 case KVM_CAP_X86_USER_SPACE_MSR:
4667 case KVM_CAP_X86_MSR_FILTER:
4668 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4669 #ifdef CONFIG_X86_SGX_KVM
4670 case KVM_CAP_SGX_ATTRIBUTE:
4671 #endif
4672 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4673 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4674 case KVM_CAP_SREGS2:
4675 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4676 case KVM_CAP_VCPU_ATTRIBUTES:
4677 case KVM_CAP_SYS_ATTRIBUTES:
4678 case KVM_CAP_VAPIC:
4679 case KVM_CAP_ENABLE_CAP:
4680 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4681 case KVM_CAP_IRQFD_RESAMPLE:
4682 case KVM_CAP_MEMORY_FAULT_INFO:
4683 case KVM_CAP_X86_GUEST_MODE:
4684 r = 1;
4685 break;
4686 case KVM_CAP_PRE_FAULT_MEMORY:
4687 r = tdp_enabled;
4688 break;
4689 case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4690 r = APIC_BUS_CYCLE_NS_DEFAULT;
4691 break;
4692 case KVM_CAP_EXIT_HYPERCALL:
4693 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4694 break;
4695 case KVM_CAP_SET_GUEST_DEBUG2:
4696 return KVM_GUESTDBG_VALID_MASK;
4697 #ifdef CONFIG_KVM_XEN
4698 case KVM_CAP_XEN_HVM:
4699 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4700 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4701 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4702 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4703 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4704 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4705 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4706 if (sched_info_on())
4707 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4708 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4709 break;
4710 #endif
4711 case KVM_CAP_SYNC_REGS:
4712 r = KVM_SYNC_X86_VALID_FIELDS;
4713 break;
4714 case KVM_CAP_ADJUST_CLOCK:
4715 r = KVM_CLOCK_VALID_FLAGS;
4716 break;
4717 case KVM_CAP_X86_DISABLE_EXITS:
4718 r = KVM_X86_DISABLE_EXITS_PAUSE;
4720 if (!mitigate_smt_rsb) {
4721 r |= KVM_X86_DISABLE_EXITS_HLT |
4722 KVM_X86_DISABLE_EXITS_CSTATE;
4724 if (kvm_can_mwait_in_guest())
4725 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4727 break;
4728 case KVM_CAP_X86_SMM:
4729 if (!IS_ENABLED(CONFIG_KVM_SMM))
4730 break;
4732 /* SMBASE is usually relocated above 1M on modern chipsets,
4733 * and SMM handlers might indeed rely on 4G segment limits,
4734 * so do not report SMM to be available if real mode is
4735 * emulated via vm86 mode. Still, do not go to great lengths
4736 * to avoid userspace's usage of the feature, because it is a
4737 * fringe case that is not enabled except via specific settings
4738 * of the module parameters.
4740 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4741 break;
4742 case KVM_CAP_NR_VCPUS:
4743 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4744 break;
4745 case KVM_CAP_MAX_VCPUS:
4746 r = KVM_MAX_VCPUS;
4747 break;
4748 case KVM_CAP_MAX_VCPU_ID:
4749 r = KVM_MAX_VCPU_IDS;
4750 break;
4751 case KVM_CAP_PV_MMU: /* obsolete */
4752 r = 0;
4753 break;
4754 case KVM_CAP_MCE:
4755 r = KVM_MAX_MCE_BANKS;
4756 break;
4757 case KVM_CAP_XCRS:
4758 r = boot_cpu_has(X86_FEATURE_XSAVE);
4759 break;
4760 case KVM_CAP_TSC_CONTROL:
4761 case KVM_CAP_VM_TSC_CONTROL:
4762 r = kvm_caps.has_tsc_control;
4763 break;
4764 case KVM_CAP_X2APIC_API:
4765 r = KVM_X2APIC_API_VALID_FLAGS;
4766 break;
4767 case KVM_CAP_NESTED_STATE:
4768 r = kvm_x86_ops.nested_ops->get_state ?
4769 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4770 break;
4771 #ifdef CONFIG_KVM_HYPERV
4772 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4773 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4774 break;
4775 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4776 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4777 break;
4778 #endif
4779 case KVM_CAP_SMALLER_MAXPHYADDR:
4780 r = (int) allow_smaller_maxphyaddr;
4781 break;
4782 case KVM_CAP_STEAL_TIME:
4783 r = sched_info_on();
4784 break;
4785 case KVM_CAP_X86_BUS_LOCK_EXIT:
4786 if (kvm_caps.has_bus_lock_exit)
4787 r = KVM_BUS_LOCK_DETECTION_OFF |
4788 KVM_BUS_LOCK_DETECTION_EXIT;
4789 else
4790 r = 0;
4791 break;
4792 case KVM_CAP_XSAVE2: {
4793 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4794 if (r < sizeof(struct kvm_xsave))
4795 r = sizeof(struct kvm_xsave);
4796 break;
4798 case KVM_CAP_PMU_CAPABILITY:
4799 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4800 break;
4801 case KVM_CAP_DISABLE_QUIRKS2:
4802 r = KVM_X86_VALID_QUIRKS;
4803 break;
4804 case KVM_CAP_X86_NOTIFY_VMEXIT:
4805 r = kvm_caps.has_notify_vmexit;
4806 break;
4807 case KVM_CAP_VM_TYPES:
4808 r = kvm_caps.supported_vm_types;
4809 break;
4810 case KVM_CAP_READONLY_MEM:
4811 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4812 break;
4813 default:
4814 break;
4816 return r;
4819 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4821 if (attr->group) {
4822 if (kvm_x86_ops.dev_get_attr)
4823 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4824 return -ENXIO;
4827 switch (attr->attr) {
4828 case KVM_X86_XCOMP_GUEST_SUPP:
4829 *val = kvm_caps.supported_xcr0;
4830 return 0;
4831 default:
4832 return -ENXIO;
4836 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4838 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4839 int r;
4840 u64 val;
4842 r = __kvm_x86_dev_get_attr(attr, &val);
4843 if (r < 0)
4844 return r;
4846 if (put_user(val, uaddr))
4847 return -EFAULT;
4849 return 0;
4852 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4854 u64 val;
4856 return __kvm_x86_dev_get_attr(attr, &val);
4859 long kvm_arch_dev_ioctl(struct file *filp,
4860 unsigned int ioctl, unsigned long arg)
4862 void __user *argp = (void __user *)arg;
4863 long r;
4865 switch (ioctl) {
4866 case KVM_GET_MSR_INDEX_LIST: {
4867 struct kvm_msr_list __user *user_msr_list = argp;
4868 struct kvm_msr_list msr_list;
4869 unsigned n;
4871 r = -EFAULT;
4872 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4873 goto out;
4874 n = msr_list.nmsrs;
4875 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4876 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4877 goto out;
4878 r = -E2BIG;
4879 if (n < msr_list.nmsrs)
4880 goto out;
4881 r = -EFAULT;
4882 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4883 num_msrs_to_save * sizeof(u32)))
4884 goto out;
4885 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4886 &emulated_msrs,
4887 num_emulated_msrs * sizeof(u32)))
4888 goto out;
4889 r = 0;
4890 break;
4892 case KVM_GET_SUPPORTED_CPUID:
4893 case KVM_GET_EMULATED_CPUID: {
4894 struct kvm_cpuid2 __user *cpuid_arg = argp;
4895 struct kvm_cpuid2 cpuid;
4897 r = -EFAULT;
4898 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4899 goto out;
4901 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4902 ioctl);
4903 if (r)
4904 goto out;
4906 r = -EFAULT;
4907 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4908 goto out;
4909 r = 0;
4910 break;
4912 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4913 r = -EFAULT;
4914 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4915 sizeof(kvm_caps.supported_mce_cap)))
4916 goto out;
4917 r = 0;
4918 break;
4919 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4920 struct kvm_msr_list __user *user_msr_list = argp;
4921 struct kvm_msr_list msr_list;
4922 unsigned int n;
4924 r = -EFAULT;
4925 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4926 goto out;
4927 n = msr_list.nmsrs;
4928 msr_list.nmsrs = num_msr_based_features;
4929 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4930 goto out;
4931 r = -E2BIG;
4932 if (n < msr_list.nmsrs)
4933 goto out;
4934 r = -EFAULT;
4935 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4936 num_msr_based_features * sizeof(u32)))
4937 goto out;
4938 r = 0;
4939 break;
4941 case KVM_GET_MSRS:
4942 r = msr_io(NULL, argp, do_get_feature_msr, 1);
4943 break;
4944 #ifdef CONFIG_KVM_HYPERV
4945 case KVM_GET_SUPPORTED_HV_CPUID:
4946 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4947 break;
4948 #endif
4949 case KVM_GET_DEVICE_ATTR: {
4950 struct kvm_device_attr attr;
4951 r = -EFAULT;
4952 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4953 break;
4954 r = kvm_x86_dev_get_attr(&attr);
4955 break;
4957 case KVM_HAS_DEVICE_ATTR: {
4958 struct kvm_device_attr attr;
4959 r = -EFAULT;
4960 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4961 break;
4962 r = kvm_x86_dev_has_attr(&attr);
4963 break;
4965 default:
4966 r = -EINVAL;
4967 break;
4969 out:
4970 return r;
4973 static void wbinvd_ipi(void *garbage)
4975 wbinvd();
4978 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4980 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4983 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4985 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4987 vcpu->arch.l1tf_flush_l1d = true;
4989 if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
4990 pmu->need_cleanup = true;
4991 kvm_make_request(KVM_REQ_PMU, vcpu);
4994 /* Address WBINVD may be executed by guest */
4995 if (need_emulate_wbinvd(vcpu)) {
4996 if (kvm_x86_call(has_wbinvd_exit)())
4997 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4998 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4999 smp_call_function_single(vcpu->cpu,
5000 wbinvd_ipi, NULL, 1);
5003 kvm_x86_call(vcpu_load)(vcpu, cpu);
5005 /* Save host pkru register if supported */
5006 vcpu->arch.host_pkru = read_pkru();
5008 /* Apply any externally detected TSC adjustments (due to suspend) */
5009 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5010 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5011 vcpu->arch.tsc_offset_adjustment = 0;
5012 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5015 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5016 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5017 rdtsc() - vcpu->arch.last_host_tsc;
5018 if (tsc_delta < 0)
5019 mark_tsc_unstable("KVM discovered backwards TSC");
5021 if (kvm_check_tsc_unstable()) {
5022 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5023 vcpu->arch.last_guest_tsc);
5024 kvm_vcpu_write_tsc_offset(vcpu, offset);
5025 vcpu->arch.tsc_catchup = 1;
5028 if (kvm_lapic_hv_timer_in_use(vcpu))
5029 kvm_lapic_restart_hv_timer(vcpu);
5032 * On a host with synchronized TSC, there is no need to update
5033 * kvmclock on vcpu->cpu migration
5035 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5036 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5037 if (vcpu->cpu != cpu)
5038 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5039 vcpu->cpu = cpu;
5042 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5045 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5047 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5048 struct kvm_steal_time __user *st;
5049 struct kvm_memslots *slots;
5050 static const u8 preempted = KVM_VCPU_PREEMPTED;
5051 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5054 * The vCPU can be marked preempted if and only if the VM-Exit was on
5055 * an instruction boundary and will not trigger guest emulation of any
5056 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5057 * when this is true, for example allowing the vCPU to be marked
5058 * preempted if and only if the VM-Exit was due to a host interrupt.
5060 if (!vcpu->arch.at_instruction_boundary) {
5061 vcpu->stat.preemption_other++;
5062 return;
5065 vcpu->stat.preemption_reported++;
5066 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5067 return;
5069 if (vcpu->arch.st.preempted)
5070 return;
5072 /* This happens on process exit */
5073 if (unlikely(current->mm != vcpu->kvm->mm))
5074 return;
5076 slots = kvm_memslots(vcpu->kvm);
5078 if (unlikely(slots->generation != ghc->generation ||
5079 gpa != ghc->gpa ||
5080 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5081 return;
5083 st = (struct kvm_steal_time __user *)ghc->hva;
5084 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5086 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5087 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5089 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5092 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5094 int idx;
5096 if (vcpu->preempted) {
5097 vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu);
5100 * Take the srcu lock as memslots will be accessed to check the gfn
5101 * cache generation against the memslots generation.
5103 idx = srcu_read_lock(&vcpu->kvm->srcu);
5104 if (kvm_xen_msr_enabled(vcpu->kvm))
5105 kvm_xen_runstate_set_preempted(vcpu);
5106 else
5107 kvm_steal_time_set_preempted(vcpu);
5108 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5111 kvm_x86_call(vcpu_put)(vcpu);
5112 vcpu->arch.last_host_tsc = rdtsc();
5115 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5116 struct kvm_lapic_state *s)
5118 kvm_x86_call(sync_pir_to_irr)(vcpu);
5120 return kvm_apic_get_state(vcpu, s);
5123 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5124 struct kvm_lapic_state *s)
5126 int r;
5128 r = kvm_apic_set_state(vcpu, s);
5129 if (r)
5130 return r;
5131 update_cr8_intercept(vcpu);
5133 return 0;
5136 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5139 * We can accept userspace's request for interrupt injection
5140 * as long as we have a place to store the interrupt number.
5141 * The actual injection will happen when the CPU is able to
5142 * deliver the interrupt.
5144 if (kvm_cpu_has_extint(vcpu))
5145 return false;
5147 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5148 return (!lapic_in_kernel(vcpu) ||
5149 kvm_apic_accept_pic_intr(vcpu));
5152 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5155 * Do not cause an interrupt window exit if an exception
5156 * is pending or an event needs reinjection; userspace
5157 * might want to inject the interrupt manually using KVM_SET_REGS
5158 * or KVM_SET_SREGS. For that to work, we must be at an
5159 * instruction boundary and with no events half-injected.
5161 return (kvm_arch_interrupt_allowed(vcpu) &&
5162 kvm_cpu_accept_dm_intr(vcpu) &&
5163 !kvm_event_needs_reinjection(vcpu) &&
5164 !kvm_is_exception_pending(vcpu));
5167 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5168 struct kvm_interrupt *irq)
5170 if (irq->irq >= KVM_NR_INTERRUPTS)
5171 return -EINVAL;
5173 if (!irqchip_in_kernel(vcpu->kvm)) {
5174 kvm_queue_interrupt(vcpu, irq->irq, false);
5175 kvm_make_request(KVM_REQ_EVENT, vcpu);
5176 return 0;
5180 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5181 * fail for in-kernel 8259.
5183 if (pic_in_kernel(vcpu->kvm))
5184 return -ENXIO;
5186 if (vcpu->arch.pending_external_vector != -1)
5187 return -EEXIST;
5189 vcpu->arch.pending_external_vector = irq->irq;
5190 kvm_make_request(KVM_REQ_EVENT, vcpu);
5191 return 0;
5194 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5196 kvm_inject_nmi(vcpu);
5198 return 0;
5201 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5202 struct kvm_tpr_access_ctl *tac)
5204 if (tac->flags)
5205 return -EINVAL;
5206 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5207 return 0;
5210 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5211 u64 mcg_cap)
5213 int r;
5214 unsigned bank_num = mcg_cap & 0xff, bank;
5216 r = -EINVAL;
5217 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5218 goto out;
5219 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5220 goto out;
5221 r = 0;
5222 vcpu->arch.mcg_cap = mcg_cap;
5223 /* Init IA32_MCG_CTL to all 1s */
5224 if (mcg_cap & MCG_CTL_P)
5225 vcpu->arch.mcg_ctl = ~(u64)0;
5226 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5227 for (bank = 0; bank < bank_num; bank++) {
5228 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5229 if (mcg_cap & MCG_CMCI_P)
5230 vcpu->arch.mci_ctl2_banks[bank] = 0;
5233 kvm_apic_after_set_mcg_cap(vcpu);
5235 kvm_x86_call(setup_mce)(vcpu);
5236 out:
5237 return r;
5241 * Validate this is an UCNA (uncorrectable no action) error by checking the
5242 * MCG_STATUS and MCi_STATUS registers:
5243 * - none of the bits for Machine Check Exceptions are set
5244 * - both the VAL (valid) and UC (uncorrectable) bits are set
5245 * MCI_STATUS_PCC - Processor Context Corrupted
5246 * MCI_STATUS_S - Signaled as a Machine Check Exception
5247 * MCI_STATUS_AR - Software recoverable Action Required
5249 static bool is_ucna(struct kvm_x86_mce *mce)
5251 return !mce->mcg_status &&
5252 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5253 (mce->status & MCI_STATUS_VAL) &&
5254 (mce->status & MCI_STATUS_UC);
5257 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5259 u64 mcg_cap = vcpu->arch.mcg_cap;
5261 banks[1] = mce->status;
5262 banks[2] = mce->addr;
5263 banks[3] = mce->misc;
5264 vcpu->arch.mcg_status = mce->mcg_status;
5266 if (!(mcg_cap & MCG_CMCI_P) ||
5267 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5268 return 0;
5270 if (lapic_in_kernel(vcpu))
5271 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5273 return 0;
5276 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5277 struct kvm_x86_mce *mce)
5279 u64 mcg_cap = vcpu->arch.mcg_cap;
5280 unsigned bank_num = mcg_cap & 0xff;
5281 u64 *banks = vcpu->arch.mce_banks;
5283 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5284 return -EINVAL;
5286 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5288 if (is_ucna(mce))
5289 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5292 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5293 * reporting is disabled
5295 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5296 vcpu->arch.mcg_ctl != ~(u64)0)
5297 return 0;
5299 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5300 * reporting is disabled for the bank
5302 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5303 return 0;
5304 if (mce->status & MCI_STATUS_UC) {
5305 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5306 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5307 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5308 return 0;
5310 if (banks[1] & MCI_STATUS_VAL)
5311 mce->status |= MCI_STATUS_OVER;
5312 banks[2] = mce->addr;
5313 banks[3] = mce->misc;
5314 vcpu->arch.mcg_status = mce->mcg_status;
5315 banks[1] = mce->status;
5316 kvm_queue_exception(vcpu, MC_VECTOR);
5317 } else if (!(banks[1] & MCI_STATUS_VAL)
5318 || !(banks[1] & MCI_STATUS_UC)) {
5319 if (banks[1] & MCI_STATUS_VAL)
5320 mce->status |= MCI_STATUS_OVER;
5321 banks[2] = mce->addr;
5322 banks[3] = mce->misc;
5323 banks[1] = mce->status;
5324 } else
5325 banks[1] |= MCI_STATUS_OVER;
5326 return 0;
5329 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5330 struct kvm_vcpu_events *events)
5332 struct kvm_queued_exception *ex;
5334 process_nmi(vcpu);
5336 #ifdef CONFIG_KVM_SMM
5337 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5338 process_smi(vcpu);
5339 #endif
5342 * KVM's ABI only allows for one exception to be migrated. Luckily,
5343 * the only time there can be two queued exceptions is if there's a
5344 * non-exiting _injected_ exception, and a pending exiting exception.
5345 * In that case, ignore the VM-Exiting exception as it's an extension
5346 * of the injected exception.
5348 if (vcpu->arch.exception_vmexit.pending &&
5349 !vcpu->arch.exception.pending &&
5350 !vcpu->arch.exception.injected)
5351 ex = &vcpu->arch.exception_vmexit;
5352 else
5353 ex = &vcpu->arch.exception;
5356 * In guest mode, payload delivery should be deferred if the exception
5357 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5358 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5359 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5360 * propagate the payload and so it cannot be safely deferred. Deliver
5361 * the payload if the capability hasn't been requested.
5363 if (!vcpu->kvm->arch.exception_payload_enabled &&
5364 ex->pending && ex->has_payload)
5365 kvm_deliver_exception_payload(vcpu, ex);
5367 memset(events, 0, sizeof(*events));
5370 * The API doesn't provide the instruction length for software
5371 * exceptions, so don't report them. As long as the guest RIP
5372 * isn't advanced, we should expect to encounter the exception
5373 * again.
5375 if (!kvm_exception_is_soft(ex->vector)) {
5376 events->exception.injected = ex->injected;
5377 events->exception.pending = ex->pending;
5379 * For ABI compatibility, deliberately conflate
5380 * pending and injected exceptions when
5381 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5383 if (!vcpu->kvm->arch.exception_payload_enabled)
5384 events->exception.injected |= ex->pending;
5386 events->exception.nr = ex->vector;
5387 events->exception.has_error_code = ex->has_error_code;
5388 events->exception.error_code = ex->error_code;
5389 events->exception_has_payload = ex->has_payload;
5390 events->exception_payload = ex->payload;
5392 events->interrupt.injected =
5393 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5394 events->interrupt.nr = vcpu->arch.interrupt.nr;
5395 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5397 events->nmi.injected = vcpu->arch.nmi_injected;
5398 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5399 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5401 /* events->sipi_vector is never valid when reporting to user space */
5403 #ifdef CONFIG_KVM_SMM
5404 events->smi.smm = is_smm(vcpu);
5405 events->smi.pending = vcpu->arch.smi_pending;
5406 events->smi.smm_inside_nmi =
5407 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5408 #endif
5409 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5411 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5412 | KVM_VCPUEVENT_VALID_SHADOW
5413 | KVM_VCPUEVENT_VALID_SMM);
5414 if (vcpu->kvm->arch.exception_payload_enabled)
5415 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5416 if (vcpu->kvm->arch.triple_fault_event) {
5417 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5418 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5422 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5423 struct kvm_vcpu_events *events)
5425 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5426 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5427 | KVM_VCPUEVENT_VALID_SHADOW
5428 | KVM_VCPUEVENT_VALID_SMM
5429 | KVM_VCPUEVENT_VALID_PAYLOAD
5430 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5431 return -EINVAL;
5433 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5434 if (!vcpu->kvm->arch.exception_payload_enabled)
5435 return -EINVAL;
5436 if (events->exception.pending)
5437 events->exception.injected = 0;
5438 else
5439 events->exception_has_payload = 0;
5440 } else {
5441 events->exception.pending = 0;
5442 events->exception_has_payload = 0;
5445 if ((events->exception.injected || events->exception.pending) &&
5446 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5447 return -EINVAL;
5449 /* INITs are latched while in SMM */
5450 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5451 (events->smi.smm || events->smi.pending) &&
5452 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5453 return -EINVAL;
5455 process_nmi(vcpu);
5458 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5459 * morph the exception to a VM-Exit if appropriate. Do this only for
5460 * pending exceptions, already-injected exceptions are not subject to
5461 * intercpetion. Note, userspace that conflates pending and injected
5462 * is hosed, and will incorrectly convert an injected exception into a
5463 * pending exception, which in turn may cause a spurious VM-Exit.
5465 vcpu->arch.exception_from_userspace = events->exception.pending;
5467 vcpu->arch.exception_vmexit.pending = false;
5469 vcpu->arch.exception.injected = events->exception.injected;
5470 vcpu->arch.exception.pending = events->exception.pending;
5471 vcpu->arch.exception.vector = events->exception.nr;
5472 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5473 vcpu->arch.exception.error_code = events->exception.error_code;
5474 vcpu->arch.exception.has_payload = events->exception_has_payload;
5475 vcpu->arch.exception.payload = events->exception_payload;
5477 vcpu->arch.interrupt.injected = events->interrupt.injected;
5478 vcpu->arch.interrupt.nr = events->interrupt.nr;
5479 vcpu->arch.interrupt.soft = events->interrupt.soft;
5480 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5481 kvm_x86_call(set_interrupt_shadow)(vcpu,
5482 events->interrupt.shadow);
5484 vcpu->arch.nmi_injected = events->nmi.injected;
5485 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5486 vcpu->arch.nmi_pending = 0;
5487 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5488 if (events->nmi.pending)
5489 kvm_make_request(KVM_REQ_NMI, vcpu);
5491 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5493 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5494 lapic_in_kernel(vcpu))
5495 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5497 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5498 #ifdef CONFIG_KVM_SMM
5499 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5500 kvm_leave_nested(vcpu);
5501 kvm_smm_changed(vcpu, events->smi.smm);
5504 vcpu->arch.smi_pending = events->smi.pending;
5506 if (events->smi.smm) {
5507 if (events->smi.smm_inside_nmi)
5508 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5509 else
5510 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5513 #else
5514 if (events->smi.smm || events->smi.pending ||
5515 events->smi.smm_inside_nmi)
5516 return -EINVAL;
5517 #endif
5519 if (lapic_in_kernel(vcpu)) {
5520 if (events->smi.latched_init)
5521 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5522 else
5523 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5527 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5528 if (!vcpu->kvm->arch.triple_fault_event)
5529 return -EINVAL;
5530 if (events->triple_fault.pending)
5531 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5532 else
5533 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5536 kvm_make_request(KVM_REQ_EVENT, vcpu);
5538 return 0;
5541 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5542 struct kvm_debugregs *dbgregs)
5544 unsigned int i;
5546 if (vcpu->kvm->arch.has_protected_state &&
5547 vcpu->arch.guest_state_protected)
5548 return -EINVAL;
5550 memset(dbgregs, 0, sizeof(*dbgregs));
5552 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5553 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5554 dbgregs->db[i] = vcpu->arch.db[i];
5556 dbgregs->dr6 = vcpu->arch.dr6;
5557 dbgregs->dr7 = vcpu->arch.dr7;
5558 return 0;
5561 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5562 struct kvm_debugregs *dbgregs)
5564 unsigned int i;
5566 if (vcpu->kvm->arch.has_protected_state &&
5567 vcpu->arch.guest_state_protected)
5568 return -EINVAL;
5570 if (dbgregs->flags)
5571 return -EINVAL;
5573 if (!kvm_dr6_valid(dbgregs->dr6))
5574 return -EINVAL;
5575 if (!kvm_dr7_valid(dbgregs->dr7))
5576 return -EINVAL;
5578 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5579 vcpu->arch.db[i] = dbgregs->db[i];
5581 kvm_update_dr0123(vcpu);
5582 vcpu->arch.dr6 = dbgregs->dr6;
5583 vcpu->arch.dr7 = dbgregs->dr7;
5584 kvm_update_dr7(vcpu);
5586 return 0;
5590 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5591 u8 *state, unsigned int size)
5594 * Only copy state for features that are enabled for the guest. The
5595 * state itself isn't problematic, but setting bits in the header for
5596 * features that are supported in *this* host but not exposed to the
5597 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5598 * compatible host without the features that are NOT exposed to the
5599 * guest.
5601 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5602 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5603 * supported by the host.
5605 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5606 XFEATURE_MASK_FPSSE;
5608 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5609 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5611 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5612 supported_xcr0, vcpu->arch.pkru);
5613 return 0;
5616 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5617 struct kvm_xsave *guest_xsave)
5619 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5620 sizeof(guest_xsave->region));
5623 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5624 struct kvm_xsave *guest_xsave)
5626 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5627 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5629 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5630 guest_xsave->region,
5631 kvm_caps.supported_xcr0,
5632 &vcpu->arch.pkru);
5635 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5636 struct kvm_xcrs *guest_xcrs)
5638 if (vcpu->kvm->arch.has_protected_state &&
5639 vcpu->arch.guest_state_protected)
5640 return -EINVAL;
5642 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5643 guest_xcrs->nr_xcrs = 0;
5644 return 0;
5647 guest_xcrs->nr_xcrs = 1;
5648 guest_xcrs->flags = 0;
5649 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5650 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5651 return 0;
5654 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5655 struct kvm_xcrs *guest_xcrs)
5657 int i, r = 0;
5659 if (vcpu->kvm->arch.has_protected_state &&
5660 vcpu->arch.guest_state_protected)
5661 return -EINVAL;
5663 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5664 return -EINVAL;
5666 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5667 return -EINVAL;
5669 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5670 /* Only support XCR0 currently */
5671 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5672 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5673 guest_xcrs->xcrs[i].value);
5674 break;
5676 if (r)
5677 r = -EINVAL;
5678 return r;
5682 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5683 * stopped by the hypervisor. This function will be called from the host only.
5684 * EINVAL is returned when the host attempts to set the flag for a guest that
5685 * does not support pv clocks.
