1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
69 #include <asm/debugreg.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
87 #include <clocksource/hyperv_timer.h>
89 #define CREATE_TRACE_POINTS
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
96 * Note, kvm_caps fields should *never* have default values, all fields must be
97 * recomputed from scratch during vendor module load, e.g. to account for a
98 * vendor module being reloaded with different module parameters.
100 struct kvm_caps kvm_caps __read_mostly
;
101 EXPORT_SYMBOL_GPL(kvm_caps
);
103 struct kvm_host_values kvm_host __read_mostly
;
104 EXPORT_SYMBOL_GPL(kvm_host
);
106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
108 #define emul_to_vcpu(ctxt) \
109 ((struct kvm_vcpu *)(ctxt)->vcpu)
112 * - enable syscall per default because its emulated by KVM
113 * - enable LME and LMA per default on 64 bit KVM
117 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
119 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
122 static u64 __read_mostly cr4_reserved_bits
= CR4_RESERVED_BITS
;
124 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
126 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
128 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
129 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
131 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
132 static void process_nmi(struct kvm_vcpu
*vcpu
);
133 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
134 static void store_regs(struct kvm_vcpu
*vcpu
);
135 static int sync_regs(struct kvm_vcpu
*vcpu
);
136 static int kvm_vcpu_do_singlestep(struct kvm_vcpu
*vcpu
);
138 static int __set_sregs2(struct kvm_vcpu
*vcpu
, struct kvm_sregs2
*sregs2
);
139 static void __get_sregs2(struct kvm_vcpu
*vcpu
, struct kvm_sregs2
*sregs2
);
141 static DEFINE_MUTEX(vendor_module_lock
);
142 struct kvm_x86_ops kvm_x86_ops __read_mostly
;
144 #define KVM_X86_OP(func) \
145 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
146 *(((struct kvm_x86_ops *)0)->func));
147 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
148 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
149 #include <asm/kvm-x86-ops.h>
150 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits
);
151 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg
);
153 static bool __read_mostly ignore_msrs
= 0;
154 module_param(ignore_msrs
, bool, 0644);
156 bool __read_mostly report_ignored_msrs
= true;
157 module_param(report_ignored_msrs
, bool, 0644);
158 EXPORT_SYMBOL_GPL(report_ignored_msrs
);
160 unsigned int min_timer_period_us
= 200;
161 module_param(min_timer_period_us
, uint
, 0644);
163 static bool __read_mostly kvmclock_periodic_sync
= true;
164 module_param(kvmclock_periodic_sync
, bool, 0444);
166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
167 static u32 __read_mostly tsc_tolerance_ppm
= 250;
168 module_param(tsc_tolerance_ppm
, uint
, 0644);
170 static bool __read_mostly vector_hashing
= true;
171 module_param(vector_hashing
, bool, 0444);
173 bool __read_mostly enable_vmware_backdoor
= false;
174 module_param(enable_vmware_backdoor
, bool, 0444);
175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor
);
178 * Flags to manipulate forced emulation behavior (any non-zero value will
179 * enable forced emulation).
181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
182 static int __read_mostly force_emulation_prefix
;
183 module_param(force_emulation_prefix
, int, 0644);
185 int __read_mostly pi_inject_timer
= -1;
186 module_param(pi_inject_timer
, bint
, 0644);
188 /* Enable/disable PMU virtualization */
189 bool __read_mostly enable_pmu
= true;
190 EXPORT_SYMBOL_GPL(enable_pmu
);
191 module_param(enable_pmu
, bool, 0444);
193 bool __read_mostly eager_page_split
= true;
194 module_param(eager_page_split
, bool, 0644);
196 /* Enable/disable SMT_RSB bug mitigation */
197 static bool __read_mostly mitigate_smt_rsb
;
198 module_param(mitigate_smt_rsb
, bool, 0444);
201 * Restoring the host value for MSRs that are only consumed when running in
202 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
203 * returns to userspace, i.e. the kernel can run with the guest's value.
205 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207 struct kvm_user_return_msrs
{
208 struct user_return_notifier urn
;
210 struct kvm_user_return_msr_values
{
213 } values
[KVM_MAX_NR_USER_RETURN_MSRS
];
216 u32 __read_mostly kvm_nr_uret_msrs
;
217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs
);
218 static u32 __read_mostly kvm_uret_msrs_list
[KVM_MAX_NR_USER_RETURN_MSRS
];
219 static struct kvm_user_return_msrs __percpu
*user_return_msrs
;
221 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
222 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
223 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
224 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226 bool __read_mostly allow_smaller_maxphyaddr
= 0;
227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr
);
229 bool __read_mostly enable_apicv
= true;
230 EXPORT_SYMBOL_GPL(enable_apicv
);
232 const struct _kvm_stats_desc kvm_vm_stats_desc
[] = {
233 KVM_GENERIC_VM_STATS(),
234 STATS_DESC_COUNTER(VM
, mmu_shadow_zapped
),
235 STATS_DESC_COUNTER(VM
, mmu_pte_write
),
236 STATS_DESC_COUNTER(VM
, mmu_pde_zapped
),
237 STATS_DESC_COUNTER(VM
, mmu_flooded
),
238 STATS_DESC_COUNTER(VM
, mmu_recycled
),
239 STATS_DESC_COUNTER(VM
, mmu_cache_miss
),
240 STATS_DESC_ICOUNTER(VM
, mmu_unsync
),
241 STATS_DESC_ICOUNTER(VM
, pages_4k
),
242 STATS_DESC_ICOUNTER(VM
, pages_2m
),
243 STATS_DESC_ICOUNTER(VM
, pages_1g
),
244 STATS_DESC_ICOUNTER(VM
, nx_lpage_splits
),
245 STATS_DESC_PCOUNTER(VM
, max_mmu_rmap_size
),
246 STATS_DESC_PCOUNTER(VM
, max_mmu_page_hash_collisions
)
249 const struct kvm_stats_header kvm_vm_stats_header
= {
250 .name_size
= KVM_STATS_NAME_SIZE
,
251 .num_desc
= ARRAY_SIZE(kvm_vm_stats_desc
),
252 .id_offset
= sizeof(struct kvm_stats_header
),
253 .desc_offset
= sizeof(struct kvm_stats_header
) + KVM_STATS_NAME_SIZE
,
254 .data_offset
= sizeof(struct kvm_stats_header
) + KVM_STATS_NAME_SIZE
+
255 sizeof(kvm_vm_stats_desc
),
258 const struct _kvm_stats_desc kvm_vcpu_stats_desc
[] = {
259 KVM_GENERIC_VCPU_STATS(),
260 STATS_DESC_COUNTER(VCPU
, pf_taken
),
261 STATS_DESC_COUNTER(VCPU
, pf_fixed
),
262 STATS_DESC_COUNTER(VCPU
, pf_emulate
),
263 STATS_DESC_COUNTER(VCPU
, pf_spurious
),
264 STATS_DESC_COUNTER(VCPU
, pf_fast
),
265 STATS_DESC_COUNTER(VCPU
, pf_mmio_spte_created
),
266 STATS_DESC_COUNTER(VCPU
, pf_guest
),
267 STATS_DESC_COUNTER(VCPU
, tlb_flush
),
268 STATS_DESC_COUNTER(VCPU
, invlpg
),
269 STATS_DESC_COUNTER(VCPU
, exits
),
270 STATS_DESC_COUNTER(VCPU
, io_exits
),
271 STATS_DESC_COUNTER(VCPU
, mmio_exits
),
272 STATS_DESC_COUNTER(VCPU
, signal_exits
),
273 STATS_DESC_COUNTER(VCPU
, irq_window_exits
),
274 STATS_DESC_COUNTER(VCPU
, nmi_window_exits
),
275 STATS_DESC_COUNTER(VCPU
, l1d_flush
),
276 STATS_DESC_COUNTER(VCPU
, halt_exits
),
277 STATS_DESC_COUNTER(VCPU
, request_irq_exits
),
278 STATS_DESC_COUNTER(VCPU
, irq_exits
),
279 STATS_DESC_COUNTER(VCPU
, host_state_reload
),
280 STATS_DESC_COUNTER(VCPU
, fpu_reload
),
281 STATS_DESC_COUNTER(VCPU
, insn_emulation
),
282 STATS_DESC_COUNTER(VCPU
, insn_emulation_fail
),
283 STATS_DESC_COUNTER(VCPU
, hypercalls
),
284 STATS_DESC_COUNTER(VCPU
, irq_injections
),
285 STATS_DESC_COUNTER(VCPU
, nmi_injections
),
286 STATS_DESC_COUNTER(VCPU
, req_event
),
287 STATS_DESC_COUNTER(VCPU
, nested_run
),
288 STATS_DESC_COUNTER(VCPU
, directed_yield_attempted
),
289 STATS_DESC_COUNTER(VCPU
, directed_yield_successful
),
290 STATS_DESC_COUNTER(VCPU
, preemption_reported
),
291 STATS_DESC_COUNTER(VCPU
, preemption_other
),
292 STATS_DESC_IBOOLEAN(VCPU
, guest_mode
),
293 STATS_DESC_COUNTER(VCPU
, notify_window_exits
),
296 const struct kvm_stats_header kvm_vcpu_stats_header
= {
297 .name_size
= KVM_STATS_NAME_SIZE
,
298 .num_desc
= ARRAY_SIZE(kvm_vcpu_stats_desc
),
299 .id_offset
= sizeof(struct kvm_stats_header
),
300 .desc_offset
= sizeof(struct kvm_stats_header
) + KVM_STATS_NAME_SIZE
,
301 .data_offset
= sizeof(struct kvm_stats_header
) + KVM_STATS_NAME_SIZE
+
302 sizeof(kvm_vcpu_stats_desc
),
305 static struct kmem_cache
*x86_emulator_cache
;
308 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
309 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
310 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
311 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
312 * MSRs that KVM emulates without strictly requiring host support.
313 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
314 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
315 * msrs_to_save and emulated_msrs.
318 static const u32 msrs_to_save_base
[] = {
319 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
322 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
324 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
325 MSR_IA32_FEAT_CTL
, MSR_IA32_BNDCFGS
, MSR_TSC_AUX
,
326 MSR_IA32_SPEC_CTRL
, MSR_IA32_TSX_CTRL
,
327 MSR_IA32_RTIT_CTL
, MSR_IA32_RTIT_STATUS
, MSR_IA32_RTIT_CR3_MATCH
,
328 MSR_IA32_RTIT_OUTPUT_BASE
, MSR_IA32_RTIT_OUTPUT_MASK
,
329 MSR_IA32_RTIT_ADDR0_A
, MSR_IA32_RTIT_ADDR0_B
,
330 MSR_IA32_RTIT_ADDR1_A
, MSR_IA32_RTIT_ADDR1_B
,
331 MSR_IA32_RTIT_ADDR2_A
, MSR_IA32_RTIT_ADDR2_B
,
332 MSR_IA32_RTIT_ADDR3_A
, MSR_IA32_RTIT_ADDR3_B
,
333 MSR_IA32_UMWAIT_CONTROL
,
335 MSR_IA32_XFD
, MSR_IA32_XFD_ERR
,
338 static const u32 msrs_to_save_pmu
[] = {
339 MSR_ARCH_PERFMON_FIXED_CTR0
, MSR_ARCH_PERFMON_FIXED_CTR1
,
340 MSR_ARCH_PERFMON_FIXED_CTR0
+ 2,
341 MSR_CORE_PERF_FIXED_CTR_CTRL
, MSR_CORE_PERF_GLOBAL_STATUS
,
342 MSR_CORE_PERF_GLOBAL_CTRL
,
343 MSR_IA32_PEBS_ENABLE
, MSR_IA32_DS_AREA
, MSR_PEBS_DATA_CFG
,
345 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
346 MSR_ARCH_PERFMON_PERFCTR0
, MSR_ARCH_PERFMON_PERFCTR1
,
347 MSR_ARCH_PERFMON_PERFCTR0
+ 2, MSR_ARCH_PERFMON_PERFCTR0
+ 3,
348 MSR_ARCH_PERFMON_PERFCTR0
+ 4, MSR_ARCH_PERFMON_PERFCTR0
+ 5,
349 MSR_ARCH_PERFMON_PERFCTR0
+ 6, MSR_ARCH_PERFMON_PERFCTR0
+ 7,
350 MSR_ARCH_PERFMON_EVENTSEL0
, MSR_ARCH_PERFMON_EVENTSEL1
,
351 MSR_ARCH_PERFMON_EVENTSEL0
+ 2, MSR_ARCH_PERFMON_EVENTSEL0
+ 3,
352 MSR_ARCH_PERFMON_EVENTSEL0
+ 4, MSR_ARCH_PERFMON_EVENTSEL0
+ 5,
353 MSR_ARCH_PERFMON_EVENTSEL0
+ 6, MSR_ARCH_PERFMON_EVENTSEL0
+ 7,
355 MSR_K7_EVNTSEL0
, MSR_K7_EVNTSEL1
, MSR_K7_EVNTSEL2
, MSR_K7_EVNTSEL3
,
356 MSR_K7_PERFCTR0
, MSR_K7_PERFCTR1
, MSR_K7_PERFCTR2
, MSR_K7_PERFCTR3
,
358 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
359 MSR_F15H_PERF_CTL0
, MSR_F15H_PERF_CTL1
, MSR_F15H_PERF_CTL2
,
360 MSR_F15H_PERF_CTL3
, MSR_F15H_PERF_CTL4
, MSR_F15H_PERF_CTL5
,
361 MSR_F15H_PERF_CTR0
, MSR_F15H_PERF_CTR1
, MSR_F15H_PERF_CTR2
,
362 MSR_F15H_PERF_CTR3
, MSR_F15H_PERF_CTR4
, MSR_F15H_PERF_CTR5
,
364 MSR_AMD64_PERF_CNTR_GLOBAL_CTL
,
365 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS
,
366 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR
,
369 static u32 msrs_to_save
[ARRAY_SIZE(msrs_to_save_base
) +
370 ARRAY_SIZE(msrs_to_save_pmu
)];
371 static unsigned num_msrs_to_save
;
373 static const u32 emulated_msrs_all
[] = {
374 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
375 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
377 #ifdef CONFIG_KVM_HYPERV
378 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
379 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
380 HV_X64_MSR_TSC_FREQUENCY
, HV_X64_MSR_APIC_FREQUENCY
,
381 HV_X64_MSR_CRASH_P0
, HV_X64_MSR_CRASH_P1
, HV_X64_MSR_CRASH_P2
,
382 HV_X64_MSR_CRASH_P3
, HV_X64_MSR_CRASH_P4
, HV_X64_MSR_CRASH_CTL
,
385 HV_X64_MSR_VP_RUNTIME
,
387 HV_X64_MSR_STIMER0_CONFIG
,
388 HV_X64_MSR_VP_ASSIST_PAGE
,
389 HV_X64_MSR_REENLIGHTENMENT_CONTROL
, HV_X64_MSR_TSC_EMULATION_CONTROL
,
390 HV_X64_MSR_TSC_EMULATION_STATUS
, HV_X64_MSR_TSC_INVARIANT_CONTROL
,
391 HV_X64_MSR_SYNDBG_OPTIONS
,
392 HV_X64_MSR_SYNDBG_CONTROL
, HV_X64_MSR_SYNDBG_STATUS
,
393 HV_X64_MSR_SYNDBG_SEND_BUFFER
, HV_X64_MSR_SYNDBG_RECV_BUFFER
,
394 HV_X64_MSR_SYNDBG_PENDING_BUFFER
,
397 MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
398 MSR_KVM_PV_EOI_EN
, MSR_KVM_ASYNC_PF_INT
, MSR_KVM_ASYNC_PF_ACK
,
401 MSR_IA32_TSC_DEADLINE
,
402 MSR_IA32_ARCH_CAPABILITIES
,
403 MSR_IA32_PERF_CAPABILITIES
,
404 MSR_IA32_MISC_ENABLE
,
407 MSR_IA32_MCG_EXT_CTL
,
411 MSR_MISC_FEATURES_ENABLES
,
412 MSR_AMD64_VIRT_SPEC_CTRL
,
418 * KVM always supports the "true" VMX control MSRs, even if the host
419 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
420 * doesn't strictly require them to exist in the host (ignoring that
421 * KVM would refuse to load in the first place if the core set of MSRs
425 MSR_IA32_VMX_TRUE_PINBASED_CTLS
,
426 MSR_IA32_VMX_TRUE_PROCBASED_CTLS
,
427 MSR_IA32_VMX_TRUE_EXIT_CTLS
,
428 MSR_IA32_VMX_TRUE_ENTRY_CTLS
,
430 MSR_IA32_VMX_CR0_FIXED0
,
431 MSR_IA32_VMX_CR4_FIXED0
,
432 MSR_IA32_VMX_VMCS_ENUM
,
433 MSR_IA32_VMX_PROCBASED_CTLS2
,
434 MSR_IA32_VMX_EPT_VPID_CAP
,
438 MSR_KVM_POLL_CONTROL
,
441 static u32 emulated_msrs
[ARRAY_SIZE(emulated_msrs_all
)];
442 static unsigned num_emulated_msrs
;
445 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
446 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
447 * feature MSRs, but are handled separately to allow expedited lookups.
449 static const u32 msr_based_features_all_except_vmx
[] = {
452 MSR_IA32_ARCH_CAPABILITIES
,
453 MSR_IA32_PERF_CAPABILITIES
,
456 static u32 msr_based_features
[ARRAY_SIZE(msr_based_features_all_except_vmx
) +
457 (KVM_LAST_EMULATED_VMX_MSR
- KVM_FIRST_EMULATED_VMX_MSR
+ 1)];
458 static unsigned int num_msr_based_features
;
461 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
462 * patch, are immutable once the vCPU model is defined.
464 static bool kvm_is_immutable_feature_msr(u32 msr
)
468 if (msr
>= KVM_FIRST_EMULATED_VMX_MSR
&& msr
<= KVM_LAST_EMULATED_VMX_MSR
)
471 for (i
= 0; i
< ARRAY_SIZE(msr_based_features_all_except_vmx
); i
++) {
472 if (msr
== msr_based_features_all_except_vmx
[i
])
473 return msr
!= MSR_IA32_UCODE_REV
;
479 static bool kvm_is_advertised_msr(u32 msr_index
)
483 for (i
= 0; i
< num_msrs_to_save
; i
++) {
484 if (msrs_to_save
[i
] == msr_index
)
488 for (i
= 0; i
< num_emulated_msrs
; i
++) {
489 if (emulated_msrs
[i
] == msr_index
)
496 typedef int (*msr_access_t
)(struct kvm_vcpu
*vcpu
, u32 index
, u64
*data
,
497 bool host_initiated
);
499 static __always_inline
int kvm_do_msr_access(struct kvm_vcpu
*vcpu
, u32 msr
,
500 u64
*data
, bool host_initiated
,
501 enum kvm_msr_access rw
,
502 msr_access_t msr_access_fn
)
504 const char *op
= rw
== MSR_TYPE_W
? "wrmsr" : "rdmsr";
507 BUILD_BUG_ON(rw
!= MSR_TYPE_R
&& rw
!= MSR_TYPE_W
);
510 * Zero the data on read failures to avoid leaking stack data to the
511 * guest and/or userspace, e.g. if the failure is ignored below.
513 ret
= msr_access_fn(vcpu
, msr
, data
, host_initiated
);
514 if (ret
&& rw
== MSR_TYPE_R
)
517 if (ret
!= KVM_MSR_RET_UNSUPPORTED
)
521 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
522 * advertises to userspace, even if an MSR isn't fully supported.
523 * Simply check that @data is '0', which covers both the write '0' case
524 * and all reads (in which case @data is zeroed on failure; see above).
526 if (host_initiated
&& !*data
&& kvm_is_advertised_msr(msr
))
530 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
535 if (report_ignored_msrs
)
536 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op
, msr
, *data
);
541 static struct kmem_cache
*kvm_alloc_emulator_cache(void)
543 unsigned int useroffset
= offsetof(struct x86_emulate_ctxt
, src
);
544 unsigned int size
= sizeof(struct x86_emulate_ctxt
);
546 return kmem_cache_create_usercopy("x86_emulator", size
,
547 __alignof__(struct x86_emulate_ctxt
),
548 SLAB_ACCOUNT
, useroffset
,
549 size
- useroffset
, NULL
);
552 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
554 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
557 for (i
= 0; i
< ASYNC_PF_PER_VCPU
; i
++)
558 vcpu
->arch
.apf
.gfns
[i
] = ~0;
561 static void kvm_on_user_return(struct user_return_notifier
*urn
)
564 struct kvm_user_return_msrs
*msrs
565 = container_of(urn
, struct kvm_user_return_msrs
, urn
);
566 struct kvm_user_return_msr_values
*values
;
570 * Disabling irqs at this point since the following code could be
571 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
573 local_irq_save(flags
);
574 if (msrs
->registered
) {
575 msrs
->registered
= false;
576 user_return_notifier_unregister(urn
);
578 local_irq_restore(flags
);
579 for (slot
= 0; slot
< kvm_nr_uret_msrs
; ++slot
) {
580 values
= &msrs
->values
[slot
];
581 if (values
->host
!= values
->curr
) {
582 wrmsrl(kvm_uret_msrs_list
[slot
], values
->host
);
583 values
->curr
= values
->host
;
588 static int kvm_probe_user_return_msr(u32 msr
)
594 ret
= rdmsrl_safe(msr
, &val
);
597 ret
= wrmsrl_safe(msr
, val
);
603 int kvm_add_user_return_msr(u32 msr
)
605 BUG_ON(kvm_nr_uret_msrs
>= KVM_MAX_NR_USER_RETURN_MSRS
);
607 if (kvm_probe_user_return_msr(msr
))
610 kvm_uret_msrs_list
[kvm_nr_uret_msrs
] = msr
;
611 return kvm_nr_uret_msrs
++;
613 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr
);
615 int kvm_find_user_return_msr(u32 msr
)
619 for (i
= 0; i
< kvm_nr_uret_msrs
; ++i
) {
620 if (kvm_uret_msrs_list
[i
] == msr
)
625 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr
);
627 static void kvm_user_return_msr_cpu_online(void)
629 struct kvm_user_return_msrs
*msrs
= this_cpu_ptr(user_return_msrs
);
633 for (i
= 0; i
< kvm_nr_uret_msrs
; ++i
) {
634 rdmsrl_safe(kvm_uret_msrs_list
[i
], &value
);
635 msrs
->values
[i
].host
= value
;
636 msrs
->values
[i
].curr
= value
;
640 int kvm_set_user_return_msr(unsigned slot
, u64 value
, u64 mask
)
642 struct kvm_user_return_msrs
*msrs
= this_cpu_ptr(user_return_msrs
);
645 value
= (value
& mask
) | (msrs
->values
[slot
].host
& ~mask
);
646 if (value
== msrs
->values
[slot
].curr
)
648 err
= wrmsrl_safe(kvm_uret_msrs_list
[slot
], value
);
652 msrs
->values
[slot
].curr
= value
;
653 if (!msrs
->registered
) {
654 msrs
->urn
.on_user_return
= kvm_on_user_return
;
655 user_return_notifier_register(&msrs
->urn
);
656 msrs
->registered
= true;
660 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr
);
662 static void drop_user_return_notifiers(void)
664 struct kvm_user_return_msrs
*msrs
= this_cpu_ptr(user_return_msrs
);
666 if (msrs
->registered
)
667 kvm_on_user_return(&msrs
->urn
);
670 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
672 return vcpu
->arch
.apic_base
;
675 enum lapic_mode
kvm_get_apic_mode(struct kvm_vcpu
*vcpu
)
677 return kvm_apic_mode(kvm_get_apic_base(vcpu
));
679 EXPORT_SYMBOL_GPL(kvm_get_apic_mode
);
681 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
683 enum lapic_mode old_mode
= kvm_get_apic_mode(vcpu
);
684 enum lapic_mode new_mode
= kvm_apic_mode(msr_info
->data
);
685 u64 reserved_bits
= kvm_vcpu_reserved_gpa_bits_raw(vcpu
) | 0x2ff |
686 (guest_cpuid_has(vcpu
, X86_FEATURE_X2APIC
) ? 0 : X2APIC_ENABLE
);
688 if ((msr_info
->data
& reserved_bits
) != 0 || new_mode
== LAPIC_MODE_INVALID
)
690 if (!msr_info
->host_initiated
) {
691 if (old_mode
== LAPIC_MODE_X2APIC
&& new_mode
== LAPIC_MODE_XAPIC
)
693 if (old_mode
== LAPIC_MODE_DISABLED
&& new_mode
== LAPIC_MODE_X2APIC
)
697 kvm_lapic_set_base(vcpu
, msr_info
->data
);
698 kvm_recalculate_apic_map(vcpu
->kvm
);
703 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
705 * Hardware virtualization extension instructions may fault if a reboot turns
706 * off virtualization while processes are running. Usually after catching the
707 * fault we just panic; during reboot instead the instruction is ignored.