5687 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5689 if (!vcpu->arch.pv_time.active)
5690 return -EINVAL;
5691 vcpu->arch.pvclock_set_guest_stopped_request = true;
5692 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5693 return 0;
5696 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5697 struct kvm_device_attr *attr)
5699 int r;
5701 switch (attr->attr) {
5702 case KVM_VCPU_TSC_OFFSET:
5703 r = 0;
5704 break;
5705 default:
5706 r = -ENXIO;
5709 return r;
5712 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5713 struct kvm_device_attr *attr)
5715 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5716 int r;
5718 switch (attr->attr) {
5719 case KVM_VCPU_TSC_OFFSET:
5720 r = -EFAULT;
5721 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5722 break;
5723 r = 0;
5724 break;
5725 default:
5726 r = -ENXIO;
5729 return r;
5732 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5733 struct kvm_device_attr *attr)
5735 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5736 struct kvm *kvm = vcpu->kvm;
5737 int r;
5739 switch (attr->attr) {
5740 case KVM_VCPU_TSC_OFFSET: {
5741 u64 offset, tsc, ns;
5742 unsigned long flags;
5743 bool matched;
5745 r = -EFAULT;
5746 if (get_user(offset, uaddr))
5747 break;
5749 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5751 matched = (vcpu->arch.virtual_tsc_khz &&
5752 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5753 kvm->arch.last_tsc_offset == offset);
5755 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5756 ns = get_kvmclock_base_ns();
5758 kvm->arch.user_set_tsc = true;
5759 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5760 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5762 r = 0;
5763 break;
5765 default:
5766 r = -ENXIO;
5769 return r;
5772 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5773 unsigned int ioctl,
5774 void __user *argp)
5776 struct kvm_device_attr attr;
5777 int r;
5779 if (copy_from_user(&attr, argp, sizeof(attr)))
5780 return -EFAULT;
5782 if (attr.group != KVM_VCPU_TSC_CTRL)
5783 return -ENXIO;
5785 switch (ioctl) {
5786 case KVM_HAS_DEVICE_ATTR:
5787 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5788 break;
5789 case KVM_GET_DEVICE_ATTR:
5790 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5791 break;
5792 case KVM_SET_DEVICE_ATTR:
5793 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5794 break;
5797 return r;
5800 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5801 struct kvm_enable_cap *cap)
5803 if (cap->flags)
5804 return -EINVAL;
5806 switch (cap->cap) {
5807 #ifdef CONFIG_KVM_HYPERV
5808 case KVM_CAP_HYPERV_SYNIC2:
5809 if (cap->args[0])
5810 return -EINVAL;
5811 fallthrough;
5813 case KVM_CAP_HYPERV_SYNIC:
5814 if (!irqchip_in_kernel(vcpu->kvm))
5815 return -EINVAL;
5816 return kvm_hv_activate_synic(vcpu, cap->cap ==
5817 KVM_CAP_HYPERV_SYNIC2);
5818 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5820 int r;
5821 uint16_t vmcs_version;
5822 void __user *user_ptr;
5824 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5825 return -ENOTTY;
5826 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5827 if (!r) {
5828 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5829 if (copy_to_user(user_ptr, &vmcs_version,
5830 sizeof(vmcs_version)))
5831 r = -EFAULT;
5833 return r;
5835 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5836 if (!kvm_x86_ops.enable_l2_tlb_flush)
5837 return -ENOTTY;
5839 return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5841 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5842 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5843 #endif
5845 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5846 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5847 if (vcpu->arch.pv_cpuid.enforce)
5848 kvm_update_pv_runtime(vcpu);
5850 return 0;
5851 default:
5852 return -EINVAL;
5856 long kvm_arch_vcpu_ioctl(struct file *filp,
5857 unsigned int ioctl, unsigned long arg)
5859 struct kvm_vcpu *vcpu = filp->private_data;
5860 void __user *argp = (void __user *)arg;
5861 int r;
5862 union {
5863 struct kvm_sregs2 *sregs2;
5864 struct kvm_lapic_state *lapic;
5865 struct kvm_xsave *xsave;
5866 struct kvm_xcrs *xcrs;
5867 void *buffer;
5868 } u;
5870 vcpu_load(vcpu);
5872 u.buffer = NULL;
5873 switch (ioctl) {
5874 case KVM_GET_LAPIC: {
5875 r = -EINVAL;
5876 if (!lapic_in_kernel(vcpu))
5877 goto out;
5878 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5880 r = -ENOMEM;
5881 if (!u.lapic)
5882 goto out;
5883 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5884 if (r)
5885 goto out;
5886 r = -EFAULT;
5887 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5888 goto out;
5889 r = 0;
5890 break;
5892 case KVM_SET_LAPIC: {
5893 r = -EINVAL;
5894 if (!lapic_in_kernel(vcpu))
5895 goto out;
5896 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5897 if (IS_ERR(u.lapic)) {
5898 r = PTR_ERR(u.lapic);
5899 goto out_nofree;
5902 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5903 break;
5905 case KVM_INTERRUPT: {
5906 struct kvm_interrupt irq;
5908 r = -EFAULT;
5909 if (copy_from_user(&irq, argp, sizeof(irq)))
5910 goto out;
5911 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5912 break;
5914 case KVM_NMI: {
5915 r = kvm_vcpu_ioctl_nmi(vcpu);
5916 break;
5918 case KVM_SMI: {
5919 r = kvm_inject_smi(vcpu);
5920 break;
5922 case KVM_SET_CPUID: {
5923 struct kvm_cpuid __user *cpuid_arg = argp;
5924 struct kvm_cpuid cpuid;
5926 r = -EFAULT;
5927 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5928 goto out;
5929 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5930 break;
5932 case KVM_SET_CPUID2: {
5933 struct kvm_cpuid2 __user *cpuid_arg = argp;
5934 struct kvm_cpuid2 cpuid;
5936 r = -EFAULT;
5937 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5938 goto out;
5939 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5940 cpuid_arg->entries);
5941 break;
5943 case KVM_GET_CPUID2: {
5944 struct kvm_cpuid2 __user *cpuid_arg = argp;
5945 struct kvm_cpuid2 cpuid;
5947 r = -EFAULT;
5948 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5949 goto out;
5950 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5951 cpuid_arg->entries);
5952 if (r)
5953 goto out;
5954 r = -EFAULT;
5955 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5956 goto out;
5957 r = 0;
5958 break;
5960 case KVM_GET_MSRS: {
5961 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5962 r = msr_io(vcpu, argp, do_get_msr, 1);
5963 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5964 break;
5966 case KVM_SET_MSRS: {
5967 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5968 r = msr_io(vcpu, argp, do_set_msr, 0);
5969 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5970 break;
5972 case KVM_TPR_ACCESS_REPORTING: {
5973 struct kvm_tpr_access_ctl tac;
5975 r = -EFAULT;
5976 if (copy_from_user(&tac, argp, sizeof(tac)))
5977 goto out;
5978 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5979 if (r)
5980 goto out;
5981 r = -EFAULT;
5982 if (copy_to_user(argp, &tac, sizeof(tac)))
5983 goto out;
5984 r = 0;
5985 break;
5987 case KVM_SET_VAPIC_ADDR: {
5988 struct kvm_vapic_addr va;
5989 int idx;
5991 r = -EINVAL;
5992 if (!lapic_in_kernel(vcpu))
5993 goto out;
5994 r = -EFAULT;
5995 if (copy_from_user(&va, argp, sizeof(va)))
5996 goto out;
5997 idx = srcu_read_lock(&vcpu->kvm->srcu);
5998 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5999 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6000 break;
6002 case KVM_X86_SETUP_MCE: {
6003 u64 mcg_cap;
6005 r = -EFAULT;
6006 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6007 goto out;
6008 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6009 break;
6011 case KVM_X86_SET_MCE: {
6012 struct kvm_x86_mce mce;
6014 r = -EFAULT;
6015 if (copy_from_user(&mce, argp, sizeof(mce)))
6016 goto out;
6017 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6018 break;
6020 case KVM_GET_VCPU_EVENTS: {
6021 struct kvm_vcpu_events events;
6023 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6025 r = -EFAULT;
6026 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6027 break;
6028 r = 0;
6029 break;
6031 case KVM_SET_VCPU_EVENTS: {
6032 struct kvm_vcpu_events events;
6034 r = -EFAULT;
6035 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6036 break;
6038 kvm_vcpu_srcu_read_lock(vcpu);
6039 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6040 kvm_vcpu_srcu_read_unlock(vcpu);
6041 break;
6043 case KVM_GET_DEBUGREGS: {
6044 struct kvm_debugregs dbgregs;
6046 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6047 if (r < 0)
6048 break;
6050 r = -EFAULT;
6051 if (copy_to_user(argp, &dbgregs,
6052 sizeof(struct kvm_debugregs)))
6053 break;
6054 r = 0;
6055 break;
6057 case KVM_SET_DEBUGREGS: {
6058 struct kvm_debugregs dbgregs;
6060 r = -EFAULT;
6061 if (copy_from_user(&dbgregs, argp,
6062 sizeof(struct kvm_debugregs)))
6063 break;
6065 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6066 break;
6068 case KVM_GET_XSAVE: {
6069 r = -EINVAL;
6070 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6071 break;
6073 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6074 r = -ENOMEM;
6075 if (!u.xsave)
6076 break;
6078 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6079 if (r < 0)
6080 break;
6082 r = -EFAULT;
6083 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6084 break;
6085 r = 0;
6086 break;
6088 case KVM_SET_XSAVE: {
6089 int size = vcpu->arch.guest_fpu.uabi_size;
6091 u.xsave = memdup_user(argp, size);
6092 if (IS_ERR(u.xsave)) {
6093 r = PTR_ERR(u.xsave);
6094 goto out_nofree;
6097 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6098 break;
6101 case KVM_GET_XSAVE2: {
6102 int size = vcpu->arch.guest_fpu.uabi_size;
6104 u.xsave = kzalloc(size, GFP_KERNEL);
6105 r = -ENOMEM;
6106 if (!u.xsave)
6107 break;
6109 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6110 if (r < 0)
6111 break;
6113 r = -EFAULT;
6114 if (copy_to_user(argp, u.xsave, size))
6115 break;
6117 r = 0;
6118 break;
6121 case KVM_GET_XCRS: {
6122 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6123 r = -ENOMEM;
6124 if (!u.xcrs)
6125 break;
6127 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6128 if (r < 0)
6129 break;
6131 r = -EFAULT;
6132 if (copy_to_user(argp, u.xcrs,
6133 sizeof(struct kvm_xcrs)))
6134 break;
6135 r = 0;
6136 break;
6138 case KVM_SET_XCRS: {
6139 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6140 if (IS_ERR(u.xcrs)) {
6141 r = PTR_ERR(u.xcrs);
6142 goto out_nofree;
6145 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6146 break;
6148 case KVM_SET_TSC_KHZ: {
6149 u32 user_tsc_khz;
6151 r = -EINVAL;
6152 user_tsc_khz = (u32)arg;
6154 if (kvm_caps.has_tsc_control &&
6155 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6156 goto out;
6158 if (user_tsc_khz == 0)
6159 user_tsc_khz = tsc_khz;
6161 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6162 r = 0;
6164 goto out;
6166 case KVM_GET_TSC_KHZ: {
6167 r = vcpu->arch.virtual_tsc_khz;
6168 goto out;
6170 case KVM_KVMCLOCK_CTRL: {
6171 r = kvm_set_guest_paused(vcpu);
6172 goto out;
6174 case KVM_ENABLE_CAP: {
6175 struct kvm_enable_cap cap;
6177 r = -EFAULT;
6178 if (copy_from_user(&cap, argp, sizeof(cap)))
6179 goto out;
6180 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6181 break;
6183 case KVM_GET_NESTED_STATE: {
6184 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6185 u32 user_data_size;
6187 r = -EINVAL;
6188 if (!kvm_x86_ops.nested_ops->get_state)
6189 break;
6191 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6192 r = -EFAULT;
6193 if (get_user(user_data_size, &user_kvm_nested_state->size))
6194 break;
6196 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6197 user_data_size);
6198 if (r < 0)
6199 break;
6201 if (r > user_data_size) {
6202 if (put_user(r, &user_kvm_nested_state->size))
6203 r = -EFAULT;
6204 else
6205 r = -E2BIG;
6206 break;
6209 r = 0;
6210 break;
6212 case KVM_SET_NESTED_STATE: {
6213 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6214 struct kvm_nested_state kvm_state;
6215 int idx;
6217 r = -EINVAL;
6218 if (!kvm_x86_ops.nested_ops->set_state)
6219 break;
6221 r = -EFAULT;
6222 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6223 break;
6225 r = -EINVAL;
6226 if (kvm_state.size < sizeof(kvm_state))
6227 break;
6229 if (kvm_state.flags &
6230 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6231 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6232 | KVM_STATE_NESTED_GIF_SET))
6233 break;
6235 /* nested_run_pending implies guest_mode. */
6236 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6237 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6238 break;
6240 idx = srcu_read_lock(&vcpu->kvm->srcu);
6241 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6242 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6243 break;
6245 #ifdef CONFIG_KVM_HYPERV
6246 case KVM_GET_SUPPORTED_HV_CPUID:
6247 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6248 break;
6249 #endif
6250 #ifdef CONFIG_KVM_XEN
6251 case KVM_XEN_VCPU_GET_ATTR: {
6252 struct kvm_xen_vcpu_attr xva;
6254 r = -EFAULT;
6255 if (copy_from_user(&xva, argp, sizeof(xva)))
6256 goto out;
6257 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6258 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6259 r = -EFAULT;
6260 break;
6262 case KVM_XEN_VCPU_SET_ATTR: {
6263 struct kvm_xen_vcpu_attr xva;
6265 r = -EFAULT;
6266 if (copy_from_user(&xva, argp, sizeof(xva)))
6267 goto out;
6268 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6269 break;
6271 #endif
6272 case KVM_GET_SREGS2: {
6273 r = -EINVAL;
6274 if (vcpu->kvm->arch.has_protected_state &&
6275 vcpu->arch.guest_state_protected)
6276 goto out;
6278 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6279 r = -ENOMEM;
6280 if (!u.sregs2)
6281 goto out;
6282 __get_sregs2(vcpu, u.sregs2);
6283 r = -EFAULT;
6284 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6285 goto out;
6286 r = 0;
6287 break;
6289 case KVM_SET_SREGS2: {
6290 r = -EINVAL;
6291 if (vcpu->kvm->arch.has_protected_state &&
6292 vcpu->arch.guest_state_protected)
6293 goto out;
6295 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6296 if (IS_ERR(u.sregs2)) {
6297 r = PTR_ERR(u.sregs2);
6298 u.sregs2 = NULL;
6299 goto out;
6301 r = __set_sregs2(vcpu, u.sregs2);
6302 break;
6304 case KVM_HAS_DEVICE_ATTR:
6305 case KVM_GET_DEVICE_ATTR:
6306 case KVM_SET_DEVICE_ATTR:
6307 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6308 break;
6309 default:
6310 r = -EINVAL;
6312 out:
6313 kfree(u.buffer);
6314 out_nofree:
6315 vcpu_put(vcpu);
6316 return r;
6319 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6321 return VM_FAULT_SIGBUS;
6324 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6326 int ret;
6328 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6329 return -EINVAL;
6330 ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6331 return ret;
6334 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6335 u64 ident_addr)
6337 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6340 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6341 unsigned long kvm_nr_mmu_pages)
6343 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6344 return -EINVAL;
6346 mutex_lock(&kvm->slots_lock);
6348 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6349 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6351 mutex_unlock(&kvm->slots_lock);
6352 return 0;
6355 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6357 struct kvm_pic *pic = kvm->arch.vpic;
6358 int r;
6360 r = 0;
6361 switch (chip->chip_id) {
6362 case KVM_IRQCHIP_PIC_MASTER:
6363 memcpy(&chip->chip.pic, &pic->pics[0],
6364 sizeof(struct kvm_pic_state));
6365 break;
6366 case KVM_IRQCHIP_PIC_SLAVE:
6367 memcpy(&chip->chip.pic, &pic->pics[1],
6368 sizeof(struct kvm_pic_state));
6369 break;
6370 case KVM_IRQCHIP_IOAPIC:
6371 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6372 break;
6373 default:
6374 r = -EINVAL;
6375 break;
6377 return r;
6380 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6382 struct kvm_pic *pic = kvm->arch.vpic;
6383 int r;
6385 r = 0;
6386 switch (chip->chip_id) {
6387 case KVM_IRQCHIP_PIC_MASTER:
6388 spin_lock(&pic->lock);
6389 memcpy(&pic->pics[0], &chip->chip.pic,
6390 sizeof(struct kvm_pic_state));
6391 spin_unlock(&pic->lock);
6392 break;
6393 case KVM_IRQCHIP_PIC_SLAVE:
6394 spin_lock(&pic->lock);
6395 memcpy(&pic->pics[1], &chip->chip.pic,
6396 sizeof(struct kvm_pic_state));
6397 spin_unlock(&pic->lock);
6398 break;
6399 case KVM_IRQCHIP_IOAPIC:
6400 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6401 break;
6402 default:
6403 r = -EINVAL;
6404 break;
6406 kvm_pic_update_irq(pic);
6407 return r;
6410 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6412 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6414 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6416 mutex_lock(&kps->lock);
6417 memcpy(ps, &kps->channels, sizeof(*ps));
6418 mutex_unlock(&kps->lock);
6419 return 0;
6422 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6424 int i;
6425 struct kvm_pit *pit = kvm->arch.vpit;
6427 mutex_lock(&pit->pit_state.lock);
6428 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6429 for (i = 0; i < 3; i++)
6430 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6431 mutex_unlock(&pit->pit_state.lock);
6432 return 0;
6435 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6437 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6438 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6439 sizeof(ps->channels));
6440 ps->flags = kvm->arch.vpit->pit_state.flags;
6441 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6442 memset(&ps->reserved, 0, sizeof(ps->reserved));
6443 return 0;
6446 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6448 int start = 0;
6449 int i;
6450 u32 prev_legacy, cur_legacy;
6451 struct kvm_pit *pit = kvm->arch.vpit;
6453 mutex_lock(&pit->pit_state.lock);
6454 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6455 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6456 if (!prev_legacy && cur_legacy)
6457 start = 1;
6458 memcpy(&pit->pit_state.channels, &ps->channels,
6459 sizeof(pit->pit_state.channels));
6460 pit->pit_state.flags = ps->flags;
6461 for (i = 0; i < 3; i++)
6462 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6463 start && i == 0);
6464 mutex_unlock(&pit->pit_state.lock);
6465 return 0;
6468 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6469 struct kvm_reinject_control *control)
6471 struct kvm_pit *pit = kvm->arch.vpit;
6473 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6474 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6475 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6477 mutex_lock(&pit->pit_state.lock);
6478 kvm_pit_set_reinject(pit, control->pit_reinject);
6479 mutex_unlock(&pit->pit_state.lock);
6481 return 0;
6484 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6488 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6489 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6490 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6491 * VM-Exit.
6493 struct kvm_vcpu *vcpu;
6494 unsigned long i;
6496 if (!kvm_x86_ops.cpu_dirty_log_size)
6497 return;
6499 kvm_for_each_vcpu(i, vcpu, kvm)
6500 kvm_vcpu_kick(vcpu);
6503 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6504 bool line_status)
6506 if (!irqchip_in_kernel(kvm))
6507 return -ENXIO;
6509 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6510 irq_event->irq, irq_event->level,
6511 line_status);
6512 return 0;
6515 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6516 struct kvm_enable_cap *cap)
6518 int r;
6520 if (cap->flags)
6521 return -EINVAL;
6523 switch (cap->cap) {
6524 case KVM_CAP_DISABLE_QUIRKS2:
6525 r = -EINVAL;
6526 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6527 break;
6528 fallthrough;
6529 case KVM_CAP_DISABLE_QUIRKS:
6530 kvm->arch.disabled_quirks = cap->args[0];
6531 r = 0;
6532 break;
6533 case KVM_CAP_SPLIT_IRQCHIP: {
6534 mutex_lock(&kvm->lock);
6535 r = -EINVAL;
6536 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6537 goto split_irqchip_unlock;
6538 r = -EEXIST;
6539 if (irqchip_in_kernel(kvm))
6540 goto split_irqchip_unlock;
6541 if (kvm->created_vcpus)
6542 goto split_irqchip_unlock;
6543 /* Pairs with irqchip_in_kernel. */
6544 smp_wmb();
6545 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6546 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6547 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6548 r = 0;
6549 split_irqchip_unlock:
6550 mutex_unlock(&kvm->lock);
6551 break;
6553 case KVM_CAP_X2APIC_API:
6554 r = -EINVAL;
6555 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6556 break;
6558 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6559 kvm->arch.x2apic_format = true;
6560 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6561 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6563 r = 0;
6564 break;
6565 case KVM_CAP_X86_DISABLE_EXITS:
6566 r = -EINVAL;
6567 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6568 break;
6570 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6571 kvm->arch.pause_in_guest = true;
6573 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6574 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6576 if (!mitigate_smt_rsb) {
6577 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6578 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6579 pr_warn_once(SMT_RSB_MSG);
6581 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6582 kvm_can_mwait_in_guest())
6583 kvm->arch.mwait_in_guest = true;
6584 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6585 kvm->arch.hlt_in_guest = true;
6586 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6587 kvm->arch.cstate_in_guest = true;
6590 r = 0;
6591 break;
6592 case KVM_CAP_MSR_PLATFORM_INFO:
6593 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6594 r = 0;
6595 break;
6596 case KVM_CAP_EXCEPTION_PAYLOAD:
6597 kvm->arch.exception_payload_enabled = cap->args[0];
6598 r = 0;
6599 break;
6600 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6601 kvm->arch.triple_fault_event = cap->args[0];
6602 r = 0;
6603 break;
6604 case KVM_CAP_X86_USER_SPACE_MSR:
6605 r = -EINVAL;
6606 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6607 break;
6608 kvm->arch.user_space_msr_mask = cap->args[0];
6609 r = 0;
6610 break;
6611 case KVM_CAP_X86_BUS_LOCK_EXIT:
6612 r = -EINVAL;
6613 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6614 break;
6616 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6617 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6618 break;
6620 if (kvm_caps.has_bus_lock_exit &&
6621 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6622 kvm->arch.bus_lock_detection_enabled = true;
6623 r = 0;
6624 break;
6625 #ifdef CONFIG_X86_SGX_KVM
6626 case KVM_CAP_SGX_ATTRIBUTE: {
6627 unsigned long allowed_attributes = 0;
6629 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6630 if (r)
6631 break;
6633 /* KVM only supports the PROVISIONKEY privileged attribute. */
6634 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6635 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6636 kvm->arch.sgx_provisioning_allowed = true;
6637 else
6638 r = -EINVAL;
6639 break;
6641 #endif
6642 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6643 r = -EINVAL;
6644 if (!kvm_x86_ops.vm_copy_enc_context_from)
6645 break;
6647 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6648 break;
6649 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6650 r = -EINVAL;
6651 if (!kvm_x86_ops.vm_move_enc_context_from)
6652 break;
6654 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6655 break;
6656 case KVM_CAP_EXIT_HYPERCALL:
6657 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6658 r = -EINVAL;
6659 break;
6661 kvm->arch.hypercall_exit_enabled = cap->args[0];
6662 r = 0;
6663 break;
6664 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6665 r = -EINVAL;
6666 if (cap->args[0] & ~1)
6667 break;
6668 kvm->arch.exit_on_emulation_error = cap->args[0];
6669 r = 0;
6670 break;
6671 case KVM_CAP_PMU_CAPABILITY:
6672 r = -EINVAL;
6673 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6674 break;
6676 mutex_lock(&kvm->lock);
6677 if (!kvm->created_vcpus) {
6678 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6679 r = 0;
6681 mutex_unlock(&kvm->lock);
6682 break;
6683 case KVM_CAP_MAX_VCPU_ID:
6684 r = -EINVAL;
6685 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6686 break;
6688 mutex_lock(&kvm->lock);
6689 if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6691 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6692 r = 0;
6693 } else if (!kvm->arch.max_vcpu_ids) {
6694 kvm->arch.max_vcpu_ids = cap->args[0];
6695 r = 0;
6697 mutex_unlock(&kvm->lock);
6698 break;
6699 case KVM_CAP_X86_NOTIFY_VMEXIT:
6700 r = -EINVAL;
6701 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6702 break;
6703 if (!kvm_caps.has_notify_vmexit)
6704 break;
6705 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6706 break;
6707 mutex_lock(&kvm->lock);
6708 if (!kvm->created_vcpus) {
6709 kvm->arch.notify_window = cap->args[0] >> 32;
6710 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6711 r = 0;
6713 mutex_unlock(&kvm->lock);
6714 break;
6715 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6716 r = -EINVAL;
6719 * Since the risk of disabling NX hugepages is a guest crashing
6720 * the system, ensure the userspace process has permission to
6721 * reboot the system.
6723 * Note that unlike the reboot() syscall, the process must have
6724 * this capability in the root namespace because exposing
6725 * /dev/kvm into a container does not limit the scope of the
6726 * iTLB multihit bug to that container. In other words,
6727 * this must use capable(), not ns_capable().
6729 if (!capable(CAP_SYS_BOOT)) {
6730 r = -EPERM;
6731 break;
6734 if (cap->args[0])
6735 break;
6737 mutex_lock(&kvm->lock);
6738 if (!kvm->created_vcpus) {
6739 kvm->arch.disable_nx_huge_pages = true;
6740 r = 0;
6742 mutex_unlock(&kvm->lock);
6743 break;
6744 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6745 u64 bus_cycle_ns = cap->args[0];
6746 u64 unused;
6749 * Guard against overflow in tmict_to_ns(). 128 is the highest
6750 * divide value that can be programmed in APIC_TDCR.
6752 r = -EINVAL;
6753 if (!bus_cycle_ns ||
6754 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6755 break;
6757 r = 0;
6758 mutex_lock(&kvm->lock);
6759 if (!irqchip_in_kernel(kvm))
6760 r = -ENXIO;
6761 else if (kvm->created_vcpus)
6762 r = -EINVAL;
6763 else
6764 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6765 mutex_unlock(&kvm->lock);
6766 break;
6768 default:
6769 r = -EINVAL;
6770 break;
6772 return r;
6775 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6777 struct kvm_x86_msr_filter *msr_filter;
6779 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6780 if (!msr_filter)
6781 return NULL;
6783 msr_filter->default_allow = default_allow;
6784 return msr_filter;
6787 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6789 u32 i;
6791 if (!msr_filter)
6792 return;
6794 for (i = 0; i < msr_filter->count; i++)
6795 kfree(msr_filter->ranges[i].bitmap);
6797 kfree(msr_filter);
6800 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6801 struct kvm_msr_filter_range *user_range)
6803 unsigned long *bitmap;
6804 size_t bitmap_size;
6806 if (!user_range->nmsrs)
6807 return 0;
6809 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6810 return -EINVAL;
6812 if (!user_range->flags)
6813 return -EINVAL;
6815 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6816 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6817 return -EINVAL;
6819 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6820 if (IS_ERR(bitmap))
6821 return PTR_ERR(bitmap);
6823 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6824 .flags = user_range->flags,
6825 .base = user_range->base,
6826 .nmsrs = user_range->nmsrs,
6827 .bitmap = bitmap,
6830 msr_filter->count++;
6831 return 0;
6834 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6835 struct kvm_msr_filter *filter)
6837 struct kvm_x86_msr_filter *new_filter, *old_filter;
6838 bool default_allow;
6839 bool empty = true;
6840 int r;
6841 u32 i;
6843 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6844 return -EINVAL;
6846 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6847 empty &= !filter->ranges[i].nmsrs;
6849 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6850 if (empty && !default_allow)
6851 return -EINVAL;
6853 new_filter = kvm_alloc_msr_filter(default_allow);
6854 if (!new_filter)
6855 return -ENOMEM;
6857 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6858 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6859 if (r) {
6860 kvm_free_msr_filter(new_filter);
6861 return r;
6865 mutex_lock(&kvm->lock);
6866 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6867 mutex_is_locked(&kvm->lock));
6868 mutex_unlock(&kvm->lock);
6869 synchronize_srcu(&kvm->srcu);
6871 kvm_free_msr_filter(old_filter);
6873 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6875 return 0;
6878 #ifdef CONFIG_KVM_COMPAT
6879 /* for KVM_X86_SET_MSR_FILTER */
6880 struct kvm_msr_filter_range_compat {
6881 __u32 flags;
6882 __u32 nmsrs;
6883 __u32 base;
6884 __u32 bitmap;
6887 struct kvm_msr_filter_compat {
6888 __u32 flags;
6889 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6892 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6894 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6895 unsigned long arg)
6897 void __user *argp = (void __user *)arg;
6898 struct kvm *kvm = filp->private_data;
6899 long r = -ENOTTY;
6901 switch (ioctl) {
6902 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6903 struct kvm_msr_filter __user *user_msr_filter = argp;
6904 struct kvm_msr_filter_compat filter_compat;
6905 struct kvm_msr_filter filter;
6906 int i;
6908 if (copy_from_user(&filter_compat, user_msr_filter,
6909 sizeof(filter_compat)))
6910 return -EFAULT;
6912 filter.flags = filter_compat.flags;
6913 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6914 struct kvm_msr_filter_range_compat *cr;
6916 cr = &filter_compat.ranges[i];
6917 filter.ranges[i] = (struct kvm_msr_filter_range) {
6918 .flags = cr->flags,
6919 .nmsrs = cr->nmsrs,
6920 .base = cr->base,
6921 .bitmap = (__u8 *)(ulong)cr->bitmap,
6925 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6926 break;
6930 return r;
6932 #endif
6934 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6935 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6937 struct kvm_vcpu *vcpu;
6938 unsigned long i;
6939 int ret = 0;
6941 mutex_lock(&kvm->lock);
6942 kvm_for_each_vcpu(i, vcpu, kvm) {
6943 if (!vcpu->arch.pv_time.active)
6944 continue;
6946 ret = kvm_set_guest_paused(vcpu);
6947 if (ret) {
6948 kvm_err("Failed to pause guest VCPU%d: %d\n",
6949 vcpu->vcpu_id, ret);
6950 break;
6953 mutex_unlock(&kvm->lock);
6955 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6958 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6960 switch (state) {
6961 case PM_HIBERNATION_PREPARE:
6962 case PM_SUSPEND_PREPARE:
6963 return kvm_arch_suspend_notifier(kvm);
6966 return NOTIFY_DONE;
6968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6970 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6972 struct kvm_clock_data data = { 0 };
6974 get_kvmclock(kvm, &data);
6975 if (copy_to_user(argp, &data, sizeof(data)))
6976 return -EFAULT;
6978 return 0;
6981 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6983 struct kvm_arch *ka = &kvm->arch;
6984 struct kvm_clock_data data;
6985 u64 now_raw_ns;
6987 if (copy_from_user(&data, argp, sizeof(data)))
6988 return -EFAULT;
6991 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6992 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6994 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6995 return -EINVAL;
6997 kvm_hv_request_tsc_page_update(kvm);
6998 kvm_start_pvclock_update(kvm);
6999 pvclock_update_vm_gtod_copy(kvm);
7002 * This pairs with kvm_guest_time_update(): when masterclock is
7003 * in use, we use master_kernel_ns + kvmclock_offset to set
7004 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
7005 * is slightly ahead) here we risk going negative on unsigned
7006 * 'system_time' when 'data.clock' is very small.
7008 if (data.flags & KVM_CLOCK_REALTIME) {
7009 u64 now_real_ns = ktime_get_real_ns();
7012 * Avoid stepping the kvmclock backwards.
7014 if (now_real_ns > data.realtime)
7015 data.clock += now_real_ns - data.realtime;
7018 if (ka->use_master_clock)
7019 now_raw_ns = ka->master_kernel_ns;
7020 else
7021 now_raw_ns = get_kvmclock_base_ns();
7022 ka->kvmclock_offset = data.clock - now_raw_ns;
7023 kvm_end_pvclock_update(kvm);
7024 return 0;
7027 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7029 struct kvm *kvm = filp->private_data;
7030 void __user *argp = (void __user *)arg;
7031 int r = -ENOTTY;
7033 * This union makes it completely explicit to gcc-3.x
7034 * that these two variables' stack usage should be
7035 * combined, not added together.
7037 union {
7038 struct kvm_pit_state ps;
7039 struct kvm_pit_state2 ps2;
7040 struct kvm_pit_config pit_config;
7041 } u;
7043 switch (ioctl) {
7044 case KVM_SET_TSS_ADDR:
7045 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7046 break;
7047 case KVM_SET_IDENTITY_MAP_ADDR: {
7048 u64 ident_addr;
7050 mutex_lock(&kvm->lock);
7051 r = -EINVAL;
7052 if (kvm->created_vcpus)
7053 goto set_identity_unlock;
7054 r = -EFAULT;
7055 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7056 goto set_identity_unlock;
7057 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7058 set_identity_unlock:
7059 mutex_unlock(&kvm->lock);
7060 break;
7062 case KVM_SET_NR_MMU_PAGES:
7063 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7064 break;
7065 case KVM_CREATE_IRQCHIP: {
7066 mutex_lock(&kvm->lock);
7068 r = -EEXIST;
7069 if (irqchip_in_kernel(kvm))
7070 goto create_irqchip_unlock;
7072 r = -EINVAL;
7073 if (kvm->created_vcpus)
7074 goto create_irqchip_unlock;
7076 r = kvm_pic_init(kvm);
7077 if (r)
7078 goto create_irqchip_unlock;
7080 r = kvm_ioapic_init(kvm);
7081 if (r) {
7082 kvm_pic_destroy(kvm);
7083 goto create_irqchip_unlock;
7086 r = kvm_setup_default_irq_routing(kvm);
7087 if (r) {
7088 kvm_ioapic_destroy(kvm);
7089 kvm_pic_destroy(kvm);
7090 goto create_irqchip_unlock;
7092 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7093 smp_wmb();
7094 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7095 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7096 create_irqchip_unlock:
7097 mutex_unlock(&kvm->lock);
7098 break;
7100 case KVM_CREATE_PIT:
7101 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7102 goto create_pit;
7103 case KVM_CREATE_PIT2:
7104 r = -EFAULT;
7105 if (copy_from_user(&u.pit_config, argp,
7106 sizeof(struct kvm_pit_config)))
7107 goto out;
7108 create_pit:
7109 mutex_lock(&kvm->lock);
7110 r = -EEXIST;
7111 if (kvm->arch.vpit)
7112 goto create_pit_unlock;
7113 r = -ENOENT;
7114 if (!pic_in_kernel(kvm))
7115 goto create_pit_unlock;
7116 r = -ENOMEM;
7117 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7118 if (kvm->arch.vpit)
7119 r = 0;
7120 create_pit_unlock:
7121 mutex_unlock(&kvm->lock);
7122 break;
7123 case KVM_GET_IRQCHIP: {
7124 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7125 struct kvm_irqchip *chip;
7127 chip = memdup_user(argp, sizeof(*chip));
7128 if (IS_ERR(chip)) {
7129 r = PTR_ERR(chip);
7130 goto out;
7133 r = -ENXIO;
7134 if (!irqchip_kernel(kvm))
7135 goto get_irqchip_out;
7136 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7137 if (r)
7138 goto get_irqchip_out;
7139 r = -EFAULT;
7140 if (copy_to_user(argp, chip, sizeof(*chip)))
7141 goto get_irqchip_out;
7142 r = 0;
7143 get_irqchip_out:
7144 kfree(chip);
7145 break;
7147 case KVM_SET_IRQCHIP: {
7148 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7149 struct kvm_irqchip *chip;
7151 chip = memdup_user(argp, sizeof(*chip));
7152 if (IS_ERR(chip)) {
7153 r = PTR_ERR(chip);
7154 goto out;
7157 r = -ENXIO;
7158 if (!irqchip_kernel(kvm))
7159 goto set_irqchip_out;
7160 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7161 set_irqchip_out:
7162 kfree(chip);
7163 break;
7165 case KVM_GET_PIT: {
7166 r = -EFAULT;
7167 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7168 goto out;
7169 r = -ENXIO;
7170 if (!kvm->arch.vpit)
7171 goto out;
7172 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7173 if (r)
7174 goto out;
7175 r = -EFAULT;
7176 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7177 goto out;
7178 r = 0;
7179 break;
7181 case KVM_SET_PIT: {
7182 r = -EFAULT;
7183 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7184 goto out;
7185 mutex_lock(&kvm->lock);
7186 r = -ENXIO;
7187 if (!kvm->arch.vpit)
7188 goto set_pit_out;
7189 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7190 set_pit_out:
7191 mutex_unlock(&kvm->lock);
7192 break;
7194 case KVM_GET_PIT2: {
7195 r = -ENXIO;
7196 if (!kvm->arch.vpit)
7197 goto out;
7198 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7199 if (r)
7200 goto out;
7201 r = -EFAULT;
7202 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7203 goto out;
7204 r = 0;
7205 break;
7207 case KVM_SET_PIT2: {
7208 r = -EFAULT;
7209 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7210 goto out;
7211 mutex_lock(&kvm->lock);
7212 r = -ENXIO;
7213 if (!kvm->arch.vpit)
7214 goto set_pit2_out;
7215 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7216 set_pit2_out:
7217 mutex_unlock(&kvm->lock);
7218 break;
7220 case KVM_REINJECT_CONTROL: {
7221 struct kvm_reinject_control control;
7222 r = -EFAULT;
7223 if (copy_from_user(&control, argp, sizeof(control)))
7224 goto out;
7225 r = -ENXIO;
7226 if (!kvm->arch.vpit)
7227 goto out;
7228 r = kvm_vm_ioctl_reinject(kvm, &control);
7229 break;
7231 case KVM_SET_BOOT_CPU_ID:
7232 r = 0;
7233 mutex_lock(&kvm->lock);
7234 if (kvm->created_vcpus)
7235 r = -EBUSY;
7236 else if (arg > KVM_MAX_VCPU_IDS ||
7237 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7238 r = -EINVAL;
7239 else
7240 kvm->arch.bsp_vcpu_id = arg;
7241 mutex_unlock(&kvm->lock);
7242 break;
7243 #ifdef CONFIG_KVM_XEN
7244 case KVM_XEN_HVM_CONFIG: {
7245 struct kvm_xen_hvm_config xhc;
7246 r = -EFAULT;
7247 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7248 goto out;
7249 r = kvm_xen_hvm_config(kvm, &xhc);
7250 break;
7252 case KVM_XEN_HVM_GET_ATTR: {
7253 struct kvm_xen_hvm_attr xha;
7255 r = -EFAULT;
7256 if (copy_from_user(&xha, argp, sizeof(xha)))
7257 goto out;
7258 r = kvm_xen_hvm_get_attr(kvm, &xha);
7259 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7260 r = -EFAULT;
7261 break;
7263 case KVM_XEN_HVM_SET_ATTR: {
7264 struct kvm_xen_hvm_attr xha;
7266 r = -EFAULT;
7267 if (copy_from_user(&xha, argp, sizeof(xha)))
7268 goto out;
7269 r = kvm_xen_hvm_set_attr(kvm, &xha);
7270 break;
7272 case KVM_XEN_HVM_EVTCHN_SEND: {
7273 struct kvm_irq_routing_xen_evtchn uxe;
7275 r = -EFAULT;
7276 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7277 goto out;
7278 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7279 break;
7281 #endif
7282 case KVM_SET_CLOCK:
7283 r = kvm_vm_ioctl_set_clock(kvm, argp);
7284 break;
7285 case KVM_GET_CLOCK:
7286 r = kvm_vm_ioctl_get_clock(kvm, argp);
7287 break;
7288 case KVM_SET_TSC_KHZ: {
7289 u32 user_tsc_khz;
7291 r = -EINVAL;
7292 user_tsc_khz = (u32)arg;
7294 if (kvm_caps.has_tsc_control &&
7295 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7296 goto out;
7298 if (user_tsc_khz == 0)
7299 user_tsc_khz = tsc_khz;
7301 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7302 r = 0;
7304 goto out;
7306 case KVM_GET_TSC_KHZ: {
7307 r = READ_ONCE(kvm->arch.default_tsc_khz);
7308 goto out;
7310 case KVM_MEMORY_ENCRYPT_OP: {
7311 r = -ENOTTY;
7312 if (!kvm_x86_ops.mem_enc_ioctl)
7313 goto out;
7315 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7316 break;
7318 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7319 struct kvm_enc_region region;
7321 r = -EFAULT;
7322 if (copy_from_user(&region, argp, sizeof(region)))
7323 goto out;
7325 r = -ENOTTY;
7326 if (!kvm_x86_ops.mem_enc_register_region)
7327 goto out;
7329 r = kvm_x86_call(mem_enc_register_region)(kvm, &region);
7330 break;
7332 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7333 struct kvm_enc_region region;
7335 r = -EFAULT;
7336 if (copy_from_user(&region, argp, sizeof(region)))
7337 goto out;
7339 r = -ENOTTY;
7340 if (!kvm_x86_ops.mem_enc_unregister_region)
7341 goto out;
7343 r = kvm_x86_call(mem_enc_unregister_region)(kvm, &region);
7344 break;
7346 #ifdef CONFIG_KVM_HYPERV
7347 case KVM_HYPERV_EVENTFD: {
7348 struct kvm_hyperv_eventfd hvevfd;
7350 r = -EFAULT;
7351 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7352 goto out;
7353 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7354 break;
7356 #endif
7357 case KVM_SET_PMU_EVENT_FILTER:
7358 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7359 break;
7360 case KVM_X86_SET_MSR_FILTER: {
7361 struct kvm_msr_filter __user *user_msr_filter = argp;
7362 struct kvm_msr_filter filter;
7364 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7365 return -EFAULT;
7367 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7368 break;
7370 default:
7371 r = -ENOTTY;
7373 out:
7374 return r;
7377 static void kvm_probe_feature_msr(u32 msr_index)
7379 u64 data;
7381 if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7382 return;
7384 msr_based_features[num_msr_based_features++] = msr_index;
7387 static void kvm_probe_msr_to_save(u32 msr_index)
7389 u32 dummy[2];
7391 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7392 return;
7395 * Even MSRs that are valid in the host may not be exposed to guests in
7396 * some cases.
7398 switch (msr_index) {
7399 case MSR_IA32_BNDCFGS:
7400 if (!kvm_mpx_supported())
7401 return;
7402 break;
7403 case MSR_TSC_AUX:
7404 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7405 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7406 return;
7407 break;
7408 case MSR_IA32_UMWAIT_CONTROL:
7409 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7410 return;
7411 break;
7412 case MSR_IA32_RTIT_CTL:
7413 case MSR_IA32_RTIT_STATUS:
7414 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7415 return;
7416 break;
7417 case MSR_IA32_RTIT_CR3_MATCH:
7418 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7419 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7420 return;
7421 break;
7422 case MSR_IA32_RTIT_OUTPUT_BASE:
7423 case MSR_IA32_RTIT_OUTPUT_MASK:
7424 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7425 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7426 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7427 return;
7428 break;
7429 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7430 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7431 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7432 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7433 return;
7434 break;
7435 case MSR_ARCH_PERFMON_PERFCTR0 ...
7436 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7437 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7438 kvm_pmu_cap.num_counters_gp)
7439 return;
7440 break;
7441 case MSR_ARCH_PERFMON_EVENTSEL0 ...
7442 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7443 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7444 kvm_pmu_cap.num_counters_gp)
7445 return;
7446 break;
7447 case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7448 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7449 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7450 kvm_pmu_cap.num_counters_fixed)
7451 return;
7452 break;
7453 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7454 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7455 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7456 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7457 return;
7458 break;
7459 case MSR_IA32_XFD:
7460 case MSR_IA32_XFD_ERR:
7461 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7462 return;
7463 break;
7464 case MSR_IA32_TSX_CTRL:
7465 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7466 return;
7467 break;
7468 default:
7469 break;
7472 msrs_to_save[num_msrs_to_save++] = msr_index;
7475 static void kvm_init_msr_lists(void)
7477 unsigned i;
7479 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7480 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7482 num_msrs_to_save = 0;
7483 num_emulated_msrs = 0;
7484 num_msr_based_features = 0;
7486 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7487 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7489 if (enable_pmu) {
7490 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7491 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7494 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7495 if (!kvm_x86_call(has_emulated_msr)(NULL,
7496 emulated_msrs_all[i]))
7497 continue;
7499 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7502 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7503 kvm_probe_feature_msr(i);
7505 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7506 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7509 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7510 const void *v)
7512 int handled = 0;
7513 int n;
7515 do {
7516 n = min(len, 8);
7517 if (!(lapic_in_kernel(vcpu) &&
7518 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7519 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7520 break;
7521 handled += n;
7522 addr += n;
7523 len -= n;
7524 v += n;
7525 } while (len);
7527 return handled;
7530 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7532 int handled = 0;
7533 int n;
7535 do {
7536 n = min(len, 8);
7537 if (!(lapic_in_kernel(vcpu) &&
7538 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7539 addr, n, v))
7540 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7541 break;
7542 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7543 handled += n;
7544 addr += n;
7545 len -= n;
7546 v += n;
7547 } while (len);
7549 return handled;
7552 void kvm_set_segment(struct kvm_vcpu *vcpu,
7553 struct kvm_segment *var, int seg)
7555 kvm_x86_call(set_segment)(vcpu, var, seg);
7558 void kvm_get_segment(struct kvm_vcpu *vcpu,
7559 struct kvm_segment *var, int seg)
7561 kvm_x86_call(get_segment)(vcpu, var, seg);
7564 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7565 struct x86_exception *exception)
7567 struct kvm_mmu *mmu = vcpu->arch.mmu;
7568 gpa_t t_gpa;
7570 BUG_ON(!mmu_is_nested(vcpu));
7572 /* NPT walks are always user-walks */
7573 access |= PFERR_USER_MASK;
7574 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7576 return t_gpa;
7579 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7580 struct x86_exception *exception)
7582 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7584 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7585 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7587 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7589 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7590 struct x86_exception *exception)
7592 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7594 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7595 access |= PFERR_WRITE_MASK;
7596 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7598 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7600 /* uses this to access any guest's mapped memory without checking CPL */
7601 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7602 struct x86_exception *exception)
7604 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7606 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7609 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7610 struct kvm_vcpu *vcpu, u64 access,
7611 struct x86_exception *exception)
7613 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7614 void *data = val;
7615 int r = X86EMUL_CONTINUE;
7617 while (bytes) {
7618 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7619 unsigned offset = addr & (PAGE_SIZE-1);
7620 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7621 int ret;
7623 if (gpa == INVALID_GPA)
7624 return X86EMUL_PROPAGATE_FAULT;
7625 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7626 offset, toread);
7627 if (ret < 0) {
7628 r = X86EMUL_IO_NEEDED;
7629 goto out;
7632 bytes -= toread;
7633 data += toread;
7634 addr += toread;
7636 out:
7637 return r;
7640 /* used for instruction fetching */
7641 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7642 gva_t addr, void *val, unsigned int bytes,
7643 struct x86_exception *exception)
7645 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7646 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7647 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7648 unsigned offset;
7649 int ret;
7651 /* Inline kvm_read_guest_virt_helper for speed. */
7652 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7653 exception);
7654 if (unlikely(gpa == INVALID_GPA))
7655 return X86EMUL_PROPAGATE_FAULT;
7657 offset = addr & (PAGE_SIZE-1);
7658 if (WARN_ON(offset + bytes > PAGE_SIZE))
7659 bytes = (unsigned)PAGE_SIZE - offset;
7660 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7661 offset, bytes);
7662 if (unlikely(ret < 0))
7663 return X86EMUL_IO_NEEDED;
7665 return X86EMUL_CONTINUE;
7668 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7669 gva_t addr, void *val, unsigned int bytes,
7670 struct x86_exception *exception)
7672 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7675 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7676 * is returned, but our callers are not ready for that and they blindly
7677 * call kvm_inject_page_fault. Ensure that they at least do not leak
7678 * uninitialized kernel stack memory into cr2 and error code.
7680 memset(exception, 0, sizeof(*exception));
7681 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7682 exception);
7684 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7686 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7687 gva_t addr, void *val, unsigned int bytes,
7688 struct x86_exception *exception, bool system)
7690 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7691 u64 access = 0;
7693 if (system)
7694 access |= PFERR_IMPLICIT_ACCESS;
7695 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7696 access |= PFERR_USER_MASK;
7698 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7701 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7702 struct kvm_vcpu *vcpu, u64 access,
7703 struct x86_exception *exception)
7705 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7706 void *data = val;
7707 int r = X86EMUL_CONTINUE;
7709 while (bytes) {
7710 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7711 unsigned offset = addr & (PAGE_SIZE-1);
7712 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7713 int ret;
7715 if (gpa == INVALID_GPA)
7716 return X86EMUL_PROPAGATE_FAULT;
7717 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7718 if (ret < 0) {
7719 r = X86EMUL_IO_NEEDED;
7720 goto out;
7723 bytes -= towrite;
7724 data += towrite;
7725 addr += towrite;
7727 out:
7728 return r;
7731 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7732 unsigned int bytes, struct x86_exception *exception,
7733 bool system)
7735 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7736 u64 access = PFERR_WRITE_MASK;
7738 if (system)
7739 access |= PFERR_IMPLICIT_ACCESS;
7740 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7741 access |= PFERR_USER_MASK;
7743 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7744 access, exception);
7747 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7748 unsigned int bytes, struct x86_exception *exception)
7750 /* kvm_write_guest_virt_system can pull in tons of pages. */
7751 vcpu->arch.l1tf_flush_l1d = true;
7753 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7754 PFERR_WRITE_MASK, exception);
7756 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7758 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7759 void *insn, int insn_len)
7761 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7762 insn, insn_len);
7765 int handle_ud(struct kvm_vcpu *vcpu)
7767 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7768 int fep_flags = READ_ONCE(force_emulation_prefix);
7769 int emul_type = EMULTYPE_TRAP_UD;
7770 char sig[5]; /* ud2; .ascii "kvm" */
7771 struct x86_exception e;
7772 int r;
7774 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7775 if (r != X86EMUL_CONTINUE)
7776 return 1;
7778 if (fep_flags &&
7779 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7780 sig, sizeof(sig), &e) == 0 &&
7781 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7782 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7783 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7784 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7785 emul_type = EMULTYPE_TRAP_UD_FORCED;
7788 return kvm_emulate_instruction(vcpu, emul_type);
7790 EXPORT_SYMBOL_GPL(handle_ud);
7792 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7793 gpa_t gpa, bool write)
7795 /* For APIC access vmexit */
7796 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7797 return 1;
7799 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7800 trace_vcpu_match_mmio(gva, gpa, write, true);
7801 return 1;
7804 return 0;
7807 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7808 gpa_t *gpa, struct x86_exception *exception,
7809 bool write)
7811 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7812 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7813 | (write ? PFERR_WRITE_MASK : 0);
7816 * currently PKRU is only applied to ept enabled guest so
7817 * there is no pkey in EPT page table for L1 guest or EPT
7818 * shadow page table for L2 guest.
7820 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7821 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7822 vcpu->arch.mmio_access, 0, access))) {
7823 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7824 (gva & (PAGE_SIZE - 1));
7825 trace_vcpu_match_mmio(gva, *gpa, write, false);
7826 return 1;
7829 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7831 if (*gpa == INVALID_GPA)
7832 return -1;
7834 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7837 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7838 const void *val, int bytes)
7840 int ret;
7842 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7843 if (ret < 0)
7844 return 0;
7845 kvm_page_track_write(vcpu, gpa, val, bytes);
7846 return 1;
7849 struct read_write_emulator_ops {
7850 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7851 int bytes);
7852 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7853 void *val, int bytes);
7854 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7855 int bytes, void *val);
7856 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7857 void *val, int bytes);
7858 bool write;
7861 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7863 if (vcpu->mmio_read_completed) {
7864 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7865 vcpu->mmio_fragments[0].gpa, val);
7866 vcpu->mmio_read_completed = 0;
7867 return 1;
7870 return 0;
7873 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7874 void *val, int bytes)
7876 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7879 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7880 void *val, int bytes)
7882 return emulator_write_phys(vcpu, gpa, val, bytes);
7885 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7887 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7888 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7891 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7892 void *val, int bytes)
7894 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7895 return X86EMUL_IO_NEEDED;
7898 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7899 void *val, int bytes)
7901 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7903 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7904 return X86EMUL_CONTINUE;
7907 static const struct read_write_emulator_ops read_emultor = {
7908 .read_write_prepare = read_prepare,
7909 .read_write_emulate = read_emulate,
7910 .read_write_mmio = vcpu_mmio_read,
7911 .read_write_exit_mmio = read_exit_mmio,
7914 static const struct read_write_emulator_ops write_emultor = {
7915 .read_write_emulate = write_emulate,
7916 .read_write_mmio = write_mmio,
7917 .read_write_exit_mmio = write_exit_mmio,
7918 .write = true,
7921 static int emulator_read_write_onepage(unsigned long addr, void *val,
7922 unsigned int bytes,
7923 struct x86_exception *exception,
7924 struct kvm_vcpu *vcpu,
7925 const struct read_write_emulator_ops *ops)
7927 gpa_t gpa;
7928 int handled, ret;
7929 bool write = ops->write;
7930 struct kvm_mmio_fragment *frag;
7931 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7934 * If the exit was due to a NPF we may already have a GPA.
7935 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7936 * Note, this cannot be used on string operations since string
7937 * operation using rep will only have the initial GPA from the NPF
7938 * occurred.
7940 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7941 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7942 gpa = ctxt->gpa_val;
7943 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7944 } else {
7945 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7946 if (ret < 0)
7947 return X86EMUL_PROPAGATE_FAULT;
7950 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7951 return X86EMUL_CONTINUE;
7954 * Is this MMIO handled locally?
7956 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7957 if (handled == bytes)
7958 return X86EMUL_CONTINUE;
7960 gpa += handled;
7961 bytes -= handled;
7962 val += handled;
7964 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7965 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7966 frag->gpa = gpa;
7967 frag->data = val;
7968 frag->len = bytes;
7969 return X86EMUL_CONTINUE;
7972 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7973 unsigned long addr,
7974 void *val, unsigned int bytes,
7975 struct x86_exception *exception,
7976 const struct read_write_emulator_ops *ops)
7978 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7979 gpa_t gpa;
7980 int rc;
7982 if (ops->read_write_prepare &&
7983 ops->read_write_prepare(vcpu, val, bytes))
7984 return X86EMUL_CONTINUE;
7986 vcpu->mmio_nr_fragments = 0;
7988 /* Crossing a page boundary? */
7989 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7990 int now;
7992 now = -addr & ~PAGE_MASK;
7993 rc = emulator_read_write_onepage(addr, val, now, exception,
7994 vcpu, ops);
7996 if (rc != X86EMUL_CONTINUE)
7997 return rc;
7998 addr += now;
7999 if (ctxt->mode != X86EMUL_MODE_PROT64)
8000 addr = (u32)addr;
8001 val += now;
8002 bytes -= now;
8005 rc = emulator_read_write_onepage(addr, val, bytes, exception,
8006 vcpu, ops);
8007 if (rc != X86EMUL_CONTINUE)
8008 return rc;
8010 if (!vcpu->mmio_nr_fragments)
8011 return rc;
8013 gpa = vcpu->mmio_fragments[0].gpa;
8015 vcpu->mmio_needed = 1;
8016 vcpu->mmio_cur_fragment = 0;
8018 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8019 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8020 vcpu->run->exit_reason = KVM_EXIT_MMIO;
8021 vcpu->run->mmio.phys_addr = gpa;
8023 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8026 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8027 unsigned long addr,
8028 void *val,
8029 unsigned int bytes,
8030 struct x86_exception *exception)
8032 return emulator_read_write(ctxt, addr, val, bytes,
8033 exception, &read_emultor);
8036 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8037 unsigned long addr,
8038 const void *val,
8039 unsigned int bytes,
8040 struct x86_exception *exception)
8042 return emulator_read_write(ctxt, addr, (void *)val, bytes,
8043 exception, &write_emultor);
8046 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8047 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8049 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8050 unsigned long addr,
8051 const void *old,
8052 const void *new,
8053 unsigned int bytes,
8054 struct x86_exception *exception)
8056 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8057 u64 page_line_mask;
8058 unsigned long hva;
8059 gpa_t gpa;
8060 int r;
8062 /* guests cmpxchg8b have to be emulated atomically */
8063 if (bytes > 8 || (bytes & (bytes - 1)))
8064 goto emul_write;
8066 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8068 if (gpa == INVALID_GPA ||
8069 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8070 goto emul_write;
8073 * Emulate the atomic as a straight write to avoid #AC if SLD is
8074 * enabled in the host and the access splits a cache line.
8076 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8077 page_line_mask = ~(cache_line_size() - 1);
8078 else
8079 page_line_mask = PAGE_MASK;
8081 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8082 goto emul_write;
8084 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8085 if (kvm_is_error_hva(hva))
8086 goto emul_write;
8088 hva += offset_in_page(gpa);
8090 switch (bytes) {
8091 case 1:
8092 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8093 break;
8094 case 2:
8095 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8096 break;
8097 case 4:
8098 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8099 break;
8100 case 8:
8101 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8102 break;
8103 default:
8104 BUG();
8107 if (r < 0)
8108 return X86EMUL_UNHANDLEABLE;
8111 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8112 * successful, as the old value is written back on failure. Note, for
8113 * live migration, this is unnecessarily conservative as CMPXCHG writes
8114 * back the original value and the access is atomic, but KVM's ABI is
8115 * that all writes are dirty logged, regardless of the value written.
8117 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8119 if (r)
8120 return X86EMUL_CMPXCHG_FAILED;
8122 kvm_page_track_write(vcpu, gpa, new, bytes);
8124 return X86EMUL_CONTINUE;
8126 emul_write:
8127 pr_warn_once("emulating exchange as write\n");
8129 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8132 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8133 unsigned short port, void *data,
8134 unsigned int count, bool in)
8136 unsigned i;
8137 int r;
8139 WARN_ON_ONCE(vcpu->arch.pio.count);
8140 for (i = 0; i < count; i++) {
8141 if (in)
8142 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8143 else
8144 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8146 if (r) {
8147 if (i == 0)
8148 goto userspace_io;
8151 * Userspace must have unregistered the device while PIO
8152 * was running. Drop writes / read as 0.