709 noinstr
void kvm_spurious_fault(void)
711 /* Fault while not rebooting. We want the trace. */
712 BUG_ON(!kvm_rebooting
);
714 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
716 #define EXCPT_BENIGN 0
717 #define EXCPT_CONTRIBUTORY 1
720 static int exception_class(int vector
)
730 return EXCPT_CONTRIBUTORY
;
737 #define EXCPT_FAULT 0
739 #define EXCPT_ABORT 2
740 #define EXCPT_INTERRUPT 3
743 static int exception_type(int vector
)
747 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
748 return EXCPT_INTERRUPT
;
753 * #DBs can be trap-like or fault-like, the caller must check other CPU
754 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
756 if (mask
& (1 << DB_VECTOR
))
759 if (mask
& ((1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
762 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
765 /* Reserved exceptions will result in fault */
769 void kvm_deliver_exception_payload(struct kvm_vcpu
*vcpu
,
770 struct kvm_queued_exception
*ex
)
772 if (!ex
->has_payload
)
775 switch (ex
->vector
) {
778 * "Certain debug exceptions may clear bit 0-3. The
779 * remaining contents of the DR6 register are never
780 * cleared by the processor".
782 vcpu
->arch
.dr6
&= ~DR_TRAP_BITS
;
784 * In order to reflect the #DB exception payload in guest
785 * dr6, three components need to be considered: active low
786 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
788 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
789 * In the target guest dr6:
790 * FIXED_1 bits should always be set.
791 * Active low bits should be cleared if 1-setting in payload.
792 * Active high bits should be set if 1-setting in payload.
794 * Note, the payload is compatible with the pending debug
795 * exceptions/exit qualification under VMX, that active_low bits
796 * are active high in payload.
797 * So they need to be flipped for DR6.
799 vcpu
->arch
.dr6
|= DR6_ACTIVE_LOW
;
800 vcpu
->arch
.dr6
|= ex
->payload
;
801 vcpu
->arch
.dr6
^= ex
->payload
& DR6_ACTIVE_LOW
;
804 * The #DB payload is defined as compatible with the 'pending
805 * debug exceptions' field under VMX, not DR6. While bit 12 is
806 * defined in the 'pending debug exceptions' field (enabled
807 * breakpoint), it is reserved and must be zero in DR6.
809 vcpu
->arch
.dr6
&= ~BIT(12);
812 vcpu
->arch
.cr2
= ex
->payload
;
816 ex
->has_payload
= false;
819 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload
);
821 static void kvm_queue_exception_vmexit(struct kvm_vcpu
*vcpu
, unsigned int vector
,
822 bool has_error_code
, u32 error_code
,
823 bool has_payload
, unsigned long payload
)
825 struct kvm_queued_exception
*ex
= &vcpu
->arch
.exception_vmexit
;
828 ex
->injected
= false;
830 ex
->has_error_code
= has_error_code
;
831 ex
->error_code
= error_code
;
832 ex
->has_payload
= has_payload
;
833 ex
->payload
= payload
;
836 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
837 unsigned nr
, bool has_error
, u32 error_code
,
838 bool has_payload
, unsigned long payload
, bool reinject
)
843 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
846 * If the exception is destined for L2 and isn't being reinjected,
847 * morph it to a VM-Exit if L1 wants to intercept the exception. A
848 * previously injected exception is not checked because it was checked
849 * when it was original queued, and re-checking is incorrect if _L1_
850 * injected the exception, in which case it's exempt from interception.
852 if (!reinject
&& is_guest_mode(vcpu
) &&
853 kvm_x86_ops
.nested_ops
->is_exception_vmexit(vcpu
, nr
, error_code
)) {
854 kvm_queue_exception_vmexit(vcpu
, nr
, has_error
, error_code
,
855 has_payload
, payload
);
859 if (!vcpu
->arch
.exception
.pending
&& !vcpu
->arch
.exception
.injected
) {
863 * On VM-Entry, an exception can be pending if and only
864 * if event injection was blocked by nested_run_pending.
865 * In that case, however, vcpu_enter_guest() requests an
866 * immediate exit, and the guest shouldn't proceed far
867 * enough to need reinjection.
869 WARN_ON_ONCE(kvm_is_exception_pending(vcpu
));
870 vcpu
->arch
.exception
.injected
= true;
871 if (WARN_ON_ONCE(has_payload
)) {
873 * A reinjected event has already
874 * delivered its payload.
880 vcpu
->arch
.exception
.pending
= true;
881 vcpu
->arch
.exception
.injected
= false;
883 vcpu
->arch
.exception
.has_error_code
= has_error
;
884 vcpu
->arch
.exception
.vector
= nr
;
885 vcpu
->arch
.exception
.error_code
= error_code
;
886 vcpu
->arch
.exception
.has_payload
= has_payload
;
887 vcpu
->arch
.exception
.payload
= payload
;
888 if (!is_guest_mode(vcpu
))
889 kvm_deliver_exception_payload(vcpu
,
890 &vcpu
->arch
.exception
);
894 /* to check exception */
895 prev_nr
= vcpu
->arch
.exception
.vector
;
896 if (prev_nr
== DF_VECTOR
) {
897 /* triple fault -> shutdown */
898 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
901 class1
= exception_class(prev_nr
);
902 class2
= exception_class(nr
);
903 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
) ||
904 (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
906 * Synthesize #DF. Clear the previously injected or pending
907 * exception so as not to incorrectly trigger shutdown.
909 vcpu
->arch
.exception
.injected
= false;
910 vcpu
->arch
.exception
.pending
= false;
912 kvm_queue_exception_e(vcpu
, DF_VECTOR
, 0);
914 /* replace previous exception with a new one in a hope
915 that instruction re-execution will regenerate lost
921 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
923 kvm_multiple_exception(vcpu
, nr
, false, 0, false, 0, false);
925 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
927 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
929 kvm_multiple_exception(vcpu
, nr
, false, 0, false, 0, true);
931 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
933 void kvm_queue_exception_p(struct kvm_vcpu
*vcpu
, unsigned nr
,
934 unsigned long payload
)
936 kvm_multiple_exception(vcpu
, nr
, false, 0, true, payload
, false);
938 EXPORT_SYMBOL_GPL(kvm_queue_exception_p
);
940 static void kvm_queue_exception_e_p(struct kvm_vcpu
*vcpu
, unsigned nr
,
941 u32 error_code
, unsigned long payload
)
943 kvm_multiple_exception(vcpu
, nr
, true, error_code
,
944 true, payload
, false);
947 int kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
950 kvm_inject_gp(vcpu
, 0);
952 return kvm_skip_emulated_instruction(vcpu
);
956 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
958 static int complete_emulated_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
961 kvm_inject_gp(vcpu
, 0);
965 return kvm_emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
| EMULTYPE_SKIP
|
966 EMULTYPE_COMPLETE_USER_EXIT
);
969 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
971 ++vcpu
->stat
.pf_guest
;
974 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
975 * whether or not L1 wants to intercept "regular" #PF.
977 if (is_guest_mode(vcpu
) && fault
->async_page_fault
)
978 kvm_queue_exception_vmexit(vcpu
, PF_VECTOR
,
979 true, fault
->error_code
,
980 true, fault
->address
);
982 kvm_queue_exception_e_p(vcpu
, PF_VECTOR
, fault
->error_code
,
986 void kvm_inject_emulated_page_fault(struct kvm_vcpu
*vcpu
,
987 struct x86_exception
*fault
)
989 struct kvm_mmu
*fault_mmu
;
990 WARN_ON_ONCE(fault
->vector
!= PF_VECTOR
);
992 fault_mmu
= fault
->nested_page_fault
? vcpu
->arch
.mmu
:
996 * Invalidate the TLB entry for the faulting address, if it exists,
997 * else the access will fault indefinitely (and to emulate hardware).
999 if ((fault
->error_code
& PFERR_PRESENT_MASK
) &&
1000 !(fault
->error_code
& PFERR_RSVD_MASK
))
1001 kvm_mmu_invalidate_addr(vcpu
, fault_mmu
, fault
->address
,
1002 KVM_MMU_ROOT_CURRENT
);
1004 fault_mmu
->inject_page_fault(vcpu
, fault
);
1006 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault
);
1008 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
1010 atomic_inc(&vcpu
->arch
.nmi_queued
);
1011 kvm_make_request(KVM_REQ_NMI
, vcpu
);
1014 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
1016 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false, 0, false);
1018 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
1020 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
1022 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false, 0, true);
1024 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
1027 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
1028 * a #GP and return false.
1030 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
1032 if (kvm_x86_call(get_cpl
)(vcpu
) <= required_cpl
)
1034 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
1038 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
1040 if ((dr
!= 4 && dr
!= 5) || !kvm_is_cr4_bit_set(vcpu
, X86_CR4_DE
))
1043 kvm_queue_exception(vcpu
, UD_VECTOR
);
1046 EXPORT_SYMBOL_GPL(kvm_require_dr
);
1048 static inline u64
pdptr_rsvd_bits(struct kvm_vcpu
*vcpu
)
1050 return vcpu
->arch
.reserved_gpa_bits
| rsvd_bits(5, 8) | rsvd_bits(1, 2);
1054 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1056 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
1058 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
1059 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
1063 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
1066 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1069 real_gpa
= kvm_translate_gpa(vcpu
, mmu
, gfn_to_gpa(pdpt_gfn
),
1070 PFERR_USER_MASK
| PFERR_WRITE_MASK
, NULL
);
1071 if (real_gpa
== INVALID_GPA
)
1074 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1075 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa_to_gfn(real_gpa
), pdpte
,
1076 cr3
& GENMASK(11, 5), sizeof(pdpte
));
1080 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
1081 if ((pdpte
[i
] & PT_PRESENT_MASK
) &&
1082 (pdpte
[i
] & pdptr_rsvd_bits(vcpu
))) {
1088 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1089 * Shadow page roots need to be reconstructed instead.
1091 if (!tdp_enabled
&& memcmp(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
)))
1092 kvm_mmu_free_roots(vcpu
->kvm
, mmu
, KVM_MMU_ROOT_CURRENT
);
1094 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
1095 kvm_register_mark_dirty(vcpu
, VCPU_EXREG_PDPTR
);
1096 kvm_make_request(KVM_REQ_LOAD_MMU_PGD
, vcpu
);
1097 vcpu
->arch
.pdptrs_from_userspace
= false;
1101 EXPORT_SYMBOL_GPL(load_pdptrs
);
1103 static bool kvm_is_valid_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1105 #ifdef CONFIG_X86_64
1106 if (cr0
& 0xffffffff00000000UL
)
1110 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
1113 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
1116 return kvm_x86_call(is_valid_cr0
)(vcpu
, cr0
);
1119 void kvm_post_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long old_cr0
, unsigned long cr0
)
1122 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1123 * indirect shadow MMUs. If paging is disabled, no updates are needed
1124 * as there are no permission bits to emulate. If TDP is enabled, the
1125 * MMU's metadata needs to be updated, e.g. so that emulating guest
1126 * translations does the right thing, but there's no need to unload the
1127 * root as CR0.WP doesn't affect SPTEs.
1129 if ((cr0
^ old_cr0
) == X86_CR0_WP
) {
1130 if (!(cr0
& X86_CR0_PG
))
1139 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
1140 kvm_clear_async_pf_completion_queue(vcpu
);
1141 kvm_async_pf_hash_reset(vcpu
);
1144 * Clearing CR0.PG is defined to flush the TLB from the guest's
1147 if (!(cr0
& X86_CR0_PG
))
1148 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST
, vcpu
);
1151 if ((cr0
^ old_cr0
) & KVM_MMU_CR0_ROLE_BITS
)
1152 kvm_mmu_reset_context(vcpu
);
1154 EXPORT_SYMBOL_GPL(kvm_post_set_cr0
);
1156 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1158 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
1160 if (!kvm_is_valid_cr0(vcpu
, cr0
))
1165 /* Write to CR0 reserved bits are ignored, even on Intel. */
1166 cr0
&= ~CR0_RESERVED_BITS
;
1168 #ifdef CONFIG_X86_64
1169 if ((vcpu
->arch
.efer
& EFER_LME
) && !is_paging(vcpu
) &&
1170 (cr0
& X86_CR0_PG
)) {
1175 kvm_x86_call(get_cs_db_l_bits
)(vcpu
, &cs_db
, &cs_l
);
1180 if (!(vcpu
->arch
.efer
& EFER_LME
) && (cr0
& X86_CR0_PG
) &&
1181 is_pae(vcpu
) && ((cr0
^ old_cr0
) & X86_CR0_PDPTR_BITS
) &&
1182 !load_pdptrs(vcpu
, kvm_read_cr3(vcpu
)))
1185 if (!(cr0
& X86_CR0_PG
) &&
1186 (is_64_bit_mode(vcpu
) || kvm_is_cr4_bit_set(vcpu
, X86_CR4_PCIDE
)))
1189 kvm_x86_call(set_cr0
)(vcpu
, cr0
);
1191 kvm_post_set_cr0(vcpu
, old_cr0
, cr0
);
1195 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
1197 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
1199 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
1201 EXPORT_SYMBOL_GPL(kvm_lmsw
);
1203 void kvm_load_guest_xsave_state(struct kvm_vcpu
*vcpu
)
1205 if (vcpu
->arch
.guest_state_protected
)
1208 if (kvm_is_cr4_bit_set(vcpu
, X86_CR4_OSXSAVE
)) {
1210 if (vcpu
->arch
.xcr0
!= kvm_host
.xcr0
)
1211 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
1213 if (guest_can_use(vcpu
, X86_FEATURE_XSAVES
) &&
1214 vcpu
->arch
.ia32_xss
!= kvm_host
.xss
)
1215 wrmsrl(MSR_IA32_XSS
, vcpu
->arch
.ia32_xss
);
1218 if (cpu_feature_enabled(X86_FEATURE_PKU
) &&
1219 vcpu
->arch
.pkru
!= vcpu
->arch
.host_pkru
&&
1220 ((vcpu
->arch
.xcr0
& XFEATURE_MASK_PKRU
) ||
1221 kvm_is_cr4_bit_set(vcpu
, X86_CR4_PKE
)))
1222 write_pkru(vcpu
->arch
.pkru
);
1224 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state
);
1226 void kvm_load_host_xsave_state(struct kvm_vcpu
*vcpu
)
1228 if (vcpu
->arch
.guest_state_protected
)
1231 if (cpu_feature_enabled(X86_FEATURE_PKU
) &&
1232 ((vcpu
->arch
.xcr0
& XFEATURE_MASK_PKRU
) ||
1233 kvm_is_cr4_bit_set(vcpu
, X86_CR4_PKE
))) {
1234 vcpu
->arch
.pkru
= rdpkru();
1235 if (vcpu
->arch
.pkru
!= vcpu
->arch
.host_pkru
)
1236 write_pkru(vcpu
->arch
.host_pkru
);
1239 if (kvm_is_cr4_bit_set(vcpu
, X86_CR4_OSXSAVE
)) {
1241 if (vcpu
->arch
.xcr0
!= kvm_host
.xcr0
)
1242 xsetbv(XCR_XFEATURE_ENABLED_MASK
, kvm_host
.xcr0
);
1244 if (guest_can_use(vcpu
, X86_FEATURE_XSAVES
) &&
1245 vcpu
->arch
.ia32_xss
!= kvm_host
.xss
)
1246 wrmsrl(MSR_IA32_XSS
, kvm_host
.xss
);
1250 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state
);
1252 #ifdef CONFIG_X86_64
1253 static inline u64
kvm_guest_supported_xfd(struct kvm_vcpu
*vcpu
)
1255 return vcpu
->arch
.guest_supported_xcr0
& XFEATURE_MASK_USER_DYNAMIC
;
1259 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
1262 u64 old_xcr0
= vcpu
->arch
.xcr0
;
1265 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1266 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
1268 if (!(xcr0
& XFEATURE_MASK_FP
))
1270 if ((xcr0
& XFEATURE_MASK_YMM
) && !(xcr0
& XFEATURE_MASK_SSE
))
1274 * Do not allow the guest to set bits that we do not support
1275 * saving. However, xcr0 bit 0 is always set, even if the
1276 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1278 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FP
;
1279 if (xcr0
& ~valid_bits
)
1282 if ((!(xcr0
& XFEATURE_MASK_BNDREGS
)) !=
1283 (!(xcr0
& XFEATURE_MASK_BNDCSR
)))
1286 if (xcr0
& XFEATURE_MASK_AVX512
) {
1287 if (!(xcr0
& XFEATURE_MASK_YMM
))
1289 if ((xcr0
& XFEATURE_MASK_AVX512
) != XFEATURE_MASK_AVX512
)
1293 if ((xcr0
& XFEATURE_MASK_XTILE
) &&
1294 ((xcr0
& XFEATURE_MASK_XTILE
) != XFEATURE_MASK_XTILE
))
1297 vcpu
->arch
.xcr0
= xcr0
;
1299 if ((xcr0
^ old_xcr0
) & XFEATURE_MASK_EXTEND
)
1300 kvm_update_cpuid_runtime(vcpu
);
1304 int kvm_emulate_xsetbv(struct kvm_vcpu
*vcpu
)
1306 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1307 if (kvm_x86_call(get_cpl
)(vcpu
) != 0 ||
1308 __kvm_set_xcr(vcpu
, kvm_rcx_read(vcpu
), kvm_read_edx_eax(vcpu
))) {
1309 kvm_inject_gp(vcpu
, 0);
1313 return kvm_skip_emulated_instruction(vcpu
);
1315 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv
);
1317 bool __kvm_is_valid_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1319 if (cr4
& cr4_reserved_bits
)
1322 if (cr4
& vcpu
->arch
.cr4_guest_rsvd_bits
)
1327 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4
);
1329 static bool kvm_is_valid_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1331 return __kvm_is_valid_cr4(vcpu
, cr4
) &&
1332 kvm_x86_call(is_valid_cr4
)(vcpu
, cr4
);
1335 void kvm_post_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long old_cr4
, unsigned long cr4
)
1337 if ((cr4
^ old_cr4
) & KVM_MMU_CR4_ROLE_BITS
)
1338 kvm_mmu_reset_context(vcpu
);
1341 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1342 * according to the SDM; however, stale prev_roots could be reused
1343 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1344 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1345 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1349 (cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
))
1350 kvm_mmu_unload(vcpu
);
1353 * The TLB has to be flushed for all PCIDs if any of the following
1354 * (architecturally required) changes happen:
1355 * - CR4.PCIDE is changed from 1 to 0
1356 * - CR4.PGE is toggled
1358 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1360 if (((cr4
^ old_cr4
) & X86_CR4_PGE
) ||
1361 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
1362 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST
, vcpu
);
1365 * The TLB has to be flushed for the current PCID if any of the
1366 * following (architecturally required) changes happen:
1367 * - CR4.SMEP is changed from 0 to 1
1368 * - CR4.PAE is toggled
1370 else if (((cr4
^ old_cr4
) & X86_CR4_PAE
) ||
1371 ((cr4
& X86_CR4_SMEP
) && !(old_cr4
& X86_CR4_SMEP
)))
1372 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT
, vcpu
);
1375 EXPORT_SYMBOL_GPL(kvm_post_set_cr4
);
1377 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1379 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
1381 if (!kvm_is_valid_cr4(vcpu
, cr4
))
1384 if (is_long_mode(vcpu
)) {
1385 if (!(cr4
& X86_CR4_PAE
))
1387 if ((cr4
^ old_cr4
) & X86_CR4_LA57
)
1389 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
1390 && ((cr4
^ old_cr4
) & X86_CR4_PDPTR_BITS
)
1391 && !load_pdptrs(vcpu
, kvm_read_cr3(vcpu
)))
1394 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
1395 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1396 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
1400 kvm_x86_call(set_cr4
)(vcpu
, cr4
);
1402 kvm_post_set_cr4(vcpu
, old_cr4
, cr4
);
1406 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
1408 static void kvm_invalidate_pcid(struct kvm_vcpu
*vcpu
, unsigned long pcid
)
1410 struct kvm_mmu
*mmu
= vcpu
->arch
.mmu
;
1411 unsigned long roots_to_free
= 0;
1415 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1416 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1417 * also via the emulator. KVM's TDP page tables are not in the scope of
1418 * the invalidation, but the guest's TLB entries need to be flushed as
1419 * the CPU may have cached entries in its TLB for the target PCID.
1421 if (unlikely(tdp_enabled
)) {
1422 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST
, vcpu
);
1427 * If neither the current CR3 nor any of the prev_roots use the given
1428 * PCID, then nothing needs to be done here because a resync will
1429 * happen anyway before switching to any other CR3.
1431 if (kvm_get_active_pcid(vcpu
) == pcid
) {
1432 kvm_make_request(KVM_REQ_MMU_SYNC
, vcpu
);
1433 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT
, vcpu
);
1437 * If PCID is disabled, there is no need to free prev_roots even if the
1438 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1441 if (!kvm_is_cr4_bit_set(vcpu
, X86_CR4_PCIDE
))
1444 for (i
= 0; i
< KVM_MMU_NUM_PREV_ROOTS
; i
++)
1445 if (kvm_get_pcid(vcpu
, mmu
->prev_roots
[i
].pgd
) == pcid
)
1446 roots_to_free
|= KVM_MMU_ROOT_PREVIOUS(i
);
1448 kvm_mmu_free_roots(vcpu
->kvm
, mmu
, roots_to_free
);
1451 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
1453 bool skip_tlb_flush
= false;
1454 unsigned long pcid
= 0;
1455 #ifdef CONFIG_X86_64
1456 if (kvm_is_cr4_bit_set(vcpu
, X86_CR4_PCIDE
)) {
1457 skip_tlb_flush
= cr3
& X86_CR3_PCID_NOFLUSH
;
1458 cr3
&= ~X86_CR3_PCID_NOFLUSH
;
1459 pcid
= cr3
& X86_CR3_PCID_MASK
;
1463 /* PDPTRs are always reloaded for PAE paging. */
1464 if (cr3
== kvm_read_cr3(vcpu
) && !is_pae_paging(vcpu
))
1465 goto handle_tlb_flush
;
1468 * Do not condition the GPA check on long mode, this helper is used to
1469 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1470 * the current vCPU mode is accurate.
1472 if (!kvm_vcpu_is_legal_cr3(vcpu
, cr3
))
1475 if (is_pae_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
))
1478 if (cr3
!= kvm_read_cr3(vcpu
))
1479 kvm_mmu_new_pgd(vcpu
, cr3
);
1481 vcpu
->arch
.cr3
= cr3
;
1482 kvm_register_mark_dirty(vcpu
, VCPU_EXREG_CR3
);
1483 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1487 * A load of CR3 that flushes the TLB flushes only the current PCID,
1488 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1489 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1490 * and it's impossible to use a non-zero PCID when PCID is disabled,
1491 * i.e. only PCID=0 can be relevant.
1493 if (!skip_tlb_flush
)
1494 kvm_invalidate_pcid(vcpu
, pcid
);
1498 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
1500 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
1502 if (cr8
& CR8_RESERVED_BITS
)
1504 if (lapic_in_kernel(vcpu
))
1505 kvm_lapic_set_tpr(vcpu
, cr8
);
1507 vcpu
->arch
.cr8
= cr8
;
1510 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
1512 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
1514 if (lapic_in_kernel(vcpu
))
1515 return kvm_lapic_get_cr8(vcpu
);
1517 return vcpu
->arch
.cr8
;
1519 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
1521 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
1525 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
1526 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
1527 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
1531 void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
1535 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1536 dr7
= vcpu
->arch
.guest_debug_dr7
;
1538 dr7
= vcpu
->arch
.dr7
;
1539 kvm_x86_call(set_dr7
)(vcpu
, dr7
);
1540 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
1541 if (dr7
& DR7_BP_EN_MASK
)
1542 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
1544 EXPORT_SYMBOL_GPL(kvm_update_dr7
);
1546 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
1548 u64 fixed
= DR6_FIXED_1
;
1550 if (!guest_cpuid_has(vcpu
, X86_FEATURE_RTM
))
1553 if (!guest_cpuid_has(vcpu
, X86_FEATURE_BUS_LOCK_DETECT
))
1554 fixed
|= DR6_BUS_LOCK
;
1558 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
1560 size_t size
= ARRAY_SIZE(vcpu
->arch
.db
);
1564 vcpu
->arch
.db
[array_index_nospec(dr
, size
)] = val
;
1565 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
1566 vcpu
->arch
.eff_db
[dr
] = val
;
1570 if (!kvm_dr6_valid(val
))
1572 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
1576 if (!kvm_dr7_valid(val
))
1578 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
1579 kvm_update_dr7(vcpu
);
1585 EXPORT_SYMBOL_GPL(kvm_set_dr
);
1587 unsigned long kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
)
1589 size_t size
= ARRAY_SIZE(vcpu
->arch
.db
);
1593 return vcpu
->arch
.db
[array_index_nospec(dr
, size
)];
1596 return vcpu
->arch
.dr6
;
1599 return vcpu
->arch
.dr7
;
1602 EXPORT_SYMBOL_GPL(kvm_get_dr
);
1604 int kvm_emulate_rdpmc(struct kvm_vcpu
*vcpu
)
1606 u32 ecx
= kvm_rcx_read(vcpu
);
1609 if (kvm_pmu_rdpmc(vcpu
, ecx
, &data
)) {
1610 kvm_inject_gp(vcpu
, 0);
1614 kvm_rax_write(vcpu
, (u32
)data
);
1615 kvm_rdx_write(vcpu
, data
>> 32);
1616 return kvm_skip_emulated_instruction(vcpu
);
1618 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc
);
1621 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1622 * does not yet virtualize. These include:
1623 * 10 - MISC_PACKAGE_CTRLS
1624 * 11 - ENERGY_FILTERING_CTL
1626 * 18 - FB_CLEAR_CTRL
1627 * 21 - XAPIC_DISABLE_STATUS
1628 * 23 - OVERCLOCKING_STATUS
1631 #define KVM_SUPPORTED_ARCH_CAP \
1632 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1633 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1634 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1635 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1636 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1637 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1639 static u64
kvm_get_arch_capabilities(void)
1641 u64 data
= kvm_host
.arch_capabilities
& KVM_SUPPORTED_ARCH_CAP
;
1644 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1645 * the nested hypervisor runs with NX huge pages. If it is not,
1646 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1647 * L1 guests, so it need not worry about its own (L2) guests.