8154 if (in)
8155 memset(data, 0, size * (count - i));
8156 break;
8159 data += size;
8161 return 1;
8163 userspace_io:
8164 vcpu->arch.pio.port = port;
8165 vcpu->arch.pio.in = in;
8166 vcpu->arch.pio.count = count;
8167 vcpu->arch.pio.size = size;
8169 if (in)
8170 memset(vcpu->arch.pio_data, 0, size * count);
8171 else
8172 memcpy(vcpu->arch.pio_data, data, size * count);
8174 vcpu->run->exit_reason = KVM_EXIT_IO;
8175 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8176 vcpu->run->io.size = size;
8177 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8178 vcpu->run->io.count = count;
8179 vcpu->run->io.port = port;
8180 return 0;
8183 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8184 unsigned short port, void *val, unsigned int count)
8186 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8187 if (r)
8188 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8190 return r;
8193 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8195 int size = vcpu->arch.pio.size;
8196 unsigned int count = vcpu->arch.pio.count;
8197 memcpy(val, vcpu->arch.pio_data, size * count);
8198 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8199 vcpu->arch.pio.count = 0;
8202 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8203 int size, unsigned short port, void *val,
8204 unsigned int count)
8206 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8207 if (vcpu->arch.pio.count) {
8209 * Complete a previous iteration that required userspace I/O.
8210 * Note, @count isn't guaranteed to match pio.count as userspace
8211 * can modify ECX before rerunning the vCPU. Ignore any such
8212 * shenanigans as KVM doesn't support modifying the rep count,
8213 * and the emulator ensures @count doesn't overflow the buffer.
8215 complete_emulator_pio_in(vcpu, val);
8216 return 1;
8219 return emulator_pio_in(vcpu, size, port, val, count);
8222 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8223 unsigned short port, const void *val,
8224 unsigned int count)
8226 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8227 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8230 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8231 int size, unsigned short port,
8232 const void *val, unsigned int count)
8234 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8237 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8239 return kvm_x86_call(get_segment_base)(vcpu, seg);
8242 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8244 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8247 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8249 if (!need_emulate_wbinvd(vcpu))
8250 return X86EMUL_CONTINUE;
8252 if (kvm_x86_call(has_wbinvd_exit)()) {
8253 int cpu = get_cpu();
8255 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8256 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8257 wbinvd_ipi, NULL, 1);
8258 put_cpu();
8259 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8260 } else
8261 wbinvd();
8262 return X86EMUL_CONTINUE;
8265 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8267 kvm_emulate_wbinvd_noskip(vcpu);
8268 return kvm_skip_emulated_instruction(vcpu);
8270 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8274 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8276 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8279 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8281 return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8284 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8285 unsigned long value)
8288 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8291 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8293 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8296 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8298 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8299 unsigned long value;
8301 switch (cr) {
8302 case 0:
8303 value = kvm_read_cr0(vcpu);
8304 break;
8305 case 2:
8306 value = vcpu->arch.cr2;
8307 break;
8308 case 3:
8309 value = kvm_read_cr3(vcpu);
8310 break;
8311 case 4:
8312 value = kvm_read_cr4(vcpu);
8313 break;
8314 case 8:
8315 value = kvm_get_cr8(vcpu);
8316 break;
8317 default:
8318 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8319 return 0;
8322 return value;
8325 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8327 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8328 int res = 0;
8330 switch (cr) {
8331 case 0:
8332 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8333 break;
8334 case 2:
8335 vcpu->arch.cr2 = val;
8336 break;
8337 case 3:
8338 res = kvm_set_cr3(vcpu, val);
8339 break;
8340 case 4:
8341 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8342 break;
8343 case 8:
8344 res = kvm_set_cr8(vcpu, val);
8345 break;
8346 default:
8347 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8348 res = -1;
8351 return res;
8354 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8356 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8359 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8361 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8364 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8366 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8369 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8371 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8374 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8376 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8379 static unsigned long emulator_get_cached_segment_base(
8380 struct x86_emulate_ctxt *ctxt, int seg)
8382 return get_segment_base(emul_to_vcpu(ctxt), seg);
8385 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8386 struct desc_struct *desc, u32 *base3,
8387 int seg)
8389 struct kvm_segment var;
8391 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8392 *selector = var.selector;
8394 if (var.unusable) {
8395 memset(desc, 0, sizeof(*desc));
8396 if (base3)
8397 *base3 = 0;
8398 return false;
8401 if (var.g)
8402 var.limit >>= 12;
8403 set_desc_limit(desc, var.limit);
8404 set_desc_base(desc, (unsigned long)var.base);
8405 #ifdef CONFIG_X86_64
8406 if (base3)
8407 *base3 = var.base >> 32;
8408 #endif
8409 desc->type = var.type;
8410 desc->s = var.s;
8411 desc->dpl = var.dpl;
8412 desc->p = var.present;
8413 desc->avl = var.avl;
8414 desc->l = var.l;
8415 desc->d = var.db;
8416 desc->g = var.g;
8418 return true;
8421 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8422 struct desc_struct *desc, u32 base3,
8423 int seg)
8425 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8426 struct kvm_segment var;
8428 var.selector = selector;
8429 var.base = get_desc_base(desc);
8430 #ifdef CONFIG_X86_64
8431 var.base |= ((u64)base3) << 32;
8432 #endif
8433 var.limit = get_desc_limit(desc);
8434 if (desc->g)
8435 var.limit = (var.limit << 12) | 0xfff;
8436 var.type = desc->type;
8437 var.dpl = desc->dpl;
8438 var.db = desc->d;
8439 var.s = desc->s;
8440 var.l = desc->l;
8441 var.g = desc->g;
8442 var.avl = desc->avl;
8443 var.present = desc->p;
8444 var.unusable = !var.present;
8445 var.padding = 0;
8447 kvm_set_segment(vcpu, &var, seg);
8448 return;
8451 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8452 u32 msr_index, u64 *pdata)
8454 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8455 int r;
8457 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8458 if (r < 0)
8459 return X86EMUL_UNHANDLEABLE;
8461 if (r) {
8462 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8463 complete_emulated_rdmsr, r))
8464 return X86EMUL_IO_NEEDED;
8466 trace_kvm_msr_read_ex(msr_index);
8467 return X86EMUL_PROPAGATE_FAULT;
8470 trace_kvm_msr_read(msr_index, *pdata);
8471 return X86EMUL_CONTINUE;
8474 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8475 u32 msr_index, u64 data)
8477 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8478 int r;
8480 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8481 if (r < 0)
8482 return X86EMUL_UNHANDLEABLE;
8484 if (r) {
8485 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8486 complete_emulated_msr_access, r))
8487 return X86EMUL_IO_NEEDED;
8489 trace_kvm_msr_write_ex(msr_index, data);
8490 return X86EMUL_PROPAGATE_FAULT;
8493 trace_kvm_msr_write(msr_index, data);
8494 return X86EMUL_CONTINUE;
8497 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8498 u32 msr_index, u64 *pdata)
8500 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8503 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8505 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8508 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8509 u32 pmc, u64 *pdata)
8511 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8514 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8516 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8519 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8520 struct x86_instruction_info *info,
8521 enum x86_intercept_stage stage)
8523 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8524 &ctxt->exception);
8527 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8528 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8529 bool exact_only)
8531 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8534 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8536 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8539 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8541 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8544 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8546 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8549 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8551 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8554 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8556 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8559 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8561 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8564 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8566 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8569 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8571 return is_smm(emul_to_vcpu(ctxt));
8574 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8576 return is_guest_mode(emul_to_vcpu(ctxt));
8579 #ifndef CONFIG_KVM_SMM
8580 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8582 WARN_ON_ONCE(1);
8583 return X86EMUL_UNHANDLEABLE;
8585 #endif
8587 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8589 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8592 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8594 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8597 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8599 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8601 if (!kvm->vm_bugged)
8602 kvm_vm_bugged(kvm);
8605 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8606 gva_t addr, unsigned int flags)
8608 if (!kvm_x86_ops.get_untagged_addr)
8609 return addr;
8611 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8612 addr, flags);
8615 static const struct x86_emulate_ops emulate_ops = {
8616 .vm_bugged = emulator_vm_bugged,
8617 .read_gpr = emulator_read_gpr,
8618 .write_gpr = emulator_write_gpr,
8619 .read_std = emulator_read_std,
8620 .write_std = emulator_write_std,
8621 .fetch = kvm_fetch_guest_virt,
8622 .read_emulated = emulator_read_emulated,
8623 .write_emulated = emulator_write_emulated,
8624 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8625 .invlpg = emulator_invlpg,
8626 .pio_in_emulated = emulator_pio_in_emulated,
8627 .pio_out_emulated = emulator_pio_out_emulated,
8628 .get_segment = emulator_get_segment,
8629 .set_segment = emulator_set_segment,
8630 .get_cached_segment_base = emulator_get_cached_segment_base,
8631 .get_gdt = emulator_get_gdt,
8632 .get_idt = emulator_get_idt,
8633 .set_gdt = emulator_set_gdt,
8634 .set_idt = emulator_set_idt,
8635 .get_cr = emulator_get_cr,
8636 .set_cr = emulator_set_cr,
8637 .cpl = emulator_get_cpl,
8638 .get_dr = emulator_get_dr,
8639 .set_dr = emulator_set_dr,
8640 .set_msr_with_filter = emulator_set_msr_with_filter,
8641 .get_msr_with_filter = emulator_get_msr_with_filter,
8642 .get_msr = emulator_get_msr,
8643 .check_rdpmc_early = emulator_check_rdpmc_early,
8644 .read_pmc = emulator_read_pmc,
8645 .halt = emulator_halt,
8646 .wbinvd = emulator_wbinvd,
8647 .fix_hypercall = emulator_fix_hypercall,
8648 .intercept = emulator_intercept,
8649 .get_cpuid = emulator_get_cpuid,
8650 .guest_has_movbe = emulator_guest_has_movbe,
8651 .guest_has_fxsr = emulator_guest_has_fxsr,
8652 .guest_has_rdpid = emulator_guest_has_rdpid,
8653 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8654 .set_nmi_mask = emulator_set_nmi_mask,
8655 .is_smm = emulator_is_smm,
8656 .is_guest_mode = emulator_is_guest_mode,
8657 .leave_smm = emulator_leave_smm,
8658 .triple_fault = emulator_triple_fault,
8659 .set_xcr = emulator_set_xcr,
8660 .get_untagged_addr = emulator_get_untagged_addr,
8663 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8665 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8667 * an sti; sti; sequence only disable interrupts for the first
8668 * instruction. So, if the last instruction, be it emulated or
8669 * not, left the system with the INT_STI flag enabled, it
8670 * means that the last instruction is an sti. We should not
8671 * leave the flag on in this case. The same goes for mov ss
8673 if (int_shadow & mask)
8674 mask = 0;
8675 if (unlikely(int_shadow || mask)) {
8676 kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8677 if (!mask)
8678 kvm_make_request(KVM_REQ_EVENT, vcpu);
8682 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8684 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8686 if (ctxt->exception.vector == PF_VECTOR)
8687 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8688 else if (ctxt->exception.error_code_valid)
8689 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8690 ctxt->exception.error_code);
8691 else
8692 kvm_queue_exception(vcpu, ctxt->exception.vector);
8695 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8697 struct x86_emulate_ctxt *ctxt;
8699 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8700 if (!ctxt) {
8701 pr_err("failed to allocate vcpu's emulator\n");
8702 return NULL;
8705 ctxt->vcpu = vcpu;
8706 ctxt->ops = &emulate_ops;
8707 vcpu->arch.emulate_ctxt = ctxt;
8709 return ctxt;
8712 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8714 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8715 int cs_db, cs_l;
8717 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8719 ctxt->gpa_available = false;
8720 ctxt->eflags = kvm_get_rflags(vcpu);
8721 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8723 ctxt->eip = kvm_rip_read(vcpu);
8724 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8725 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8726 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8727 cs_db ? X86EMUL_MODE_PROT32 :
8728 X86EMUL_MODE_PROT16;
8729 ctxt->interruptibility = 0;
8730 ctxt->have_exception = false;
8731 ctxt->exception.vector = -1;
8732 ctxt->perm_ok = false;
8734 init_decode_cache(ctxt);
8735 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8738 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8740 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8741 int ret;
8743 init_emulate_ctxt(vcpu);
8745 ctxt->op_bytes = 2;
8746 ctxt->ad_bytes = 2;
8747 ctxt->_eip = ctxt->eip + inc_eip;
8748 ret = emulate_int_real(ctxt, irq);
8750 if (ret != X86EMUL_CONTINUE) {
8751 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8752 } else {
8753 ctxt->eip = ctxt->_eip;
8754 kvm_rip_write(vcpu, ctxt->eip);
8755 kvm_set_rflags(vcpu, ctxt->eflags);
8758 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8760 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8761 u8 ndata, u8 *insn_bytes, u8 insn_size)
8763 struct kvm_run *run = vcpu->run;
8764 u64 info[5];
8765 u8 info_start;
8768 * Zero the whole array used to retrieve the exit info, as casting to
8769 * u32 for select entries will leave some chunks uninitialized.
8771 memset(&info, 0, sizeof(info));
8773 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8774 (u32 *)&info[3], (u32 *)&info[4]);
8776 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8777 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8780 * There's currently space for 13 entries, but 5 are used for the exit
8781 * reason and info. Restrict to 4 to reduce the maintenance burden
8782 * when expanding kvm_run.emulation_failure in the future.
8784 if (WARN_ON_ONCE(ndata > 4))
8785 ndata = 4;
8787 /* Always include the flags as a 'data' entry. */
8788 info_start = 1;
8789 run->emulation_failure.flags = 0;
8791 if (insn_size) {
8792 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8793 sizeof(run->emulation_failure.insn_bytes) != 16));
8794 info_start += 2;
8795 run->emulation_failure.flags |=
8796 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8797 run->emulation_failure.insn_size = insn_size;
8798 memset(run->emulation_failure.insn_bytes, 0x90,
8799 sizeof(run->emulation_failure.insn_bytes));
8800 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8803 memcpy(&run->internal.data[info_start], info, sizeof(info));
8804 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8805 ndata * sizeof(data[0]));
8807 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8810 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8812 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8814 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8815 ctxt->fetch.end - ctxt->fetch.data);
8818 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8819 u8 ndata)
8821 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8823 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8825 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8827 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8829 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8831 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8833 struct kvm *kvm = vcpu->kvm;
8835 ++vcpu->stat.insn_emulation_fail;
8836 trace_kvm_emulate_insn_failed(vcpu);
8838 if (emulation_type & EMULTYPE_VMWARE_GP) {
8839 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8840 return 1;
8843 if (kvm->arch.exit_on_emulation_error ||
8844 (emulation_type & EMULTYPE_SKIP)) {
8845 prepare_emulation_ctxt_failure_exit(vcpu);
8846 return 0;
8849 kvm_queue_exception(vcpu, UD_VECTOR);
8851 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8852 prepare_emulation_ctxt_failure_exit(vcpu);
8853 return 0;
8856 return 1;
8859 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8860 gpa_t cr2_or_gpa,
8861 int emulation_type)
8863 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8864 return false;
8867 * If the failed instruction faulted on an access to page tables that
8868 * are used to translate any part of the instruction, KVM can't resolve
8869 * the issue by unprotecting the gfn, as zapping the shadow page will
8870 * result in the instruction taking a !PRESENT page fault and thus put
8871 * the vCPU into an infinite loop of page faults. E.g. KVM will create
8872 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8873 * then zap the SPTE to unprotect the gfn, and then do it all over
8874 * again. Report the error to userspace.
8876 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8877 return false;
8880 * If emulation may have been triggered by a write to a shadowed page
8881 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8882 * guest to let the CPU re-execute the instruction in the hope that the
8883 * CPU can cleanly execute the instruction that KVM failed to emulate.
8885 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8888 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8889 * all SPTEs were already zapped by a different task. The alternative
8890 * is to report the error to userspace and likely terminate the guest,
8891 * and the last_retry_{eip,addr} checks will prevent retrying the page
8892 * fault indefinitely, i.e. there's nothing to lose by retrying.
8894 return true;
8897 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8898 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8900 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8901 unsigned long *db)
8903 u32 dr6 = 0;
8904 int i;
8905 u32 enable, rwlen;
8907 enable = dr7;
8908 rwlen = dr7 >> 16;
8909 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8910 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8911 dr6 |= (1 << i);
8912 return dr6;
8915 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8917 struct kvm_run *kvm_run = vcpu->run;
8919 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8920 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8921 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8922 kvm_run->debug.arch.exception = DB_VECTOR;
8923 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8924 return 0;
8926 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8927 return 1;
8930 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8932 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
8933 int r;
8935 r = kvm_x86_call(skip_emulated_instruction)(vcpu);
8936 if (unlikely(!r))
8937 return 0;
8939 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8942 * rflags is the old, "raw" value of the flags. The new value has
8943 * not been saved yet.
8945 * This is correct even for TF set by the guest, because "the
8946 * processor will not generate this exception after the instruction
8947 * that sets the TF flag".
8949 if (unlikely(rflags & X86_EFLAGS_TF))
8950 r = kvm_vcpu_do_singlestep(vcpu);
8951 return r;
8953 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8955 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8957 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8958 return true;
8961 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
8962 * active, but AMD compatible CPUs do not.
8964 if (!guest_cpuid_is_intel_compatible(vcpu))
8965 return false;
8967 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
8970 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8971 int emulation_type, int *r)
8973 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8976 * Do not check for code breakpoints if hardware has already done the
8977 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8978 * the instruction has passed all exception checks, and all intercepted
8979 * exceptions that trigger emulation have lower priority than code
8980 * breakpoints, i.e. the fact that the intercepted exception occurred
8981 * means any code breakpoints have already been serviced.
8983 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8984 * hardware has checked the RIP of the magic prefix, but not the RIP of
8985 * the instruction being emulated. The intent of forced emulation is
8986 * to behave as if KVM intercepted the instruction without an exception
8987 * and without a prefix.
8989 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8990 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8991 return false;
8993 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8994 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8995 struct kvm_run *kvm_run = vcpu->run;
8996 unsigned long eip = kvm_get_linear_rip(vcpu);
8997 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8998 vcpu->arch.guest_debug_dr7,
8999 vcpu->arch.eff_db);
9001 if (dr6 != 0) {
9002 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9003 kvm_run->debug.arch.pc = eip;
9004 kvm_run->debug.arch.exception = DB_VECTOR;
9005 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9006 *r = 0;
9007 return true;
9011 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9012 !kvm_is_code_breakpoint_inhibited(vcpu)) {
9013 unsigned long eip = kvm_get_linear_rip(vcpu);
9014 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9015 vcpu->arch.dr7,
9016 vcpu->arch.db);
9018 if (dr6 != 0) {
9019 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9020 *r = 1;
9021 return true;
9025 return false;
9028 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9030 switch (ctxt->opcode_len) {
9031 case 1:
9032 switch (ctxt->b) {
9033 case 0xe4: /* IN */
9034 case 0xe5:
9035 case 0xec:
9036 case 0xed:
9037 case 0xe6: /* OUT */
9038 case 0xe7:
9039 case 0xee:
9040 case 0xef:
9041 case 0x6c: /* INS */
9042 case 0x6d:
9043 case 0x6e: /* OUTS */
9044 case 0x6f:
9045 return true;
9047 break;
9048 case 2:
9049 switch (ctxt->b) {
9050 case 0x33: /* RDPMC */
9051 return true;
9053 break;
9056 return false;
9060 * Decode an instruction for emulation. The caller is responsible for handling
9061 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9062 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9063 * code breakpoints have higher priority and thus have already been done by
9064 * hardware.
9066 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9067 * response to a machine check.
9069 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9070 void *insn, int insn_len)
9072 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9073 int r;
9075 init_emulate_ctxt(vcpu);
9077 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9079 trace_kvm_emulate_insn_start(vcpu);
9080 ++vcpu->stat.insn_emulation;
9082 return r;
9084 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9086 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9087 int emulation_type, void *insn, int insn_len)
9089 int r;
9090 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9091 bool writeback = true;
9093 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9094 (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9095 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9096 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9098 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9099 if (r != X86EMUL_CONTINUE) {
9100 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9101 return 1;
9103 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9104 return handle_emulation_failure(vcpu, emulation_type);
9107 vcpu->arch.l1tf_flush_l1d = true;
9109 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9110 kvm_clear_exception_queue(vcpu);
9113 * Return immediately if RIP hits a code breakpoint, such #DBs
9114 * are fault-like and are higher priority than any faults on
9115 * the code fetch itself.
9117 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9118 return r;
9120 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9121 insn, insn_len);
9122 if (r != EMULATION_OK) {
9123 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9124 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9125 kvm_queue_exception(vcpu, UD_VECTOR);
9126 return 1;
9128 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9129 emulation_type))
9130 return 1;
9132 if (ctxt->have_exception &&
9133 !(emulation_type & EMULTYPE_SKIP)) {
9135 * #UD should result in just EMULATION_FAILED, and trap-like
9136 * exception should not be encountered during decode.
9138 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9139 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9140 inject_emulated_exception(vcpu);
9141 return 1;
9143 return handle_emulation_failure(vcpu, emulation_type);
9147 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9148 !is_vmware_backdoor_opcode(ctxt)) {
9149 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9150 return 1;
9154 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9155 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9156 * The caller is responsible for updating interruptibility state and
9157 * injecting single-step #DBs.
9159 if (emulation_type & EMULTYPE_SKIP) {
9160 if (ctxt->mode != X86EMUL_MODE_PROT64)
9161 ctxt->eip = (u32)ctxt->_eip;
9162 else
9163 ctxt->eip = ctxt->_eip;
9165 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9166 r = 1;
9167 goto writeback;
9170 kvm_rip_write(vcpu, ctxt->eip);
9171 if (ctxt->eflags & X86_EFLAGS_RF)
9172 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9173 return 1;
9177 * If emulation was caused by a write-protection #PF on a non-page_table
9178 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9179 * and retry the instruction, as the vCPU is likely no longer using the
9180 * gfn as a page table.
9182 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9183 !x86_page_table_writing_insn(ctxt) &&
9184 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9185 return 1;
9187 /* this is needed for vmware backdoor interface to work since it
9188 changes registers values during IO operation */
9189 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9190 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9191 emulator_invalidate_register_cache(ctxt);
9194 restart:
9195 if (emulation_type & EMULTYPE_PF) {
9196 /* Save the faulting GPA (cr2) in the address field */
9197 ctxt->exception.address = cr2_or_gpa;
9199 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9200 if (vcpu->arch.mmu->root_role.direct) {
9201 ctxt->gpa_available = true;
9202 ctxt->gpa_val = cr2_or_gpa;
9204 } else {
9205 /* Sanitize the address out of an abundance of paranoia. */
9206 ctxt->exception.address = 0;
9209 r = x86_emulate_insn(ctxt);
9211 if (r == EMULATION_INTERCEPTED)
9212 return 1;
9214 if (r == EMULATION_FAILED) {
9215 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9216 emulation_type))
9217 return 1;
9219 return handle_emulation_failure(vcpu, emulation_type);
9222 if (ctxt->have_exception) {
9223 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9224 vcpu->mmio_needed = false;
9225 r = 1;
9226 inject_emulated_exception(vcpu);
9227 } else if (vcpu->arch.pio.count) {
9228 if (!vcpu->arch.pio.in) {
9229 /* FIXME: return into emulator if single-stepping. */
9230 vcpu->arch.pio.count = 0;
9231 } else {
9232 writeback = false;
9233 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9235 r = 0;
9236 } else if (vcpu->mmio_needed) {
9237 ++vcpu->stat.mmio_exits;
9239 if (!vcpu->mmio_is_write)
9240 writeback = false;
9241 r = 0;
9242 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9243 } else if (vcpu->arch.complete_userspace_io) {
9244 writeback = false;
9245 r = 0;
9246 } else if (r == EMULATION_RESTART)
9247 goto restart;
9248 else
9249 r = 1;
9251 writeback:
9252 if (writeback) {
9253 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9254 toggle_interruptibility(vcpu, ctxt->interruptibility);
9255 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9258 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9259 * only supports code breakpoints and general detect #DB, both
9260 * of which are fault-like.
9262 if (!ctxt->have_exception ||
9263 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9264 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9265 if (ctxt->is_branch)
9266 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9267 kvm_rip_write(vcpu, ctxt->eip);
9268 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9269 r = kvm_vcpu_do_singlestep(vcpu);
9270 kvm_x86_call(update_emulated_instruction)(vcpu);
9271 __kvm_set_rflags(vcpu, ctxt->eflags);
9275 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9276 * do nothing, and it will be requested again as soon as
9277 * the shadow expires. But we still need to check here,
9278 * because POPF has no interrupt shadow.
9280 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9281 kvm_make_request(KVM_REQ_EVENT, vcpu);
9282 } else
9283 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9285 return r;
9288 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9290 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9292 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9294 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9295 void *insn, int insn_len)
9297 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9299 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9301 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9303 vcpu->arch.pio.count = 0;
9304 return 1;
9307 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9309 vcpu->arch.pio.count = 0;
9311 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9312 return 1;
9314 return kvm_skip_emulated_instruction(vcpu);
9317 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9318 unsigned short port)
9320 unsigned long val = kvm_rax_read(vcpu);
9321 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9323 if (ret)
9324 return ret;
9327 * Workaround userspace that relies on old KVM behavior of %rip being
9328 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9330 if (port == 0x7e &&
9331 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9332 vcpu->arch.complete_userspace_io =
9333 complete_fast_pio_out_port_0x7e;
9334 kvm_skip_emulated_instruction(vcpu);
9335 } else {
9336 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9337 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9339 return 0;
9342 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9344 unsigned long val;
9346 /* We should only ever be called with arch.pio.count equal to 1 */
9347 BUG_ON(vcpu->arch.pio.count != 1);
9349 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9350 vcpu->arch.pio.count = 0;
9351 return 1;
9354 /* For size less than 4 we merge, else we zero extend */
9355 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9357 complete_emulator_pio_in(vcpu, &val);
9358 kvm_rax_write(vcpu, val);
9360 return kvm_skip_emulated_instruction(vcpu);
9363 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9364 unsigned short port)
9366 unsigned long val;
9367 int ret;
9369 /* For size less than 4 we merge, else we zero extend */
9370 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9372 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9373 if (ret) {
9374 kvm_rax_write(vcpu, val);
9375 return ret;
9378 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9379 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9381 return 0;
9384 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9386 int ret;
9388 if (in)
9389 ret = kvm_fast_pio_in(vcpu, size, port);
9390 else
9391 ret = kvm_fast_pio_out(vcpu, size, port);
9392 return ret && kvm_skip_emulated_instruction(vcpu);
9394 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9396 static int kvmclock_cpu_down_prep(unsigned int cpu)
9398 __this_cpu_write(cpu_tsc_khz, 0);
9399 return 0;
9402 static void tsc_khz_changed(void *data)
9404 struct cpufreq_freqs *freq = data;
9405 unsigned long khz;
9407 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9409 if (data)
9410 khz = freq->new;
9411 else
9412 khz = cpufreq_quick_get(raw_smp_processor_id());
9413 if (!khz)
9414 khz = tsc_khz;
9415 __this_cpu_write(cpu_tsc_khz, khz);
9418 #ifdef CONFIG_X86_64
9419 static void kvm_hyperv_tsc_notifier(void)
9421 struct kvm *kvm;
9422 int cpu;
9424 mutex_lock(&kvm_lock);
9425 list_for_each_entry(kvm, &vm_list, vm_list)
9426 kvm_make_mclock_inprogress_request(kvm);
9428 /* no guest entries from this point */
9429 hyperv_stop_tsc_emulation();
9431 /* TSC frequency always matches when on Hyper-V */
9432 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9433 for_each_present_cpu(cpu)
9434 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9436 kvm_caps.max_guest_tsc_khz = tsc_khz;
9438 list_for_each_entry(kvm, &vm_list, vm_list) {
9439 __kvm_start_pvclock_update(kvm);
9440 pvclock_update_vm_gtod_copy(kvm);
9441 kvm_end_pvclock_update(kvm);
9444 mutex_unlock(&kvm_lock);
9446 #endif
9448 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9450 struct kvm *kvm;
9451 struct kvm_vcpu *vcpu;
9452 int send_ipi = 0;
9453 unsigned long i;
9456 * We allow guests to temporarily run on slowing clocks,
9457 * provided we notify them after, or to run on accelerating
9458 * clocks, provided we notify them before. Thus time never
9459 * goes backwards.
9461 * However, we have a problem. We can't atomically update
9462 * the frequency of a given CPU from this function; it is
9463 * merely a notifier, which can be called from any CPU.
9464 * Changing the TSC frequency at arbitrary points in time
9465 * requires a recomputation of local variables related to
9466 * the TSC for each VCPU. We must flag these local variables
9467 * to be updated and be sure the update takes place with the
9468 * new frequency before any guests proceed.
9470 * Unfortunately, the combination of hotplug CPU and frequency
9471 * change creates an intractable locking scenario; the order
9472 * of when these callouts happen is undefined with respect to
9473 * CPU hotplug, and they can race with each other. As such,
9474 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9475 * undefined; you can actually have a CPU frequency change take
9476 * place in between the computation of X and the setting of the
9477 * variable. To protect against this problem, all updates of
9478 * the per_cpu tsc_khz variable are done in an interrupt
9479 * protected IPI, and all callers wishing to update the value
9480 * must wait for a synchronous IPI to complete (which is trivial
9481 * if the caller is on the CPU already). This establishes the
9482 * necessary total order on variable updates.
9484 * Note that because a guest time update may take place
9485 * anytime after the setting of the VCPU's request bit, the
9486 * correct TSC value must be set before the request. However,
9487 * to ensure the update actually makes it to any guest which
9488 * starts running in hardware virtualization between the set
9489 * and the acquisition of the spinlock, we must also ping the
9490 * CPU after setting the request bit.
9494 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9496 mutex_lock(&kvm_lock);
9497 list_for_each_entry(kvm, &vm_list, vm_list) {
9498 kvm_for_each_vcpu(i, vcpu, kvm) {
9499 if (vcpu->cpu != cpu)
9500 continue;
9501 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9502 if (vcpu->cpu != raw_smp_processor_id())
9503 send_ipi = 1;
9506 mutex_unlock(&kvm_lock);
9508 if (freq->old < freq->new && send_ipi) {
9510 * We upscale the frequency. Must make the guest
9511 * doesn't see old kvmclock values while running with
9512 * the new frequency, otherwise we risk the guest sees
9513 * time go backwards.
9515 * In case we update the frequency for another cpu
9516 * (which might be in guest context) send an interrupt
9517 * to kick the cpu out of guest context. Next time
9518 * guest context is entered kvmclock will be updated,
9519 * so the guest will not see stale values.
9521 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9525 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9526 void *data)
9528 struct cpufreq_freqs *freq = data;
9529 int cpu;
9531 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9532 return 0;
9533 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9534 return 0;
9536 for_each_cpu(cpu, freq->policy->cpus)
9537 __kvmclock_cpufreq_notifier(freq, cpu);
9539 return 0;
9542 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9543 .notifier_call = kvmclock_cpufreq_notifier
9546 static int kvmclock_cpu_online(unsigned int cpu)
9548 tsc_khz_changed(NULL);
9549 return 0;
9552 static void kvm_timer_init(void)
9554 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9555 max_tsc_khz = tsc_khz;
9557 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9558 struct cpufreq_policy *policy;
9559 int cpu;
9561 cpu = get_cpu();
9562 policy = cpufreq_cpu_get(cpu);
9563 if (policy) {
9564 if (policy->cpuinfo.max_freq)
9565 max_tsc_khz = policy->cpuinfo.max_freq;
9566 cpufreq_cpu_put(policy);
9568 put_cpu();
9570 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9571 CPUFREQ_TRANSITION_NOTIFIER);
9573 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9574 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9578 #ifdef CONFIG_X86_64
9579 static void pvclock_gtod_update_fn(struct work_struct *work)
9581 struct kvm *kvm;
9582 struct kvm_vcpu *vcpu;
9583 unsigned long i;
9585 mutex_lock(&kvm_lock);
9586 list_for_each_entry(kvm, &vm_list, vm_list)
9587 kvm_for_each_vcpu(i, vcpu, kvm)
9588 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9589 atomic_set(&kvm_guest_has_master_clock, 0);
9590 mutex_unlock(&kvm_lock);
9593 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9596 * Indirection to move queue_work() out of the tk_core.seq write held
9597 * region to prevent possible deadlocks against time accessors which
9598 * are invoked with work related locks held.
9600 static void pvclock_irq_work_fn(struct irq_work *w)
9602 queue_work(system_long_wq, &pvclock_gtod_work);
9605 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9608 * Notification about pvclock gtod data update.
9610 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9611 void *priv)
9613 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9614 struct timekeeper *tk = priv;
9616 update_pvclock_gtod(tk);
9619 * Disable master clock if host does not trust, or does not use,
9620 * TSC based clocksource. Delegate queue_work() to irq_work as
9621 * this is invoked with tk_core.seq write held.
9623 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9624 atomic_read(&kvm_guest_has_master_clock) != 0)
9625 irq_work_queue(&pvclock_irq_work);
9626 return 0;
9629 static struct notifier_block pvclock_gtod_notifier = {
9630 .notifier_call = pvclock_gtod_notify,
9632 #endif
9634 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9636 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9638 #define __KVM_X86_OP(func) \
9639 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9640 #define KVM_X86_OP(func) \
9641 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9642 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9643 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9644 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9645 (void *)__static_call_return0);
9646 #include <asm/kvm-x86-ops.h>
9647 #undef __KVM_X86_OP
9649 kvm_pmu_ops_update(ops->pmu_ops);
9652 static int kvm_x86_check_processor_compatibility(void)
9654 int cpu = smp_processor_id();
9655 struct cpuinfo_x86 *c = &cpu_data(cpu);
9658 * Compatibility checks are done when loading KVM and when enabling
9659 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9660 * compatible, i.e. KVM should never perform a compatibility check on
9661 * an offline CPU.
9663 WARN_ON(!cpu_online(cpu));
9665 if (__cr4_reserved_bits(cpu_has, c) !=
9666 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9667 return -EIO;
9669 return kvm_x86_call(check_processor_compatibility)();
9672 static void kvm_x86_check_cpu_compat(void *ret)
9674 *(int *)ret = kvm_x86_check_processor_compatibility();
9677 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9679 u64 host_pat;
9680 int r, cpu;
9682 guard(mutex)(&vendor_module_lock);
9684 if (kvm_x86_ops.enable_virtualization_cpu) {
9685 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9686 return -EEXIST;
9690 * KVM explicitly assumes that the guest has an FPU and
9691 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9692 * vCPU's FPU state as a fxregs_state struct.
9694 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9695 pr_err("inadequate fpu\n");
9696 return -EOPNOTSUPP;
9699 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9700 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9701 return -EOPNOTSUPP;
9705 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9706 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9707 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9708 * with an exception. PAT[0] is set to WB on RESET and also by the
9709 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9711 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9712 (host_pat & GENMASK(2, 0)) != 6) {
9713 pr_err("host PAT[0] is not WB\n");
9714 return -EIO;
9717 memset(&kvm_caps, 0, sizeof(kvm_caps));
9719 x86_emulator_cache = kvm_alloc_emulator_cache();
9720 if (!x86_emulator_cache) {
9721 pr_err("failed to allocate cache for x86 emulator\n");
9722 return -ENOMEM;
9725 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9726 if (!user_return_msrs) {
9727 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9728 r = -ENOMEM;
9729 goto out_free_x86_emulator_cache;
9731 kvm_nr_uret_msrs = 0;
9733 r = kvm_mmu_vendor_module_init();
9734 if (r)
9735 goto out_free_percpu;
9737 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9738 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9740 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9741 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9742 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9745 rdmsrl_safe(MSR_EFER, &kvm_host.efer);
9747 if (boot_cpu_has(X86_FEATURE_XSAVES))
9748 rdmsrl(MSR_IA32_XSS, kvm_host.xss);
9750 kvm_init_pmu_capability(ops->pmu_ops);
9752 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9753 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9755 r = ops->hardware_setup();
9756 if (r != 0)
9757 goto out_mmu_exit;
9759 kvm_ops_update(ops);
9761 for_each_online_cpu(cpu) {
9762 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9763 if (r < 0)
9764 goto out_unwind_ops;
9768 * Point of no return! DO NOT add error paths below this point unless
9769 * absolutely necessary, as most operations from this point forward
9770 * require unwinding.
9772 kvm_timer_init();
9774 if (pi_inject_timer == -1)
9775 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9776 #ifdef CONFIG_X86_64
9777 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9779 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9780 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9781 #endif
9783 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9785 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9786 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9788 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9789 kvm_caps.supported_xss = 0;
9791 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9792 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9793 #undef __kvm_cpu_cap_has
9795 if (kvm_caps.has_tsc_control) {
9797 * Make sure the user can only configure tsc_khz values that
9798 * fit into a signed integer.
9799 * A min value is not calculated because it will always
9800 * be 1 on all machines.
9802 u64 max = min(0x7fffffffULL,
9803 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9804 kvm_caps.max_guest_tsc_khz = max;
9806 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9807 kvm_init_msr_lists();
9808 return 0;
9810 out_unwind_ops:
9811 kvm_x86_ops.enable_virtualization_cpu = NULL;
9812 kvm_x86_call(hardware_unsetup)();
9813 out_mmu_exit:
9814 kvm_mmu_vendor_module_exit();
9815 out_free_percpu:
9816 free_percpu(user_return_msrs);
9817 out_free_x86_emulator_cache:
9818 kmem_cache_destroy(x86_emulator_cache);
9819 return r;
9821 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9823 void kvm_x86_vendor_exit(void)
9825 kvm_unregister_perf_callbacks();
9827 #ifdef CONFIG_X86_64
9828 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9829 clear_hv_tscchange_cb();
9830 #endif
9831 kvm_lapic_exit();
9833 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9834 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9835 CPUFREQ_TRANSITION_NOTIFIER);
9836 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9838 #ifdef CONFIG_X86_64
9839 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9840 irq_work_sync(&pvclock_irq_work);
9841 cancel_work_sync(&pvclock_gtod_work);
9842 #endif
9843 kvm_x86_call(hardware_unsetup)();
9844 kvm_mmu_vendor_module_exit();
9845 free_percpu(user_return_msrs);
9846 kmem_cache_destroy(x86_emulator_cache);
9847 #ifdef CONFIG_KVM_XEN
9848 static_key_deferred_flush(&kvm_xen_enabled);
9849 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9850 #endif
9851 mutex_lock(&vendor_module_lock);
9852 kvm_x86_ops.enable_virtualization_cpu = NULL;
9853 mutex_unlock(&vendor_module_lock);
9855 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9857 #ifdef CONFIG_X86_64
9858 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9859 unsigned long clock_type)
9861 struct kvm_clock_pairing clock_pairing;
9862 struct timespec64 ts;
9863 u64 cycle;
9864 int ret;
9866 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9867 return -KVM_EOPNOTSUPP;
9870 * When tsc is in permanent catchup mode guests won't be able to use
9871 * pvclock_read_retry loop to get consistent view of pvclock
9873 if (vcpu->arch.tsc_always_catchup)
9874 return -KVM_EOPNOTSUPP;
9876 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9877 return -KVM_EOPNOTSUPP;
9879 clock_pairing.sec = ts.tv_sec;
9880 clock_pairing.nsec = ts.tv_nsec;
9881 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9882 clock_pairing.flags = 0;
9883 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9885 ret = 0;
9886 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9887 sizeof(struct kvm_clock_pairing)))
9888 ret = -KVM_EFAULT;
9890 return ret;
9892 #endif
9895 * kvm_pv_kick_cpu_op: Kick a vcpu.
9897 * @apicid - apicid of vcpu to be kicked.
9899 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9902 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9903 * common code, e.g. for tracing. Defer initialization to the compiler.
9905 struct kvm_lapic_irq lapic_irq = {
9906 .delivery_mode = APIC_DM_REMRD,
9907 .dest_mode = APIC_DEST_PHYSICAL,
9908 .shorthand = APIC_DEST_NOSHORT,
9909 .dest_id = apicid,
9912 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9915 bool kvm_apicv_activated(struct kvm *kvm)
9917 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9919 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9921 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9923 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9924 ulong vcpu_reasons =
9925 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
9927 return (vm_reasons | vcpu_reasons) == 0;
9929 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9931 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9932 enum kvm_apicv_inhibit reason, bool set)
9934 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
9936 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
9938 if (set)
9939 __set_bit(reason, inhibits);
9940 else
9941 __clear_bit(reason, inhibits);
9943 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9946 static void kvm_apicv_init(struct kvm *kvm)
9948 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
9949 APICV_INHIBIT_REASON_DISABLED;
9951 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
9953 init_rwsem(&kvm->arch.apicv_update_lock);
9956 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9958 struct kvm_vcpu *target = NULL;
9959 struct kvm_apic_map *map;
9961 vcpu->stat.directed_yield_attempted++;
9963 if (single_task_running())
9964 goto no_yield;
9966 rcu_read_lock();
9967 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9969 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9970 target = map->phys_map[dest_id]->vcpu;
9972 rcu_read_unlock();
9974 if (!target || !READ_ONCE(target->ready))
9975 goto no_yield;
9977 /* Ignore requests to yield to self */
9978 if (vcpu == target)
9979 goto no_yield;
9981 if (kvm_vcpu_yield_to(target) <= 0)
9982 goto no_yield;
9984 vcpu->stat.directed_yield_successful++;
9986 no_yield:
9987 return;
9990 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9992 u64 ret = vcpu->run->hypercall.ret;
9994 if (!is_64_bit_mode(vcpu))
9995 ret = (u32)ret;
9996 kvm_rax_write(vcpu, ret);
9997 ++vcpu->stat.hypercalls;
9998 return kvm_skip_emulated_instruction(vcpu);
10001 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10002 unsigned long a0, unsigned long a1,
10003 unsigned long a2, unsigned long a3,
10004 int op_64_bit, int cpl)
10006 unsigned long ret;
10008 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10010 if (!op_64_bit) {
10011 nr &= 0xFFFFFFFF;
10012 a0 &= 0xFFFFFFFF;
10013 a1 &= 0xFFFFFFFF;
10014 a2 &= 0xFFFFFFFF;
10015 a3 &= 0xFFFFFFFF;
10018 if (cpl) {
10019 ret = -KVM_EPERM;
10020 goto out;
10023 ret = -KVM_ENOSYS;
10025 switch (nr) {
10026 case KVM_HC_VAPIC_POLL_IRQ:
10027 ret = 0;
10028 break;
10029 case KVM_HC_KICK_CPU:
10030 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10031 break;
10033 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10034 kvm_sched_yield(vcpu, a1);
10035 ret = 0;
10036 break;
10037 #ifdef CONFIG_X86_64
10038 case KVM_HC_CLOCK_PAIRING:
10039 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10040 break;
10041 #endif
10042 case KVM_HC_SEND_IPI:
10043 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10044 break;
10046 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10047 break;
10048 case KVM_HC_SCHED_YIELD:
10049 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10050 break;
10052 kvm_sched_yield(vcpu, a0);
10053 ret = 0;
10054 break;
10055 case KVM_HC_MAP_GPA_RANGE: {
10056 u64 gpa = a0, npages = a1, attrs = a2;
10058 ret = -KVM_ENOSYS;
10059 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10060 break;
10062 if (!PAGE_ALIGNED(gpa) || !npages ||
10063 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10064 ret = -KVM_EINVAL;
10065 break;
10068 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10069 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10070 vcpu->run->hypercall.args[0] = gpa;
10071 vcpu->run->hypercall.args[1] = npages;
10072 vcpu->run->hypercall.args[2] = attrs;
10073 vcpu->run->hypercall.flags = 0;
10074 if (op_64_bit)
10075 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10077 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10078 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10079 /* stat is incremented on completion. */
10080 return 0;
10082 default:
10083 ret = -KVM_ENOSYS;
10084 break;
10087 out:
10088 ++vcpu->stat.hypercalls;
10089 return ret;
10091 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall);
10093 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10095 unsigned long nr, a0, a1, a2, a3, ret;
10096 int op_64_bit;
10097 int cpl;
10099 if (kvm_xen_hypercall_enabled(vcpu->kvm))
10100 return kvm_xen_hypercall(vcpu);
10102 if (kvm_hv_hypercall_enabled(vcpu))
10103 return kvm_hv_hypercall(vcpu);
10105 nr = kvm_rax_read(vcpu);
10106 a0 = kvm_rbx_read(vcpu);
10107 a1 = kvm_rcx_read(vcpu);
10108 a2 = kvm_rdx_read(vcpu);
10109 a3 = kvm_rsi_read(vcpu);
10110 op_64_bit = is_64_bit_hypercall(vcpu);
10111 cpl = kvm_x86_call(get_cpl)(vcpu);
10113 ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl);
10114 if (nr == KVM_HC_MAP_GPA_RANGE && !ret)
10115 /* MAP_GPA tosses the request to the user space. */
10116 return 0;
10118 if (!op_64_bit)
10119 ret = (u32)ret;
10120 kvm_rax_write(vcpu, ret);
10122 return kvm_skip_emulated_instruction(vcpu);
10124 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10126 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10128 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10129 char instruction[3];
10130 unsigned long rip = kvm_rip_read(vcpu);
10133 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10134 * the pieces.
10136 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10137 ctxt->exception.error_code_valid = false;
10138 ctxt->exception.vector = UD_VECTOR;
10139 ctxt->have_exception = true;
10140 return X86EMUL_PROPAGATE_FAULT;
10143 kvm_x86_call(patch_hypercall)(vcpu, instruction);
10145 return emulator_write_emulated(ctxt, rip, instruction, 3,
10146 &ctxt->exception);
10149 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10151 return vcpu->run->request_interrupt_window &&
10152 likely(!pic_in_kernel(vcpu->kvm));
10155 /* Called within kvm->srcu read side. */
10156 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10158 struct kvm_run *kvm_run = vcpu->run;
10160 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10161 kvm_run->cr8 = kvm_get_cr8(vcpu);
10162 kvm_run->apic_base = kvm_get_apic_base(vcpu);
10164 kvm_run->ready_for_interrupt_injection =
10165 pic_in_kernel(vcpu->kvm) ||
10166 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10168 if (is_smm(vcpu))
10169 kvm_run->flags |= KVM_RUN_X86_SMM;
10170 if (is_guest_mode(vcpu))
10171 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10174 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10176 int max_irr, tpr;
10178 if (!kvm_x86_ops.update_cr8_intercept)
10179 return;
10181 if (!lapic_in_kernel(vcpu))
10182 return;
10184 if (vcpu->arch.apic->apicv_active)
10185 return;
10187 if (!vcpu->arch.apic->vapic_addr)
10188 max_irr = kvm_lapic_find_highest_irr(vcpu);
10189 else
10190 max_irr = -1;
10192 if (max_irr != -1)
10193 max_irr >>= 4;
10195 tpr = kvm_lapic_get_cr8(vcpu);
10197 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10201 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10203 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10204 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10205 return 1;
10208 return kvm_x86_ops.nested_ops->check_events(vcpu);
10211 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10214 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10215 * exceptions don't report error codes. The presence of an error code
10216 * is carried with the exception and only stripped when the exception
10217 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10218 * report an error code despite the CPU being in Real Mode.
10220 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10222 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10223 vcpu->arch.exception.has_error_code,
10224 vcpu->arch.exception.error_code,
10225 vcpu->arch.exception.injected);
10227 kvm_x86_call(inject_exception)(vcpu);
10231 * Check for any event (interrupt or exception) that is ready to be injected,
10232 * and if there is at least one event, inject the event with the highest
10233 * priority. This handles both "pending" events, i.e. events that have never
10234 * been injected into the guest, and "injected" events, i.e. events that were
10235 * injected as part of a previous VM-Enter, but weren't successfully delivered
10236 * and need to be re-injected.
10238 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10239 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10240 * be able to inject exceptions in the "middle" of an instruction, and so must
10241 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10242 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10243 * boundaries is necessary and correct.
10245 * For simplicity, KVM uses a single path to inject all events (except events
10246 * that are injected directly from L1 to L2) and doesn't explicitly track
10247 * instruction boundaries for asynchronous events. However, because VM-Exits
10248 * that can occur during instruction execution typically result in KVM skipping
10249 * the instruction or injecting an exception, e.g. instruction and exception
10250 * intercepts, and because pending exceptions have higher priority than pending
10251 * interrupts, KVM still honors instruction boundaries in most scenarios.
10253 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10254 * the instruction or inject an exception, then KVM can incorrecty inject a new
10255 * asynchronous event if the event became pending after the CPU fetched the
10256 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10257 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10258 * injected on the restarted instruction instead of being deferred until the
10259 * instruction completes.
10261 * In practice, this virtualization hole is unlikely to be observed by the
10262 * guest, and even less likely to cause functional problems. To detect the
10263 * hole, the guest would have to trigger an event on a side effect of an early
10264 * phase of instruction execution, e.g. on the instruction fetch from memory.
10265 * And for it to be a functional problem, the guest would need to depend on the
10266 * ordering between that side effect, the instruction completing, _and_ the
10267 * delivery of the asynchronous event.
10269 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10270 bool *req_immediate_exit)
10272 bool can_inject;
10273 int r;
10276 * Process nested events first, as nested VM-Exit supersedes event
10277 * re-injection. If there's an event queued for re-injection, it will
10278 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10280 if (is_guest_mode(vcpu))
10281 r = kvm_check_nested_events(vcpu);
10282 else
10283 r = 0;
10286 * Re-inject exceptions and events *especially* if immediate entry+exit
10287 * to/from L2 is needed, as any event that has already been injected
10288 * into L2 needs to complete its lifecycle before injecting a new event.
10290 * Don't re-inject an NMI or interrupt if there is a pending exception.
10291 * This collision arises if an exception occurred while vectoring the
10292 * injected event, KVM intercepted said exception, and KVM ultimately
10293 * determined the fault belongs to the guest and queues the exception
10294 * for injection back into the guest.
10296 * "Injected" interrupts can also collide with pending exceptions if
10297 * userspace ignores the "ready for injection" flag and blindly queues
10298 * an interrupt. In that case, prioritizing the exception is correct,
10299 * as the exception "occurred" before the exit to userspace. Trap-like
10300 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10301 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10302 * priority, they're only generated (pended) during instruction
10303 * execution, and interrupts are recognized at instruction boundaries.
10304 * Thus a pending fault-like exception means the fault occurred on the
10305 * *previous* instruction and must be serviced prior to recognizing any
10306 * new events in order to fully complete the previous instruction.
10308 if (vcpu->arch.exception.injected)
10309 kvm_inject_exception(vcpu);
10310 else if (kvm_is_exception_pending(vcpu))
10311 ; /* see above */
10312 else if (vcpu->arch.nmi_injected)
10313 kvm_x86_call(inject_nmi)(vcpu);
10314 else if (vcpu->arch.interrupt.injected)
10315 kvm_x86_call(inject_irq)(vcpu, true);
10318 * Exceptions that morph to VM-Exits are handled above, and pending
10319 * exceptions on top of injected exceptions that do not VM-Exit should
10320 * either morph to #DF or, sadly, override the injected exception.
10322 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10323 vcpu->arch.exception.pending);
10326 * Bail if immediate entry+exit to/from the guest is needed to complete
10327 * nested VM-Enter or event re-injection so that a different pending
10328 * event can be serviced (or if KVM needs to exit to userspace).
10330 * Otherwise, continue processing events even if VM-Exit occurred. The
10331 * VM-Exit will have cleared exceptions that were meant for L2, but
10332 * there may now be events that can be injected into L1.
10334 if (r < 0)
10335 goto out;
10338 * A pending exception VM-Exit should either result in nested VM-Exit
10339 * or force an immediate re-entry and exit to/from L2, and exception
10340 * VM-Exits cannot be injected (flag should _never_ be set).
10342 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10343 vcpu->arch.exception_vmexit.pending);
10346 * New events, other than exceptions, cannot be injected if KVM needs
10347 * to re-inject a previous event. See above comments on re-injecting
10348 * for why pending exceptions get priority.
10350 can_inject = !kvm_event_needs_reinjection(vcpu);
10352 if (vcpu->arch.exception.pending) {
10354 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10355 * value pushed on the stack. Trap-like exception and all #DBs
10356 * leave RF as-is (KVM follows Intel's behavior in this regard;
10357 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10359 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10360 * describe the behavior of General Detect #DBs, which are
10361 * fault-like. They do _not_ set RF, a la code breakpoints.
10363 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10364 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10365 X86_EFLAGS_RF);
10367 if (vcpu->arch.exception.vector == DB_VECTOR) {
10368 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10369 if (vcpu->arch.dr7 & DR7_GD) {
10370 vcpu->arch.dr7 &= ~DR7_GD;
10371 kvm_update_dr7(vcpu);
10375 kvm_inject_exception(vcpu);
10377 vcpu->arch.exception.pending = false;
10378 vcpu->arch.exception.injected = true;
10380 can_inject = false;
10383 /* Don't inject interrupts if the user asked to avoid doing so */
10384 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10385 return 0;
10388 * Finally, inject interrupt events. If an event cannot be injected
10389 * due to architectural conditions (e.g. IF=0) a window-open exit
10390 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10391 * and can architecturally be injected, but we cannot do it right now:
10392 * an interrupt could have arrived just now and we have to inject it
10393 * as a vmexit, or there could already an event in the queue, which is
10394 * indicated by can_inject. In that case we request an immediate exit
10395 * in order to make progress and get back here for another iteration.
10396 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10398 #ifdef CONFIG_KVM_SMM
10399 if (vcpu->arch.smi_pending) {
10400 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10401 -EBUSY;
10402 if (r < 0)
10403 goto out;
10404 if (r) {
10405 vcpu->arch.smi_pending = false;
10406 ++vcpu->arch.smi_count;
10407 enter_smm(vcpu);
10408 can_inject = false;
10409 } else
10410 kvm_x86_call(enable_smi_window)(vcpu);
10412 #endif
10414 if (vcpu->arch.nmi_pending) {
10415 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10416 -EBUSY;
10417 if (r < 0)
10418 goto out;
10419 if (r) {
10420 --vcpu->arch.nmi_pending;
10421 vcpu->arch.nmi_injected = true;
10422 kvm_x86_call(inject_nmi)(vcpu);
10423 can_inject = false;
10424 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10426 if (vcpu->arch.nmi_pending)
10427 kvm_x86_call(enable_nmi_window)(vcpu);
10430 if (kvm_cpu_has_injectable_intr(vcpu)) {
10431 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10432 -EBUSY;
10433 if (r < 0)
10434 goto out;
10435 if (r) {
10436 int irq = kvm_cpu_get_interrupt(vcpu);
10438 if (!WARN_ON_ONCE(irq == -1)) {
10439 kvm_queue_interrupt(vcpu, irq, false);
10440 kvm_x86_call(inject_irq)(vcpu, false);
10441 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10444 if (kvm_cpu_has_injectable_intr(vcpu))
10445 kvm_x86_call(enable_irq_window)(vcpu);
10448 if (is_guest_mode(vcpu) &&
10449 kvm_x86_ops.nested_ops->has_events &&
10450 kvm_x86_ops.nested_ops->has_events(vcpu, true))
10451 *req_immediate_exit = true;
10454 * KVM must never queue a new exception while injecting an event; KVM
10455 * is done emulating and should only propagate the to-be-injected event
10456 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10457 * infinite loop as KVM will bail from VM-Enter to inject the pending
10458 * exception and start the cycle all over.
10460 * Exempt triple faults as they have special handling and won't put the
10461 * vCPU into an infinite loop. Triple fault can be queued when running
10462 * VMX without unrestricted guest, as that requires KVM to emulate Real
10463 * Mode events (see kvm_inject_realmode_interrupt()).
10465 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10466 vcpu->arch.exception_vmexit.pending);
10467 return 0;
10469 out:
10470 if (r == -EBUSY) {
10471 *req_immediate_exit = true;
10472 r = 0;
10474 return r;
10477 static void process_nmi(struct kvm_vcpu *vcpu)
10479 unsigned int limit;
10482 * x86 is limited to one NMI pending, but because KVM can't react to
10483 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10484 * scheduled out, KVM needs to play nice with two queued NMIs showing
10485 * up at the same time. To handle this scenario, allow two NMIs to be
10486 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10487 * waiting for a previous NMI injection to complete (which effectively
10488 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10489 * will request an NMI window to handle the second NMI.
10491 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10492 limit = 1;
10493 else
10494 limit = 2;
10497 * Adjust the limit to account for pending virtual NMIs, which aren't
10498 * tracked in vcpu->arch.nmi_pending.