1649 data
|= ARCH_CAP_PSCHANGE_MC_NO
;
1652 * If we're doing cache flushes (either "always" or "cond")
1653 * we will do one whenever the guest does a vmlaunch/vmresume.
1654 * If an outer hypervisor is doing the cache flush for us
1655 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1656 * capability to the guest too, and if EPT is disabled we're not
1657 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1658 * require a nested hypervisor to do a flush of its own.
1660 if (l1tf_vmx_mitigation
!= VMENTER_L1D_FLUSH_NEVER
)
1661 data
|= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH
;
1663 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN
))
1664 data
|= ARCH_CAP_RDCL_NO
;
1665 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS
))
1666 data
|= ARCH_CAP_SSB_NO
;
1667 if (!boot_cpu_has_bug(X86_BUG_MDS
))
1668 data
|= ARCH_CAP_MDS_NO
;
1669 if (!boot_cpu_has_bug(X86_BUG_RFDS
))
1670 data
|= ARCH_CAP_RFDS_NO
;
1672 if (!boot_cpu_has(X86_FEATURE_RTM
)) {
1674 * If RTM=0 because the kernel has disabled TSX, the host might
1675 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1676 * and therefore knows that there cannot be TAA) but keep
1677 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1678 * and we want to allow migrating those guests to tsx=off hosts.
1680 data
&= ~ARCH_CAP_TAA_NO
;
1681 } else if (!boot_cpu_has_bug(X86_BUG_TAA
)) {
1682 data
|= ARCH_CAP_TAA_NO
;
1685 * Nothing to do here; we emulate TSX_CTRL if present on the
1686 * host so the guest can choose between disabling TSX or
1687 * using VERW to clear CPU buffers.
1691 if (!boot_cpu_has_bug(X86_BUG_GDS
) || gds_ucode_mitigated())
1692 data
|= ARCH_CAP_GDS_NO
;
1697 static int kvm_get_feature_msr(struct kvm_vcpu
*vcpu
, u32 index
, u64
*data
,
1698 bool host_initiated
)
1700 WARN_ON_ONCE(!host_initiated
);
1703 case MSR_IA32_ARCH_CAPABILITIES
:
1704 *data
= kvm_get_arch_capabilities();
1706 case MSR_IA32_PERF_CAPABILITIES
:
1707 *data
= kvm_caps
.supported_perf_cap
;
1709 case MSR_IA32_UCODE_REV
:
1710 rdmsrl_safe(index
, data
);
1713 return kvm_x86_call(get_feature_msr
)(index
, data
);
1718 static int do_get_feature_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1720 return kvm_do_msr_access(vcpu
, index
, data
, true, MSR_TYPE_R
,
1721 kvm_get_feature_msr
);
1724 static bool __kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1726 if (efer
& EFER_AUTOIBRS
&& !guest_cpuid_has(vcpu
, X86_FEATURE_AUTOIBRS
))
1729 if (efer
& EFER_FFXSR
&& !guest_cpuid_has(vcpu
, X86_FEATURE_FXSR_OPT
))
1732 if (efer
& EFER_SVME
&& !guest_cpuid_has(vcpu
, X86_FEATURE_SVM
))
1735 if (efer
& (EFER_LME
| EFER_LMA
) &&
1736 !guest_cpuid_has(vcpu
, X86_FEATURE_LM
))
1739 if (efer
& EFER_NX
&& !guest_cpuid_has(vcpu
, X86_FEATURE_NX
))
1745 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1747 if (efer
& efer_reserved_bits
)
1750 return __kvm_valid_efer(vcpu
, efer
);
1752 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
1754 static int set_efer(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
1756 u64 old_efer
= vcpu
->arch
.efer
;
1757 u64 efer
= msr_info
->data
;
1760 if (efer
& efer_reserved_bits
)
1763 if (!msr_info
->host_initiated
) {
1764 if (!__kvm_valid_efer(vcpu
, efer
))
1767 if (is_paging(vcpu
) &&
1768 (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
1773 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
1775 r
= kvm_x86_call(set_efer
)(vcpu
, efer
);
1781 if ((efer
^ old_efer
) & KVM_MMU_EFER_ROLE_BITS
)
1782 kvm_mmu_reset_context(vcpu
);
1784 if (!static_cpu_has(X86_FEATURE_XSAVES
) &&
1786 kvm_hv_xsaves_xsavec_maybe_warn(vcpu
);
1791 void kvm_enable_efer_bits(u64 mask
)
1793 efer_reserved_bits
&= ~mask
;
1795 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1797 bool kvm_msr_allowed(struct kvm_vcpu
*vcpu
, u32 index
, u32 type
)
1799 struct kvm_x86_msr_filter
*msr_filter
;
1800 struct msr_bitmap_range
*ranges
;
1801 struct kvm
*kvm
= vcpu
->kvm
;
1806 /* x2APIC MSRs do not support filtering. */
1807 if (index
>= 0x800 && index
<= 0x8ff)
1810 idx
= srcu_read_lock(&kvm
->srcu
);
1812 msr_filter
= srcu_dereference(kvm
->arch
.msr_filter
, &kvm
->srcu
);
1818 allowed
= msr_filter
->default_allow
;
1819 ranges
= msr_filter
->ranges
;
1821 for (i
= 0; i
< msr_filter
->count
; i
++) {
1822 u32 start
= ranges
[i
].base
;
1823 u32 end
= start
+ ranges
[i
].nmsrs
;
1824 u32 flags
= ranges
[i
].flags
;
1825 unsigned long *bitmap
= ranges
[i
].bitmap
;
1827 if ((index
>= start
) && (index
< end
) && (flags
& type
)) {
1828 allowed
= test_bit(index
- start
, bitmap
);
1834 srcu_read_unlock(&kvm
->srcu
, idx
);
1838 EXPORT_SYMBOL_GPL(kvm_msr_allowed
);
1841 * Write @data into the MSR specified by @index. Select MSR specific fault
1842 * checks are bypassed if @host_initiated is %true.
1843 * Returns 0 on success, non-0 otherwise.
1844 * Assumes vcpu_load() was already called.
1846 static int __kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 index
, u64 data
,
1847 bool host_initiated
)
1849 struct msr_data msr
;
1854 case MSR_KERNEL_GS_BASE
:
1857 if (is_noncanonical_address(data
, vcpu
))
1860 case MSR_IA32_SYSENTER_EIP
:
1861 case MSR_IA32_SYSENTER_ESP
:
1863 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1864 * non-canonical address is written on Intel but not on
1865 * AMD (which ignores the top 32-bits, because it does
1866 * not implement 64-bit SYSENTER).
1868 * 64-bit code should hence be able to write a non-canonical
1869 * value on AMD. Making the address canonical ensures that
1870 * vmentry does not fail on Intel after writing a non-canonical
1871 * value, and that something deterministic happens if the guest
1872 * invokes 64-bit SYSENTER.
1874 data
= __canonical_address(data
, vcpu_virt_addr_bits(vcpu
));
1877 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX
))
1880 if (!host_initiated
&&
1881 !guest_cpuid_has(vcpu
, X86_FEATURE_RDTSCP
) &&
1882 !guest_cpuid_has(vcpu
, X86_FEATURE_RDPID
))
1886 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1887 * incomplete and conflicting architectural behavior. Current
1888 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1889 * reserved and always read as zeros. Enforce Intel's reserved
1890 * bits check if the guest CPU is Intel compatible, otherwise
1891 * clear the bits. This ensures cross-vendor migration will
1892 * provide consistent behavior for the guest.
1894 if (guest_cpuid_is_intel_compatible(vcpu
) && (data
>> 32) != 0)
1903 msr
.host_initiated
= host_initiated
;
1905 return kvm_x86_call(set_msr
)(vcpu
, &msr
);
1908 static int _kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 index
, u64
*data
,
1909 bool host_initiated
)
1911 return __kvm_set_msr(vcpu
, index
, *data
, host_initiated
);
1914 static int kvm_set_msr_ignored_check(struct kvm_vcpu
*vcpu
,
1915 u32 index
, u64 data
, bool host_initiated
)
1917 return kvm_do_msr_access(vcpu
, index
, &data
, host_initiated
, MSR_TYPE_W
,
1922 * Read the MSR specified by @index into @data. Select MSR specific fault
1923 * checks are bypassed if @host_initiated is %true.
1924 * Returns 0 on success, non-0 otherwise.
1925 * Assumes vcpu_load() was already called.
1927 int __kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 index
, u64
*data
,
1928 bool host_initiated
)
1930 struct msr_data msr
;
1935 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX
))
1938 if (!host_initiated
&&
1939 !guest_cpuid_has(vcpu
, X86_FEATURE_RDTSCP
) &&
1940 !guest_cpuid_has(vcpu
, X86_FEATURE_RDPID
))
1946 msr
.host_initiated
= host_initiated
;
1948 ret
= kvm_x86_call(get_msr
)(vcpu
, &msr
);
1954 static int kvm_get_msr_ignored_check(struct kvm_vcpu
*vcpu
,
1955 u32 index
, u64
*data
, bool host_initiated
)
1957 return kvm_do_msr_access(vcpu
, index
, data
, host_initiated
, MSR_TYPE_R
,
1961 int kvm_get_msr_with_filter(struct kvm_vcpu
*vcpu
, u32 index
, u64
*data
)
1963 if (!kvm_msr_allowed(vcpu
, index
, KVM_MSR_FILTER_READ
))
1964 return KVM_MSR_RET_FILTERED
;
1965 return kvm_get_msr_ignored_check(vcpu
, index
, data
, false);
1967 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter
);
1969 int kvm_set_msr_with_filter(struct kvm_vcpu
*vcpu
, u32 index
, u64 data
)
1971 if (!kvm_msr_allowed(vcpu
, index
, KVM_MSR_FILTER_WRITE
))
1972 return KVM_MSR_RET_FILTERED
;
1973 return kvm_set_msr_ignored_check(vcpu
, index
, data
, false);
1975 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter
);
1977 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 index
, u64
*data
)
1979 return kvm_get_msr_ignored_check(vcpu
, index
, data
, false);
1981 EXPORT_SYMBOL_GPL(kvm_get_msr
);
1983 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 index
, u64 data
)
1985 return kvm_set_msr_ignored_check(vcpu
, index
, data
, false);
1987 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1989 static void complete_userspace_rdmsr(struct kvm_vcpu
*vcpu
)
1991 if (!vcpu
->run
->msr
.error
) {
1992 kvm_rax_write(vcpu
, (u32
)vcpu
->run
->msr
.data
);
1993 kvm_rdx_write(vcpu
, vcpu
->run
->msr
.data
>> 32);
1997 static int complete_emulated_msr_access(struct kvm_vcpu
*vcpu
)
1999 return complete_emulated_insn_gp(vcpu
, vcpu
->run
->msr
.error
);
2002 static int complete_emulated_rdmsr(struct kvm_vcpu
*vcpu
)
2004 complete_userspace_rdmsr(vcpu
);
2005 return complete_emulated_msr_access(vcpu
);
2008 static int complete_fast_msr_access(struct kvm_vcpu
*vcpu
)
2010 return kvm_x86_call(complete_emulated_msr
)(vcpu
, vcpu
->run
->msr
.error
);
2013 static int complete_fast_rdmsr(struct kvm_vcpu
*vcpu
)
2015 complete_userspace_rdmsr(vcpu
);
2016 return complete_fast_msr_access(vcpu
);
2019 static u64
kvm_msr_reason(int r
)
2022 case KVM_MSR_RET_UNSUPPORTED
:
2023 return KVM_MSR_EXIT_REASON_UNKNOWN
;
2024 case KVM_MSR_RET_FILTERED
:
2025 return KVM_MSR_EXIT_REASON_FILTER
;
2027 return KVM_MSR_EXIT_REASON_INVAL
;
2031 static int kvm_msr_user_space(struct kvm_vcpu
*vcpu
, u32 index
,
2032 u32 exit_reason
, u64 data
,
2033 int (*completion
)(struct kvm_vcpu
*vcpu
),
2036 u64 msr_reason
= kvm_msr_reason(r
);
2038 /* Check if the user wanted to know about this MSR fault */
2039 if (!(vcpu
->kvm
->arch
.user_space_msr_mask
& msr_reason
))
2042 vcpu
->run
->exit_reason
= exit_reason
;
2043 vcpu
->run
->msr
.error
= 0;
2044 memset(vcpu
->run
->msr
.pad
, 0, sizeof(vcpu
->run
->msr
.pad
));
2045 vcpu
->run
->msr
.reason
= msr_reason
;
2046 vcpu
->run
->msr
.index
= index
;
2047 vcpu
->run
->msr
.data
= data
;
2048 vcpu
->arch
.complete_userspace_io
= completion
;
2053 int kvm_emulate_rdmsr(struct kvm_vcpu
*vcpu
)
2055 u32 ecx
= kvm_rcx_read(vcpu
);
2059 r
= kvm_get_msr_with_filter(vcpu
, ecx
, &data
);
2062 trace_kvm_msr_read(ecx
, data
);
2064 kvm_rax_write(vcpu
, data
& -1u);
2065 kvm_rdx_write(vcpu
, (data
>> 32) & -1u);
2067 /* MSR read failed? See if we should ask user space */
2068 if (kvm_msr_user_space(vcpu
, ecx
, KVM_EXIT_X86_RDMSR
, 0,
2069 complete_fast_rdmsr
, r
))
2071 trace_kvm_msr_read_ex(ecx
);
2074 return kvm_x86_call(complete_emulated_msr
)(vcpu
, r
);
2076 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr
);
2078 int kvm_emulate_wrmsr(struct kvm_vcpu
*vcpu
)
2080 u32 ecx
= kvm_rcx_read(vcpu
);
2081 u64 data
= kvm_read_edx_eax(vcpu
);
2084 r
= kvm_set_msr_with_filter(vcpu
, ecx
, data
);
2087 trace_kvm_msr_write(ecx
, data
);
2089 /* MSR write failed? See if we should ask user space */
2090 if (kvm_msr_user_space(vcpu
, ecx
, KVM_EXIT_X86_WRMSR
, data
,
2091 complete_fast_msr_access
, r
))
2093 /* Signal all other negative errors to userspace */
2096 trace_kvm_msr_write_ex(ecx
, data
);
2099 return kvm_x86_call(complete_emulated_msr
)(vcpu
, r
);
2101 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr
);
2103 int kvm_emulate_as_nop(struct kvm_vcpu
*vcpu
)
2105 return kvm_skip_emulated_instruction(vcpu
);
2108 int kvm_emulate_invd(struct kvm_vcpu
*vcpu
)
2110 /* Treat an INVD instruction as a NOP and just skip it. */
2111 return kvm_emulate_as_nop(vcpu
);
2113 EXPORT_SYMBOL_GPL(kvm_emulate_invd
);
2115 int kvm_handle_invalid_op(struct kvm_vcpu
*vcpu
)
2117 kvm_queue_exception(vcpu
, UD_VECTOR
);
2120 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op
);
2123 static int kvm_emulate_monitor_mwait(struct kvm_vcpu
*vcpu
, const char *insn
)
2125 if (!kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS
) &&
2126 !guest_cpuid_has(vcpu
, X86_FEATURE_MWAIT
))
2127 return kvm_handle_invalid_op(vcpu
);
2129 pr_warn_once("%s instruction emulated as NOP!\n", insn
);
2130 return kvm_emulate_as_nop(vcpu
);
2132 int kvm_emulate_mwait(struct kvm_vcpu
*vcpu
)
2134 return kvm_emulate_monitor_mwait(vcpu
, "MWAIT");
2136 EXPORT_SYMBOL_GPL(kvm_emulate_mwait
);
2138 int kvm_emulate_monitor(struct kvm_vcpu
*vcpu
)
2140 return kvm_emulate_monitor_mwait(vcpu
, "MONITOR");
2142 EXPORT_SYMBOL_GPL(kvm_emulate_monitor
);
2144 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu
*vcpu
)
2146 xfer_to_guest_mode_prepare();
2147 return vcpu
->mode
== EXITING_GUEST_MODE
|| kvm_request_pending(vcpu
) ||
2148 xfer_to_guest_mode_work_pending();
2152 * The fast path for frequent and performance sensitive wrmsr emulation,
2153 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2154 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2155 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2156 * other cases which must be called after interrupts are enabled on the host.
2158 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu
*vcpu
, u64 data
)
2160 if (!lapic_in_kernel(vcpu
) || !apic_x2apic_mode(vcpu
->arch
.apic
))
2163 if (((data
& APIC_SHORT_MASK
) == APIC_DEST_NOSHORT
) &&
2164 ((data
& APIC_DEST_MASK
) == APIC_DEST_PHYSICAL
) &&
2165 ((data
& APIC_MODE_MASK
) == APIC_DM_FIXED
) &&
2166 ((u32
)(data
>> 32) != X2APIC_BROADCAST
))
2167 return kvm_x2apic_icr_write(vcpu
->arch
.apic
, data
);
2172 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu
*vcpu
, u64 data
)
2174 if (!kvm_can_use_hv_timer(vcpu
))
2177 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2181 fastpath_t
handle_fastpath_set_msr_irqoff(struct kvm_vcpu
*vcpu
)
2183 u32 msr
= kvm_rcx_read(vcpu
);
2188 kvm_vcpu_srcu_read_lock(vcpu
);
2191 case APIC_BASE_MSR
+ (APIC_ICR
>> 4):
2192 data
= kvm_read_edx_eax(vcpu
);
2193 handled
= !handle_fastpath_set_x2apic_icr_irqoff(vcpu
, data
);
2195 case MSR_IA32_TSC_DEADLINE
:
2196 data
= kvm_read_edx_eax(vcpu
);
2197 handled
= !handle_fastpath_set_tscdeadline(vcpu
, data
);
2205 if (!kvm_skip_emulated_instruction(vcpu
))
2206 ret
= EXIT_FASTPATH_EXIT_USERSPACE
;
2208 ret
= EXIT_FASTPATH_REENTER_GUEST
;
2209 trace_kvm_msr_write(msr
, data
);
2211 ret
= EXIT_FASTPATH_NONE
;
2214 kvm_vcpu_srcu_read_unlock(vcpu
);
2218 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff
);
2221 * Adapt set_msr() to msr_io()'s calling convention
2223 static int do_get_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
2225 return kvm_get_msr_ignored_check(vcpu
, index
, data
, true);
2228 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
2233 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2234 * not support modifying the guest vCPU model on the fly, e.g. changing
2235 * the nVMX capabilities while L2 is running is nonsensical. Allow
2236 * writes of the same value, e.g. to allow userspace to blindly stuff
2237 * all MSRs when emulating RESET.
2239 if (kvm_vcpu_has_run(vcpu
) && kvm_is_immutable_feature_msr(index
) &&
2240 (do_get_msr(vcpu
, index
, &val
) || *data
!= val
))
2243 return kvm_set_msr_ignored_check(vcpu
, index
, *data
, true);
2246 #ifdef CONFIG_X86_64
2247 struct pvclock_clock
{
2257 struct pvclock_gtod_data
{
2260 struct pvclock_clock clock
; /* extract of a clocksource struct */
2261 struct pvclock_clock raw_clock
; /* extract of a clocksource struct */
2267 static struct pvclock_gtod_data pvclock_gtod_data
;
2269 static void update_pvclock_gtod(struct timekeeper
*tk
)
2271 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
2273 write_seqcount_begin(&vdata
->seq
);
2275 /* copy pvclock gtod data */
2276 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->vdso_clock_mode
;
2277 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
2278 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
2279 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
2280 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
2281 vdata
->clock
.base_cycles
= tk
->tkr_mono
.xtime_nsec
;
2282 vdata
->clock
.offset
= tk
->tkr_mono
.base
;
2284 vdata
->raw_clock
.vclock_mode
= tk
->tkr_raw
.clock
->vdso_clock_mode
;
2285 vdata
->raw_clock
.cycle_last
= tk
->tkr_raw
.cycle_last
;
2286 vdata
->raw_clock
.mask
= tk
->tkr_raw
.mask
;
2287 vdata
->raw_clock
.mult
= tk
->tkr_raw
.mult
;
2288 vdata
->raw_clock
.shift
= tk
->tkr_raw
.shift
;
2289 vdata
->raw_clock
.base_cycles
= tk
->tkr_raw
.xtime_nsec
;
2290 vdata
->raw_clock
.offset
= tk
->tkr_raw
.base
;
2292 vdata
->wall_time_sec
= tk
->xtime_sec
;
2294 vdata
->offs_boot
= tk
->offs_boot
;
2296 write_seqcount_end(&vdata
->seq
);
2299 static s64
get_kvmclock_base_ns(void)
2301 /* Count up from boot time, but with the frequency of the raw clock. */
2302 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data
.offs_boot
));
2305 static s64
get_kvmclock_base_ns(void)
2307 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2308 return ktime_get_boottime_ns();
2312 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
, int sec_hi_ofs
)
2316 struct pvclock_wall_clock wc
;
2323 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
2328 ++version
; /* first time write, random junk */
2332 if (kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
)))
2335 wall_nsec
= kvm_get_wall_clock_epoch(kvm
);
2337 wc
.nsec
= do_div(wall_nsec
, NSEC_PER_SEC
);
2338 wc
.sec
= (u32
)wall_nsec
; /* overflow in 2106 guest time */
2339 wc
.version
= version
;
2341 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
2344 wc_sec_hi
= wall_nsec
>> 32;
2345 kvm_write_guest(kvm
, wall_clock
+ sec_hi_ofs
,
2346 &wc_sec_hi
, sizeof(wc_sec_hi
));
2350 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
2353 static void kvm_write_system_time(struct kvm_vcpu
*vcpu
, gpa_t system_time
,
2354 bool old_msr
, bool host_initiated
)
2356 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2358 if (vcpu
->vcpu_id
== 0 && !host_initiated
) {
2359 if (ka
->boot_vcpu_runs_old_kvmclock
!= old_msr
)
2360 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
2362 ka
->boot_vcpu_runs_old_kvmclock
= old_msr
;
2365 vcpu
->arch
.time
= system_time
;
2366 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2368 /* we verify if the enable bit is set... */
2369 if (system_time
& 1)
2370 kvm_gpc_activate(&vcpu
->arch
.pv_time
, system_time
& ~1ULL,
2371 sizeof(struct pvclock_vcpu_time_info
));
2373 kvm_gpc_deactivate(&vcpu
->arch
.pv_time
);
2378 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
2380 do_shl32_div32(dividend
, divisor
);
2384 static void kvm_get_time_scale(uint64_t scaled_hz
, uint64_t base_hz
,
2385 s8
*pshift
, u32
*pmultiplier
)
2393 scaled64
= scaled_hz
;
2394 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
2399 tps32
= (uint32_t)tps64
;
2400 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
2401 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
2409 *pmultiplier
= div_frac(scaled64
, tps32
);
2412 #ifdef CONFIG_X86_64
2413 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
2416 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
2417 static unsigned long max_tsc_khz
;
2419 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
2421 u64 v
= (u64
)khz
* (1000000 + ppm
);
2426 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu
*vcpu
, u64 l1_multiplier
);
2428 static int set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
2432 /* Guest TSC same frequency as host TSC? */
2434 kvm_vcpu_write_tsc_multiplier(vcpu
, kvm_caps
.default_tsc_scaling_ratio
);
2438 /* TSC scaling supported? */
2439 if (!kvm_caps
.has_tsc_control
) {
2440 if (user_tsc_khz
> tsc_khz
) {
2441 vcpu
->arch
.tsc_catchup
= 1;
2442 vcpu
->arch
.tsc_always_catchup
= 1;
2445 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2450 /* TSC scaling required - calculate ratio */
2451 ratio
= mul_u64_u32_div(1ULL << kvm_caps
.tsc_scaling_ratio_frac_bits
,
2452 user_tsc_khz
, tsc_khz
);
2454 if (ratio
== 0 || ratio
>= kvm_caps
.max_tsc_scaling_ratio
) {
2455 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2460 kvm_vcpu_write_tsc_multiplier(vcpu
, ratio
);
2464 static int kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
)
2466 u32 thresh_lo
, thresh_hi
;
2467 int use_scaling
= 0;
2469 /* tsc_khz can be zero if TSC calibration fails */
2470 if (user_tsc_khz
== 0) {
2471 /* set tsc_scaling_ratio to a safe value */
2472 kvm_vcpu_write_tsc_multiplier(vcpu
, kvm_caps
.default_tsc_scaling_ratio
);
2476 /* Compute a scale to convert nanoseconds in TSC cycles */
2477 kvm_get_time_scale(user_tsc_khz
* 1000LL, NSEC_PER_SEC
,
2478 &vcpu
->arch
.virtual_tsc_shift
,
2479 &vcpu
->arch
.virtual_tsc_mult
);
2480 vcpu
->arch
.virtual_tsc_khz
= user_tsc_khz
;
2483 * Compute the variation in TSC rate which is acceptable
2484 * within the range of tolerance and decide if the
2485 * rate being applied is within that bounds of the hardware
2486 * rate. If so, no scaling or compensation need be done.