10500 if (kvm_x86_call(is_vnmi_pending)(vcpu))
10501 limit--;
10503 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10504 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10506 if (vcpu->arch.nmi_pending &&
10507 (kvm_x86_call(set_vnmi_pending)(vcpu)))
10508 vcpu->arch.nmi_pending--;
10510 if (vcpu->arch.nmi_pending)
10511 kvm_make_request(KVM_REQ_EVENT, vcpu);
10514 /* Return total number of NMIs pending injection to the VM */
10515 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10517 return vcpu->arch.nmi_pending +
10518 kvm_x86_call(is_vnmi_pending)(vcpu);
10521 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10522 unsigned long *vcpu_bitmap)
10524 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10527 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10529 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10532 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10534 struct kvm_lapic *apic = vcpu->arch.apic;
10535 bool activate;
10537 if (!lapic_in_kernel(vcpu))
10538 return;
10540 down_read(&vcpu->kvm->arch.apicv_update_lock);
10541 preempt_disable();
10543 /* Do not activate APICV when APIC is disabled */
10544 activate = kvm_vcpu_apicv_activated(vcpu) &&
10545 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10547 if (apic->apicv_active == activate)
10548 goto out;
10550 apic->apicv_active = activate;
10551 kvm_apic_update_apicv(vcpu);
10552 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10555 * When APICv gets disabled, we may still have injected interrupts
10556 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10557 * still active when the interrupt got accepted. Make sure
10558 * kvm_check_and_inject_events() is called to check for that.
10560 if (!apic->apicv_active)
10561 kvm_make_request(KVM_REQ_EVENT, vcpu);
10563 out:
10564 preempt_enable();
10565 up_read(&vcpu->kvm->arch.apicv_update_lock);
10567 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10569 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10571 if (!lapic_in_kernel(vcpu))
10572 return;
10575 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10576 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10577 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10578 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10579 * this case so that KVM can the AVIC doorbell to inject interrupts to
10580 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10581 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10582 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10583 * access page is sticky.
10585 if (apic_x2apic_mode(vcpu->arch.apic) &&
10586 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10587 kvm_inhibit_apic_access_page(vcpu);
10589 __kvm_vcpu_update_apicv(vcpu);
10592 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10593 enum kvm_apicv_inhibit reason, bool set)
10595 unsigned long old, new;
10597 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10599 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10600 return;
10602 old = new = kvm->arch.apicv_inhibit_reasons;
10604 set_or_clear_apicv_inhibit(&new, reason, set);
10606 if (!!old != !!new) {
10608 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10609 * false positives in the sanity check WARN in svm_vcpu_run().
10610 * This task will wait for all vCPUs to ack the kick IRQ before
10611 * updating apicv_inhibit_reasons, and all other vCPUs will
10612 * block on acquiring apicv_update_lock so that vCPUs can't
10613 * redo svm_vcpu_run() without seeing the new inhibit state.
10615 * Note, holding apicv_update_lock and taking it in the read
10616 * side (handling the request) also prevents other vCPUs from
10617 * servicing the request with a stale apicv_inhibit_reasons.
10619 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10620 kvm->arch.apicv_inhibit_reasons = new;
10621 if (new) {
10622 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10623 int idx = srcu_read_lock(&kvm->srcu);
10625 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10626 srcu_read_unlock(&kvm->srcu, idx);
10628 } else {
10629 kvm->arch.apicv_inhibit_reasons = new;
10633 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10634 enum kvm_apicv_inhibit reason, bool set)
10636 if (!enable_apicv)
10637 return;
10639 down_write(&kvm->arch.apicv_update_lock);
10640 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10641 up_write(&kvm->arch.apicv_update_lock);
10643 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10645 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10647 if (!kvm_apic_present(vcpu))
10648 return;
10650 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10652 kvm_x86_call(sync_pir_to_irr)(vcpu);
10654 if (irqchip_split(vcpu->kvm))
10655 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10656 else if (ioapic_in_kernel(vcpu->kvm))
10657 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10659 if (is_guest_mode(vcpu))
10660 vcpu->arch.load_eoi_exitmap_pending = true;
10661 else
10662 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10665 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10667 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10668 return;
10670 #ifdef CONFIG_KVM_HYPERV
10671 if (to_hv_vcpu(vcpu)) {
10672 u64 eoi_exit_bitmap[4];
10674 bitmap_or((ulong *)eoi_exit_bitmap,
10675 vcpu->arch.ioapic_handled_vectors,
10676 to_hv_synic(vcpu)->vec_bitmap, 256);
10677 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10678 return;
10680 #endif
10681 kvm_x86_call(load_eoi_exitmap)(
10682 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10685 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10687 kvm_x86_call(guest_memory_reclaimed)(kvm);
10690 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10692 if (!lapic_in_kernel(vcpu))
10693 return;
10695 kvm_x86_call(set_apic_access_page_addr)(vcpu);
10699 * Called within kvm->srcu read side.
10700 * Returns 1 to let vcpu_run() continue the guest execution loop without
10701 * exiting to the userspace. Otherwise, the value will be returned to the
10702 * userspace.
10704 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10706 int r;
10707 bool req_int_win =
10708 dm_request_for_irq_injection(vcpu) &&
10709 kvm_cpu_accept_dm_intr(vcpu);
10710 fastpath_t exit_fastpath;
10712 bool req_immediate_exit = false;
10714 if (kvm_request_pending(vcpu)) {
10715 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10716 r = -EIO;
10717 goto out;
10720 if (kvm_dirty_ring_check_request(vcpu)) {
10721 r = 0;
10722 goto out;
10725 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10726 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10727 r = 0;
10728 goto out;
10731 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10732 kvm_mmu_free_obsolete_roots(vcpu);
10733 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10734 __kvm_migrate_timers(vcpu);
10735 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10736 kvm_update_masterclock(vcpu->kvm);
10737 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10738 kvm_gen_kvmclock_update(vcpu);
10739 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10740 r = kvm_guest_time_update(vcpu);
10741 if (unlikely(r))
10742 goto out;
10744 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10745 kvm_mmu_sync_roots(vcpu);
10746 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10747 kvm_mmu_load_pgd(vcpu);
10750 * Note, the order matters here, as flushing "all" TLB entries
10751 * also flushes the "current" TLB entries, i.e. servicing the
10752 * flush "all" will clear any request to flush "current".
10754 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10755 kvm_vcpu_flush_tlb_all(vcpu);
10757 kvm_service_local_tlb_flush_requests(vcpu);
10760 * Fall back to a "full" guest flush if Hyper-V's precise
10761 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10762 * the flushes are considered "remote" and not "local" because
10763 * the requests can be initiated from other vCPUs.
10765 #ifdef CONFIG_KVM_HYPERV
10766 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10767 kvm_hv_vcpu_flush_tlb(vcpu))
10768 kvm_vcpu_flush_tlb_guest(vcpu);
10769 #endif
10771 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10772 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10773 r = 0;
10774 goto out;
10776 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10777 if (is_guest_mode(vcpu))
10778 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10780 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10781 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10782 vcpu->mmio_needed = 0;
10783 r = 0;
10784 goto out;
10787 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10788 /* Page is swapped out. Do synthetic halt */
10789 vcpu->arch.apf.halted = true;
10790 r = 1;
10791 goto out;
10793 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10794 record_steal_time(vcpu);
10795 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10796 kvm_pmu_handle_event(vcpu);
10797 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10798 kvm_pmu_deliver_pmi(vcpu);
10799 #ifdef CONFIG_KVM_SMM
10800 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10801 process_smi(vcpu);
10802 #endif
10803 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10804 process_nmi(vcpu);
10805 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10806 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10807 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10808 vcpu->arch.ioapic_handled_vectors)) {
10809 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10810 vcpu->run->eoi.vector =
10811 vcpu->arch.pending_ioapic_eoi;
10812 r = 0;
10813 goto out;
10816 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10817 vcpu_scan_ioapic(vcpu);
10818 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10819 vcpu_load_eoi_exitmap(vcpu);
10820 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10821 kvm_vcpu_reload_apic_access_page(vcpu);
10822 #ifdef CONFIG_KVM_HYPERV
10823 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10824 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10825 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10826 vcpu->run->system_event.ndata = 0;
10827 r = 0;
10828 goto out;
10830 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10831 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10832 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10833 vcpu->run->system_event.ndata = 0;
10834 r = 0;
10835 goto out;
10837 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10838 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10840 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10841 vcpu->run->hyperv = hv_vcpu->exit;
10842 r = 0;
10843 goto out;
10847 * KVM_REQ_HV_STIMER has to be processed after
10848 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10849 * depend on the guest clock being up-to-date
10851 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10852 kvm_hv_process_stimers(vcpu);
10853 #endif
10854 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10855 kvm_vcpu_update_apicv(vcpu);
10856 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10857 kvm_check_async_pf_completion(vcpu);
10858 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10859 kvm_x86_call(msr_filter_changed)(vcpu);
10861 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10862 kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10864 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10865 kvm_vcpu_reset(vcpu, true);
10866 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10867 r = 1;
10868 goto out;
10873 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10874 kvm_xen_has_interrupt(vcpu)) {
10875 ++vcpu->stat.req_event;
10876 r = kvm_apic_accept_events(vcpu);
10877 if (r < 0) {
10878 r = 0;
10879 goto out;
10881 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10882 r = 1;
10883 goto out;
10886 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10887 if (r < 0) {
10888 r = 0;
10889 goto out;
10891 if (req_int_win)
10892 kvm_x86_call(enable_irq_window)(vcpu);
10894 if (kvm_lapic_enabled(vcpu)) {
10895 update_cr8_intercept(vcpu);
10896 kvm_lapic_sync_to_vapic(vcpu);
10900 r = kvm_mmu_reload(vcpu);
10901 if (unlikely(r)) {
10902 goto cancel_injection;
10905 preempt_disable();
10907 kvm_x86_call(prepare_switch_to_guest)(vcpu);
10910 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10911 * IPI are then delayed after guest entry, which ensures that they
10912 * result in virtual interrupt delivery.
10914 local_irq_disable();
10916 /* Store vcpu->apicv_active before vcpu->mode. */
10917 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10919 kvm_vcpu_srcu_read_unlock(vcpu);
10922 * 1) We should set ->mode before checking ->requests. Please see
10923 * the comment in kvm_vcpu_exiting_guest_mode().
10925 * 2) For APICv, we should set ->mode before checking PID.ON. This
10926 * pairs with the memory barrier implicit in pi_test_and_set_on
10927 * (see vmx_deliver_posted_interrupt).
10929 * 3) This also orders the write to mode from any reads to the page
10930 * tables done while the VCPU is running. Please see the comment
10931 * in kvm_flush_remote_tlbs.
10933 smp_mb__after_srcu_read_unlock();
10936 * Process pending posted interrupts to handle the case where the
10937 * notification IRQ arrived in the host, or was never sent (because the
10938 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10939 * status, KVM doesn't update assigned devices when APICv is inhibited,
10940 * i.e. they can post interrupts even if APICv is temporarily disabled.
10942 if (kvm_lapic_enabled(vcpu))
10943 kvm_x86_call(sync_pir_to_irr)(vcpu);
10945 if (kvm_vcpu_exit_request(vcpu)) {
10946 vcpu->mode = OUTSIDE_GUEST_MODE;
10947 smp_wmb();
10948 local_irq_enable();
10949 preempt_enable();
10950 kvm_vcpu_srcu_read_lock(vcpu);
10951 r = 1;
10952 goto cancel_injection;
10955 if (req_immediate_exit)
10956 kvm_make_request(KVM_REQ_EVENT, vcpu);
10958 fpregs_assert_state_consistent();
10959 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10960 switch_fpu_return();
10962 if (vcpu->arch.guest_fpu.xfd_err)
10963 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10965 if (unlikely(vcpu->arch.switch_db_regs)) {
10966 set_debugreg(0, 7);
10967 set_debugreg(vcpu->arch.eff_db[0], 0);
10968 set_debugreg(vcpu->arch.eff_db[1], 1);
10969 set_debugreg(vcpu->arch.eff_db[2], 2);
10970 set_debugreg(vcpu->arch.eff_db[3], 3);
10971 } else if (unlikely(hw_breakpoint_active())) {
10972 set_debugreg(0, 7);
10975 guest_timing_enter_irqoff();
10977 for (;;) {
10979 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10980 * update must kick and wait for all vCPUs before toggling the
10981 * per-VM state, and responding vCPUs must wait for the update
10982 * to complete before servicing KVM_REQ_APICV_UPDATE.
10984 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10985 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10987 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
10988 req_immediate_exit);
10989 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10990 break;
10992 if (kvm_lapic_enabled(vcpu))
10993 kvm_x86_call(sync_pir_to_irr)(vcpu);
10995 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10996 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10997 break;
11000 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11001 ++vcpu->stat.exits;
11005 * Do this here before restoring debug registers on the host. And
11006 * since we do this before handling the vmexit, a DR access vmexit
11007 * can (a) read the correct value of the debug registers, (b) set
11008 * KVM_DEBUGREG_WONT_EXIT again.
11010 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11011 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11012 kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11013 kvm_update_dr0123(vcpu);
11014 kvm_update_dr7(vcpu);
11018 * If the guest has used debug registers, at least dr7
11019 * will be disabled while returning to the host.
11020 * If we don't have active breakpoints in the host, we don't
11021 * care about the messed up debug address registers. But if
11022 * we have some of them active, restore the old state.
11024 if (hw_breakpoint_active())
11025 hw_breakpoint_restore();
11027 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11028 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11030 vcpu->mode = OUTSIDE_GUEST_MODE;
11031 smp_wmb();
11034 * Sync xfd before calling handle_exit_irqoff() which may
11035 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11036 * in #NM irqoff handler).
11038 if (vcpu->arch.xfd_no_write_intercept)
11039 fpu_sync_guest_vmexit_xfd_state();
11041 kvm_x86_call(handle_exit_irqoff)(vcpu);
11043 if (vcpu->arch.guest_fpu.xfd_err)
11044 wrmsrl(MSR_IA32_XFD_ERR, 0);
11047 * Consume any pending interrupts, including the possible source of
11048 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11049 * An instruction is required after local_irq_enable() to fully unblock
11050 * interrupts on processors that implement an interrupt shadow, the
11051 * stat.exits increment will do nicely.
11053 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11054 local_irq_enable();
11055 ++vcpu->stat.exits;
11056 local_irq_disable();
11057 kvm_after_interrupt(vcpu);
11060 * Wait until after servicing IRQs to account guest time so that any
11061 * ticks that occurred while running the guest are properly accounted
11062 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11063 * of accounting via context tracking, but the loss of accuracy is
11064 * acceptable for all known use cases.
11066 guest_timing_exit_irqoff();
11068 local_irq_enable();
11069 preempt_enable();
11071 kvm_vcpu_srcu_read_lock(vcpu);
11074 * Call this to ensure WC buffers in guest are evicted after each VM
11075 * Exit, so that the evicted WC writes can be snooped across all cpus
11077 smp_mb__after_srcu_read_lock();
11080 * Profile KVM exit RIPs:
11082 if (unlikely(prof_on == KVM_PROFILING)) {
11083 unsigned long rip = kvm_rip_read(vcpu);
11084 profile_hit(KVM_PROFILING, (void *)rip);
11087 if (unlikely(vcpu->arch.tsc_always_catchup))
11088 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11090 if (vcpu->arch.apic_attention)
11091 kvm_lapic_sync_from_vapic(vcpu);
11093 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11094 return 0;
11096 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11097 return r;
11099 cancel_injection:
11100 if (req_immediate_exit)
11101 kvm_make_request(KVM_REQ_EVENT, vcpu);
11102 kvm_x86_call(cancel_injection)(vcpu);
11103 if (unlikely(vcpu->arch.apic_attention))
11104 kvm_lapic_sync_from_vapic(vcpu);
11105 out:
11106 return r;
11109 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11111 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11112 !vcpu->arch.apf.halted);
11115 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11117 if (!list_empty_careful(&vcpu->async_pf.done))
11118 return true;
11120 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11121 kvm_apic_init_sipi_allowed(vcpu))
11122 return true;
11124 if (vcpu->arch.pv.pv_unhalted)
11125 return true;
11127 if (kvm_is_exception_pending(vcpu))
11128 return true;
11130 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11131 (vcpu->arch.nmi_pending &&
11132 kvm_x86_call(nmi_allowed)(vcpu, false)))
11133 return true;
11135 #ifdef CONFIG_KVM_SMM
11136 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11137 (vcpu->arch.smi_pending &&
11138 kvm_x86_call(smi_allowed)(vcpu, false)))
11139 return true;
11140 #endif
11142 if (kvm_test_request(KVM_REQ_PMI, vcpu))
11143 return true;
11145 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11146 return true;
11148 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11149 return true;
11151 if (kvm_hv_has_stimer_pending(vcpu))
11152 return true;
11154 if (is_guest_mode(vcpu) &&
11155 kvm_x86_ops.nested_ops->has_events &&
11156 kvm_x86_ops.nested_ops->has_events(vcpu, false))
11157 return true;
11159 if (kvm_xen_has_pending_events(vcpu))
11160 return true;
11162 return false;
11165 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11167 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11170 /* Called within kvm->srcu read side. */
11171 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11173 bool hv_timer;
11175 if (!kvm_arch_vcpu_runnable(vcpu)) {
11177 * Switch to the software timer before halt-polling/blocking as
11178 * the guest's timer may be a break event for the vCPU, and the
11179 * hypervisor timer runs only when the CPU is in guest mode.
11180 * Switch before halt-polling so that KVM recognizes an expired
11181 * timer before blocking.
11183 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11184 if (hv_timer)
11185 kvm_lapic_switch_to_sw_timer(vcpu);
11187 kvm_vcpu_srcu_read_unlock(vcpu);
11188 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11189 kvm_vcpu_halt(vcpu);
11190 else
11191 kvm_vcpu_block(vcpu);
11192 kvm_vcpu_srcu_read_lock(vcpu);
11194 if (hv_timer)
11195 kvm_lapic_switch_to_hv_timer(vcpu);
11198 * If the vCPU is not runnable, a signal or another host event
11199 * of some kind is pending; service it without changing the
11200 * vCPU's activity state.
11202 if (!kvm_arch_vcpu_runnable(vcpu))
11203 return 1;
11207 * Evaluate nested events before exiting the halted state. This allows
11208 * the halt state to be recorded properly in the VMCS12's activity
11209 * state field (AMD does not have a similar field and a VM-Exit always
11210 * causes a spurious wakeup from HLT).
11212 if (is_guest_mode(vcpu)) {
11213 int r = kvm_check_nested_events(vcpu);
11215 WARN_ON_ONCE(r == -EBUSY);
11216 if (r < 0)
11217 return 0;
11220 if (kvm_apic_accept_events(vcpu) < 0)
11221 return 0;
11222 switch(vcpu->arch.mp_state) {
11223 case KVM_MP_STATE_HALTED:
11224 case KVM_MP_STATE_AP_RESET_HOLD:
11225 vcpu->arch.pv.pv_unhalted = false;
11226 vcpu->arch.mp_state =
11227 KVM_MP_STATE_RUNNABLE;
11228 fallthrough;
11229 case KVM_MP_STATE_RUNNABLE:
11230 vcpu->arch.apf.halted = false;
11231 break;
11232 case KVM_MP_STATE_INIT_RECEIVED:
11233 break;
11234 default:
11235 WARN_ON_ONCE(1);
11236 break;
11238 return 1;
11241 /* Called within kvm->srcu read side. */
11242 static int vcpu_run(struct kvm_vcpu *vcpu)
11244 int r;
11246 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11248 for (;;) {
11250 * If another guest vCPU requests a PV TLB flush in the middle
11251 * of instruction emulation, the rest of the emulation could
11252 * use a stale page translation. Assume that any code after
11253 * this point can start executing an instruction.
11255 vcpu->arch.at_instruction_boundary = false;
11256 if (kvm_vcpu_running(vcpu)) {
11257 r = vcpu_enter_guest(vcpu);
11258 } else {
11259 r = vcpu_block(vcpu);
11262 if (r <= 0)
11263 break;
11265 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11266 if (kvm_xen_has_pending_events(vcpu))
11267 kvm_xen_inject_pending_events(vcpu);
11269 if (kvm_cpu_has_pending_timer(vcpu))
11270 kvm_inject_pending_timer_irqs(vcpu);
11272 if (dm_request_for_irq_injection(vcpu) &&
11273 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11274 r = 0;
11275 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11276 ++vcpu->stat.request_irq_exits;
11277 break;
11280 if (__xfer_to_guest_mode_work_pending()) {
11281 kvm_vcpu_srcu_read_unlock(vcpu);
11282 r = xfer_to_guest_mode_handle_work(vcpu);
11283 kvm_vcpu_srcu_read_lock(vcpu);
11284 if (r)
11285 return r;
11289 return r;
11292 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11295 * The vCPU has halted, e.g. executed HLT. Update the run state if the
11296 * local APIC is in-kernel, the run loop will detect the non-runnable
11297 * state and halt the vCPU. Exit to userspace if the local APIC is
11298 * managed by userspace, in which case userspace is responsible for
11299 * handling wake events.
11301 ++vcpu->stat.halt_exits;
11302 if (lapic_in_kernel(vcpu)) {
11303 if (kvm_vcpu_has_events(vcpu))
11304 vcpu->arch.pv.pv_unhalted = false;
11305 else
11306 vcpu->arch.mp_state = state;
11307 return 1;
11308 } else {
11309 vcpu->run->exit_reason = reason;
11310 return 0;
11314 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11316 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11318 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11320 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11322 int ret = kvm_skip_emulated_instruction(vcpu);
11324 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11325 * KVM_EXIT_DEBUG here.
11327 return kvm_emulate_halt_noskip(vcpu) && ret;
11329 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11331 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11333 int ret;
11335 kvm_vcpu_srcu_read_lock(vcpu);
11336 ret = kvm_emulate_halt(vcpu);
11337 kvm_vcpu_srcu_read_unlock(vcpu);
11339 if (!ret)
11340 return EXIT_FASTPATH_EXIT_USERSPACE;
11342 if (kvm_vcpu_running(vcpu))
11343 return EXIT_FASTPATH_REENTER_GUEST;
11345 return EXIT_FASTPATH_EXIT_HANDLED;
11347 EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11349 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11351 int ret = kvm_skip_emulated_instruction(vcpu);
11353 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11354 KVM_EXIT_AP_RESET_HOLD) && ret;
11356 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11358 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11360 return kvm_vcpu_apicv_active(vcpu) &&
11361 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11364 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11366 return vcpu->arch.preempted_in_kernel;
11369 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11371 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11372 return true;
11374 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11375 #ifdef CONFIG_KVM_SMM
11376 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11377 #endif
11378 kvm_test_request(KVM_REQ_EVENT, vcpu))
11379 return true;
11381 return kvm_arch_dy_has_pending_interrupt(vcpu);
11384 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11386 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11389 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11391 BUG_ON(!vcpu->arch.pio.count);
11393 return complete_emulated_io(vcpu);
11397 * Implements the following, as a state machine:
11399 * read:
11400 * for each fragment
11401 * for each mmio piece in the fragment
11402 * write gpa, len
11403 * exit
11404 * copy data
11405 * execute insn
11407 * write:
11408 * for each fragment
11409 * for each mmio piece in the fragment
11410 * write gpa, len
11411 * copy data
11412 * exit
11414 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11416 struct kvm_run *run = vcpu->run;
11417 struct kvm_mmio_fragment *frag;
11418 unsigned len;
11420 BUG_ON(!vcpu->mmio_needed);
11422 /* Complete previous fragment */
11423 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11424 len = min(8u, frag->len);
11425 if (!vcpu->mmio_is_write)
11426 memcpy(frag->data, run->mmio.data, len);
11428 if (frag->len <= 8) {
11429 /* Switch to the next fragment. */
11430 frag++;
11431 vcpu->mmio_cur_fragment++;
11432 } else {
11433 /* Go forward to the next mmio piece. */
11434 frag->data += len;
11435 frag->gpa += len;
11436 frag->len -= len;
11439 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11440 vcpu->mmio_needed = 0;
11442 /* FIXME: return into emulator if single-stepping. */
11443 if (vcpu->mmio_is_write)
11444 return 1;
11445 vcpu->mmio_read_completed = 1;
11446 return complete_emulated_io(vcpu);
11449 run->exit_reason = KVM_EXIT_MMIO;
11450 run->mmio.phys_addr = frag->gpa;
11451 if (vcpu->mmio_is_write)
11452 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11453 run->mmio.len = min(8u, frag->len);
11454 run->mmio.is_write = vcpu->mmio_is_write;
11455 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11456 return 0;
11459 /* Swap (qemu) user FPU context for the guest FPU context. */
11460 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11462 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11463 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11464 trace_kvm_fpu(1);
11467 /* When vcpu_run ends, restore user space FPU context. */
11468 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11470 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11471 ++vcpu->stat.fpu_reload;
11472 trace_kvm_fpu(0);
11475 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11477 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11478 struct kvm_run *kvm_run = vcpu->run;
11479 int r;
11481 vcpu_load(vcpu);
11482 kvm_sigset_activate(vcpu);
11483 kvm_run->flags = 0;
11484 kvm_load_guest_fpu(vcpu);
11486 kvm_vcpu_srcu_read_lock(vcpu);
11487 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11488 if (!vcpu->wants_to_run) {
11489 r = -EINTR;
11490 goto out;
11494 * Don't bother switching APIC timer emulation from the
11495 * hypervisor timer to the software timer, the only way for the
11496 * APIC timer to be active is if userspace stuffed vCPU state,
11497 * i.e. put the vCPU into a nonsensical state. Only an INIT
11498 * will transition the vCPU out of UNINITIALIZED (without more
11499 * state stuffing from userspace), which will reset the local
11500 * APIC and thus cancel the timer or drop the IRQ (if the timer
11501 * already expired).
11503 kvm_vcpu_srcu_read_unlock(vcpu);
11504 kvm_vcpu_block(vcpu);
11505 kvm_vcpu_srcu_read_lock(vcpu);
11507 if (kvm_apic_accept_events(vcpu) < 0) {
11508 r = 0;
11509 goto out;
11511 r = -EAGAIN;
11512 if (signal_pending(current)) {
11513 r = -EINTR;
11514 kvm_run->exit_reason = KVM_EXIT_INTR;
11515 ++vcpu->stat.signal_exits;
11517 goto out;
11520 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11521 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11522 r = -EINVAL;
11523 goto out;
11526 if (kvm_run->kvm_dirty_regs) {
11527 r = sync_regs(vcpu);
11528 if (r != 0)
11529 goto out;
11532 /* re-sync apic's tpr */
11533 if (!lapic_in_kernel(vcpu)) {
11534 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11535 r = -EINVAL;
11536 goto out;
11541 * If userspace set a pending exception and L2 is active, convert it to
11542 * a pending VM-Exit if L1 wants to intercept the exception.
11544 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11545 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11546 ex->error_code)) {
11547 kvm_queue_exception_vmexit(vcpu, ex->vector,
11548 ex->has_error_code, ex->error_code,
11549 ex->has_payload, ex->payload);
11550 ex->injected = false;
11551 ex->pending = false;
11553 vcpu->arch.exception_from_userspace = false;
11555 if (unlikely(vcpu->arch.complete_userspace_io)) {
11556 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11557 vcpu->arch.complete_userspace_io = NULL;
11558 r = cui(vcpu);
11559 if (r <= 0)
11560 goto out;
11561 } else {
11562 WARN_ON_ONCE(vcpu->arch.pio.count);
11563 WARN_ON_ONCE(vcpu->mmio_needed);
11566 if (!vcpu->wants_to_run) {
11567 r = -EINTR;
11568 goto out;
11571 r = kvm_x86_call(vcpu_pre_run)(vcpu);
11572 if (r <= 0)
11573 goto out;
11575 r = vcpu_run(vcpu);
11577 out:
11578 kvm_put_guest_fpu(vcpu);
11579 if (kvm_run->kvm_valid_regs)
11580 store_regs(vcpu);
11581 post_kvm_run_save(vcpu);
11582 kvm_vcpu_srcu_read_unlock(vcpu);
11584 kvm_sigset_deactivate(vcpu);
11585 vcpu_put(vcpu);
11586 return r;
11589 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11591 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11593 * We are here if userspace calls get_regs() in the middle of
11594 * instruction emulation. Registers state needs to be copied
11595 * back from emulation context to vcpu. Userspace shouldn't do
11596 * that usually, but some bad designed PV devices (vmware
11597 * backdoor interface) need this to work
11599 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11600 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11602 regs->rax = kvm_rax_read(vcpu);
11603 regs->rbx = kvm_rbx_read(vcpu);
11604 regs->rcx = kvm_rcx_read(vcpu);
11605 regs->rdx = kvm_rdx_read(vcpu);
11606 regs->rsi = kvm_rsi_read(vcpu);
11607 regs->rdi = kvm_rdi_read(vcpu);
11608 regs->rsp = kvm_rsp_read(vcpu);
11609 regs->rbp = kvm_rbp_read(vcpu);
11610 #ifdef CONFIG_X86_64
11611 regs->r8 = kvm_r8_read(vcpu);
11612 regs->r9 = kvm_r9_read(vcpu);
11613 regs->r10 = kvm_r10_read(vcpu);
11614 regs->r11 = kvm_r11_read(vcpu);
11615 regs->r12 = kvm_r12_read(vcpu);
11616 regs->r13 = kvm_r13_read(vcpu);
11617 regs->r14 = kvm_r14_read(vcpu);
11618 regs->r15 = kvm_r15_read(vcpu);
11619 #endif
11621 regs->rip = kvm_rip_read(vcpu);
11622 regs->rflags = kvm_get_rflags(vcpu);
11625 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11627 if (vcpu->kvm->arch.has_protected_state &&
11628 vcpu->arch.guest_state_protected)
11629 return -EINVAL;
11631 vcpu_load(vcpu);
11632 __get_regs(vcpu, regs);
11633 vcpu_put(vcpu);
11634 return 0;
11637 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11639 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11640 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11642 kvm_rax_write(vcpu, regs->rax);
11643 kvm_rbx_write(vcpu, regs->rbx);
11644 kvm_rcx_write(vcpu, regs->rcx);
11645 kvm_rdx_write(vcpu, regs->rdx);
11646 kvm_rsi_write(vcpu, regs->rsi);
11647 kvm_rdi_write(vcpu, regs->rdi);
11648 kvm_rsp_write(vcpu, regs->rsp);
11649 kvm_rbp_write(vcpu, regs->rbp);
11650 #ifdef CONFIG_X86_64
11651 kvm_r8_write(vcpu, regs->r8);
11652 kvm_r9_write(vcpu, regs->r9);
11653 kvm_r10_write(vcpu, regs->r10);
11654 kvm_r11_write(vcpu, regs->r11);
11655 kvm_r12_write(vcpu, regs->r12);
11656 kvm_r13_write(vcpu, regs->r13);
11657 kvm_r14_write(vcpu, regs->r14);
11658 kvm_r15_write(vcpu, regs->r15);
11659 #endif
11661 kvm_rip_write(vcpu, regs->rip);
11662 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11664 vcpu->arch.exception.pending = false;
11665 vcpu->arch.exception_vmexit.pending = false;
11667 kvm_make_request(KVM_REQ_EVENT, vcpu);
11670 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11672 if (vcpu->kvm->arch.has_protected_state &&
11673 vcpu->arch.guest_state_protected)
11674 return -EINVAL;
11676 vcpu_load(vcpu);
11677 __set_regs(vcpu, regs);
11678 vcpu_put(vcpu);
11679 return 0;
11682 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11684 struct desc_ptr dt;
11686 if (vcpu->arch.guest_state_protected)
11687 goto skip_protected_regs;
11689 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11690 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11691 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11692 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11693 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11694 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11696 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11697 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11699 kvm_x86_call(get_idt)(vcpu, &dt);
11700 sregs->idt.limit = dt.size;
11701 sregs->idt.base = dt.address;
11702 kvm_x86_call(get_gdt)(vcpu, &dt);
11703 sregs->gdt.limit = dt.size;
11704 sregs->gdt.base = dt.address;
11706 sregs->cr2 = vcpu->arch.cr2;
11707 sregs->cr3 = kvm_read_cr3(vcpu);
11709 skip_protected_regs:
11710 sregs->cr0 = kvm_read_cr0(vcpu);
11711 sregs->cr4 = kvm_read_cr4(vcpu);
11712 sregs->cr8 = kvm_get_cr8(vcpu);
11713 sregs->efer = vcpu->arch.efer;
11714 sregs->apic_base = kvm_get_apic_base(vcpu);
11717 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11719 __get_sregs_common(vcpu, sregs);
11721 if (vcpu->arch.guest_state_protected)
11722 return;
11724 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11725 set_bit(vcpu->arch.interrupt.nr,
11726 (unsigned long *)sregs->interrupt_bitmap);
11729 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11731 int i;
11733 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11735 if (vcpu->arch.guest_state_protected)
11736 return;
11738 if (is_pae_paging(vcpu)) {
11739 for (i = 0 ; i < 4 ; i++)
11740 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11741 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11745 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11746 struct kvm_sregs *sregs)
11748 if (vcpu->kvm->arch.has_protected_state &&
11749 vcpu->arch.guest_state_protected)
11750 return -EINVAL;
11752 vcpu_load(vcpu);
11753 __get_sregs(vcpu, sregs);
11754 vcpu_put(vcpu);
11755 return 0;
11758 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11759 struct kvm_mp_state *mp_state)
11761 int r;
11763 vcpu_load(vcpu);
11764 if (kvm_mpx_supported())
11765 kvm_load_guest_fpu(vcpu);
11767 r = kvm_apic_accept_events(vcpu);
11768 if (r < 0)
11769 goto out;
11770 r = 0;
11772 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11773 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11774 vcpu->arch.pv.pv_unhalted)
11775 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11776 else
11777 mp_state->mp_state = vcpu->arch.mp_state;
11779 out:
11780 if (kvm_mpx_supported())
11781 kvm_put_guest_fpu(vcpu);
11782 vcpu_put(vcpu);
11783 return r;
11786 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11787 struct kvm_mp_state *mp_state)
11789 int ret = -EINVAL;
11791 vcpu_load(vcpu);
11793 switch (mp_state->mp_state) {
11794 case KVM_MP_STATE_UNINITIALIZED:
11795 case KVM_MP_STATE_HALTED:
11796 case KVM_MP_STATE_AP_RESET_HOLD:
11797 case KVM_MP_STATE_INIT_RECEIVED:
11798 case KVM_MP_STATE_SIPI_RECEIVED:
11799 if (!lapic_in_kernel(vcpu))
11800 goto out;
11801 break;
11803 case KVM_MP_STATE_RUNNABLE:
11804 break;
11806 default:
11807 goto out;
11811 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11812 * forcing the guest into INIT/SIPI if those events are supposed to be
11813 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11814 * if an SMI is pending as well.
11816 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11817 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11818 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11819 goto out;
11821 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11822 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11823 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11824 } else
11825 vcpu->arch.mp_state = mp_state->mp_state;
11826 kvm_make_request(KVM_REQ_EVENT, vcpu);
11828 ret = 0;
11829 out:
11830 vcpu_put(vcpu);
11831 return ret;
11834 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11835 int reason, bool has_error_code, u32 error_code)
11837 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11838 int ret;
11840 init_emulate_ctxt(vcpu);
11842 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11843 has_error_code, error_code);
11846 * Report an error userspace if MMIO is needed, as KVM doesn't support
11847 * MMIO during a task switch (or any other complex operation).
11849 if (ret || vcpu->mmio_needed) {
11850 vcpu->mmio_needed = false;
11851 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11852 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11853 vcpu->run->internal.ndata = 0;
11854 return 0;
11857 kvm_rip_write(vcpu, ctxt->eip);
11858 kvm_set_rflags(vcpu, ctxt->eflags);
11859 return 1;
11861 EXPORT_SYMBOL_GPL(kvm_task_switch);
11863 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11865 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11867 * When EFER.LME and CR0.PG are set, the processor is in
11868 * 64-bit mode (though maybe in a 32-bit code segment).
11869 * CR4.PAE and EFER.LMA must be set.
11871 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11872 return false;
11873 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11874 return false;
11875 } else {
11877 * Not in 64-bit mode: EFER.LMA is clear and the code
11878 * segment cannot be 64-bit.
11880 if (sregs->efer & EFER_LMA || sregs->cs.l)
11881 return false;
11884 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11885 kvm_is_valid_cr0(vcpu, sregs->cr0);
11888 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11889 int *mmu_reset_needed, bool update_pdptrs)
11891 struct msr_data apic_base_msr;
11892 int idx;
11893 struct desc_ptr dt;
11895 if (!kvm_is_valid_sregs(vcpu, sregs))
11896 return -EINVAL;
11898 apic_base_msr.data = sregs->apic_base;
11899 apic_base_msr.host_initiated = true;
11900 if (kvm_set_apic_base(vcpu, &apic_base_msr))
11901 return -EINVAL;
11903 if (vcpu->arch.guest_state_protected)
11904 return 0;
11906 dt.size = sregs->idt.limit;
11907 dt.address = sregs->idt.base;
11908 kvm_x86_call(set_idt)(vcpu, &dt);
11909 dt.size = sregs->gdt.limit;
11910 dt.address = sregs->gdt.base;
11911 kvm_x86_call(set_gdt)(vcpu, &dt);
11913 vcpu->arch.cr2 = sregs->cr2;
11914 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11915 vcpu->arch.cr3 = sregs->cr3;
11916 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11917 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
11919 kvm_set_cr8(vcpu, sregs->cr8);
11921 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11922 kvm_x86_call(set_efer)(vcpu, sregs->efer);
11924 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11925 kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
11927 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11928 kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
11930 if (update_pdptrs) {
11931 idx = srcu_read_lock(&vcpu->kvm->srcu);
11932 if (is_pae_paging(vcpu)) {
11933 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11934 *mmu_reset_needed = 1;
11936 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11939 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11940 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11941 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11942 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11943 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11944 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11946 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11947 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11949 update_cr8_intercept(vcpu);
11951 /* Older userspace won't unhalt the vcpu on reset. */
11952 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11953 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11954 !is_protmode(vcpu))
11955 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11957 return 0;
11960 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11962 int pending_vec, max_bits;
11963 int mmu_reset_needed = 0;
11964 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11966 if (ret)
11967 return ret;
11969 if (mmu_reset_needed) {
11970 kvm_mmu_reset_context(vcpu);
11971 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11974 max_bits = KVM_NR_INTERRUPTS;
11975 pending_vec = find_first_bit(
11976 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11978 if (pending_vec < max_bits) {
11979 kvm_queue_interrupt(vcpu, pending_vec, false);
11980 pr_debug("Set back pending irq %d\n", pending_vec);
11981 kvm_make_request(KVM_REQ_EVENT, vcpu);
11983 return 0;
11986 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11988 int mmu_reset_needed = 0;
11989 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11990 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11991 !(sregs2->efer & EFER_LMA);
11992 int i, ret;
11994 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11995 return -EINVAL;
11997 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11998 return -EINVAL;
12000 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12001 &mmu_reset_needed, !valid_pdptrs);
12002 if (ret)
12003 return ret;
12005 if (valid_pdptrs) {
12006 for (i = 0; i < 4 ; i++)
12007 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12009 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12010 mmu_reset_needed = 1;
12011 vcpu->arch.pdptrs_from_userspace = true;
12013 if (mmu_reset_needed) {
12014 kvm_mmu_reset_context(vcpu);
12015 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12017 return 0;
12020 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12021 struct kvm_sregs *sregs)
12023 int ret;
12025 if (vcpu->kvm->arch.has_protected_state &&
12026 vcpu->arch.guest_state_protected)
12027 return -EINVAL;
12029 vcpu_load(vcpu);
12030 ret = __set_sregs(vcpu, sregs);
12031 vcpu_put(vcpu);
12032 return ret;
12035 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12037 bool set = false;
12038 struct kvm_vcpu *vcpu;
12039 unsigned long i;
12041 if (!enable_apicv)
12042 return;
12044 down_write(&kvm->arch.apicv_update_lock);
12046 kvm_for_each_vcpu(i, vcpu, kvm) {
12047 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12048 set = true;
12049 break;
12052 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12053 up_write(&kvm->arch.apicv_update_lock);
12056 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12057 struct kvm_guest_debug *dbg)
12059 unsigned long rflags;
12060 int i, r;
12062 if (vcpu->arch.guest_state_protected)
12063 return -EINVAL;
12065 vcpu_load(vcpu);
12067 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12068 r = -EBUSY;
12069 if (kvm_is_exception_pending(vcpu))
12070 goto out;
12071 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12072 kvm_queue_exception(vcpu, DB_VECTOR);
12073 else
12074 kvm_queue_exception(vcpu, BP_VECTOR);
12078 * Read rflags as long as potentially injected trace flags are still
12079 * filtered out.
12081 rflags = kvm_get_rflags(vcpu);
12083 vcpu->guest_debug = dbg->control;
12084 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12085 vcpu->guest_debug = 0;
12087 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12088 for (i = 0; i < KVM_NR_DB_REGS; ++i)
12089 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12090 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12091 } else {
12092 for (i = 0; i < KVM_NR_DB_REGS; i++)
12093 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12095 kvm_update_dr7(vcpu);
12097 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12098 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12101 * Trigger an rflags update that will inject or remove the trace
12102 * flags.
12104 kvm_set_rflags(vcpu, rflags);
12106 kvm_x86_call(update_exception_bitmap)(vcpu);
12108 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12110 r = 0;
12112 out:
12113 vcpu_put(vcpu);
12114 return r;
12118 * Translate a guest virtual address to a guest physical address.
12120 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12121 struct kvm_translation *tr)
12123 unsigned long vaddr = tr->linear_address;
12124 gpa_t gpa;
12125 int idx;
12127 vcpu_load(vcpu);
12129 idx = srcu_read_lock(&vcpu->kvm->srcu);
12130 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12131 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12132 tr->physical_address = gpa;
12133 tr->valid = gpa != INVALID_GPA;
12134 tr->writeable = 1;
12135 tr->usermode = 0;
12137 vcpu_put(vcpu);
12138 return 0;
12141 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12143 struct fxregs_state *fxsave;
12145 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12146 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12148 vcpu_load(vcpu);
12150 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12151 memcpy(fpu->fpr, fxsave->st_space, 128);
12152 fpu->fcw = fxsave->cwd;
12153 fpu->fsw = fxsave->swd;
12154 fpu->ftwx = fxsave->twd;
12155 fpu->last_opcode = fxsave->fop;
12156 fpu->last_ip = fxsave->rip;
12157 fpu->last_dp = fxsave->rdp;
12158 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12160 vcpu_put(vcpu);
12161 return 0;
12164 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12166 struct fxregs_state *fxsave;
12168 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12169 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12171 vcpu_load(vcpu);
12173 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12175 memcpy(fxsave->st_space, fpu->fpr, 128);
12176 fxsave->cwd = fpu->fcw;
12177 fxsave->swd = fpu->fsw;
12178 fxsave->twd = fpu->ftwx;
12179 fxsave->fop = fpu->last_opcode;
12180 fxsave->rip = fpu->last_ip;
12181 fxsave->rdp = fpu->last_dp;
12182 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12184 vcpu_put(vcpu);
12185 return 0;
12188 static void store_regs(struct kvm_vcpu *vcpu)
12190 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12192 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12193 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12195 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12196 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12198 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12199 kvm_vcpu_ioctl_x86_get_vcpu_events(
12200 vcpu, &vcpu->run->s.regs.events);
12203 static int sync_regs(struct kvm_vcpu *vcpu)
12205 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12206 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12207 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12210 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12211 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12213 if (__set_sregs(vcpu, &sregs))
12214 return -EINVAL;
12216 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12219 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12220 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12222 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12223 return -EINVAL;
12225 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12228 return 0;
12231 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12233 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12234 pr_warn_once("SMP vm created on host with unstable TSC; "
12235 "guest TSC will not be reliable\n");
12237 if (!kvm->arch.max_vcpu_ids)
12238 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12240 if (id >= kvm->arch.max_vcpu_ids)
12241 return -EINVAL;
12243 return kvm_x86_call(vcpu_precreate)(kvm);
12246 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12248 struct page *page;
12249 int r;
12251 vcpu->arch.last_vmentry_cpu = -1;
12252 vcpu->arch.regs_avail = ~0;
12253 vcpu->arch.regs_dirty = ~0;
12255 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12257 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12258 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12259 else
12260 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12262 r = kvm_mmu_create(vcpu);
12263 if (r < 0)
12264 return r;
12266 r = kvm_create_lapic(vcpu);
12267 if (r < 0)
12268 goto fail_mmu_destroy;
12270 r = -ENOMEM;
12272 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12273 if (!page)
12274 goto fail_free_lapic;
12275 vcpu->arch.pio_data = page_address(page);
12277 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12278 GFP_KERNEL_ACCOUNT);
12279 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12280 GFP_KERNEL_ACCOUNT);
12281 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12282 goto fail_free_mce_banks;
12283 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12285 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12286 GFP_KERNEL_ACCOUNT))
12287 goto fail_free_mce_banks;
12289 if (!alloc_emulate_ctxt(vcpu))
12290 goto free_wbinvd_dirty_mask;
12292 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12293 pr_err("failed to allocate vcpu's fpu\n");
12294 goto free_emulate_ctxt;
12297 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12298 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12300 kvm_async_pf_hash_reset(vcpu);
12302 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12303 kvm_pmu_init(vcpu);
12305 vcpu->arch.pending_external_vector = -1;
12306 vcpu->arch.preempted_in_kernel = false;
12308 #if IS_ENABLED(CONFIG_HYPERV)
12309 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12310 #endif
12312 r = kvm_x86_call(vcpu_create)(vcpu);
12313 if (r)
12314 goto free_guest_fpu;
12316 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12317 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12318 kvm_xen_init_vcpu(vcpu);
12319 vcpu_load(vcpu);
12320 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12321 kvm_vcpu_reset(vcpu, false);
12322 kvm_init_mmu(vcpu);
12323 vcpu_put(vcpu);
12324 return 0;
12326 free_guest_fpu:
12327 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12328 free_emulate_ctxt:
12329 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12330 free_wbinvd_dirty_mask:
12331 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12332 fail_free_mce_banks:
12333 kfree(vcpu->arch.mce_banks);
12334 kfree(vcpu->arch.mci_ctl2_banks);
12335 free_page((unsigned long)vcpu->arch.pio_data);
12336 fail_free_lapic:
12337 kvm_free_lapic(vcpu);
12338 fail_mmu_destroy:
12339 kvm_mmu_destroy(vcpu);
12340 return r;
12343 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12345 struct kvm *kvm = vcpu->kvm;
12347 if (mutex_lock_killable(&vcpu->mutex))
12348 return;
12349 vcpu_load(vcpu);
12350 kvm_synchronize_tsc(vcpu, NULL);
12351 vcpu_put(vcpu);
12353 /* poll control enabled by default */
12354 vcpu->arch.msr_kvm_poll_control = 1;
12356 mutex_unlock(&vcpu->mutex);
12358 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12359 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12360 KVMCLOCK_SYNC_PERIOD);
12363 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12365 int idx;
12367 kvmclock_reset(vcpu);
12369 kvm_x86_call(vcpu_free)(vcpu);
12371 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12372 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12373 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12375 kvm_xen_destroy_vcpu(vcpu);
12376 kvm_hv_vcpu_uninit(vcpu);
12377 kvm_pmu_destroy(vcpu);
12378 kfree(vcpu->arch.mce_banks);
12379 kfree(vcpu->arch.mci_ctl2_banks);
12380 kvm_free_lapic(vcpu);
12381 idx = srcu_read_lock(&vcpu->kvm->srcu);
12382 kvm_mmu_destroy(vcpu);
12383 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12384 free_page((unsigned long)vcpu->arch.pio_data);
12385 kvfree(vcpu->arch.cpuid_entries);
12388 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12390 struct kvm_cpuid_entry2 *cpuid_0x1;
12391 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12392 unsigned long new_cr0;
12395 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12396 * to handle side effects. RESET emulation hits those flows and relies
12397 * on emulated/virtualized registers, including those that are loaded
12398 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12399 * to detect improper or missing initialization.
12401 WARN_ON_ONCE(!init_event &&
12402 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12405 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12406 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12407 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12408 * bits), i.e. virtualization is disabled.
12410 if (is_guest_mode(vcpu))
12411 kvm_leave_nested(vcpu);
12413 kvm_lapic_reset(vcpu, init_event);
12415 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12416 vcpu->arch.hflags = 0;
12418 vcpu->arch.smi_pending = 0;
12419 vcpu->arch.smi_count = 0;
12420 atomic_set(&vcpu->arch.nmi_queued, 0);
12421 vcpu->arch.nmi_pending = 0;
12422 vcpu->arch.nmi_injected = false;
12423 kvm_clear_interrupt_queue(vcpu);
12424 kvm_clear_exception_queue(vcpu);
12426 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12427 kvm_update_dr0123(vcpu);
12428 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12429 vcpu->arch.dr7 = DR7_FIXED_1;
12430 kvm_update_dr7(vcpu);
12432 vcpu->arch.cr2 = 0;
12434 kvm_make_request(KVM_REQ_EVENT, vcpu);
12435 vcpu->arch.apf.msr_en_val = 0;
12436 vcpu->arch.apf.msr_int_val = 0;
12437 vcpu->arch.st.msr_val = 0;
12439 kvmclock_reset(vcpu);
12441 kvm_clear_async_pf_completion_queue(vcpu);
12442 kvm_async_pf_hash_reset(vcpu);
12443 vcpu->arch.apf.halted = false;
12445 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12446 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12449 * All paths that lead to INIT are required to load the guest's
12450 * FPU state (because most paths are buried in KVM_RUN).
12452 if (init_event)
12453 kvm_put_guest_fpu(vcpu);
12455 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12456 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12458 if (init_event)
12459 kvm_load_guest_fpu(vcpu);
12462 if (!init_event) {
12463 vcpu->arch.smbase = 0x30000;
12465 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12467 vcpu->arch.msr_misc_features_enables = 0;
12468 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12469 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12471 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12472 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12475 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12476 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12477 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12480 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12481 * if no CPUID match is found. Note, it's impossible to get a match at
12482 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12483 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12484 * on RESET. But, go through the motions in case that's ever remedied.
12486 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12487 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12489 kvm_x86_call(vcpu_reset)(vcpu, init_event);
12491 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12492 kvm_rip_write(vcpu, 0xfff0);
12494 vcpu->arch.cr3 = 0;
12495 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12498 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12499 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12500 * (or qualify) that with a footnote stating that CD/NW are preserved.
12502 new_cr0 = X86_CR0_ET;
12503 if (init_event)
12504 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12505 else
12506 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12508 kvm_x86_call(set_cr0)(vcpu, new_cr0);
12509 kvm_x86_call(set_cr4)(vcpu, 0);
12510 kvm_x86_call(set_efer)(vcpu, 0);
12511 kvm_x86_call(update_exception_bitmap)(vcpu);
12514 * On the standard CR0/CR4/EFER modification paths, there are several
12515 * complex conditions determining whether the MMU has to be reset and/or
12516 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12517 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12518 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12519 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12521 if (old_cr0 & X86_CR0_PG) {
12522 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12523 kvm_mmu_reset_context(vcpu);
12527 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12528 * APM states the TLBs are untouched by INIT, but it also states that
12529 * the TLBs are flushed on "External initialization of the processor."
12530 * Flush the guest TLB regardless of vendor, there is no meaningful
12531 * benefit in relying on the guest to flush the TLB immediately after
12532 * INIT. A spurious TLB flush is benign and likely negligible from a
12533 * performance perspective.
12535 if (init_event)
12536 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12538 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12540 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12542 struct kvm_segment cs;
12544 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12545 cs.selector = vector << 8;
12546 cs.base = vector << 12;
12547 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12548 kvm_rip_write(vcpu, 0);
12550 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12552 void kvm_arch_enable_virtualization(void)
12554 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12557 void kvm_arch_disable_virtualization(void)
12559 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12562 int kvm_arch_enable_virtualization_cpu(void)
12564 struct kvm *kvm;
12565 struct kvm_vcpu *vcpu;
12566 unsigned long i;
12567 int ret;
12568 u64 local_tsc;
12569 u64 max_tsc = 0;
12570 bool stable, backwards_tsc = false;
12572 kvm_user_return_msr_cpu_online();
12574 ret = kvm_x86_check_processor_compatibility();
12575 if (ret)
12576 return ret;
12578 ret = kvm_x86_call(enable_virtualization_cpu)();
12579 if (ret != 0)
12580 return ret;
12582 local_tsc = rdtsc();
12583 stable = !kvm_check_tsc_unstable();
12584 list_for_each_entry(kvm, &vm_list, vm_list) {
12585 kvm_for_each_vcpu(i, vcpu, kvm) {
12586 if (!stable && vcpu->cpu == smp_processor_id())
12587 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12588 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12589 backwards_tsc = true;
12590 if (vcpu->arch.last_host_tsc > max_tsc)
12591 max_tsc = vcpu->arch.last_host_tsc;
12597 * Sometimes, even reliable TSCs go backwards. This happens on
12598 * platforms that reset TSC during suspend or hibernate actions, but
12599 * maintain synchronization. We must compensate. Fortunately, we can
12600 * detect that condition here, which happens early in CPU bringup,
12601 * before any KVM threads can be running. Unfortunately, we can't
12602 * bring the TSCs fully up to date with real time, as we aren't yet far
12603 * enough into CPU bringup that we know how much real time has actually
12604 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12605 * variables that haven't been updated yet.
12607 * So we simply find the maximum observed TSC above, then record the
12608 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12609 * the adjustment will be applied. Note that we accumulate
12610 * adjustments, in case multiple suspend cycles happen before some VCPU
12611 * gets a chance to run again. In the event that no KVM threads get a
12612 * chance to run, we will miss the entire elapsed period, as we'll have
12613 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12614 * loose cycle time. This isn't too big a deal, since the loss will be
12615 * uniform across all VCPUs (not to mention the scenario is extremely
12616 * unlikely). It is possible that a second hibernate recovery happens
12617 * much faster than a first, causing the observed TSC here to be
12618 * smaller; this would require additional padding adjustment, which is
12619 * why we set last_host_tsc to the local tsc observed here.
12621 * N.B. - this code below runs only on platforms with reliable TSC,
12622 * as that is the only way backwards_tsc is set above. Also note
12623 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12624 * have the same delta_cyc adjustment applied if backwards_tsc
12625 * is detected. Note further, this adjustment is only done once,
12626 * as we reset last_host_tsc on all VCPUs to stop this from being
12627 * called multiple times (one for each physical CPU bringup).
12629 * Platforms with unreliable TSCs don't have to deal with this, they
12630 * will be compensated by the logic in vcpu_load, which sets the TSC to
12631 * catchup mode. This will catchup all VCPUs to real time, but cannot
12632 * guarantee that they stay in perfect synchronization.
12634 if (backwards_tsc) {
12635 u64 delta_cyc = max_tsc - local_tsc;
12636 list_for_each_entry(kvm, &vm_list, vm_list) {
12637 kvm->arch.backwards_tsc_observed = true;
12638 kvm_for_each_vcpu(i, vcpu, kvm) {
12639 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12640 vcpu->arch.last_host_tsc = local_tsc;
12641 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12645 * We have to disable TSC offset matching.. if you were
12646 * booting a VM while issuing an S4 host suspend....
12647 * you may have some problem. Solving this issue is
12648 * left as an exercise to the reader.
12650 kvm->arch.last_tsc_nsec = 0;
12651 kvm->arch.last_tsc_write = 0;
12655 return 0;
12658 void kvm_arch_disable_virtualization_cpu(void)
12660 kvm_x86_call(disable_virtualization_cpu)();
12661 drop_user_return_notifiers();
12664 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12666 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12669 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12671 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12674 void kvm_arch_free_vm(struct kvm *kvm)
12676 #if IS_ENABLED(CONFIG_HYPERV)
12677 kfree(kvm->arch.hv_pa_pg);
12678 #endif
12679 __kvm_arch_free_vm(kvm);
12683 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12685 int ret;
12686 unsigned long flags;
12688 if (!kvm_is_vm_type_supported(type))
12689 return -EINVAL;
12691 kvm->arch.vm_type = type;
12692 kvm->arch.has_private_mem =
12693 (type == KVM_X86_SW_PROTECTED_VM);
12694 /* Decided by the vendor code for other VM types. */
12695 kvm->arch.pre_fault_allowed =
12696 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12698 ret = kvm_page_track_init(kvm);
12699 if (ret)
12700 goto out;
12702 kvm_mmu_init_vm(kvm);
12704 ret = kvm_x86_call(vm_init)(kvm);
12705 if (ret)
12706 goto out_uninit_mmu;
12708 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12709 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12711 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12712 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12713 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12714 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12715 &kvm->arch.irq_sources_bitmap);
12717 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12718 mutex_init(&kvm->arch.apic_map_lock);
12719 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12720 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12722 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12723 pvclock_update_vm_gtod_copy(kvm);
12724 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12726 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12727 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12728 kvm->arch.guest_can_read_msr_platform_info = true;
12729 kvm->arch.enable_pmu = enable_pmu;
12731 #if IS_ENABLED(CONFIG_HYPERV)
12732 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12733 kvm->arch.hv_root_tdp = INVALID_PAGE;
12734 #endif
12736 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12737 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12739 kvm_apicv_init(kvm);
12740 kvm_hv_init_vm(kvm);
12741 kvm_xen_init_vm(kvm);
12743 return 0;
12745 out_uninit_mmu:
12746 kvm_mmu_uninit_vm(kvm);
12747 kvm_page_track_cleanup(kvm);
12748 out:
12749 return ret;
12752 int kvm_arch_post_init_vm(struct kvm *kvm)
12754 return kvm_mmu_post_init_vm(kvm);
12757 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12759 vcpu_load(vcpu);
12760 kvm_mmu_unload(vcpu);
12761 vcpu_put(vcpu);
12764 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12766 unsigned long i;
12767 struct kvm_vcpu *vcpu;
12769 kvm_for_each_vcpu(i, vcpu, kvm) {
12770 kvm_clear_async_pf_completion_queue(vcpu);
12771 kvm_unload_vcpu_mmu(vcpu);
12775 void kvm_arch_sync_events(struct kvm *kvm)
12777 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12778 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12779 kvm_free_pit(kvm);
12783 * __x86_set_memory_region: Setup KVM internal memory slot
12785 * @kvm: the kvm pointer to the VM.