2488 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
2489 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
2490 if (user_tsc_khz
< thresh_lo
|| user_tsc_khz
> thresh_hi
) {
2491 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2492 user_tsc_khz
, thresh_lo
, thresh_hi
);
2495 return set_tsc_khz(vcpu
, user_tsc_khz
, use_scaling
);
2498 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
2500 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
2501 vcpu
->arch
.virtual_tsc_mult
,
2502 vcpu
->arch
.virtual_tsc_shift
);
2503 tsc
+= vcpu
->arch
.this_tsc_write
;
2507 #ifdef CONFIG_X86_64
2508 static inline bool gtod_is_based_on_tsc(int mode
)
2510 return mode
== VDSO_CLOCKMODE_TSC
|| mode
== VDSO_CLOCKMODE_HVCLOCK
;
2514 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
, bool new_generation
)
2516 #ifdef CONFIG_X86_64
2517 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2518 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
2521 * To use the masterclock, the host clocksource must be based on TSC
2522 * and all vCPUs must have matching TSCs. Note, the count for matching
2523 * vCPUs doesn't include the reference vCPU, hence "+1".
2525 bool use_master_clock
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
2526 atomic_read(&vcpu
->kvm
->online_vcpus
)) &&
2527 gtod_is_based_on_tsc(gtod
->clock
.vclock_mode
);
2530 * Request a masterclock update if the masterclock needs to be toggled
2531 * on/off, or when starting a new generation and the masterclock is
2532 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2533 * taken _after_ the new generation is created).
2535 if ((ka
->use_master_clock
&& new_generation
) ||
2536 (ka
->use_master_clock
!= use_master_clock
))
2537 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
2539 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
2540 atomic_read(&vcpu
->kvm
->online_vcpus
),
2541 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
2546 * Multiply tsc by a fixed point number represented by ratio.
2548 * The most significant 64-N bits (mult) of ratio represent the
2549 * integral part of the fixed point number; the remaining N bits
2550 * (frac) represent the fractional part, ie. ratio represents a fixed
2551 * point number (mult + frac * 2^(-N)).
2553 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2555 static inline u64
__scale_tsc(u64 ratio
, u64 tsc
)
2557 return mul_u64_u64_shr(tsc
, ratio
, kvm_caps
.tsc_scaling_ratio_frac_bits
);
2560 u64
kvm_scale_tsc(u64 tsc
, u64 ratio
)
2564 if (ratio
!= kvm_caps
.default_tsc_scaling_ratio
)
2565 _tsc
= __scale_tsc(ratio
, tsc
);
2570 static u64
kvm_compute_l1_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
2574 tsc
= kvm_scale_tsc(rdtsc(), vcpu
->arch
.l1_tsc_scaling_ratio
);
2576 return target_tsc
- tsc
;
2579 u64
kvm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
2581 return vcpu
->arch
.l1_tsc_offset
+
2582 kvm_scale_tsc(host_tsc
, vcpu
->arch
.l1_tsc_scaling_ratio
);
2584 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc
);
2586 u64
kvm_calc_nested_tsc_offset(u64 l1_offset
, u64 l2_offset
, u64 l2_multiplier
)
2590 if (l2_multiplier
== kvm_caps
.default_tsc_scaling_ratio
)
2591 nested_offset
= l1_offset
;
2593 nested_offset
= mul_s64_u64_shr((s64
) l1_offset
, l2_multiplier
,
2594 kvm_caps
.tsc_scaling_ratio_frac_bits
);
2596 nested_offset
+= l2_offset
;
2597 return nested_offset
;
2599 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset
);
2601 u64
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier
, u64 l2_multiplier
)
2603 if (l2_multiplier
!= kvm_caps
.default_tsc_scaling_ratio
)
2604 return mul_u64_u64_shr(l1_multiplier
, l2_multiplier
,
2605 kvm_caps
.tsc_scaling_ratio_frac_bits
);
2607 return l1_multiplier
;
2609 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier
);
2611 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 l1_offset
)
2613 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
2614 vcpu
->arch
.l1_tsc_offset
,
2617 vcpu
->arch
.l1_tsc_offset
= l1_offset
;
2620 * If we are here because L1 chose not to trap WRMSR to TSC then
2621 * according to the spec this should set L1's TSC (as opposed to
2622 * setting L1's offset for L2).
2624 if (is_guest_mode(vcpu
))
2625 vcpu
->arch
.tsc_offset
= kvm_calc_nested_tsc_offset(
2627 kvm_x86_call(get_l2_tsc_offset
)(vcpu
),
2628 kvm_x86_call(get_l2_tsc_multiplier
)(vcpu
));
2630 vcpu
->arch
.tsc_offset
= l1_offset
;
2632 kvm_x86_call(write_tsc_offset
)(vcpu
);
2635 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu
*vcpu
, u64 l1_multiplier
)
2637 vcpu
->arch
.l1_tsc_scaling_ratio
= l1_multiplier
;
2639 /* Userspace is changing the multiplier while L2 is active */
2640 if (is_guest_mode(vcpu
))
2641 vcpu
->arch
.tsc_scaling_ratio
= kvm_calc_nested_tsc_multiplier(
2643 kvm_x86_call(get_l2_tsc_multiplier
)(vcpu
));
2645 vcpu
->arch
.tsc_scaling_ratio
= l1_multiplier
;
2647 if (kvm_caps
.has_tsc_control
)
2648 kvm_x86_call(write_tsc_multiplier
)(vcpu
);
2651 static inline bool kvm_check_tsc_unstable(void)
2653 #ifdef CONFIG_X86_64
2655 * TSC is marked unstable when we're running on Hyper-V,
2656 * 'TSC page' clocksource is good.
2658 if (pvclock_gtod_data
.clock
.vclock_mode
== VDSO_CLOCKMODE_HVCLOCK
)
2661 return check_tsc_unstable();
2665 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2666 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2669 static void __kvm_synchronize_tsc(struct kvm_vcpu
*vcpu
, u64 offset
, u64 tsc
,
2670 u64 ns
, bool matched
)
2672 struct kvm
*kvm
= vcpu
->kvm
;
2674 lockdep_assert_held(&kvm
->arch
.tsc_write_lock
);
2677 * We also track th most recent recorded KHZ, write and time to
2678 * allow the matching interval to be extended at each write.
2680 kvm
->arch
.last_tsc_nsec
= ns
;
2681 kvm
->arch
.last_tsc_write
= tsc
;
2682 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
2683 kvm
->arch
.last_tsc_offset
= offset
;
2685 vcpu
->arch
.last_guest_tsc
= tsc
;
2687 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
2691 * We split periods of matched TSC writes into generations.
2692 * For each generation, we track the original measured
2693 * nanosecond time, offset, and write, so if TSCs are in
2694 * sync, we can match exact offset, and if not, we can match
2695 * exact software computation in compute_guest_tsc()
2697 * These values are tracked in kvm->arch.cur_xxx variables.
2699 kvm
->arch
.cur_tsc_generation
++;
2700 kvm
->arch
.cur_tsc_nsec
= ns
;
2701 kvm
->arch
.cur_tsc_write
= tsc
;
2702 kvm
->arch
.cur_tsc_offset
= offset
;
2703 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
2704 } else if (vcpu
->arch
.this_tsc_generation
!= kvm
->arch
.cur_tsc_generation
) {
2705 kvm
->arch
.nr_vcpus_matched_tsc
++;
2708 /* Keep track of which generation this VCPU has synchronized to */
2709 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
2710 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
2711 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
2713 kvm_track_tsc_matching(vcpu
, !matched
);
2716 static void kvm_synchronize_tsc(struct kvm_vcpu
*vcpu
, u64
*user_value
)
2718 u64 data
= user_value
? *user_value
: 0;
2719 struct kvm
*kvm
= vcpu
->kvm
;
2720 u64 offset
, ns
, elapsed
;
2721 unsigned long flags
;
2722 bool matched
= false;
2723 bool synchronizing
= false;
2725 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
2726 offset
= kvm_compute_l1_tsc_offset(vcpu
, data
);
2727 ns
= get_kvmclock_base_ns();
2728 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
2730 if (vcpu
->arch
.virtual_tsc_khz
) {
2733 * Force synchronization when creating a vCPU, or when
2734 * userspace explicitly writes a zero value.
2736 synchronizing
= true;
2737 } else if (kvm
->arch
.user_set_tsc
) {
2738 u64 tsc_exp
= kvm
->arch
.last_tsc_write
+
2739 nsec_to_cycles(vcpu
, elapsed
);
2740 u64 tsc_hz
= vcpu
->arch
.virtual_tsc_khz
* 1000LL;
2742 * Here lies UAPI baggage: when a user-initiated TSC write has
2743 * a small delta (1 second) of virtual cycle time against the
2744 * previously set vCPU, we assume that they were intended to be
2745 * in sync and the delta was only due to the racy nature of the
2748 * This trick falls down when restoring a guest which genuinely
2749 * has been running for less time than the 1 second of imprecision
2750 * which we allow for in the legacy API. In this case, the first
2751 * value written by userspace (on any vCPU) should not be subject
2752 * to this 'correction' to make it sync up with values that only
2753 * come from the kernel's default vCPU creation. Make the 1-second
2754 * slop hack only trigger if the user_set_tsc flag is already set.
2756 synchronizing
= data
< tsc_exp
+ tsc_hz
&&
2757 data
+ tsc_hz
> tsc_exp
;
2762 kvm
->arch
.user_set_tsc
= true;
2765 * For a reliable TSC, we can match TSC offsets, and for an unstable
2766 * TSC, we add elapsed time in this computation. We could let the
2767 * compensation code attempt to catch up if we fall behind, but
2768 * it's better to try to match offsets from the beginning.
2770 if (synchronizing
&&
2771 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
2772 if (!kvm_check_tsc_unstable()) {
2773 offset
= kvm
->arch
.cur_tsc_offset
;
2775 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
2777 offset
= kvm_compute_l1_tsc_offset(vcpu
, data
);
2782 __kvm_synchronize_tsc(vcpu
, offset
, data
, ns
, matched
);
2783 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
2786 static inline void adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
,
2789 u64 tsc_offset
= vcpu
->arch
.l1_tsc_offset
;
2790 kvm_vcpu_write_tsc_offset(vcpu
, tsc_offset
+ adjustment
);
2793 static inline void adjust_tsc_offset_host(struct kvm_vcpu
*vcpu
, s64 adjustment
)
2795 if (vcpu
->arch
.l1_tsc_scaling_ratio
!= kvm_caps
.default_tsc_scaling_ratio
)
2796 WARN_ON(adjustment
< 0);
2797 adjustment
= kvm_scale_tsc((u64
) adjustment
,
2798 vcpu
->arch
.l1_tsc_scaling_ratio
);
2799 adjust_tsc_offset_guest(vcpu
, adjustment
);
2802 #ifdef CONFIG_X86_64
2804 static u64
read_tsc(void)
2806 u64 ret
= (u64
)rdtsc_ordered();
2807 u64 last
= pvclock_gtod_data
.clock
.cycle_last
;
2809 if (likely(ret
>= last
))
2813 * GCC likes to generate cmov here, but this branch is extremely
2814 * predictable (it's just a function of time and the likely is
2815 * very likely) and there's a data dependence, so force GCC
2816 * to generate a branch instead. I don't barrier() because
2817 * we don't actually need a barrier, and if this function
2818 * ever gets inlined it will generate worse code.
2824 static inline u64
vgettsc(struct pvclock_clock
*clock
, u64
*tsc_timestamp
,
2830 switch (clock
->vclock_mode
) {
2831 case VDSO_CLOCKMODE_HVCLOCK
:
2832 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2833 tsc_timestamp
, &tsc_pg_val
)) {
2834 /* TSC page valid */
2835 *mode
= VDSO_CLOCKMODE_HVCLOCK
;
2836 v
= (tsc_pg_val
- clock
->cycle_last
) &
2839 /* TSC page invalid */
2840 *mode
= VDSO_CLOCKMODE_NONE
;
2843 case VDSO_CLOCKMODE_TSC
:
2844 *mode
= VDSO_CLOCKMODE_TSC
;
2845 *tsc_timestamp
= read_tsc();
2846 v
= (*tsc_timestamp
- clock
->cycle_last
) &
2850 *mode
= VDSO_CLOCKMODE_NONE
;
2853 if (*mode
== VDSO_CLOCKMODE_NONE
)
2854 *tsc_timestamp
= v
= 0;
2856 return v
* clock
->mult
;
2860 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2861 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2863 static int do_kvmclock_base(s64
*t
, u64
*tsc_timestamp
)
2865 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
2871 seq
= read_seqcount_begin(>od
->seq
);
2872 ns
= gtod
->raw_clock
.base_cycles
;
2873 ns
+= vgettsc(>od
->raw_clock
, tsc_timestamp
, &mode
);
2874 ns
>>= gtod
->raw_clock
.shift
;
2875 ns
+= ktime_to_ns(ktime_add(gtod
->raw_clock
.offset
, gtod
->offs_boot
));
2876 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
2883 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2884 * no boot time offset.
2886 static int do_monotonic(s64
*t
, u64
*tsc_timestamp
)
2888 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
2894 seq
= read_seqcount_begin(>od
->seq
);
2895 ns
= gtod
->clock
.base_cycles
;
2896 ns
+= vgettsc(>od
->clock
, tsc_timestamp
, &mode
);
2897 ns
>>= gtod
->clock
.shift
;
2898 ns
+= ktime_to_ns(gtod
->clock
.offset
);
2899 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
2905 static int do_realtime(struct timespec64
*ts
, u64
*tsc_timestamp
)
2907 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
2913 seq
= read_seqcount_begin(>od
->seq
);
2914 ts
->tv_sec
= gtod
->wall_time_sec
;
2915 ns
= gtod
->clock
.base_cycles
;
2916 ns
+= vgettsc(>od
->clock
, tsc_timestamp
, &mode
);
2917 ns
>>= gtod
->clock
.shift
;
2918 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
2920 ts
->tv_sec
+= __iter_div_u64_rem(ns
, NSEC_PER_SEC
, &ns
);
2927 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2928 * reports the TSC value from which it do so. Returns true if host is
2929 * using TSC based clocksource.
2931 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, u64
*tsc_timestamp
)
2933 /* checked again under seqlock below */
2934 if (!gtod_is_based_on_tsc(pvclock_gtod_data
.clock
.vclock_mode
))
2937 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns
,
2942 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2943 * so. Returns true if host is using TSC based clocksource.
2945 bool kvm_get_monotonic_and_clockread(s64
*kernel_ns
, u64
*tsc_timestamp
)
2947 /* checked again under seqlock below */
2948 if (!gtod_is_based_on_tsc(pvclock_gtod_data
.clock
.vclock_mode
))
2951 return gtod_is_based_on_tsc(do_monotonic(kernel_ns
,
2956 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2957 * so. Returns true if host is using TSC based clocksource.
2959 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2962 static bool kvm_get_walltime_and_clockread(struct timespec64
*ts
,
2965 /* checked again under seqlock below */
2966 if (!gtod_is_based_on_tsc(pvclock_gtod_data
.clock
.vclock_mode
))
2969 return gtod_is_based_on_tsc(do_realtime(ts
, tsc_timestamp
));
2975 * Assuming a stable TSC across physical CPUS, and a stable TSC
2976 * across virtual CPUs, the following condition is possible.
2977 * Each numbered line represents an event visible to both
2978 * CPUs at the next numbered event.
2980 * "timespecX" represents host monotonic time. "tscX" represents
2983 * VCPU0 on CPU0 | VCPU1 on CPU1
2985 * 1. read timespec0,tsc0
2986 * 2. | timespec1 = timespec0 + N
2988 * 3. transition to guest | transition to guest
2989 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2990 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2991 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2993 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2996 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2998 * - 0 < N - M => M < N
3000 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3001 * always the case (the difference between two distinct xtime instances
3002 * might be smaller then the difference between corresponding TSC reads,
3003 * when updating guest vcpus pvclock areas).
3005 * To avoid that problem, do not allow visibility of distinct
3006 * system_timestamp/tsc_timestamp values simultaneously: use a master
3007 * copy of host monotonic time values. Update that master copy
3010 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3014 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
3016 #ifdef CONFIG_X86_64
3017 struct kvm_arch
*ka
= &kvm
->arch
;
3019 bool host_tsc_clocksource
, vcpus_matched
;
3021 lockdep_assert_held(&kvm
->arch
.tsc_write_lock
);
3022 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
3023 atomic_read(&kvm
->online_vcpus
));
3026 * If the host uses TSC clock, then passthrough TSC as stable
3029 host_tsc_clocksource
= kvm_get_time_and_clockread(
3030 &ka
->master_kernel_ns
,
3031 &ka
->master_cycle_now
);
3033 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
3034 && !ka
->backwards_tsc_observed
3035 && !ka
->boot_vcpu_runs_old_kvmclock
;
3037 if (ka
->use_master_clock
)
3038 atomic_set(&kvm_guest_has_master_clock
, 1);
3040 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
3041 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
3046 static void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
3048 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
3051 static void __kvm_start_pvclock_update(struct kvm
*kvm
)
3053 raw_spin_lock_irq(&kvm
->arch
.tsc_write_lock
);
3054 write_seqcount_begin(&kvm
->arch
.pvclock_sc
);
3057 static void kvm_start_pvclock_update(struct kvm
*kvm
)
3059 kvm_make_mclock_inprogress_request(kvm
);
3061 /* no guest entries from this point */
3062 __kvm_start_pvclock_update(kvm
);
3065 static void kvm_end_pvclock_update(struct kvm
*kvm
)
3067 struct kvm_arch
*ka
= &kvm
->arch
;
3068 struct kvm_vcpu
*vcpu
;
3071 write_seqcount_end(&ka
->pvclock_sc
);
3072 raw_spin_unlock_irq(&ka
->tsc_write_lock
);
3073 kvm_for_each_vcpu(i
, vcpu
, kvm
)
3074 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3076 /* guest entries allowed */
3077 kvm_for_each_vcpu(i
, vcpu
, kvm
)
3078 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS
, vcpu
);
3081 static void kvm_update_masterclock(struct kvm
*kvm
)
3083 kvm_hv_request_tsc_page_update(kvm
);
3084 kvm_start_pvclock_update(kvm
);
3085 pvclock_update_vm_gtod_copy(kvm
);
3086 kvm_end_pvclock_update(kvm
);
3090 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3091 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3092 * can change during boot even if the TSC is constant, as it's possible for KVM
3093 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3094 * notification when calibration completes, but practically speaking calibration
3095 * will complete before userspace is alive enough to create VMs.
3097 static unsigned long get_cpu_tsc_khz(void)
3099 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC
))
3102 return __this_cpu_read(cpu_tsc_khz
);
3105 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
3106 static void __get_kvmclock(struct kvm
*kvm
, struct kvm_clock_data
*data
)
3108 struct kvm_arch
*ka
= &kvm
->arch
;
3109 struct pvclock_vcpu_time_info hv_clock
;
3111 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3115 if (ka
->use_master_clock
&&
3116 (static_cpu_has(X86_FEATURE_CONSTANT_TSC
) || __this_cpu_read(cpu_tsc_khz
))) {
3117 #ifdef CONFIG_X86_64
3118 struct timespec64 ts
;
3120 if (kvm_get_walltime_and_clockread(&ts
, &data
->host_tsc
)) {
3121 data
->realtime
= ts
.tv_nsec
+ NSEC_PER_SEC
* ts
.tv_sec
;
3122 data
->flags
|= KVM_CLOCK_REALTIME
| KVM_CLOCK_HOST_TSC
;
3125 data
->host_tsc
= rdtsc();
3127 data
->flags
|= KVM_CLOCK_TSC_STABLE
;
3128 hv_clock
.tsc_timestamp
= ka
->master_cycle_now
;
3129 hv_clock
.system_time
= ka
->master_kernel_ns
+ ka
->kvmclock_offset
;
3130 kvm_get_time_scale(NSEC_PER_SEC
, get_cpu_tsc_khz() * 1000LL,
3131 &hv_clock
.tsc_shift
,
3132 &hv_clock
.tsc_to_system_mul
);
3133 data
->clock
= __pvclock_read_cycles(&hv_clock
, data
->host_tsc
);
3135 data
->clock
= get_kvmclock_base_ns() + ka
->kvmclock_offset
;
3141 static void get_kvmclock(struct kvm
*kvm
, struct kvm_clock_data
*data
)
3143 struct kvm_arch
*ka
= &kvm
->arch
;
3147 seq
= read_seqcount_begin(&ka
->pvclock_sc
);
3148 __get_kvmclock(kvm
, data
);
3149 } while (read_seqcount_retry(&ka
->pvclock_sc
, seq
));
3152 u64
get_kvmclock_ns(struct kvm
*kvm
)
3154 struct kvm_clock_data data
;
3156 get_kvmclock(kvm
, &data
);
3160 static void kvm_setup_guest_pvclock(struct kvm_vcpu
*v
,
3161 struct gfn_to_pfn_cache
*gpc
,
3162 unsigned int offset
,
3163 bool force_tsc_unstable
)
3165 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
3166 struct pvclock_vcpu_time_info
*guest_hv_clock
;
3167 unsigned long flags
;
3169 read_lock_irqsave(&gpc
->lock
, flags
);
3170 while (!kvm_gpc_check(gpc
, offset
+ sizeof(*guest_hv_clock
))) {
3171 read_unlock_irqrestore(&gpc
->lock
, flags
);
3173 if (kvm_gpc_refresh(gpc
, offset
+ sizeof(*guest_hv_clock
)))
3176 read_lock_irqsave(&gpc
->lock
, flags
);
3179 guest_hv_clock
= (void *)(gpc
->khva
+ offset
);
3182 * This VCPU is paused, but it's legal for a guest to read another
3183 * VCPU's kvmclock, so we really have to follow the specification where
3184 * it says that version is odd if data is being modified, and even after
3188 guest_hv_clock
->version
= vcpu
->hv_clock
.version
= (guest_hv_clock
->version
+ 1) | 1;
3191 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3192 vcpu
->hv_clock
.flags
|= (guest_hv_clock
->flags
& PVCLOCK_GUEST_STOPPED
);
3194 if (vcpu
->pvclock_set_guest_stopped_request
) {
3195 vcpu
->hv_clock
.flags
|= PVCLOCK_GUEST_STOPPED
;
3196 vcpu
->pvclock_set_guest_stopped_request
= false;
3199 memcpy(guest_hv_clock
, &vcpu
->hv_clock
, sizeof(*guest_hv_clock
));
3201 if (force_tsc_unstable
)
3202 guest_hv_clock
->flags
&= ~PVCLOCK_TSC_STABLE_BIT
;
3206 guest_hv_clock
->version
= ++vcpu
->hv_clock
.version
;
3208 kvm_gpc_mark_dirty_in_slot(gpc
);
3209 read_unlock_irqrestore(&gpc
->lock
, flags
);
3211 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
3214 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
3216 unsigned long flags
, tgt_tsc_khz
;
3218 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
3219 struct kvm_arch
*ka
= &v
->kvm
->arch
;
3221 u64 tsc_timestamp
, host_tsc
;
3223 bool use_master_clock
;
3224 #ifdef CONFIG_KVM_XEN
3226 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3227 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3228 * This default behaviour led to bugs in some guest kernels which cause
3229 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3231 bool xen_pvclock_tsc_unstable
=
3232 ka
->xen_hvm_config
.flags
& KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE
;
3239 * If the host uses TSC clock, then passthrough TSC as stable
3243 seq
= read_seqcount_begin(&ka
->pvclock_sc
);
3244 use_master_clock
= ka
->use_master_clock
;
3245 if (use_master_clock
) {
3246 host_tsc
= ka
->master_cycle_now
;
3247 kernel_ns
= ka
->master_kernel_ns
;
3249 } while (read_seqcount_retry(&ka
->pvclock_sc
, seq
));
3251 /* Keep irq disabled to prevent changes to the clock */
3252 local_irq_save(flags
);
3253 tgt_tsc_khz
= get_cpu_tsc_khz();
3254 if (unlikely(tgt_tsc_khz
== 0)) {
3255 local_irq_restore(flags
);
3256 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
3259 if (!use_master_clock
) {
3261 kernel_ns
= get_kvmclock_base_ns();
3264 tsc_timestamp
= kvm_read_l1_tsc(v
, host_tsc
);
3267 * We may have to catch up the TSC to match elapsed wall clock
3268 * time for two reasons, even if kvmclock is used.
3269 * 1) CPU could have been running below the maximum TSC rate
3270 * 2) Broken TSC compensation resets the base at each VCPU
3271 * entry to avoid unknown leaps of TSC even when running
3272 * again on the same CPU. This may cause apparent elapsed
3273 * time to disappear, and the guest to stand still or run
3276 if (vcpu
->tsc_catchup
) {
3277 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
3278 if (tsc
> tsc_timestamp
) {
3279 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
3280 tsc_timestamp
= tsc
;
3284 local_irq_restore(flags
);
3286 /* With all the info we got, fill in the values */
3288 if (kvm_caps
.has_tsc_control
)
3289 tgt_tsc_khz
= kvm_scale_tsc(tgt_tsc_khz
,
3290 v
->arch
.l1_tsc_scaling_ratio
);
3292 if (unlikely(vcpu
->hw_tsc_khz
!= tgt_tsc_khz
)) {
3293 kvm_get_time_scale(NSEC_PER_SEC
, tgt_tsc_khz
* 1000LL,
3294 &vcpu
->hv_clock
.tsc_shift
,
3295 &vcpu
->hv_clock
.tsc_to_system_mul
);
3296 vcpu
->hw_tsc_khz
= tgt_tsc_khz
;
3297 kvm_xen_update_tsc_info(v
);
3300 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
3301 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
3302 vcpu
->last_guest_tsc
= tsc_timestamp
;
3304 /* If the host uses TSC clocksource, then it is stable */
3306 if (use_master_clock
)
3307 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
3309 vcpu
->hv_clock
.flags
= pvclock_flags
;
3311 if (vcpu
->pv_time
.active
)
3312 kvm_setup_guest_pvclock(v
, &vcpu
->pv_time
, 0, false);
3313 #ifdef CONFIG_KVM_XEN
3314 if (vcpu
->xen
.vcpu_info_cache
.active
)
3315 kvm_setup_guest_pvclock(v
, &vcpu
->xen
.vcpu_info_cache
,
3316 offsetof(struct compat_vcpu_info
, time
),
3317 xen_pvclock_tsc_unstable
);
3318 if (vcpu
->xen
.vcpu_time_info_cache
.active
)
3319 kvm_setup_guest_pvclock(v
, &vcpu
->xen
.vcpu_time_info_cache
, 0,
3320 xen_pvclock_tsc_unstable
);
3322 kvm_hv_setup_tsc_page(v
->kvm
, &vcpu
->hv_clock
);
3327 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3328 * which it started (i.e. its epoch, when its kvmclock was zero).
3330 * In fact those clocks are subtly different; wall clock frequency is
3331 * adjusted by NTP and has leap seconds, while the kvmclock is a
3332 * simple function of the TSC without any such adjustment.
3334 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3335 * that and kvmclock, but even that would be subject to change over
3338 * Attempt to calculate the epoch at a given moment using the *same*
3339 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3340 * wallclock and kvmclock times, and subtracting one from the other.
3342 * Fall back to using their values at slightly different moments by
3343 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3345 uint64_t kvm_get_wall_clock_epoch(struct kvm
*kvm
)
3347 #ifdef CONFIG_X86_64
3348 struct pvclock_vcpu_time_info hv_clock
;
3349 struct kvm_arch
*ka
= &kvm
->arch
;
3350 unsigned long seq
, local_tsc_khz
;
3351 struct timespec64 ts
;
3355 seq
= read_seqcount_begin(&ka
->pvclock_sc
);
3358 if (!ka
->use_master_clock
)
3362 * The TSC read and the call to get_cpu_tsc_khz() must happen
3367 local_tsc_khz
= get_cpu_tsc_khz();
3369 if (local_tsc_khz
&&
3370 !kvm_get_walltime_and_clockread(&ts
, &host_tsc
))
3371 local_tsc_khz
= 0; /* Fall back to old method */
3376 * These values must be snapshotted within the seqcount loop.
3377 * After that, it's just mathematics which can happen on any
3380 hv_clock
.tsc_timestamp
= ka
->master_cycle_now
;
3381 hv_clock
.system_time
= ka
->master_kernel_ns
+ ka
->kvmclock_offset
;
3383 } while (read_seqcount_retry(&ka
->pvclock_sc
, seq
));
3386 * If the conditions were right, and obtaining the wallclock+TSC was
3387 * successful, calculate the KVM clock at the corresponding time and
3388 * subtract one from the other to get the guest's epoch in nanoseconds
3391 if (local_tsc_khz
) {
3392 kvm_get_time_scale(NSEC_PER_SEC
, local_tsc_khz
* NSEC_PER_USEC
,
3393 &hv_clock
.tsc_shift
,
3394 &hv_clock
.tsc_to_system_mul
);
3395 return ts
.tv_nsec
+ NSEC_PER_SEC
* ts
.tv_sec
-
3396 __pvclock_read_cycles(&hv_clock
, host_tsc
);
3399 return ktime_get_real_ns() - get_kvmclock_ns(kvm
);
3403 * kvmclock updates which are isolated to a given vcpu, such as
3404 * vcpu->cpu migration, should not allow system_timestamp from
3405 * the rest of the vcpus to remain static. Otherwise ntp frequency
3406 * correction applies to one vcpu's system_timestamp but not
3409 * So in those cases, request a kvmclock update for all vcpus.
3410 * We need to rate-limit these requests though, as they can
3411 * considerably slow guests that have a large number of vcpus.
3412 * The time for a remote vcpu to update its kvmclock is bound
3413 * by the delay we use to rate-limit the updates.
3416 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3418 static void kvmclock_update_fn(struct work_struct
*work
)
3421 struct delayed_work
*dwork
= to_delayed_work(work
);
3422 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
3423 kvmclock_update_work
);
3424 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
3425 struct kvm_vcpu
*vcpu
;
3427 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
3428 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3429 kvm_vcpu_kick(vcpu
);
3433 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
3435 struct kvm
*kvm
= v
->kvm
;
3437 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
3438 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
3439 KVMCLOCK_UPDATE_DELAY
);
3442 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3444 static void kvmclock_sync_fn(struct work_struct
*work
)
3446 struct delayed_work
*dwork
= to_delayed_work(work
);
3447 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
3448 kvmclock_sync_work
);
3449 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
3451 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
3452 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
3453 KVMCLOCK_SYNC_PERIOD
);
3456 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3457 static bool is_mci_control_msr(u32 msr
)
3459 return (msr
& 3) == 0;
3461 static bool is_mci_status_msr(u32 msr
)
3463 return (msr
& 3) == 1;
3467 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3469 static bool can_set_mci_status(struct kvm_vcpu
*vcpu
)
3471 /* McStatusWrEn enabled? */
3472 if (guest_cpuid_is_amd_compatible(vcpu
))
3473 return !!(vcpu
->arch
.msr_hwcr
& BIT_ULL(18));
3478 static int set_msr_mce(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
3480 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
3481 unsigned bank_num
= mcg_cap
& 0xff;
3482 u32 msr
= msr_info
->index
;
3483 u64 data
= msr_info
->data
;
3484 u32 offset
, last_msr
;
3487 case MSR_IA32_MCG_STATUS
:
3488 vcpu
->arch
.mcg_status
= data
;
3490 case MSR_IA32_MCG_CTL
:
3491 if (!(mcg_cap
& MCG_CTL_P
) &&
3492 (data
|| !msr_info
->host_initiated
))
3494 if (data
!= 0 && data
!= ~(u64
)0)
3496 vcpu
->arch
.mcg_ctl
= data
;
3498 case MSR_IA32_MC0_CTL2
... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS
) - 1:
3499 last_msr
= MSR_IA32_MCx_CTL2(bank_num
) - 1;
3503 if (!(mcg_cap
& MCG_CMCI_P
) && (data
|| !msr_info
->host_initiated
))
3505 /* An attempt to write a 1 to a reserved bit raises #GP */
3506 if (data
& ~(MCI_CTL2_CMCI_EN
| MCI_CTL2_CMCI_THRESHOLD_MASK
))
3508 offset
= array_index_nospec(msr
- MSR_IA32_MC0_CTL2
,
3509 last_msr
+ 1 - MSR_IA32_MC0_CTL2
);
3510 vcpu
->arch
.mci_ctl2_banks
[offset
] = data
;
3512 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
3513 last_msr
= MSR_IA32_MCx_CTL(bank_num
) - 1;
3518 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3519 * values are architecturally undefined. But, some Linux
3520 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3521 * issue on AMD K8s, allow bit 10 to be clear when setting all
3522 * other bits in order to avoid an uncaught #GP in the guest.
3524 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3525 * single-bit ECC data errors.
3527 if (is_mci_control_msr(msr
) &&
3528 data
!= 0 && (data
| (1 << 10) | 1) != ~(u64
)0)
3532 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3533 * AMD-based CPUs allow non-zero values, but if and only if
3534 * HWCR[McStatusWrEn] is set.
3536 if (!msr_info
->host_initiated
&& is_mci_status_msr(msr
) &&
3537 data
!= 0 && !can_set_mci_status(vcpu
))
3540 offset
= array_index_nospec(msr
- MSR_IA32_MC0_CTL
,
3541 last_msr
+ 1 - MSR_IA32_MC0_CTL
);
3542 vcpu
->arch
.mce_banks
[offset
] = data
;
3550 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu
*vcpu
)
3552 u64 mask
= KVM_ASYNC_PF_ENABLED
| KVM_ASYNC_PF_DELIVERY_AS_INT
;
3554 return (vcpu
->arch
.apf
.msr_en_val
& mask
) == mask
;
3557 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
3559 gpa_t gpa
= data
& ~0x3f;
3561 /* Bits 4:5 are reserved, Should be zero */
3565 if (!guest_pv_has(vcpu
, KVM_FEATURE_ASYNC_PF_VMEXIT
) &&
3566 (data
& KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT
))
3569 if (!guest_pv_has(vcpu
, KVM_FEATURE_ASYNC_PF_INT
) &&
3570 (data
& KVM_ASYNC_PF_DELIVERY_AS_INT
))
3573 if (!lapic_in_kernel(vcpu
))
3574 return data
? 1 : 0;
3576 vcpu
->arch
.apf
.msr_en_val
= data
;
3578 if (!kvm_pv_async_pf_enabled(vcpu
)) {
3579 kvm_clear_async_pf_completion_queue(vcpu
);
3580 kvm_async_pf_hash_reset(vcpu
);
3584 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
3588 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
3589 vcpu
->arch
.apf
.delivery_as_pf_vmexit
= data
& KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT
;
3591 kvm_async_pf_wakeup_all(vcpu
);
3596 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu
*vcpu
, u64 data
)
3598 /* Bits 8-63 are reserved */
3602 if (!lapic_in_kernel(vcpu
))
3605 vcpu
->arch
.apf
.msr_int_val
= data
;
3607 vcpu
->arch
.apf
.vec
= data
& KVM_ASYNC_PF_VEC_MASK
;
3612 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
3614 kvm_gpc_deactivate(&vcpu
->arch
.pv_time
);
3615 vcpu
->arch
.time
= 0;
3618 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu
*vcpu
)
3620 ++vcpu
->stat
.tlb_flush
;
3621 kvm_x86_call(flush_tlb_all
)(vcpu
);
3623 /* Flushing all ASIDs flushes the current ASID... */
3624 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT
, vcpu
);
3627 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu
*vcpu
)
3629 ++vcpu
->stat
.tlb_flush
;
3633 * A TLB flush on behalf of the guest is equivalent to
3634 * INVPCID(all), toggling CR4.PGE, etc., which requires
3635 * a forced sync of the shadow page tables. Ensure all the
3636 * roots are synced and the guest TLB in hardware is clean.
3638 kvm_mmu_sync_roots(vcpu
);
3639 kvm_mmu_sync_prev_roots(vcpu
);
3642 kvm_x86_call(flush_tlb_guest
)(vcpu
);
3645 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3648 kvm_hv_vcpu_purge_flush_tlb(vcpu
);
3652 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu
*vcpu
)
3654 ++vcpu
->stat
.tlb_flush
;
3655 kvm_x86_call(flush_tlb_current
)(vcpu
);
3659 * Service "local" TLB flush requests, which are specific to the current MMU
3660 * context. In addition to the generic event handling in vcpu_enter_guest(),
3661 * TLB flushes that are targeted at an MMU context also need to be serviced
3662 * prior before nested VM-Enter/VM-Exit.
3664 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu
*vcpu
)
3666 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT
, vcpu
))
3667 kvm_vcpu_flush_tlb_current(vcpu
);
3669 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST
, vcpu
))
3670 kvm_vcpu_flush_tlb_guest(vcpu
);
3672 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests
);
3674 static void record_steal_time(struct kvm_vcpu
*vcpu
)
3676 struct gfn_to_hva_cache
*ghc
= &vcpu
->arch
.st
.cache
;
3677 struct kvm_steal_time __user
*st
;
3678 struct kvm_memslots
*slots
;
3679 gpa_t gpa
= vcpu
->arch
.st
.msr_val
& KVM_STEAL_VALID_BITS
;
3683 if (kvm_xen_msr_enabled(vcpu
->kvm
)) {
3684 kvm_xen_runstate_set_running(vcpu
);
3688 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
3691 if (WARN_ON_ONCE(current
->mm
!= vcpu
->kvm
->mm
))
3694 slots
= kvm_memslots(vcpu
->kvm
);
3696 if (unlikely(slots
->generation
!= ghc
->generation
||
3698 kvm_is_error_hva(ghc
->hva
) || !ghc
->memslot
)) {
3699 /* We rely on the fact that it fits in a single page. */
3700 BUILD_BUG_ON((sizeof(*st
) - 1) & KVM_STEAL_VALID_BITS
);
3702 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, ghc
, gpa
, sizeof(*st
)) ||
3703 kvm_is_error_hva(ghc
->hva
) || !ghc
->memslot
)
3707 st
= (struct kvm_steal_time __user
*)ghc
->hva
;
3709 * Doing a TLB flush here, on the guest's behalf, can avoid
3712 if (guest_pv_has(vcpu
, KVM_FEATURE_PV_TLB_FLUSH
)) {
3713 u8 st_preempted
= 0;
3716 if (!user_access_begin(st
, sizeof(*st
)))
3719 asm volatile("1: xchgb %0, %2\n"
3722 _ASM_EXTABLE_UA(1b
, 2b
)
3723 : "+q" (st_preempted
),
3725 "+m" (st
->preempted
));
3731 vcpu
->arch
.st
.preempted
= 0;
3733 trace_kvm_pv_tlb_flush(vcpu
->vcpu_id
,
3734 st_preempted
& KVM_VCPU_FLUSH_TLB
);
3735 if (st_preempted
& KVM_VCPU_FLUSH_TLB
)
3736 kvm_vcpu_flush_tlb_guest(vcpu
);
3738 if (!user_access_begin(st
, sizeof(*st
)))
3741 if (!user_access_begin(st
, sizeof(*st
)))
3744 unsafe_put_user(0, &st
->preempted
, out
);
3745 vcpu
->arch
.st
.preempted
= 0;
3748 unsafe_get_user(version
, &st
->version
, out
);
3750 version
+= 1; /* first time write, random junk */
3753 unsafe_put_user(version
, &st
->version
, out
);
3757 unsafe_get_user(steal
, &st
->steal
, out
);
3758 steal
+= current
->sched_info
.run_delay
-
3759 vcpu
->arch
.st
.last_steal
;
3760 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
3761 unsafe_put_user(steal
, &st
->steal
, out
);
3764 unsafe_put_user(version
, &st
->version
, out
);
3769 mark_page_dirty_in_slot(vcpu
->kvm
, ghc
->memslot
, gpa_to_gfn(ghc
->gpa
));
3772 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
3774 u32 msr
= msr_info
->index
;
3775 u64 data
= msr_info
->data
;
3777 if (msr
&& msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
)
3778 return kvm_xen_write_hypercall_page(vcpu
, data
);
3781 case MSR_AMD64_NB_CFG
:
3782 case MSR_IA32_UCODE_WRITE
:
3783 case MSR_VM_HSAVE_PA
:
3784 case MSR_AMD64_PATCH_LOADER
:
3785 case MSR_AMD64_BU_CFG2
:
3786 case MSR_AMD64_DC_CFG
:
3787 case MSR_AMD64_TW_CFG
:
3788 case MSR_F15H_EX_CFG
:
3791 case MSR_IA32_UCODE_REV
:
3792 if (msr_info
->host_initiated
)
3793 vcpu
->arch
.microcode_version
= data
;
3795 case MSR_IA32_ARCH_CAPABILITIES
:
3796 if (!msr_info
->host_initiated
)
3798 vcpu
->arch
.arch_capabilities
= data
;
3800 case MSR_IA32_PERF_CAPABILITIES
:
3801 if (!msr_info
->host_initiated
)
3803 if (data
& ~kvm_caps
.supported_perf_cap
)
3807 * Note, this is not just a performance optimization! KVM
3808 * disallows changing feature MSRs after the vCPU has run; PMU
3809 * refresh will bug the VM if called after the vCPU has run.
3811 if (vcpu
->arch
.perf_capabilities
== data
)
3814 vcpu
->arch
.perf_capabilities
= data
;
3815 kvm_pmu_refresh(vcpu
);
3817 case MSR_IA32_PRED_CMD
: {
3818 u64 reserved_bits
= ~(PRED_CMD_IBPB
| PRED_CMD_SBPB
);
3820 if (!msr_info
->host_initiated
) {
3821 if ((!guest_has_pred_cmd_msr(vcpu
)))
3824 if (!guest_cpuid_has(vcpu
, X86_FEATURE_SPEC_CTRL
) &&
3825 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_IBPB
))
3826 reserved_bits
|= PRED_CMD_IBPB
;
3828 if (!guest_cpuid_has(vcpu
, X86_FEATURE_SBPB
))
3829 reserved_bits
|= PRED_CMD_SBPB
;
3832 if (!boot_cpu_has(X86_FEATURE_IBPB
))
3833 reserved_bits
|= PRED_CMD_IBPB
;
3835 if (!boot_cpu_has(X86_FEATURE_SBPB
))
3836 reserved_bits
|= PRED_CMD_SBPB
;
3838 if (data
& reserved_bits
)
3844 wrmsrl(MSR_IA32_PRED_CMD
, data
);
3847 case MSR_IA32_FLUSH_CMD
:
3848 if (!msr_info
->host_initiated
&&
3849 !guest_cpuid_has(vcpu
, X86_FEATURE_FLUSH_L1D
))
3852 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D
) || (data
& ~L1D_FLUSH
))
3857 wrmsrl(MSR_IA32_FLUSH_CMD
, L1D_FLUSH
);
3860 return set_efer(vcpu
, msr_info
);
3862 data
&= ~(u64
)0x40; /* ignore flush filter disable */
3863 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
3864 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
3867 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3868 * through at least v6.6 whine if TscFreqSel is clear,
3869 * depending on F/M/S.
3871 if (data
& ~(BIT_ULL(18) | BIT_ULL(24))) {
3872 kvm_pr_unimpl_wrmsr(vcpu
, msr
, data
);
3875 vcpu
->arch
.msr_hwcr
= data
;
3877 case MSR_FAM10H_MMIO_CONF_BASE
:
3879 kvm_pr_unimpl_wrmsr(vcpu
, msr
, data
);
3883 case MSR_IA32_CR_PAT
:
3884 if (!kvm_pat_valid(data
))
3887 vcpu
->arch
.pat
= data
;
3889 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000
:
3890 case MSR_MTRRdefType
:
3891 return kvm_mtrr_set_msr(vcpu
, msr
, data
);
3892 case MSR_IA32_APICBASE
:
3893 return kvm_set_apic_base(vcpu
, msr_info
);
3894 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0xff:
3895 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
3896 case MSR_IA32_TSC_DEADLINE
:
3897 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
3899 case MSR_IA32_TSC_ADJUST
:
3900 if (guest_cpuid_has(vcpu
, X86_FEATURE_TSC_ADJUST
)) {
3901 if (!msr_info
->host_initiated
) {
3902 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
3903 adjust_tsc_offset_guest(vcpu
, adj
);
3904 /* Before back to guest, tsc_timestamp must be adjusted
3905 * as well, otherwise guest's percpu pvclock time could jump.
3907 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3909 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
3912 case MSR_IA32_MISC_ENABLE
: {
3913 u64 old_val
= vcpu
->arch
.ia32_misc_enable_msr
;
3915 if (!msr_info
->host_initiated
) {
3917 if ((old_val
^ data
) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK
)
3920 /* R bits, i.e. writes are ignored, but don't fault. */
3921 data
= data
& ~MSR_IA32_MISC_ENABLE_EMON
;
3922 data
|= old_val
& MSR_IA32_MISC_ENABLE_EMON
;
3925 if (!kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT
) &&
3926 ((old_val
^ data
) & MSR_IA32_MISC_ENABLE_MWAIT
)) {
3927 if (!guest_cpuid_has(vcpu
, X86_FEATURE_XMM3
))
3929 vcpu
->arch
.ia32_misc_enable_msr
= data
;
3930 kvm_update_cpuid_runtime(vcpu
);
3932 vcpu
->arch
.ia32_misc_enable_msr
= data
;
3936 case MSR_IA32_SMBASE
:
3937 if (!IS_ENABLED(CONFIG_KVM_SMM
) || !msr_info
->host_initiated
)
3939 vcpu
->arch
.smbase
= data
;
3941 case MSR_IA32_POWER_CTL
:
3942 vcpu
->arch
.msr_ia32_power_ctl
= data
;
3945 if (msr_info
->host_initiated
) {
3946 kvm_synchronize_tsc(vcpu
, &data
);
3948 u64 adj
= kvm_compute_l1_tsc_offset(vcpu
, data
) - vcpu
->arch
.l1_tsc_offset
;
3949 adjust_tsc_offset_guest(vcpu
, adj
);
3950 vcpu
->arch
.ia32_tsc_adjust_msr
+= adj
;
3954 if (!msr_info
->host_initiated
&&
3955 !guest_cpuid_has(vcpu
, X86_FEATURE_XSAVES
))
3958 * KVM supports exposing PT to the guest, but does not support
3959 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3960 * XSAVES/XRSTORS to save/restore PT MSRs.
3962 if (data
& ~kvm_caps
.supported_xss
)
3964 vcpu
->arch
.ia32_xss
= data
;
3965 kvm_update_cpuid_runtime(vcpu
);
3968 if (!msr_info
->host_initiated
)
3970 vcpu
->arch
.smi_count
= data
;
3972 case MSR_KVM_WALL_CLOCK_NEW
:
3973 if (!guest_pv_has(vcpu
, KVM_FEATURE_CLOCKSOURCE2
))
3976 vcpu
->kvm
->arch
.wall_clock
= data
;
3977 kvm_write_wall_clock(vcpu
->kvm
, data
, 0);
3979 case MSR_KVM_WALL_CLOCK
:
3980 if (!guest_pv_has(vcpu
, KVM_FEATURE_CLOCKSOURCE
))
3983 vcpu
->kvm
->arch
.wall_clock
= data
;
3984 kvm_write_wall_clock(vcpu
->kvm
, data
, 0);
3986 case MSR_KVM_SYSTEM_TIME_NEW
:
3987 if (!guest_pv_has(vcpu
, KVM_FEATURE_CLOCKSOURCE2
))
3990 kvm_write_system_time(vcpu
, data
, false, msr_info
->host_initiated
);
3992 case MSR_KVM_SYSTEM_TIME
:
3993 if (!guest_pv_has(vcpu
, KVM_FEATURE_CLOCKSOURCE
))
3996 kvm_write_system_time(vcpu
, data
, true, msr_info
->host_initiated
);
3998 case MSR_KVM_ASYNC_PF_EN
:
3999 if (!guest_pv_has(vcpu
, KVM_FEATURE_ASYNC_PF
))
4002 if (kvm_pv_enable_async_pf(vcpu
, data
))
4005 case MSR_KVM_ASYNC_PF_INT
:
4006 if (!guest_pv_has(vcpu
, KVM_FEATURE_ASYNC_PF_INT
))
4009 if (kvm_pv_enable_async_pf_int(vcpu
, data
))
4012 case MSR_KVM_ASYNC_PF_ACK
:
4013 if (!guest_pv_has(vcpu
, KVM_FEATURE_ASYNC_PF_INT
))
4016 vcpu
->arch
.apf
.pageready_pending
= false;
4017 kvm_check_async_pf_completion(vcpu
);
4020 case MSR_KVM_STEAL_TIME
:
4021 if (!guest_pv_has(vcpu
, KVM_FEATURE_STEAL_TIME
))
4024 if (unlikely(!sched_info_on()))
4027 if (data
& KVM_STEAL_RESERVED_MASK
)
4030 vcpu
->arch
.st
.msr_val
= data
;
4032 if (!(data
& KVM_MSR_ENABLED
))
4035 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
4038 case MSR_KVM_PV_EOI_EN
:
4039 if (!guest_pv_has(vcpu
, KVM_FEATURE_PV_EOI
))
4042 if (kvm_lapic_set_pv_eoi(vcpu
, data
, sizeof(u8
)))
4046 case MSR_KVM_POLL_CONTROL
:
4047 if (!guest_pv_has(vcpu
, KVM_FEATURE_POLL_CONTROL
))
4050 /* only enable bit supported */
4051 if (data
& (-1ULL << 1))
4054 vcpu
->arch
.msr_kvm_poll_control
= data
;
4057 case MSR_IA32_MCG_CTL
:
4058 case MSR_IA32_MCG_STATUS
:
4059 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
4060 case MSR_IA32_MC0_CTL2
... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS
) - 1:
4061 return set_msr_mce(vcpu
, msr_info
);
4063 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
4064 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
4065 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
4066 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
4067 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
4068 return kvm_pmu_set_msr(vcpu
, msr_info
);
4071 kvm_pr_unimpl_wrmsr(vcpu
, msr
, data
);
4073 case MSR_K7_CLK_CTL
:
4075 * Ignore all writes to this no longer documented MSR.