12786 * @id: the slot ID to setup.
12787 * @gpa: the GPA to install the slot (unused when @size == 0).
12788 * @size: the size of the slot. Set to zero to uninstall a slot.
12790 * This function helps to setup a KVM internal memory slot. Specify
12791 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12792 * slot. The return code can be one of the following:
12794 * HVA: on success (uninstall will return a bogus HVA)
12795 * -errno: on error
12797 * The caller should always use IS_ERR() to check the return value
12798 * before use. Note, the KVM internal memory slots are guaranteed to
12799 * remain valid and unchanged until the VM is destroyed, i.e., the
12800 * GPA->HVA translation will not change. However, the HVA is a user
12801 * address, i.e. its accessibility is not guaranteed, and must be
12802 * accessed via __copy_{to,from}_user().
12804 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12805 u32 size)
12807 int i, r;
12808 unsigned long hva, old_npages;
12809 struct kvm_memslots *slots = kvm_memslots(kvm);
12810 struct kvm_memory_slot *slot;
12812 /* Called with kvm->slots_lock held. */
12813 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12814 return ERR_PTR_USR(-EINVAL);
12816 slot = id_to_memslot(slots, id);
12817 if (size) {
12818 if (slot && slot->npages)
12819 return ERR_PTR_USR(-EEXIST);
12822 * MAP_SHARED to prevent internal slot pages from being moved
12823 * by fork()/COW.
12825 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12826 MAP_SHARED | MAP_ANONYMOUS, 0);
12827 if (IS_ERR_VALUE(hva))
12828 return (void __user *)hva;
12829 } else {
12830 if (!slot || !slot->npages)
12831 return NULL;
12833 old_npages = slot->npages;
12834 hva = slot->userspace_addr;
12837 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12838 struct kvm_userspace_memory_region2 m;
12840 m.slot = id | (i << 16);
12841 m.flags = 0;
12842 m.guest_phys_addr = gpa;
12843 m.userspace_addr = hva;
12844 m.memory_size = size;
12845 r = __kvm_set_memory_region(kvm, &m);
12846 if (r < 0)
12847 return ERR_PTR_USR(r);
12850 if (!size)
12851 vm_munmap(hva, old_npages * PAGE_SIZE);
12853 return (void __user *)hva;
12855 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12857 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12859 kvm_mmu_pre_destroy_vm(kvm);
12862 void kvm_arch_destroy_vm(struct kvm *kvm)
12864 if (current->mm == kvm->mm) {
12866 * Free memory regions allocated on behalf of userspace,
12867 * unless the memory map has changed due to process exit
12868 * or fd copying.
12870 mutex_lock(&kvm->slots_lock);
12871 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12872 0, 0);
12873 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12874 0, 0);
12875 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12876 mutex_unlock(&kvm->slots_lock);
12878 kvm_unload_vcpu_mmus(kvm);
12879 kvm_x86_call(vm_destroy)(kvm);
12880 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12881 kvm_pic_destroy(kvm);
12882 kvm_ioapic_destroy(kvm);
12883 kvm_destroy_vcpus(kvm);
12884 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12885 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12886 kvm_mmu_uninit_vm(kvm);
12887 kvm_page_track_cleanup(kvm);
12888 kvm_xen_destroy_vm(kvm);
12889 kvm_hv_destroy_vm(kvm);
12892 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12894 int i;
12896 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12897 vfree(slot->arch.rmap[i]);
12898 slot->arch.rmap[i] = NULL;
12902 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12904 int i;
12906 memslot_rmap_free(slot);
12908 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12909 vfree(slot->arch.lpage_info[i - 1]);
12910 slot->arch.lpage_info[i - 1] = NULL;
12913 kvm_page_track_free_memslot(slot);
12916 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12918 const int sz = sizeof(*slot->arch.rmap[0]);
12919 int i;
12921 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12922 int level = i + 1;
12923 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12925 if (slot->arch.rmap[i])
12926 continue;
12928 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12929 if (!slot->arch.rmap[i]) {
12930 memslot_rmap_free(slot);
12931 return -ENOMEM;
12935 return 0;
12938 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12939 struct kvm_memory_slot *slot)
12941 unsigned long npages = slot->npages;
12942 int i, r;
12945 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12946 * old arrays will be freed by __kvm_set_memory_region() if installing
12947 * the new memslot is successful.
12949 memset(&slot->arch, 0, sizeof(slot->arch));
12951 if (kvm_memslots_have_rmaps(kvm)) {
12952 r = memslot_rmap_alloc(slot, npages);
12953 if (r)
12954 return r;
12957 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12958 struct kvm_lpage_info *linfo;
12959 unsigned long ugfn;
12960 int lpages;
12961 int level = i + 1;
12963 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12965 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12966 if (!linfo)
12967 goto out_free;
12969 slot->arch.lpage_info[i - 1] = linfo;
12971 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12972 linfo[0].disallow_lpage = 1;
12973 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12974 linfo[lpages - 1].disallow_lpage = 1;
12975 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12977 * If the gfn and userspace address are not aligned wrt each
12978 * other, disable large page support for this slot.
12980 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12981 unsigned long j;
12983 for (j = 0; j < lpages; ++j)
12984 linfo[j].disallow_lpage = 1;
12988 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12989 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12990 #endif
12992 if (kvm_page_track_create_memslot(kvm, slot, npages))
12993 goto out_free;
12995 return 0;
12997 out_free:
12998 memslot_rmap_free(slot);
13000 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13001 vfree(slot->arch.lpage_info[i - 1]);
13002 slot->arch.lpage_info[i - 1] = NULL;
13004 return -ENOMEM;
13007 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13009 struct kvm_vcpu *vcpu;
13010 unsigned long i;
13013 * memslots->generation has been incremented.
13014 * mmio generation may have reached its maximum value.
13016 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13018 /* Force re-initialization of steal_time cache */
13019 kvm_for_each_vcpu(i, vcpu, kvm)
13020 kvm_vcpu_kick(vcpu);
13023 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13024 const struct kvm_memory_slot *old,
13025 struct kvm_memory_slot *new,
13026 enum kvm_mr_change change)
13029 * KVM doesn't support moving memslots when there are external page
13030 * trackers attached to the VM, i.e. if KVMGT is in use.
13032 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13033 return -EINVAL;
13035 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13036 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13037 return -EINVAL;
13039 return kvm_alloc_memslot_metadata(kvm, new);
13042 if (change == KVM_MR_FLAGS_ONLY)
13043 memcpy(&new->arch, &old->arch, sizeof(old->arch));
13044 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13045 return -EIO;
13047 return 0;
13051 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13053 int nr_slots;
13055 if (!kvm_x86_ops.cpu_dirty_log_size)
13056 return;
13058 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13059 if ((enable && nr_slots == 1) || !nr_slots)
13060 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13063 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13064 struct kvm_memory_slot *old,
13065 const struct kvm_memory_slot *new,
13066 enum kvm_mr_change change)
13068 u32 old_flags = old ? old->flags : 0;
13069 u32 new_flags = new ? new->flags : 0;
13070 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13073 * Update CPU dirty logging if dirty logging is being toggled. This
13074 * applies to all operations.
13076 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13077 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13080 * Nothing more to do for RO slots (which can't be dirtied and can't be
13081 * made writable) or CREATE/MOVE/DELETE of a slot.
13083 * For a memslot with dirty logging disabled:
13084 * CREATE: No dirty mappings will already exist.
13085 * MOVE/DELETE: The old mappings will already have been cleaned up by
13086 * kvm_arch_flush_shadow_memslot()
13088 * For a memslot with dirty logging enabled:
13089 * CREATE: No shadow pages exist, thus nothing to write-protect
13090 * and no dirty bits to clear.
13091 * MOVE/DELETE: The old mappings will already have been cleaned up by
13092 * kvm_arch_flush_shadow_memslot().
13094 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13095 return;
13098 * READONLY and non-flags changes were filtered out above, and the only
13099 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13100 * logging isn't being toggled on or off.
13102 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13103 return;
13105 if (!log_dirty_pages) {
13107 * Dirty logging tracks sptes in 4k granularity, meaning that
13108 * large sptes have to be split. If live migration succeeds,
13109 * the guest in the source machine will be destroyed and large
13110 * sptes will be created in the destination. However, if the
13111 * guest continues to run in the source machine (for example if
13112 * live migration fails), small sptes will remain around and
13113 * cause bad performance.
13115 * Scan sptes if dirty logging has been stopped, dropping those
13116 * which can be collapsed into a single large-page spte. Later
13117 * page faults will create the large-page sptes.
13119 kvm_mmu_zap_collapsible_sptes(kvm, new);
13120 } else {
13122 * Initially-all-set does not require write protecting any page,
13123 * because they're all assumed to be dirty.
13125 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13126 return;
13128 if (READ_ONCE(eager_page_split))
13129 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13131 if (kvm_x86_ops.cpu_dirty_log_size) {
13132 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13133 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13134 } else {
13135 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13139 * Unconditionally flush the TLBs after enabling dirty logging.
13140 * A flush is almost always going to be necessary (see below),
13141 * and unconditionally flushing allows the helpers to omit
13142 * the subtly complex checks when removing write access.
13144 * Do the flush outside of mmu_lock to reduce the amount of
13145 * time mmu_lock is held. Flushing after dropping mmu_lock is
13146 * safe as KVM only needs to guarantee the slot is fully
13147 * write-protected before returning to userspace, i.e. before
13148 * userspace can consume the dirty status.
13150 * Flushing outside of mmu_lock requires KVM to be careful when
13151 * making decisions based on writable status of an SPTE, e.g. a
13152 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13154 * Specifically, KVM also write-protects guest page tables to
13155 * monitor changes when using shadow paging, and must guarantee
13156 * no CPUs can write to those page before mmu_lock is dropped.
13157 * Because CPUs may have stale TLB entries at this point, a
13158 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13160 * KVM also allows making SPTES writable outside of mmu_lock,
13161 * e.g. to allow dirty logging without taking mmu_lock.
13163 * To handle these scenarios, KVM uses a separate software-only
13164 * bit (MMU-writable) to track if a SPTE is !writable due to
13165 * a guest page table being write-protected (KVM clears the
13166 * MMU-writable flag when write-protecting for shadow paging).
13168 * The use of MMU-writable is also the primary motivation for
13169 * the unconditional flush. Because KVM must guarantee that a
13170 * CPU doesn't contain stale, writable TLB entries for a
13171 * !MMU-writable SPTE, KVM must flush if it encounters any
13172 * MMU-writable SPTE regardless of whether the actual hardware
13173 * writable bit was set. I.e. KVM is almost guaranteed to need
13174 * to flush, while unconditionally flushing allows the "remove
13175 * write access" helpers to ignore MMU-writable entirely.
13177 * See is_writable_pte() for more details (the case involving
13178 * access-tracked SPTEs is particularly relevant).
13180 kvm_flush_remote_tlbs_memslot(kvm, new);
13184 void kvm_arch_commit_memory_region(struct kvm *kvm,
13185 struct kvm_memory_slot *old,
13186 const struct kvm_memory_slot *new,
13187 enum kvm_mr_change change)
13189 if (change == KVM_MR_DELETE)
13190 kvm_page_track_delete_slot(kvm, old);
13192 if (!kvm->arch.n_requested_mmu_pages &&
13193 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13194 unsigned long nr_mmu_pages;
13196 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13197 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13198 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13201 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13203 /* Free the arrays associated with the old memslot. */
13204 if (change == KVM_MR_MOVE)
13205 kvm_arch_free_memslot(kvm, old);
13208 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13210 if (vcpu->arch.guest_state_protected)
13211 return true;
13213 return kvm_x86_call(get_cpl)(vcpu) == 0;
13216 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13218 return kvm_rip_read(vcpu);
13221 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13223 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13226 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13228 return kvm_x86_call(interrupt_allowed)(vcpu, false);
13231 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13233 /* Can't read the RIP when guest state is protected, just return 0 */
13234 if (vcpu->arch.guest_state_protected)
13235 return 0;
13237 if (is_64_bit_mode(vcpu))
13238 return kvm_rip_read(vcpu);
13239 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13240 kvm_rip_read(vcpu));
13242 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13244 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13246 return kvm_get_linear_rip(vcpu) == linear_rip;
13248 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13250 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13252 unsigned long rflags;
13254 rflags = kvm_x86_call(get_rflags)(vcpu);
13255 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13256 rflags &= ~X86_EFLAGS_TF;
13257 return rflags;
13259 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13261 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13263 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13264 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13265 rflags |= X86_EFLAGS_TF;
13266 kvm_x86_call(set_rflags)(vcpu, rflags);
13269 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13271 __kvm_set_rflags(vcpu, rflags);
13272 kvm_make_request(KVM_REQ_EVENT, vcpu);
13274 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13276 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13278 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13280 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13283 static inline u32 kvm_async_pf_next_probe(u32 key)
13285 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13288 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13290 u32 key = kvm_async_pf_hash_fn(gfn);
13292 while (vcpu->arch.apf.gfns[key] != ~0)
13293 key = kvm_async_pf_next_probe(key);
13295 vcpu->arch.apf.gfns[key] = gfn;
13298 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13300 int i;
13301 u32 key = kvm_async_pf_hash_fn(gfn);
13303 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13304 (vcpu->arch.apf.gfns[key] != gfn &&
13305 vcpu->arch.apf.gfns[key] != ~0); i++)
13306 key = kvm_async_pf_next_probe(key);
13308 return key;
13311 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13313 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13316 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13318 u32 i, j, k;
13320 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13322 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13323 return;
13325 while (true) {
13326 vcpu->arch.apf.gfns[i] = ~0;
13327 do {
13328 j = kvm_async_pf_next_probe(j);
13329 if (vcpu->arch.apf.gfns[j] == ~0)
13330 return;
13331 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13333 * k lies cyclically in ]i,j]
13334 * | i.k.j |
13335 * |....j i.k.| or |.k..j i...|
13337 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13338 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13339 i = j;
13343 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13345 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13347 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13348 sizeof(reason));
13351 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13353 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13355 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13356 &token, offset, sizeof(token));
13359 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13361 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13362 u32 val;
13364 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13365 &val, offset, sizeof(val)))
13366 return false;
13368 return !val;
13371 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13374 if (!kvm_pv_async_pf_enabled(vcpu))
13375 return false;
13377 if (vcpu->arch.apf.send_user_only &&
13378 kvm_x86_call(get_cpl)(vcpu) == 0)
13379 return false;
13381 if (is_guest_mode(vcpu)) {
13383 * L1 needs to opt into the special #PF vmexits that are
13384 * used to deliver async page faults.
13386 return vcpu->arch.apf.delivery_as_pf_vmexit;
13387 } else {
13389 * Play it safe in case the guest temporarily disables paging.
13390 * The real mode IDT in particular is unlikely to have a #PF
13391 * exception setup.
13393 return is_paging(vcpu);
13397 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13399 if (unlikely(!lapic_in_kernel(vcpu) ||
13400 kvm_event_needs_reinjection(vcpu) ||
13401 kvm_is_exception_pending(vcpu)))
13402 return false;
13404 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13405 return false;
13408 * If interrupts are off we cannot even use an artificial
13409 * halt state.
13411 return kvm_arch_interrupt_allowed(vcpu);
13414 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13415 struct kvm_async_pf *work)
13417 struct x86_exception fault;
13419 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13420 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13422 if (kvm_can_deliver_async_pf(vcpu) &&
13423 !apf_put_user_notpresent(vcpu)) {
13424 fault.vector = PF_VECTOR;
13425 fault.error_code_valid = true;
13426 fault.error_code = 0;
13427 fault.nested_page_fault = false;
13428 fault.address = work->arch.token;
13429 fault.async_page_fault = true;
13430 kvm_inject_page_fault(vcpu, &fault);
13431 return true;
13432 } else {
13434 * It is not possible to deliver a paravirtualized asynchronous
13435 * page fault, but putting the guest in an artificial halt state
13436 * can be beneficial nevertheless: if an interrupt arrives, we
13437 * can deliver it timely and perhaps the guest will schedule
13438 * another process. When the instruction that triggered a page
13439 * fault is retried, hopefully the page will be ready in the host.
13441 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13442 return false;
13446 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13447 struct kvm_async_pf *work)
13449 struct kvm_lapic_irq irq = {
13450 .delivery_mode = APIC_DM_FIXED,
13451 .vector = vcpu->arch.apf.vec
13454 if (work->wakeup_all)
13455 work->arch.token = ~0; /* broadcast wakeup */
13456 else
13457 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13458 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13460 if ((work->wakeup_all || work->notpresent_injected) &&
13461 kvm_pv_async_pf_enabled(vcpu) &&
13462 !apf_put_user_ready(vcpu, work->arch.token)) {
13463 vcpu->arch.apf.pageready_pending = true;
13464 kvm_apic_set_irq(vcpu, &irq, NULL);
13467 vcpu->arch.apf.halted = false;
13468 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13471 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13473 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13474 if (!vcpu->arch.apf.pageready_pending)
13475 kvm_vcpu_kick(vcpu);
13478 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13480 if (!kvm_pv_async_pf_enabled(vcpu))
13481 return true;
13482 else
13483 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13486 void kvm_arch_start_assignment(struct kvm *kvm)
13488 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13489 kvm_x86_call(pi_start_assignment)(kvm);
13491 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13493 void kvm_arch_end_assignment(struct kvm *kvm)
13495 atomic_dec(&kvm->arch.assigned_device_count);
13497 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13499 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13501 return raw_atomic_read(&kvm->arch.assigned_device_count);
13503 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13505 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13508 * Non-coherent DMA assignment and de-assignment may affect whether or
13509 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13510 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13511 * (or last) non-coherent device is (un)registered to so that new SPTEs
13512 * with the correct "ignore guest PAT" setting are created.
13514 if (kvm_mmu_may_ignore_guest_pat())
13515 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13518 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13520 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13521 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13523 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13525 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13527 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13528 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13530 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13532 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13534 return atomic_read(&kvm->arch.noncoherent_dma_count);
13536 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13538 bool kvm_arch_has_irq_bypass(void)
13540 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13543 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13544 struct irq_bypass_producer *prod)
13546 struct kvm_kernel_irqfd *irqfd =
13547 container_of(cons, struct kvm_kernel_irqfd, consumer);
13548 int ret;
13550 irqfd->producer = prod;
13551 kvm_arch_start_assignment(irqfd->kvm);
13552 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13553 prod->irq, irqfd->gsi, 1);
13554 if (ret)
13555 kvm_arch_end_assignment(irqfd->kvm);
13557 return ret;
13560 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13561 struct irq_bypass_producer *prod)
13563 int ret;
13564 struct kvm_kernel_irqfd *irqfd =
13565 container_of(cons, struct kvm_kernel_irqfd, consumer);
13567 WARN_ON(irqfd->producer != prod);
13568 irqfd->producer = NULL;
13571 * When producer of consumer is unregistered, we change back to
13572 * remapped mode, so we can re-use the current implementation
13573 * when the irq is masked/disabled or the consumer side (KVM
13574 * int this case doesn't want to receive the interrupts.
13576 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13577 prod->irq, irqfd->gsi, 0);
13578 if (ret)
13579 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13580 " fails: %d\n", irqfd->consumer.token, ret);
13582 kvm_arch_end_assignment(irqfd->kvm);
13585 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13586 uint32_t guest_irq, bool set)
13588 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13591 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13592 struct kvm_kernel_irq_routing_entry *new)
13594 if (new->type != KVM_IRQ_ROUTING_MSI)
13595 return true;
13597 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13600 bool kvm_vector_hashing_enabled(void)
13602 return vector_hashing;
13605 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13607 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13609 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13611 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
13612 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13614 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13616 #endif
13618 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
13619 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13621 kvm_x86_call(gmem_invalidate)(start, end);
13623 #endif
13625 int kvm_spec_ctrl_test_value(u64 value)
13628 * test that setting IA32_SPEC_CTRL to given value
13629 * is allowed by the host processor
13632 u64 saved_value;
13633 unsigned long flags;
13634 int ret = 0;
13636 local_irq_save(flags);
13638 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13639 ret = 1;
13640 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13641 ret = 1;
13642 else
13643 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13645 local_irq_restore(flags);
13647 return ret;
13649 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13651 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13653 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13654 struct x86_exception fault;
13655 u64 access = error_code &
13656 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13658 if (!(error_code & PFERR_PRESENT_MASK) ||
13659 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13661 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13662 * tables probably do not match the TLB. Just proceed
13663 * with the error code that the processor gave.
13665 fault.vector = PF_VECTOR;
13666 fault.error_code_valid = true;
13667 fault.error_code = error_code;
13668 fault.nested_page_fault = false;
13669 fault.address = gva;
13670 fault.async_page_fault = false;
13672 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13674 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13677 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13678 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13679 * indicates whether exit to userspace is needed.
13681 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13682 struct x86_exception *e)
13684 if (r == X86EMUL_PROPAGATE_FAULT) {
13685 if (KVM_BUG_ON(!e, vcpu->kvm))
13686 return -EIO;
13688 kvm_inject_emulated_page_fault(vcpu, e);
13689 return 1;
13693 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13694 * while handling a VMX instruction KVM could've handled the request
13695 * correctly by exiting to userspace and performing I/O but there
13696 * doesn't seem to be a real use-case behind such requests, just return
13697 * KVM_EXIT_INTERNAL_ERROR for now.
13699 kvm_prepare_emulation_failure_exit(vcpu);
13701 return 0;
13703 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13705 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13707 bool pcid_enabled;
13708 struct x86_exception e;
13709 struct {
13710 u64 pcid;
13711 u64 gla;
13712 } operand;
13713 int r;
13715 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13716 if (r != X86EMUL_CONTINUE)
13717 return kvm_handle_memory_failure(vcpu, r, &e);
13719 if (operand.pcid >> 12 != 0) {
13720 kvm_inject_gp(vcpu, 0);
13721 return 1;
13724 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13726 switch (type) {
13727 case INVPCID_TYPE_INDIV_ADDR:
13729 * LAM doesn't apply to addresses that are inputs to TLB
13730 * invalidation.
13732 if ((!pcid_enabled && (operand.pcid != 0)) ||
13733 is_noncanonical_address(operand.gla, vcpu)) {
13734 kvm_inject_gp(vcpu, 0);
13735 return 1;
13737 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13738 return kvm_skip_emulated_instruction(vcpu);
13740 case INVPCID_TYPE_SINGLE_CTXT:
13741 if (!pcid_enabled && (operand.pcid != 0)) {
13742 kvm_inject_gp(vcpu, 0);
13743 return 1;
13746 kvm_invalidate_pcid(vcpu, operand.pcid);
13747 return kvm_skip_emulated_instruction(vcpu);
13749 case INVPCID_TYPE_ALL_NON_GLOBAL:
13751 * Currently, KVM doesn't mark global entries in the shadow
13752 * page tables, so a non-global flush just degenerates to a
13753 * global flush. If needed, we could optimize this later by
13754 * keeping track of global entries in shadow page tables.
13757 fallthrough;
13758 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13759 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13760 return kvm_skip_emulated_instruction(vcpu);
13762 default:
13763 kvm_inject_gp(vcpu, 0);
13764 return 1;
13767 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13769 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13771 struct kvm_run *run = vcpu->run;
13772 struct kvm_mmio_fragment *frag;
13773 unsigned int len;
13775 BUG_ON(!vcpu->mmio_needed);
13777 /* Complete previous fragment */
13778 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13779 len = min(8u, frag->len);
13780 if (!vcpu->mmio_is_write)
13781 memcpy(frag->data, run->mmio.data, len);
13783 if (frag->len <= 8) {
13784 /* Switch to the next fragment. */
13785 frag++;
13786 vcpu->mmio_cur_fragment++;
13787 } else {
13788 /* Go forward to the next mmio piece. */
13789 frag->data += len;
13790 frag->gpa += len;
13791 frag->len -= len;
13794 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13795 vcpu->mmio_needed = 0;
13797 // VMG change, at this point, we're always done
13798 // RIP has already been advanced
13799 return 1;
13802 // More MMIO is needed
13803 run->mmio.phys_addr = frag->gpa;
13804 run->mmio.len = min(8u, frag->len);
13805 run->mmio.is_write = vcpu->mmio_is_write;
13806 if (run->mmio.is_write)
13807 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13808 run->exit_reason = KVM_EXIT_MMIO;
13810 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13812 return 0;
13815 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13816 void *data)
13818 int handled;
13819 struct kvm_mmio_fragment *frag;
13821 if (!data)
13822 return -EINVAL;
13824 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13825 if (handled == bytes)
13826 return 1;
13828 bytes -= handled;
13829 gpa += handled;
13830 data += handled;
13832 /*TODO: Check if need to increment number of frags */
13833 frag = vcpu->mmio_fragments;
13834 vcpu->mmio_nr_fragments = 1;
13835 frag->len = bytes;
13836 frag->gpa = gpa;
13837 frag->data = data;
13839 vcpu->mmio_needed = 1;
13840 vcpu->mmio_cur_fragment = 0;
13842 vcpu->run->mmio.phys_addr = gpa;
13843 vcpu->run->mmio.len = min(8u, frag->len);
13844 vcpu->run->mmio.is_write = 1;
13845 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13846 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13848 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13850 return 0;
13852 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13854 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13855 void *data)
13857 int handled;
13858 struct kvm_mmio_fragment *frag;
13860 if (!data)
13861 return -EINVAL;
13863 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13864 if (handled == bytes)
13865 return 1;
13867 bytes -= handled;
13868 gpa += handled;
13869 data += handled;
13871 /*TODO: Check if need to increment number of frags */
13872 frag = vcpu->mmio_fragments;
13873 vcpu->mmio_nr_fragments = 1;
13874 frag->len = bytes;
13875 frag->gpa = gpa;
13876 frag->data = data;
13878 vcpu->mmio_needed = 1;
13879 vcpu->mmio_cur_fragment = 0;
13881 vcpu->run->mmio.phys_addr = gpa;
13882 vcpu->run->mmio.len = min(8u, frag->len);
13883 vcpu->run->mmio.is_write = 0;
13884 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13886 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13888 return 0;
13890 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13892 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13894 vcpu->arch.sev_pio_count -= count;
13895 vcpu->arch.sev_pio_data += count * size;
13898 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13899 unsigned int port);
13901 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13903 int size = vcpu->arch.pio.size;
13904 int port = vcpu->arch.pio.port;
13906 vcpu->arch.pio.count = 0;
13907 if (vcpu->arch.sev_pio_count)
13908 return kvm_sev_es_outs(vcpu, size, port);
13909 return 1;
13912 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13913 unsigned int port)
13915 for (;;) {
13916 unsigned int count =
13917 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13918 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13920 /* memcpy done already by emulator_pio_out. */
13921 advance_sev_es_emulated_pio(vcpu, count, size);
13922 if (!ret)
13923 break;
13925 /* Emulation done by the kernel. */
13926 if (!vcpu->arch.sev_pio_count)
13927 return 1;
13930 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13931 return 0;
13934 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13935 unsigned int port);
13937 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13939 unsigned count = vcpu->arch.pio.count;
13940 int size = vcpu->arch.pio.size;
13941 int port = vcpu->arch.pio.port;
13943 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13944 advance_sev_es_emulated_pio(vcpu, count, size);
13945 if (vcpu->arch.sev_pio_count)
13946 return kvm_sev_es_ins(vcpu, size, port);
13947 return 1;
13950 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13951 unsigned int port)
13953 for (;;) {
13954 unsigned int count =
13955 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13956 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13957 break;
13959 /* Emulation done by the kernel. */
13960 advance_sev_es_emulated_pio(vcpu, count, size);
13961 if (!vcpu->arch.sev_pio_count)
13962 return 1;
13965 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13966 return 0;
13969 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13970 unsigned int port, void *data, unsigned int count,
13971 int in)
13973 vcpu->arch.sev_pio_data = data;
13974 vcpu->arch.sev_pio_count = count;
13975 return in ? kvm_sev_es_ins(vcpu, size, port)
13976 : kvm_sev_es_outs(vcpu, size, port);
13978 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13989 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13990 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13991 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13992 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13993 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13994 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13995 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13996 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13997 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13998 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13999 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14006 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14008 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14009 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14011 static int __init kvm_x86_init(void)
14013 kvm_mmu_x86_module_init();
14014 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14015 return 0;
14017 module_init(kvm_x86_init);
14019 static void __exit kvm_x86_exit(void)
14021 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14023 module_exit(kvm_x86_exit);