4076 * Writes are only relevant for old K7 processors,
4077 * all pre-dating SVM, but a recommended workaround from
4078 * AMD for these chips. It is possible to specify the
4079 * affected processor models on the command line, hence
4080 * the need to ignore the workaround.
4083 #ifdef CONFIG_KVM_HYPERV
4084 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
4085 case HV_X64_MSR_SYNDBG_CONTROL
... HV_X64_MSR_SYNDBG_PENDING_BUFFER
:
4086 case HV_X64_MSR_SYNDBG_OPTIONS
:
4087 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
4088 case HV_X64_MSR_CRASH_CTL
:
4089 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
4090 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
4091 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
4092 case HV_X64_MSR_TSC_EMULATION_STATUS
:
4093 case HV_X64_MSR_TSC_INVARIANT_CONTROL
:
4094 return kvm_hv_set_msr_common(vcpu
, msr
, data
,
4095 msr_info
->host_initiated
);
4097 case MSR_IA32_BBL_CR_CTL3
:
4098 /* Drop writes to this legacy MSR -- see rdmsr
4099 * counterpart for further detail.
4101 kvm_pr_unimpl_wrmsr(vcpu
, msr
, data
);
4103 case MSR_AMD64_OSVW_ID_LENGTH
:
4104 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
4106 vcpu
->arch
.osvw
.length
= data
;
4108 case MSR_AMD64_OSVW_STATUS
:
4109 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
4111 vcpu
->arch
.osvw
.status
= data
;
4113 case MSR_PLATFORM_INFO
:
4114 if (!msr_info
->host_initiated
||
4115 (!(data
& MSR_PLATFORM_INFO_CPUID_FAULT
) &&
4116 cpuid_fault_enabled(vcpu
)))
4118 vcpu
->arch
.msr_platform_info
= data
;
4120 case MSR_MISC_FEATURES_ENABLES
:
4121 if (data
& ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
||
4122 (data
& MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
&&
4123 !supports_cpuid_fault(vcpu
)))
4125 vcpu
->arch
.msr_misc_features_enables
= data
;
4127 #ifdef CONFIG_X86_64
4129 if (!msr_info
->host_initiated
&&
4130 !guest_cpuid_has(vcpu
, X86_FEATURE_XFD
))
4133 if (data
& ~kvm_guest_supported_xfd(vcpu
))
4136 fpu_update_guest_xfd(&vcpu
->arch
.guest_fpu
, data
);
4138 case MSR_IA32_XFD_ERR
:
4139 if (!msr_info
->host_initiated
&&
4140 !guest_cpuid_has(vcpu
, X86_FEATURE_XFD
))
4143 if (data
& ~kvm_guest_supported_xfd(vcpu
))
4146 vcpu
->arch
.guest_fpu
.xfd_err
= data
;
4150 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
4151 return kvm_pmu_set_msr(vcpu
, msr_info
);
4153 return KVM_MSR_RET_UNSUPPORTED
;
4157 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
4159 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
, bool host
)
4162 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
4163 unsigned bank_num
= mcg_cap
& 0xff;
4164 u32 offset
, last_msr
;
4167 case MSR_IA32_P5_MC_ADDR
:
4168 case MSR_IA32_P5_MC_TYPE
:
4171 case MSR_IA32_MCG_CAP
:
4172 data
= vcpu
->arch
.mcg_cap
;
4174 case MSR_IA32_MCG_CTL
:
4175 if (!(mcg_cap
& MCG_CTL_P
) && !host
)
4177 data
= vcpu
->arch
.mcg_ctl
;
4179 case MSR_IA32_MCG_STATUS
:
4180 data
= vcpu
->arch
.mcg_status
;
4182 case MSR_IA32_MC0_CTL2
... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS
) - 1:
4183 last_msr
= MSR_IA32_MCx_CTL2(bank_num
) - 1;
4187 if (!(mcg_cap
& MCG_CMCI_P
) && !host
)
4189 offset
= array_index_nospec(msr
- MSR_IA32_MC0_CTL2
,
4190 last_msr
+ 1 - MSR_IA32_MC0_CTL2
);
4191 data
= vcpu
->arch
.mci_ctl2_banks
[offset
];
4193 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
4194 last_msr
= MSR_IA32_MCx_CTL(bank_num
) - 1;
4198 offset
= array_index_nospec(msr
- MSR_IA32_MC0_CTL
,
4199 last_msr
+ 1 - MSR_IA32_MC0_CTL
);
4200 data
= vcpu
->arch
.mce_banks
[offset
];
4209 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
4211 switch (msr_info
->index
) {
4212 case MSR_IA32_PLATFORM_ID
:
4213 case MSR_IA32_EBL_CR_POWERON
:
4214 case MSR_IA32_LASTBRANCHFROMIP
:
4215 case MSR_IA32_LASTBRANCHTOIP
:
4216 case MSR_IA32_LASTINTFROMIP
:
4217 case MSR_IA32_LASTINTTOIP
:
4218 case MSR_AMD64_SYSCFG
:
4219 case MSR_K8_TSEG_ADDR
:
4220 case MSR_K8_TSEG_MASK
:
4221 case MSR_VM_HSAVE_PA
:
4222 case MSR_K8_INT_PENDING_MSG
:
4223 case MSR_AMD64_NB_CFG
:
4224 case MSR_FAM10H_MMIO_CONF_BASE
:
4225 case MSR_AMD64_BU_CFG2
:
4226 case MSR_IA32_PERF_CTL
:
4227 case MSR_AMD64_DC_CFG
:
4228 case MSR_AMD64_TW_CFG
:
4229 case MSR_F15H_EX_CFG
:
4231 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4232 * limit) MSRs. Just return 0, as we do not want to expose the host
4233 * data here. Do not conditionalize this on CPUID, as KVM does not do
4234 * so for existing CPU-specific MSRs.
4236 case MSR_RAPL_POWER_UNIT
:
4237 case MSR_PP0_ENERGY_STATUS
: /* Power plane 0 (core) */
4238 case MSR_PP1_ENERGY_STATUS
: /* Power plane 1 (graphics uncore) */
4239 case MSR_PKG_ENERGY_STATUS
: /* Total package */
4240 case MSR_DRAM_ENERGY_STATUS
: /* DRAM controller */
4243 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
4244 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
4245 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
4246 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
4247 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
4248 return kvm_pmu_get_msr(vcpu
, msr_info
);
4251 case MSR_IA32_UCODE_REV
:
4252 msr_info
->data
= vcpu
->arch
.microcode_version
;
4254 case MSR_IA32_ARCH_CAPABILITIES
:
4255 if (!msr_info
->host_initiated
&&
4256 !guest_cpuid_has(vcpu
, X86_FEATURE_ARCH_CAPABILITIES
))
4258 msr_info
->data
= vcpu
->arch
.arch_capabilities
;
4260 case MSR_IA32_PERF_CAPABILITIES
:
4261 if (!msr_info
->host_initiated
&&
4262 !guest_cpuid_has(vcpu
, X86_FEATURE_PDCM
))
4264 msr_info
->data
= vcpu
->arch
.perf_capabilities
;
4266 case MSR_IA32_POWER_CTL
:
4267 msr_info
->data
= vcpu
->arch
.msr_ia32_power_ctl
;
4269 case MSR_IA32_TSC
: {
4271 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4272 * even when not intercepted. AMD manual doesn't explicitly
4273 * state this but appears to behave the same.
4275 * On userspace reads and writes, however, we unconditionally
4276 * return L1's TSC value to ensure backwards-compatible
4277 * behavior for migration.
4281 if (msr_info
->host_initiated
) {
4282 offset
= vcpu
->arch
.l1_tsc_offset
;
4283 ratio
= vcpu
->arch
.l1_tsc_scaling_ratio
;
4285 offset
= vcpu
->arch
.tsc_offset
;
4286 ratio
= vcpu
->arch
.tsc_scaling_ratio
;
4289 msr_info
->data
= kvm_scale_tsc(rdtsc(), ratio
) + offset
;
4292 case MSR_IA32_CR_PAT
:
4293 msr_info
->data
= vcpu
->arch
.pat
;
4296 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000
:
4297 case MSR_MTRRdefType
:
4298 return kvm_mtrr_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
4299 case 0xcd: /* fsb frequency */
4303 * MSR_EBC_FREQUENCY_ID
4304 * Conservative value valid for even the basic CPU models.
4305 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4306 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4307 * and 266MHz for model 3, or 4. Set Core Clock
4308 * Frequency to System Bus Frequency Ratio to 1 (bits
4309 * 31:24) even though these are only valid for CPU
4310 * models > 2, however guests may end up dividing or
4311 * multiplying by zero otherwise.
4313 case MSR_EBC_FREQUENCY_ID
:
4314 msr_info
->data
= 1 << 24;
4316 case MSR_IA32_APICBASE
:
4317 msr_info
->data
= kvm_get_apic_base(vcpu
);
4319 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0xff:
4320 return kvm_x2apic_msr_read(vcpu
, msr_info
->index
, &msr_info
->data
);
4321 case MSR_IA32_TSC_DEADLINE
:
4322 msr_info
->data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
4324 case MSR_IA32_TSC_ADJUST
:
4325 msr_info
->data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
4327 case MSR_IA32_MISC_ENABLE
:
4328 msr_info
->data
= vcpu
->arch
.ia32_misc_enable_msr
;
4330 case MSR_IA32_SMBASE
:
4331 if (!IS_ENABLED(CONFIG_KVM_SMM
) || !msr_info
->host_initiated
)
4333 msr_info
->data
= vcpu
->arch
.smbase
;
4336 msr_info
->data
= vcpu
->arch
.smi_count
;
4338 case MSR_IA32_PERF_STATUS
:
4339 /* TSC increment by tick */
4340 msr_info
->data
= 1000ULL;
4341 /* CPU multiplier */
4342 msr_info
->data
|= (((uint64_t)4ULL) << 40);
4345 msr_info
->data
= vcpu
->arch
.efer
;
4347 case MSR_KVM_WALL_CLOCK
:
4348 if (!guest_pv_has(vcpu
, KVM_FEATURE_CLOCKSOURCE
))
4351 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
4353 case MSR_KVM_WALL_CLOCK_NEW
:
4354 if (!guest_pv_has(vcpu
, KVM_FEATURE_CLOCKSOURCE2
))
4357 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
4359 case MSR_KVM_SYSTEM_TIME
:
4360 if (!guest_pv_has(vcpu
, KVM_FEATURE_CLOCKSOURCE
))
4363 msr_info
->data
= vcpu
->arch
.time
;
4365 case MSR_KVM_SYSTEM_TIME_NEW
:
4366 if (!guest_pv_has(vcpu
, KVM_FEATURE_CLOCKSOURCE2
))
4369 msr_info
->data
= vcpu
->arch
.time
;
4371 case MSR_KVM_ASYNC_PF_EN
:
4372 if (!guest_pv_has(vcpu
, KVM_FEATURE_ASYNC_PF
))
4375 msr_info
->data
= vcpu
->arch
.apf
.msr_en_val
;
4377 case MSR_KVM_ASYNC_PF_INT
:
4378 if (!guest_pv_has(vcpu
, KVM_FEATURE_ASYNC_PF_INT
))
4381 msr_info
->data
= vcpu
->arch
.apf
.msr_int_val
;
4383 case MSR_KVM_ASYNC_PF_ACK
:
4384 if (!guest_pv_has(vcpu
, KVM_FEATURE_ASYNC_PF_INT
))
4389 case MSR_KVM_STEAL_TIME
:
4390 if (!guest_pv_has(vcpu
, KVM_FEATURE_STEAL_TIME
))
4393 msr_info
->data
= vcpu
->arch
.st
.msr_val
;
4395 case MSR_KVM_PV_EOI_EN
:
4396 if (!guest_pv_has(vcpu
, KVM_FEATURE_PV_EOI
))
4399 msr_info
->data
= vcpu
->arch
.pv_eoi
.msr_val
;
4401 case MSR_KVM_POLL_CONTROL
:
4402 if (!guest_pv_has(vcpu
, KVM_FEATURE_POLL_CONTROL
))
4405 msr_info
->data
= vcpu
->arch
.msr_kvm_poll_control
;
4407 case MSR_IA32_P5_MC_ADDR
:
4408 case MSR_IA32_P5_MC_TYPE
:
4409 case MSR_IA32_MCG_CAP
:
4410 case MSR_IA32_MCG_CTL
:
4411 case MSR_IA32_MCG_STATUS
:
4412 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
4413 case MSR_IA32_MC0_CTL2
... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS
) - 1:
4414 return get_msr_mce(vcpu
, msr_info
->index
, &msr_info
->data
,
4415 msr_info
->host_initiated
);
4417 if (!msr_info
->host_initiated
&&
4418 !guest_cpuid_has(vcpu
, X86_FEATURE_XSAVES
))
4420 msr_info
->data
= vcpu
->arch
.ia32_xss
;
4422 case MSR_K7_CLK_CTL
:
4424 * Provide expected ramp-up count for K7. All other
4425 * are set to zero, indicating minimum divisors for
4428 * This prevents guest kernels on AMD host with CPU
4429 * type 6, model 8 and higher from exploding due to
4430 * the rdmsr failing.
4432 msr_info
->data
= 0x20000000;
4434 #ifdef CONFIG_KVM_HYPERV
4435 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
4436 case HV_X64_MSR_SYNDBG_CONTROL
... HV_X64_MSR_SYNDBG_PENDING_BUFFER
:
4437 case HV_X64_MSR_SYNDBG_OPTIONS
:
4438 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
4439 case HV_X64_MSR_CRASH_CTL
:
4440 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
4441 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
4442 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
4443 case HV_X64_MSR_TSC_EMULATION_STATUS
:
4444 case HV_X64_MSR_TSC_INVARIANT_CONTROL
:
4445 return kvm_hv_get_msr_common(vcpu
,
4446 msr_info
->index
, &msr_info
->data
,
4447 msr_info
->host_initiated
);
4449 case MSR_IA32_BBL_CR_CTL3
:
4450 /* This legacy MSR exists but isn't fully documented in current
4451 * silicon. It is however accessed by winxp in very narrow
4452 * scenarios where it sets bit #19, itself documented as
4453 * a "reserved" bit. Best effort attempt to source coherent
4454 * read data here should the balance of the register be
4455 * interpreted by the guest:
4457 * L2 cache control register 3: 64GB range, 256KB size,
4458 * enabled, latency 0x1, configured
4460 msr_info
->data
= 0xbe702111;
4462 case MSR_AMD64_OSVW_ID_LENGTH
:
4463 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
4465 msr_info
->data
= vcpu
->arch
.osvw
.length
;
4467 case MSR_AMD64_OSVW_STATUS
:
4468 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
4470 msr_info
->data
= vcpu
->arch
.osvw
.status
;
4472 case MSR_PLATFORM_INFO
:
4473 if (!msr_info
->host_initiated
&&
4474 !vcpu
->kvm
->arch
.guest_can_read_msr_platform_info
)
4476 msr_info
->data
= vcpu
->arch
.msr_platform_info
;
4478 case MSR_MISC_FEATURES_ENABLES
:
4479 msr_info
->data
= vcpu
->arch
.msr_misc_features_enables
;
4482 msr_info
->data
= vcpu
->arch
.msr_hwcr
;
4484 #ifdef CONFIG_X86_64
4486 if (!msr_info
->host_initiated
&&
4487 !guest_cpuid_has(vcpu
, X86_FEATURE_XFD
))
4490 msr_info
->data
= vcpu
->arch
.guest_fpu
.fpstate
->xfd
;
4492 case MSR_IA32_XFD_ERR
:
4493 if (!msr_info
->host_initiated
&&
4494 !guest_cpuid_has(vcpu
, X86_FEATURE_XFD
))
4497 msr_info
->data
= vcpu
->arch
.guest_fpu
.xfd_err
;
4501 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
4502 return kvm_pmu_get_msr(vcpu
, msr_info
);
4504 return KVM_MSR_RET_UNSUPPORTED
;
4508 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
4511 * Read or write a bunch of msrs. All parameters are kernel addresses.
4513 * @return number of msrs set successfully.
4515 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
4516 struct kvm_msr_entry
*entries
,
4517 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
4518 unsigned index
, u64
*data
))
4522 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
4523 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
4530 * Read or write a bunch of msrs. Parameters are user addresses.
4532 * @return number of msrs set successfully.
4534 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
4535 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
4536 unsigned index
, u64
*data
),
4539 struct kvm_msrs msrs
;
4540 struct kvm_msr_entry
*entries
;
4545 if (copy_from_user(&msrs
, user_msrs
, sizeof(msrs
)))
4549 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
4552 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
4553 entries
= memdup_user(user_msrs
->entries
, size
);
4554 if (IS_ERR(entries
)) {
4555 r
= PTR_ERR(entries
);
4559 r
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
4561 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
4569 static inline bool kvm_can_mwait_in_guest(void)
4571 return boot_cpu_has(X86_FEATURE_MWAIT
) &&
4572 !boot_cpu_has_bug(X86_BUG_MONITOR
) &&
4573 boot_cpu_has(X86_FEATURE_ARAT
);
4576 #ifdef CONFIG_KVM_HYPERV
4577 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu
*vcpu
,
4578 struct kvm_cpuid2 __user
*cpuid_arg
)
4580 struct kvm_cpuid2 cpuid
;
4584 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
4587 r
= kvm_get_hv_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
4592 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof(cpuid
)))
4599 static bool kvm_is_vm_type_supported(unsigned long type
)
4601 return type
< 32 && (kvm_caps
.supported_vm_types
& BIT(type
));
4604 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
4609 case KVM_CAP_IRQCHIP
:
4611 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
4612 case KVM_CAP_SET_TSS_ADDR
:
4613 case KVM_CAP_EXT_CPUID
:
4614 case KVM_CAP_EXT_EMUL_CPUID
:
4615 case KVM_CAP_CLOCKSOURCE
:
4617 case KVM_CAP_NOP_IO_DELAY
:
4618 case KVM_CAP_MP_STATE
:
4619 case KVM_CAP_SYNC_MMU
:
4620 case KVM_CAP_USER_NMI
:
4621 case KVM_CAP_REINJECT_CONTROL
:
4622 case KVM_CAP_IRQ_INJECT_STATUS
:
4623 case KVM_CAP_IOEVENTFD
:
4624 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
4626 case KVM_CAP_PIT_STATE2
:
4627 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
4628 case KVM_CAP_VCPU_EVENTS
:
4629 #ifdef CONFIG_KVM_HYPERV
4630 case KVM_CAP_HYPERV
:
4631 case KVM_CAP_HYPERV_VAPIC
:
4632 case KVM_CAP_HYPERV_SPIN
:
4633 case KVM_CAP_HYPERV_TIME
:
4634 case KVM_CAP_HYPERV_SYNIC
:
4635 case KVM_CAP_HYPERV_SYNIC2
:
4636 case KVM_CAP_HYPERV_VP_INDEX
:
4637 case KVM_CAP_HYPERV_EVENTFD
:
4638 case KVM_CAP_HYPERV_TLBFLUSH
:
4639 case KVM_CAP_HYPERV_SEND_IPI
:
4640 case KVM_CAP_HYPERV_CPUID
:
4641 case KVM_CAP_HYPERV_ENFORCE_CPUID
:
4642 case KVM_CAP_SYS_HYPERV_CPUID
:
4644 case KVM_CAP_PCI_SEGMENT
:
4645 case KVM_CAP_DEBUGREGS
:
4646 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
4648 case KVM_CAP_ASYNC_PF
:
4649 case KVM_CAP_ASYNC_PF_INT
:
4650 case KVM_CAP_GET_TSC_KHZ
:
4651 case KVM_CAP_KVMCLOCK_CTRL
:
4652 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
4653 case KVM_CAP_TSC_DEADLINE_TIMER
:
4654 case KVM_CAP_DISABLE_QUIRKS
:
4655 case KVM_CAP_SET_BOOT_CPU_ID
:
4656 case KVM_CAP_SPLIT_IRQCHIP
:
4657 case KVM_CAP_IMMEDIATE_EXIT
:
4658 case KVM_CAP_PMU_EVENT_FILTER
:
4659 case KVM_CAP_PMU_EVENT_MASKED_EVENTS
:
4660 case KVM_CAP_GET_MSR_FEATURES
:
4661 case KVM_CAP_MSR_PLATFORM_INFO
:
4662 case KVM_CAP_EXCEPTION_PAYLOAD
:
4663 case KVM_CAP_X86_TRIPLE_FAULT_EVENT
:
4664 case KVM_CAP_SET_GUEST_DEBUG
:
4665 case KVM_CAP_LAST_CPU
:
4666 case KVM_CAP_X86_USER_SPACE_MSR
:
4667 case KVM_CAP_X86_MSR_FILTER
:
4668 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID
:
4669 #ifdef CONFIG_X86_SGX_KVM
4670 case KVM_CAP_SGX_ATTRIBUTE
:
4672 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM
:
4673 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM
:
4674 case KVM_CAP_SREGS2
:
4675 case KVM_CAP_EXIT_ON_EMULATION_FAILURE
:
4676 case KVM_CAP_VCPU_ATTRIBUTES
:
4677 case KVM_CAP_SYS_ATTRIBUTES
:
4679 case KVM_CAP_ENABLE_CAP
:
4680 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES
:
4681 case KVM_CAP_IRQFD_RESAMPLE
:
4682 case KVM_CAP_MEMORY_FAULT_INFO
:
4683 case KVM_CAP_X86_GUEST_MODE
:
4686 case KVM_CAP_PRE_FAULT_MEMORY
:
4689 case KVM_CAP_X86_APIC_BUS_CYCLES_NS
:
4690 r
= APIC_BUS_CYCLE_NS_DEFAULT
;
4692 case KVM_CAP_EXIT_HYPERCALL
:
4693 r
= KVM_EXIT_HYPERCALL_VALID_MASK
;
4695 case KVM_CAP_SET_GUEST_DEBUG2
:
4696 return KVM_GUESTDBG_VALID_MASK
;
4697 #ifdef CONFIG_KVM_XEN
4698 case KVM_CAP_XEN_HVM
:
4699 r
= KVM_XEN_HVM_CONFIG_HYPERCALL_MSR
|
4700 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL
|
4701 KVM_XEN_HVM_CONFIG_SHARED_INFO
|
4702 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL
|
4703 KVM_XEN_HVM_CONFIG_EVTCHN_SEND
|
4704 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE
|
4705 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA
;
4706 if (sched_info_on())
4707 r
|= KVM_XEN_HVM_CONFIG_RUNSTATE
|
4708 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG
;
4711 case KVM_CAP_SYNC_REGS
:
4712 r
= KVM_SYNC_X86_VALID_FIELDS
;
4714 case KVM_CAP_ADJUST_CLOCK
:
4715 r
= KVM_CLOCK_VALID_FLAGS
;
4717 case KVM_CAP_X86_DISABLE_EXITS
:
4718 r
= KVM_X86_DISABLE_EXITS_PAUSE
;
4720 if (!mitigate_smt_rsb
) {
4721 r
|= KVM_X86_DISABLE_EXITS_HLT
|
4722 KVM_X86_DISABLE_EXITS_CSTATE
;
4724 if (kvm_can_mwait_in_guest())
4725 r
|= KVM_X86_DISABLE_EXITS_MWAIT
;
4728 case KVM_CAP_X86_SMM
:
4729 if (!IS_ENABLED(CONFIG_KVM_SMM
))
4732 /* SMBASE is usually relocated above 1M on modern chipsets,
4733 * and SMM handlers might indeed rely on 4G segment limits,
4734 * so do not report SMM to be available if real mode is
4735 * emulated via vm86 mode. Still, do not go to great lengths
4736 * to avoid userspace's usage of the feature, because it is a
4737 * fringe case that is not enabled except via specific settings
4738 * of the module parameters.
4740 r
= kvm_x86_call(has_emulated_msr
)(kvm
, MSR_IA32_SMBASE
);
4742 case KVM_CAP_NR_VCPUS
:
4743 r
= min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS
);
4745 case KVM_CAP_MAX_VCPUS
:
4748 case KVM_CAP_MAX_VCPU_ID
:
4749 r
= KVM_MAX_VCPU_IDS
;
4751 case KVM_CAP_PV_MMU
: /* obsolete */
4755 r
= KVM_MAX_MCE_BANKS
;
4758 r
= boot_cpu_has(X86_FEATURE_XSAVE
);
4760 case KVM_CAP_TSC_CONTROL
:
4761 case KVM_CAP_VM_TSC_CONTROL
:
4762 r
= kvm_caps
.has_tsc_control
;
4764 case KVM_CAP_X2APIC_API
:
4765 r
= KVM_X2APIC_API_VALID_FLAGS
;
4767 case KVM_CAP_NESTED_STATE
:
4768 r
= kvm_x86_ops
.nested_ops
->get_state
?
4769 kvm_x86_ops
.nested_ops
->get_state(NULL
, NULL
, 0) : 0;
4771 #ifdef CONFIG_KVM_HYPERV
4772 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH
:
4773 r
= kvm_x86_ops
.enable_l2_tlb_flush
!= NULL
;
4775 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS
:
4776 r
= kvm_x86_ops
.nested_ops
->enable_evmcs
!= NULL
;
4779 case KVM_CAP_SMALLER_MAXPHYADDR
:
4780 r
= (int) allow_smaller_maxphyaddr
;
4782 case KVM_CAP_STEAL_TIME
:
4783 r
= sched_info_on();
4785 case KVM_CAP_X86_BUS_LOCK_EXIT
:
4786 if (kvm_caps
.has_bus_lock_exit
)
4787 r
= KVM_BUS_LOCK_DETECTION_OFF
|
4788 KVM_BUS_LOCK_DETECTION_EXIT
;
4792 case KVM_CAP_XSAVE2
: {
4793 r
= xstate_required_size(kvm_get_filtered_xcr0(), false);
4794 if (r
< sizeof(struct kvm_xsave
))
4795 r
= sizeof(struct kvm_xsave
);
4798 case KVM_CAP_PMU_CAPABILITY
:
4799 r
= enable_pmu
? KVM_CAP_PMU_VALID_MASK
: 0;
4801 case KVM_CAP_DISABLE_QUIRKS2
:
4802 r
= KVM_X86_VALID_QUIRKS
;
4804 case KVM_CAP_X86_NOTIFY_VMEXIT
:
4805 r
= kvm_caps
.has_notify_vmexit
;
4807 case KVM_CAP_VM_TYPES
:
4808 r
= kvm_caps
.supported_vm_types
;
4810 case KVM_CAP_READONLY_MEM
:
4811 r
= kvm
? kvm_arch_has_readonly_mem(kvm
) : 1;
4819 static int __kvm_x86_dev_get_attr(struct kvm_device_attr
*attr
, u64
*val
)
4822 if (kvm_x86_ops
.dev_get_attr
)
4823 return kvm_x86_call(dev_get_attr
)(attr
->group
, attr
->attr
, val
);
4827 switch (attr
->attr
) {
4828 case KVM_X86_XCOMP_GUEST_SUPP
:
4829 *val
= kvm_caps
.supported_xcr0
;
4836 static int kvm_x86_dev_get_attr(struct kvm_device_attr
*attr
)
4838 u64 __user
*uaddr
= u64_to_user_ptr(attr
->addr
);
4842 r
= __kvm_x86_dev_get_attr(attr
, &val
);
4846 if (put_user(val
, uaddr
))
4852 static int kvm_x86_dev_has_attr(struct kvm_device_attr
*attr
)
4856 return __kvm_x86_dev_get_attr(attr
, &val
);
4859 long kvm_arch_dev_ioctl(struct file
*filp
,
4860 unsigned int ioctl
, unsigned long arg
)
4862 void __user
*argp
= (void __user
*)arg
;
4866 case KVM_GET_MSR_INDEX_LIST
: {
4867 struct kvm_msr_list __user
*user_msr_list
= argp
;
4868 struct kvm_msr_list msr_list
;
4872 if (copy_from_user(&msr_list
, user_msr_list
, sizeof(msr_list
)))
4875 msr_list
.nmsrs
= num_msrs_to_save
+ num_emulated_msrs
;
4876 if (copy_to_user(user_msr_list
, &msr_list
, sizeof(msr_list
)))
4879 if (n
< msr_list
.nmsrs
)
4882 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
4883 num_msrs_to_save
* sizeof(u32
)))
4885 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
4887 num_emulated_msrs
* sizeof(u32
)))
4892 case KVM_GET_SUPPORTED_CPUID
:
4893 case KVM_GET_EMULATED_CPUID
: {
4894 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
4895 struct kvm_cpuid2 cpuid
;
4898 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
4901 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
4907 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof(cpuid
)))
4912 case KVM_X86_GET_MCE_CAP_SUPPORTED
:
4914 if (copy_to_user(argp
, &kvm_caps
.supported_mce_cap
,
4915 sizeof(kvm_caps
.supported_mce_cap
)))
4919 case KVM_GET_MSR_FEATURE_INDEX_LIST
: {
4920 struct kvm_msr_list __user
*user_msr_list
= argp
;
4921 struct kvm_msr_list msr_list
;
4925 if (copy_from_user(&msr_list
, user_msr_list
, sizeof(msr_list
)))
4928 msr_list
.nmsrs
= num_msr_based_features
;
4929 if (copy_to_user(user_msr_list
, &msr_list
, sizeof(msr_list
)))
4932 if (n
< msr_list
.nmsrs
)
4935 if (copy_to_user(user_msr_list
->indices
, &msr_based_features
,
4936 num_msr_based_features
* sizeof(u32
)))
4942 r
= msr_io(NULL
, argp
, do_get_feature_msr
, 1);
4944 #ifdef CONFIG_KVM_HYPERV
4945 case KVM_GET_SUPPORTED_HV_CPUID
:
4946 r
= kvm_ioctl_get_supported_hv_cpuid(NULL
, argp
);
4949 case KVM_GET_DEVICE_ATTR
: {
4950 struct kvm_device_attr attr
;
4952 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
4954 r
= kvm_x86_dev_get_attr(&attr
);
4957 case KVM_HAS_DEVICE_ATTR
: {
4958 struct kvm_device_attr attr
;
4960 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
4962 r
= kvm_x86_dev_has_attr(&attr
);
4973 static void wbinvd_ipi(void *garbage
)
4978 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4980 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
4983 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
4985 struct kvm_pmu
*pmu
= vcpu_to_pmu(vcpu
);
4987 vcpu
->arch
.l1tf_flush_l1d
= true;
4989 if (vcpu
->scheduled_out
&& pmu
->version
&& pmu
->event_count
) {
4990 pmu
->need_cleanup
= true;
4991 kvm_make_request(KVM_REQ_PMU
, vcpu
);
4994 /* Address WBINVD may be executed by guest */
4995 if (need_emulate_wbinvd(vcpu
)) {
4996 if (kvm_x86_call(has_wbinvd_exit
)())
4997 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4998 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
4999 smp_call_function_single(vcpu
->cpu
,
5000 wbinvd_ipi
, NULL
, 1);
5003 kvm_x86_call(vcpu_load
)(vcpu
, cpu
);
5005 /* Save host pkru register if supported */
5006 vcpu
->arch
.host_pkru
= read_pkru();
5008 /* Apply any externally detected TSC adjustments (due to suspend) */
5009 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
5010 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
5011 vcpu
->arch
.tsc_offset_adjustment
= 0;
5012 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5015 if (unlikely(vcpu
->cpu
!= cpu
) || kvm_check_tsc_unstable()) {
5016 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
5017 rdtsc() - vcpu
->arch
.last_host_tsc
;
5019 mark_tsc_unstable("KVM discovered backwards TSC");
5021 if (kvm_check_tsc_unstable()) {
5022 u64 offset
= kvm_compute_l1_tsc_offset(vcpu
,
5023 vcpu
->arch
.last_guest_tsc
);
5024 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
5025 vcpu
->arch
.tsc_catchup
= 1;
5028 if (kvm_lapic_hv_timer_in_use(vcpu
))
5029 kvm_lapic_restart_hv_timer(vcpu
);
5032 * On a host with synchronized TSC, there is no need to update
5033 * kvmclock on vcpu->cpu migration
5035 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
5036 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
5037 if (vcpu
->cpu
!= cpu
)
5038 kvm_make_request(KVM_REQ_MIGRATE_TIMER
, vcpu
);
5042 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
5045 static void kvm_steal_time_set_preempted(struct kvm_vcpu
*vcpu
)
5047 struct gfn_to_hva_cache
*ghc
= &vcpu
->arch
.st
.cache
;
5048 struct kvm_steal_time __user
*st
;
5049 struct kvm_memslots
*slots
;
5050 static const u8 preempted
= KVM_VCPU_PREEMPTED
;
5051 gpa_t gpa
= vcpu
->arch
.st
.msr_val
& KVM_STEAL_VALID_BITS
;
5054 * The vCPU can be marked preempted if and only if the VM-Exit was on
5055 * an instruction boundary and will not trigger guest emulation of any
5056 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5057 * when this is true, for example allowing the vCPU to be marked
5058 * preempted if and only if the VM-Exit was due to a host interrupt.
5060 if (!vcpu
->arch
.at_instruction_boundary
) {
5061 vcpu
->stat
.preemption_other
++;
5065 vcpu
->stat
.preemption_reported
++;
5066 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
5069 if (vcpu
->arch
.st
.preempted
)
5072 /* This happens on process exit */
5073 if (unlikely(current
->mm
!= vcpu
->kvm
->mm
))
5076 slots
= kvm_memslots(vcpu
->kvm
);
5078 if (unlikely(slots
->generation
!= ghc
->generation
||
5080 kvm_is_error_hva(ghc
->hva
) || !ghc
->memslot
))
5083 st
= (struct kvm_steal_time __user
*)ghc
->hva
;
5084 BUILD_BUG_ON(sizeof(st
->preempted
) != sizeof(preempted
));
5086 if (!copy_to_user_nofault(&st
->preempted
, &preempted
, sizeof(preempted
)))
5087 vcpu
->arch
.st
.preempted
= KVM_VCPU_PREEMPTED
;
5089 mark_page_dirty_in_slot(vcpu
->kvm
, ghc
->memslot
, gpa_to_gfn(ghc
->gpa
));
5092 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
5096 if (vcpu
->preempted
) {
5097 vcpu
->arch
.preempted_in_kernel
= kvm_arch_vcpu_in_kernel(vcpu
);
5100 * Take the srcu lock as memslots will be accessed to check the gfn
5101 * cache generation against the memslots generation.
5103 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5104 if (kvm_xen_msr_enabled(vcpu
->kvm
))
5105 kvm_xen_runstate_set_preempted(vcpu
);
5107 kvm_steal_time_set_preempted(vcpu
);
5108 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5111 kvm_x86_call(vcpu_put
)(vcpu
);
5112 vcpu
->arch
.last_host_tsc
= rdtsc();
5115 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
5116 struct kvm_lapic_state
*s
)
5118 kvm_x86_call(sync_pir_to_irr
)(vcpu
);
5120 return kvm_apic_get_state(vcpu
, s
);
5123 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
5124 struct kvm_lapic_state
*s
)
5128 r
= kvm_apic_set_state(vcpu
, s
);
5131 update_cr8_intercept(vcpu
);
5136 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu
*vcpu
)
5139 * We can accept userspace's request for interrupt injection
5140 * as long as we have a place to store the interrupt number.
5141 * The actual injection will happen when the CPU is able to
5142 * deliver the interrupt.
5144 if (kvm_cpu_has_extint(vcpu
))
5147 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5148 return (!lapic_in_kernel(vcpu
) ||
5149 kvm_apic_accept_pic_intr(vcpu
));
5152 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu
*vcpu
)
5155 * Do not cause an interrupt window exit if an exception
5156 * is pending or an event needs reinjection; userspace
5157 * might want to inject the interrupt manually using KVM_SET_REGS
5158 * or KVM_SET_SREGS. For that to work, we must be at an
5159 * instruction boundary and with no events half-injected.
5161 return (kvm_arch_interrupt_allowed(vcpu
) &&
5162 kvm_cpu_accept_dm_intr(vcpu
) &&
5163 !kvm_event_needs_reinjection(vcpu
) &&
5164 !kvm_is_exception_pending(vcpu
));
5167 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
5168 struct kvm_interrupt
*irq
)
5170 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
5173 if (!irqchip_in_kernel(vcpu
->kvm
)) {
5174 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
5175 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5180 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5181 * fail for in-kernel 8259.
5183 if (pic_in_kernel(vcpu
->kvm
))
5186 if (vcpu
->arch
.pending_external_vector
!= -1)
5189 vcpu
->arch
.pending_external_vector
= irq
->irq
;
5190 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5194 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
5196 kvm_inject_nmi(vcpu
);
5201 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
5202 struct kvm_tpr_access_ctl
*tac
)
5206 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
5210 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
5214 unsigned bank_num
= mcg_cap
& 0xff, bank
;
5217 if (!bank_num
|| bank_num
> KVM_MAX_MCE_BANKS
)
5219 if (mcg_cap
& ~(kvm_caps
.supported_mce_cap
| 0xff | 0xff0000))
5222 vcpu
->arch
.mcg_cap
= mcg_cap
;
5223 /* Init IA32_MCG_CTL to all 1s */
5224 if (mcg_cap
& MCG_CTL_P
)
5225 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
5226 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5227 for (bank
= 0; bank
< bank_num
; bank
++) {
5228 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
5229 if (mcg_cap
& MCG_CMCI_P
)
5230 vcpu
->arch
.mci_ctl2_banks
[bank
] = 0;
5233 kvm_apic_after_set_mcg_cap(vcpu
);
5235 kvm_x86_call(setup_mce
)(vcpu
);
5241 * Validate this is an UCNA (uncorrectable no action) error by checking the
5242 * MCG_STATUS and MCi_STATUS registers:
5243 * - none of the bits for Machine Check Exceptions are set
5244 * - both the VAL (valid) and UC (uncorrectable) bits are set
5245 * MCI_STATUS_PCC - Processor Context Corrupted
5246 * MCI_STATUS_S - Signaled as a Machine Check Exception
5247 * MCI_STATUS_AR - Software recoverable Action Required
5249 static bool is_ucna(struct kvm_x86_mce
*mce
)
5251 return !mce
->mcg_status
&&
5252 !(mce
->status
& (MCI_STATUS_PCC
| MCI_STATUS_S
| MCI_STATUS_AR
)) &&
5253 (mce
->status
& MCI_STATUS_VAL
) &&
5254 (mce
->status
& MCI_STATUS_UC
);
5257 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu
*vcpu
, struct kvm_x86_mce
*mce
, u64
* banks
)
5259 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
5261 banks
[1] = mce
->status
;
5262 banks
[2] = mce
->addr
;
5263 banks
[3] = mce
->misc
;
5264 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
5266 if (!(mcg_cap
& MCG_CMCI_P
) ||
5267 !(vcpu
->arch
.mci_ctl2_banks
[mce
->bank
] & MCI_CTL2_CMCI_EN
))
5270 if (lapic_in_kernel(vcpu
))
5271 kvm_apic_local_deliver(vcpu
->arch
.apic
, APIC_LVTCMCI
);
5276 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
5277 struct kvm_x86_mce
*mce
)
5279 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
5280 unsigned bank_num
= mcg_cap
& 0xff;
5281 u64
*banks
= vcpu
->arch
.mce_banks
;
5283 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
5286 banks
+= array_index_nospec(4 * mce
->bank
, 4 * bank_num
);
5289 return kvm_vcpu_x86_set_ucna(vcpu
, mce
, banks
);
5292 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5293 * reporting is disabled
5295 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
5296 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
5299 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5300 * reporting is disabled for the bank
5302 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
5304 if (mce
->status
& MCI_STATUS_UC
) {
5305 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
5306 !kvm_is_cr4_bit_set(vcpu
, X86_CR4_MCE
)) {
5307 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5310 if (banks
[1] & MCI_STATUS_VAL
)
5311 mce
->status
|= MCI_STATUS_OVER
;
5312 banks
[2] = mce
->addr
;
5313 banks
[3] = mce
->misc
;
5314 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
5315 banks
[1] = mce
->status
;
5316 kvm_queue_exception(vcpu
, MC_VECTOR
);
5317 } else if (!(banks
[1] & MCI_STATUS_VAL
)
5318 || !(banks
[1] & MCI_STATUS_UC
)) {
5319 if (banks
[1] & MCI_STATUS_VAL
)
5320 mce
->status
|= MCI_STATUS_OVER
;
5321 banks
[2] = mce
->addr
;
5322 banks
[3] = mce
->misc
;
5323 banks
[1] = mce
->status
;
5325 banks
[1] |= MCI_STATUS_OVER
;
5329 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
5330 struct kvm_vcpu_events
*events
)
5332 struct kvm_queued_exception
*ex
;
5336 #ifdef CONFIG_KVM_SMM
5337 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
5342 * KVM's ABI only allows for one exception to be migrated. Luckily,
5343 * the only time there can be two queued exceptions is if there's a
5344 * non-exiting _injected_ exception, and a pending exiting exception.
5345 * In that case, ignore the VM-Exiting exception as it's an extension
5346 * of the injected exception.
5348 if (vcpu
->arch
.exception_vmexit
.pending
&&
5349 !vcpu
->arch
.exception
.pending
&&
5350 !vcpu
->arch
.exception
.injected
)
5351 ex
= &vcpu
->arch
.exception_vmexit
;
5353 ex
= &vcpu
->arch
.exception
;
5356 * In guest mode, payload delivery should be deferred if the exception
5357 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5358 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5359 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5360 * propagate the payload and so it cannot be safely deferred. Deliver
5361 * the payload if the capability hasn't been requested.
5363 if (!vcpu
->kvm
->arch
.exception_payload_enabled
&&
5364 ex
->pending
&& ex
->has_payload
)
5365 kvm_deliver_exception_payload(vcpu
, ex
);
5367 memset(events
, 0, sizeof(*events
));
5370 * The API doesn't provide the instruction length for software
5371 * exceptions, so don't report them. As long as the guest RIP
5372 * isn't advanced, we should expect to encounter the exception
5375 if (!kvm_exception_is_soft(ex
->vector
)) {
5376 events
->exception
.injected
= ex
->injected
;
5377 events
->exception
.pending
= ex
->pending
;
5379 * For ABI compatibility, deliberately conflate
5380 * pending and injected exceptions when
5381 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5383 if (!vcpu
->kvm
->arch
.exception_payload_enabled
)
5384 events
->exception
.injected
|= ex
->pending
;
5386 events
->exception
.nr
= ex
->vector
;
5387 events
->exception
.has_error_code
= ex
->has_error_code
;
5388 events
->exception
.error_code
= ex
->error_code
;
5389 events
->exception_has_payload
= ex
->has_payload
;
5390 events
->exception_payload
= ex
->payload
;
5392 events
->interrupt
.injected
=
5393 vcpu
->arch
.interrupt
.injected
&& !vcpu
->arch
.interrupt
.soft
;
5394 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
5395 events
->interrupt
.shadow
= kvm_x86_call(get_interrupt_shadow
)(vcpu
);
5397 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
5398 events
->nmi
.pending
= kvm_get_nr_pending_nmis(vcpu
);
5399 events
->nmi
.masked
= kvm_x86_call(get_nmi_mask
)(vcpu
);
5401 /* events->sipi_vector is never valid when reporting to user space */
5403 #ifdef CONFIG_KVM_SMM
5404 events
->smi
.smm
= is_smm(vcpu
);
5405 events
->smi
.pending
= vcpu
->arch
.smi_pending
;
5406 events
->smi
.smm_inside_nmi
=
5407 !!(vcpu
->arch
.hflags
& HF_SMM_INSIDE_NMI_MASK
);
5409 events
->smi
.latched_init
= kvm_lapic_latched_init(vcpu
);
5411 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
5412 | KVM_VCPUEVENT_VALID_SHADOW
5413 | KVM_VCPUEVENT_VALID_SMM
);
5414 if (vcpu
->kvm
->arch
.exception_payload_enabled
)
5415 events
->flags
|= KVM_VCPUEVENT_VALID_PAYLOAD
;
5416 if (vcpu
->kvm
->arch
.triple_fault_event
) {
5417 events
->triple_fault
.pending
= kvm_test_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5418 events
->flags
|= KVM_VCPUEVENT_VALID_TRIPLE_FAULT
;
5422 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
5423 struct kvm_vcpu_events
*events
)
5425 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5426 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5427 | KVM_VCPUEVENT_VALID_SHADOW
5428 | KVM_VCPUEVENT_VALID_SMM
5429 | KVM_VCPUEVENT_VALID_PAYLOAD
5430 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT
))
5433 if (events
->flags
& KVM_VCPUEVENT_VALID_PAYLOAD
) {
5434 if (!vcpu
->kvm
->arch
.exception_payload_enabled
)
5436 if (events
->exception
.pending
)
5437 events
->exception
.injected
= 0;
5439 events
->exception_has_payload
= 0;
5441 events
->exception
.pending
= 0;
5442 events
->exception_has_payload
= 0;
5445 if ((events
->exception
.injected
|| events
->exception
.pending
) &&
5446 (events
->exception
.nr
> 31 || events
->exception
.nr
== NMI_VECTOR
))
5449 /* INITs are latched while in SMM */
5450 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
&&
5451 (events
->smi
.smm
|| events
->smi
.pending
) &&
5452 vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
)
5458 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5459 * morph the exception to a VM-Exit if appropriate. Do this only for
5460 * pending exceptions, already-injected exceptions are not subject to
5461 * intercpetion. Note, userspace that conflates pending and injected
5462 * is hosed, and will incorrectly convert an injected exception into a
5463 * pending exception, which in turn may cause a spurious VM-Exit.
5465 vcpu
->arch
.exception_from_userspace
= events
->exception
.pending
;
5467 vcpu
->arch
.exception_vmexit
.pending
= false;
5469 vcpu
->arch
.exception
.injected
= events
->exception
.injected
;
5470 vcpu
->arch
.exception
.pending
= events
->exception
.pending
;
5471 vcpu
->arch
.exception
.vector
= events
->exception
.nr
;
5472 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
5473 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
5474 vcpu
->arch
.exception
.has_payload
= events
->exception_has_payload
;
5475 vcpu
->arch
.exception
.payload
= events
->exception_payload
;
5477 vcpu
->arch
.interrupt
.injected
= events
->interrupt
.injected
;
5478 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
5479 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
5480 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
5481 kvm_x86_call(set_interrupt_shadow
)(vcpu
,
5482 events
->interrupt
.shadow
);
5484 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
5485 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
) {
5486 vcpu
->arch
.nmi_pending
= 0;
5487 atomic_set(&vcpu
->arch
.nmi_queued
, events
->nmi
.pending
);
5488 if (events
->nmi
.pending
)
5489 kvm_make_request(KVM_REQ_NMI
, vcpu
);
5491 kvm_x86_call(set_nmi_mask
)(vcpu
, events
->nmi
.masked
);
5493 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
5494 lapic_in_kernel(vcpu
))
5495 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
5497 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
) {
5498 #ifdef CONFIG_KVM_SMM
5499 if (!!(vcpu
->arch
.hflags
& HF_SMM_MASK
) != events
->smi
.smm
) {
5500 kvm_leave_nested(vcpu
);
5501 kvm_smm_changed(vcpu
, events
->smi
.smm
);
5504 vcpu
->arch
.smi_pending
= events
->smi
.pending
;
5506 if (events
->smi
.smm
) {
5507 if (events
->smi
.smm_inside_nmi
)
5508 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
5510 vcpu
->arch
.hflags
&= ~HF_SMM_INSIDE_NMI_MASK
;
5514 if (events
->smi
.smm
|| events
->smi
.pending
||
5515 events
->smi
.smm_inside_nmi
)
5519 if (lapic_in_kernel(vcpu
)) {
5520 if (events
->smi
.latched_init
)
5521 set_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
5523 clear_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
5527 if (events
->flags
& KVM_VCPUEVENT_VALID_TRIPLE_FAULT
) {
5528 if (!vcpu
->kvm
->arch
.triple_fault_event
)
5530 if (events
->triple_fault
.pending
)
5531 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5533 kvm_clear_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5536 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5541 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
5542 struct kvm_debugregs
*dbgregs
)
5546 if (vcpu
->kvm
->arch
.has_protected_state
&&
5547 vcpu
->arch
.guest_state_protected
)
5550 memset(dbgregs
, 0, sizeof(*dbgregs
));
5552 BUILD_BUG_ON(ARRAY_SIZE(vcpu
->arch
.db
) != ARRAY_SIZE(dbgregs
->db
));
5553 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.db
); i
++)
5554 dbgregs
->db
[i
] = vcpu
->arch
.db
[i
];
5556 dbgregs
->dr6
= vcpu
->arch
.dr6
;
5557 dbgregs
->dr7
= vcpu
->arch
.dr7
;
5561 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
5562 struct kvm_debugregs
*dbgregs
)
5566 if (vcpu
->kvm
->arch
.has_protected_state
&&
5567 vcpu
->arch
.guest_state_protected
)
5573 if (!kvm_dr6_valid(dbgregs
->dr6
))
5575 if (!kvm_dr7_valid(dbgregs
->dr7
))
5578 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.db
); i
++)
5579 vcpu
->arch
.db
[i
] = dbgregs
->db
[i
];
5581 kvm_update_dr0123(vcpu
);
5582 vcpu
->arch
.dr6
= dbgregs
->dr6
;
5583 vcpu
->arch
.dr7
= dbgregs
->dr7
;
5584 kvm_update_dr7(vcpu
);
5590 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu
*vcpu
,
5591 u8
*state
, unsigned int size
)
5594 * Only copy state for features that are enabled for the guest. The
5595 * state itself isn't problematic, but setting bits in the header for
5596 * features that are supported in *this* host but not exposed to the
5597 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5598 * compatible host without the features that are NOT exposed to the
5601 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5602 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5603 * supported by the host.
5605 u64 supported_xcr0
= vcpu
->arch
.guest_supported_xcr0
|
5606 XFEATURE_MASK_FPSSE
;
5608 if (fpstate_is_confidential(&vcpu
->arch
.guest_fpu
))
5609 return vcpu
->kvm
->arch
.has_protected_state
? -EINVAL
: 0;
5611 fpu_copy_guest_fpstate_to_uabi(&vcpu
->arch
.guest_fpu
, state
, size
,
5612 supported_xcr0
, vcpu
->arch
.pkru
);
5616 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
5617 struct kvm_xsave
*guest_xsave
)
5619 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu
, (void *)guest_xsave
->region
,
5620 sizeof(guest_xsave
->region
));
5623 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
5624 struct kvm_xsave
*guest_xsave
)
5626 if (fpstate_is_confidential(&vcpu
->arch
.guest_fpu
))
5627 return vcpu
->kvm
->arch
.has_protected_state
? -EINVAL
: 0;
5629 return fpu_copy_uabi_to_guest_fpstate(&vcpu
->arch
.guest_fpu
,
5630 guest_xsave
->region
,
5631 kvm_caps
.supported_xcr0
,
5635 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
5636 struct kvm_xcrs
*guest_xcrs
)
5638 if (vcpu
->kvm
->arch
.has_protected_state
&&
5639 vcpu
->arch
.guest_state_protected
)
5642 if (!boot_cpu_has(X86_FEATURE_XSAVE
)) {
5643 guest_xcrs
->nr_xcrs
= 0;
5647 guest_xcrs
->nr_xcrs
= 1;
5648 guest_xcrs
->flags
= 0;
5649 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
5650 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
5654 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
5655 struct kvm_xcrs
*guest_xcrs
)
5659 if (vcpu
->kvm
->arch
.has_protected_state
&&
5660 vcpu
->arch
.guest_state_protected
)
5663 if (!boot_cpu_has(X86_FEATURE_XSAVE
))
5666 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
5669 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
5670 /* Only support XCR0 currently */
5671 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
5672 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
5673 guest_xcrs
->xcrs
[i
].value
);
5682 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5683 * stopped by the hypervisor. This function will be called from the host only.
5684 * EINVAL is returned when the host attempts to set the flag for a guest that
5685 * does not support pv clocks.
5687 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
5689 if (!vcpu
->arch
.pv_time
.active
)
5691 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
5692 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5696 static int kvm_arch_tsc_has_attr(struct kvm_vcpu
*vcpu
,
5697 struct kvm_device_attr
*attr
)
5701 switch (attr
->attr
) {
5702 case KVM_VCPU_TSC_OFFSET
:
5712 static int kvm_arch_tsc_get_attr(struct kvm_vcpu
*vcpu
,
5713 struct kvm_device_attr
*attr
)
5715 u64 __user
*uaddr
= u64_to_user_ptr(attr
->addr
);
5718 switch (attr
->attr
) {
5719 case KVM_VCPU_TSC_OFFSET
:
5721 if (put_user(vcpu
->arch
.l1_tsc_offset
, uaddr
))
5732 static int kvm_arch_tsc_set_attr(struct kvm_vcpu
*vcpu
,
5733 struct kvm_device_attr
*attr
)
5735 u64 __user
*uaddr
= u64_to_user_ptr(attr
->addr
);
5736 struct kvm
*kvm
= vcpu
->kvm
;
5739 switch (attr
->attr
) {
5740 case KVM_VCPU_TSC_OFFSET
: {
5741 u64 offset
, tsc
, ns
;
5742 unsigned long flags
;
5746 if (get_user(offset
, uaddr
))
5749 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
5751 matched
= (vcpu
->arch
.virtual_tsc_khz
&&
5752 kvm
->arch
.last_tsc_khz
== vcpu
->arch
.virtual_tsc_khz
&&
5753 kvm
->arch
.last_tsc_offset
== offset
);
5755 tsc
= kvm_scale_tsc(rdtsc(), vcpu
->arch
.l1_tsc_scaling_ratio
) + offset
;
5756 ns
= get_kvmclock_base_ns();
5758 kvm
->arch
.user_set_tsc
= true;
5759 __kvm_synchronize_tsc(vcpu
, offset
, tsc
, ns
, matched
);
5760 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
5772 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu
*vcpu
,
5776 struct kvm_device_attr attr
;
5779 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
5782 if (attr
.group
!= KVM_VCPU_TSC_CTRL
)
5786 case KVM_HAS_DEVICE_ATTR
:
5787 r
= kvm_arch_tsc_has_attr(vcpu
, &attr
);
5789 case KVM_GET_DEVICE_ATTR
:
5790 r
= kvm_arch_tsc_get_attr(vcpu
, &attr
);
5792 case KVM_SET_DEVICE_ATTR
:
5793 r
= kvm_arch_tsc_set_attr(vcpu
, &attr
);
5800 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
5801 struct kvm_enable_cap
*cap
)
5807 #ifdef CONFIG_KVM_HYPERV
5808 case KVM_CAP_HYPERV_SYNIC2
:
5813 case KVM_CAP_HYPERV_SYNIC
:
5814 if (!irqchip_in_kernel(vcpu
->kvm
))
5816 return kvm_hv_activate_synic(vcpu
, cap
->cap
==
5817 KVM_CAP_HYPERV_SYNIC2
);
5818 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS
:
5821 uint16_t vmcs_version
;
5822 void __user
*user_ptr
;
5824 if (!kvm_x86_ops
.nested_ops
->enable_evmcs
)
5826 r
= kvm_x86_ops
.nested_ops
->enable_evmcs(vcpu
, &vmcs_version
);
5828 user_ptr
= (void __user
*)(uintptr_t)cap
->args
[0];
5829 if (copy_to_user(user_ptr
, &vmcs_version
,
5830 sizeof(vmcs_version
)))
5835 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH
:
5836 if (!kvm_x86_ops
.enable_l2_tlb_flush
)
5839 return kvm_x86_call(enable_l2_tlb_flush
)(vcpu
);
5841 case KVM_CAP_HYPERV_ENFORCE_CPUID
:
5842 return kvm_hv_set_enforce_cpuid(vcpu
, cap
->args
[0]);
5845 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID
:
5846 vcpu
->arch
.pv_cpuid
.enforce
= cap
->args
[0];
5847 if (vcpu
->arch
.pv_cpuid
.enforce
)
5848 kvm_update_pv_runtime(vcpu
);
5856 long kvm_arch_vcpu_ioctl(struct file
*filp
,
5857 unsigned int ioctl
, unsigned long arg
)
5859 struct kvm_vcpu
*vcpu
= filp
->private_data
;
5860 void __user
*argp
= (void __user
*)arg
;
5863 struct kvm_sregs2
*sregs2
;
5864 struct kvm_lapic_state
*lapic
;
5865 struct kvm_xsave
*xsave
;
5866 struct kvm_xcrs
*xcrs
;
5874 case KVM_GET_LAPIC
: {
5876 if (!lapic_in_kernel(vcpu
))
5878 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
5883 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
5887 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
5892 case KVM_SET_LAPIC
: {
5894 if (!lapic_in_kernel(vcpu
))
5896 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
5897 if (IS_ERR(u
.lapic
)) {
5898 r
= PTR_ERR(u
.lapic
);
5902 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
5905 case KVM_INTERRUPT
: {
5906 struct kvm_interrupt irq
;
5909 if (copy_from_user(&irq
, argp
, sizeof(irq
)))
5911 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
5915 r
= kvm_vcpu_ioctl_nmi(vcpu
);
5919 r
= kvm_inject_smi(vcpu
);
5922 case KVM_SET_CPUID
: {
5923 struct kvm_cpuid __user
*cpuid_arg
= argp
;
5924 struct kvm_cpuid cpuid
;
5927 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
5929 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
5932 case KVM_SET_CPUID2
: {
5933 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
5934 struct kvm_cpuid2 cpuid
;
5937 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
5939 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
5940 cpuid_arg
->entries
);
5943 case KVM_GET_CPUID2
: {
5944 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
5945 struct kvm_cpuid2 cpuid
;
5948 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
5950 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
5951 cpuid_arg
->entries
);
5955 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof(cpuid
)))
5960 case KVM_GET_MSRS
: {
5961 int idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5962 r
= msr_io(vcpu
, argp
, do_get_msr
, 1);
5963 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5966 case KVM_SET_MSRS
: {
5967 int idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5968 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
5969 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5972 case KVM_TPR_ACCESS_REPORTING
: {
5973 struct kvm_tpr_access_ctl tac
;
5976 if (copy_from_user(&tac
, argp
, sizeof(tac
)))
5978 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
5982 if (copy_to_user(argp
, &tac
, sizeof(tac
)))
5987 case KVM_SET_VAPIC_ADDR
: {
5988 struct kvm_vapic_addr va
;
5992 if (!lapic_in_kernel(vcpu
))
5995 if (copy_from_user(&va
, argp
, sizeof(va
)))
5997 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5998 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
5999 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6002 case KVM_X86_SETUP_MCE
: {
6006 if (copy_from_user(&mcg_cap
, argp
, sizeof(mcg_cap
)))
6008 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
6011 case KVM_X86_SET_MCE
: {
6012 struct kvm_x86_mce mce
;
6015 if (copy_from_user(&mce
, argp
, sizeof(mce
)))
6017 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
6020 case KVM_GET_VCPU_EVENTS
: {
6021 struct kvm_vcpu_events events
;
6023 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
6026 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
6031 case KVM_SET_VCPU_EVENTS
: {
6032 struct kvm_vcpu_events events
;
6035 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
6038 kvm_vcpu_srcu_read_lock(vcpu
);
6039 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
6040 kvm_vcpu_srcu_read_unlock(vcpu
);
6043 case KVM_GET_DEBUGREGS
: {
6044 struct kvm_debugregs dbgregs
;
6046 r
= kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
6051 if (copy_to_user(argp
, &dbgregs
,
6052 sizeof(struct kvm_debugregs
)))
6057 case KVM_SET_DEBUGREGS
: {
6058 struct kvm_debugregs dbgregs
;
6061 if (copy_from_user(&dbgregs
, argp
,
6062 sizeof(struct kvm_debugregs
)))
6065 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
6068 case KVM_GET_XSAVE
: {
6070 if (vcpu
->arch
.guest_fpu
.uabi_size
> sizeof(struct kvm_xsave
))
6073 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
6078 r
= kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
6083 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
6088 case KVM_SET_XSAVE
: {
6089 int size
= vcpu
->arch
.guest_fpu
.uabi_size
;
6091 u
.xsave
= memdup_user(argp
, size
);
6092 if (IS_ERR(u
.xsave
)) {
6093 r
= PTR_ERR(u
.xsave
);
6097 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
6101 case KVM_GET_XSAVE2
: {
6102 int size
= vcpu
->arch
.guest_fpu
.uabi_size
;
6104 u
.xsave
= kzalloc(size
, GFP_KERNEL
);
6109 r
= kvm_vcpu_ioctl_x86_get_xsave2(vcpu
, u
.buffer
, size
);
6114 if (copy_to_user(argp
, u
.xsave
, size
))
6121 case KVM_GET_XCRS
: {
6122 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
6127 r
= kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
6132 if (copy_to_user(argp
, u
.xcrs
,
6133 sizeof(struct kvm_xcrs
)))
6138 case KVM_SET_XCRS
: {
6139 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
6140 if (IS_ERR(u
.xcrs
)) {
6141 r
= PTR_ERR(u
.xcrs
);
6145 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
6148 case KVM_SET_TSC_KHZ
: {
6152 user_tsc_khz
= (u32
)arg
;
6154 if (kvm_caps
.has_tsc_control
&&
6155 user_tsc_khz
>= kvm_caps
.max_guest_tsc_khz
)
6158 if (user_tsc_khz
== 0)
6159 user_tsc_khz
= tsc_khz
;
6161 if (!kvm_set_tsc_khz(vcpu
, user_tsc_khz
))
6166 case KVM_GET_TSC_KHZ
: {
6167 r
= vcpu
->arch
.virtual_tsc_khz
;
6170 case KVM_KVMCLOCK_CTRL
: {
6171 r
= kvm_set_guest_paused(vcpu
);
6174 case KVM_ENABLE_CAP
: {
6175 struct kvm_enable_cap cap
;
6178 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
6180 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
6183 case KVM_GET_NESTED_STATE
: {
6184 struct kvm_nested_state __user
*user_kvm_nested_state
= argp
;
6188 if (!kvm_x86_ops
.nested_ops
->get_state
)
6191 BUILD_BUG_ON(sizeof(user_data_size
) != sizeof(user_kvm_nested_state
->size
));
6193 if (get_user(user_data_size
, &user_kvm_nested_state
->size
))
6196 r
= kvm_x86_ops
.nested_ops
->get_state(vcpu
, user_kvm_nested_state
,
6201 if (r
> user_data_size
) {
6202 if (put_user(r
, &user_kvm_nested_state
->size
))
6212 case KVM_SET_NESTED_STATE
: {
6213 struct kvm_nested_state __user
*user_kvm_nested_state
= argp
;
6214 struct kvm_nested_state kvm_state
;
6218 if (!kvm_x86_ops
.nested_ops
->set_state
)
6222 if (copy_from_user(&kvm_state
, user_kvm_nested_state
, sizeof(kvm_state
)))
6226 if (kvm_state
.size
< sizeof(kvm_state
))
6229 if (kvm_state
.flags
&
6230 ~(KVM_STATE_NESTED_RUN_PENDING
| KVM_STATE_NESTED_GUEST_MODE
6231 | KVM_STATE_NESTED_EVMCS
| KVM_STATE_NESTED_MTF_PENDING
6232 | KVM_STATE_NESTED_GIF_SET
))
6235 /* nested_run_pending implies guest_mode. */
6236 if ((kvm_state
.flags
& KVM_STATE_NESTED_RUN_PENDING
)
6237 && !(kvm_state
.flags
& KVM_STATE_NESTED_GUEST_MODE
))
6240 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6241 r
= kvm_x86_ops
.nested_ops
->set_state(vcpu
, user_kvm_nested_state
, &kvm_state
);
6242 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6245 #ifdef CONFIG_KVM_HYPERV
6246 case KVM_GET_SUPPORTED_HV_CPUID
:
6247 r
= kvm_ioctl_get_supported_hv_cpuid(vcpu
, argp
);
6250 #ifdef CONFIG_KVM_XEN
6251 case KVM_XEN_VCPU_GET_ATTR
: {
6252 struct kvm_xen_vcpu_attr xva
;
6255 if (copy_from_user(&xva
, argp
, sizeof(xva
)))
6257 r
= kvm_xen_vcpu_get_attr(vcpu
, &xva
);
6258 if (!r
&& copy_to_user(argp
, &xva
, sizeof(xva
)))
6262 case KVM_XEN_VCPU_SET_ATTR
: {
6263 struct kvm_xen_vcpu_attr xva
;
6266 if (copy_from_user(&xva
, argp
, sizeof(xva
)))
6268 r
= kvm_xen_vcpu_set_attr(vcpu
, &xva
);
6272 case KVM_GET_SREGS2
: {
6274 if (vcpu
->kvm
->arch
.has_protected_state
&&
6275 vcpu
->arch
.guest_state_protected
)
6278 u
.sregs2
= kzalloc(sizeof(struct kvm_sregs2
), GFP_KERNEL
);
6282 __get_sregs2(vcpu
, u
.sregs2
);
6284 if (copy_to_user(argp
, u
.sregs2
, sizeof(struct kvm_sregs2
)))
6289 case KVM_SET_SREGS2
: {
6291 if (vcpu
->kvm
->arch
.has_protected_state
&&
6292 vcpu
->arch
.guest_state_protected
)
6295 u
.sregs2
= memdup_user(argp
, sizeof(struct kvm_sregs2
));
6296 if (IS_ERR(u
.sregs2
)) {
6297 r
= PTR_ERR(u
.sregs2
);
6301 r
= __set_sregs2(vcpu
, u
.sregs2
);
6304 case KVM_HAS_DEVICE_ATTR
:
6305 case KVM_GET_DEVICE_ATTR
:
6306 case KVM_SET_DEVICE_ATTR
:
6307 r
= kvm_vcpu_ioctl_device_attr(vcpu
, ioctl
, argp
);
6319 vm_fault_t
kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
6321 return VM_FAULT_SIGBUS
;
6324 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
6328 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
6330 ret
= kvm_x86_call(set_tss_addr
)(kvm
, addr
);
6334 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
6337 return kvm_x86_call(set_identity_map_addr
)(kvm
, ident_addr
);
6340 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
6341 unsigned long kvm_nr_mmu_pages
)
6343 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
6346 mutex_lock(&kvm
->slots_lock
);
6348 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
6349 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
6351 mutex_unlock(&kvm
->slots_lock
);
6355 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
6357 struct kvm_pic
*pic
= kvm
->arch
.vpic
;
6361 switch (chip
->chip_id
) {
6362 case KVM_IRQCHIP_PIC_MASTER
:
6363 memcpy(&chip
->chip
.pic
, &pic
->pics
[0],
6364 sizeof(struct kvm_pic_state
));
6366 case KVM_IRQCHIP_PIC_SLAVE
:
6367 memcpy(&chip
->chip
.pic
, &pic
->pics
[1],
6368 sizeof(struct kvm_pic_state
));
6370 case KVM_IRQCHIP_IOAPIC
:
6371 kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
6380 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
6382 struct kvm_pic
*pic
= kvm
->arch
.vpic
;
6386 switch (chip
->chip_id
) {
6387 case KVM_IRQCHIP_PIC_MASTER
:
6388 spin_lock(&pic
->lock
);
6389 memcpy(&pic
->pics
[0], &chip
->chip
.pic
,
6390 sizeof(struct kvm_pic_state
));
6391 spin_unlock(&pic
->lock
);
6393 case KVM_IRQCHIP_PIC_SLAVE
:
6394 spin_lock(&pic
->lock
);
6395 memcpy(&pic
->pics
[1], &chip
->chip
.pic
,
6396 sizeof(struct kvm_pic_state
));
6397 spin_unlock(&pic
->lock
);
6399 case KVM_IRQCHIP_IOAPIC
:
6400 kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
6406 kvm_pic_update_irq(pic
);
6410 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
6412 struct kvm_kpit_state
*kps
= &kvm
->arch
.vpit
->pit_state
;
6414 BUILD_BUG_ON(sizeof(*ps
) != sizeof(kps
->channels
));
6416 mutex_lock(&kps
->lock
);
6417 memcpy(ps
, &kps
->channels
, sizeof(*ps
));
6418 mutex_unlock(&kps
->lock
);
6422 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
6425 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
6427 mutex_lock(&pit
->pit_state
.lock
);
6428 memcpy(&pit
->pit_state
.channels
, ps
, sizeof(*ps
));
6429 for (i
= 0; i
< 3; i
++)
6430 kvm_pit_load_count(pit
, i
, ps
->channels
[i
].count
, 0);
6431 mutex_unlock(&pit
->pit_state
.lock
);
6435 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
6437 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
6438 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
6439 sizeof(ps
->channels
));
6440 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
6441 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
6442 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
6446 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
6450 u32 prev_legacy
, cur_legacy
;
6451 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
6453 mutex_lock(&pit
->pit_state
.lock
);
6454 prev_legacy
= pit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
6455 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
6456 if (!prev_legacy
&& cur_legacy
)
6458 memcpy(&pit
->pit_state
.channels
, &ps
->channels
,
6459 sizeof(pit
->pit_state
.channels
));
6460 pit
->pit_state
.flags
= ps
->flags
;
6461 for (i
= 0; i
< 3; i
++)
6462 kvm_pit_load_count(pit
, i
, pit
->pit_state
.channels
[i
].count
,
6464 mutex_unlock(&pit
->pit_state
.lock
);
6468 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
6469 struct kvm_reinject_control
*control
)
6471 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
6473 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6474 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6475 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6477 mutex_lock(&pit
->pit_state
.lock
);
6478 kvm_pit_set_reinject(pit
, control
->pit_reinject
);
6479 mutex_unlock(&pit
->pit_state
.lock
);
6484 void kvm_arch_sync_dirty_log(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
)
6488 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6489 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6490 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6493 struct kvm_vcpu
*vcpu
;
6496 if (!kvm_x86_ops
.cpu_dirty_log_size
)
6499 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6500 kvm_vcpu_kick(vcpu
);
6503 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
6506 if (!irqchip_in_kernel(kvm
))
6509 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
6510 irq_event
->irq
, irq_event
->level
,
6515 int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
6516 struct kvm_enable_cap
*cap
)
6524 case KVM_CAP_DISABLE_QUIRKS2
:
6526 if (cap
->args
[0] & ~KVM_X86_VALID_QUIRKS
)
6529 case KVM_CAP_DISABLE_QUIRKS
:
6530 kvm
->arch
.disabled_quirks
= cap
->args
[0];
6533 case KVM_CAP_SPLIT_IRQCHIP
: {
6534 mutex_lock(&kvm
->lock
);
6536 if (cap
->args
[0] > MAX_NR_RESERVED_IOAPIC_PINS
)
6537 goto split_irqchip_unlock
;
6539 if (irqchip_in_kernel(kvm
))
6540 goto split_irqchip_unlock
;
6541 if (kvm
->created_vcpus
)
6542 goto split_irqchip_unlock
;
6543 /* Pairs with irqchip_in_kernel. */
6545 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_SPLIT
;
6546 kvm
->arch
.nr_reserved_ioapic_pins
= cap
->args
[0];
6547 kvm_clear_apicv_inhibit(kvm
, APICV_INHIBIT_REASON_ABSENT
);
6549 split_irqchip_unlock
:
6550 mutex_unlock(&kvm
->lock
);
6553 case KVM_CAP_X2APIC_API
:
6555 if (cap
->args
[0] & ~KVM_X2APIC_API_VALID_FLAGS
)
6558 if (cap
->args
[0] & KVM_X2APIC_API_USE_32BIT_IDS
)
6559 kvm
->arch
.x2apic_format
= true;
6560 if (cap
->args
[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
)
6561 kvm
->arch
.x2apic_broadcast_quirk_disabled
= true;
6565 case KVM_CAP_X86_DISABLE_EXITS
:
6567 if (cap
->args
[0] & ~KVM_X86_DISABLE_VALID_EXITS
)
6570 if (cap
->args
[0] & KVM_X86_DISABLE_EXITS_PAUSE
)
6571 kvm
->arch
.pause_in_guest
= true;
6573 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6574 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6576 if (!mitigate_smt_rsb
) {
6577 if (boot_cpu_has_bug(X86_BUG_SMT_RSB
) && cpu_smt_possible() &&
6578 (cap
->args
[0] & ~KVM_X86_DISABLE_EXITS_PAUSE
))
6579 pr_warn_once(SMT_RSB_MSG
);
6581 if ((cap
->args
[0] & KVM_X86_DISABLE_EXITS_MWAIT
) &&
6582 kvm_can_mwait_in_guest())
6583 kvm
->arch
.mwait_in_guest
= true;
6584 if (cap
->args
[0] & KVM_X86_DISABLE_EXITS_HLT
)
6585 kvm
->arch
.hlt_in_guest
= true;
6586 if (cap
->args
[0] & KVM_X86_DISABLE_EXITS_CSTATE
)
6587 kvm
->arch
.cstate_in_guest
= true;
6592 case KVM_CAP_MSR_PLATFORM_INFO
:
6593 kvm
->arch
.guest_can_read_msr_platform_info
= cap
->args
[0];
6596 case KVM_CAP_EXCEPTION_PAYLOAD
:
6597 kvm
->arch
.exception_payload_enabled
= cap
->args
[0];
6600 case KVM_CAP_X86_TRIPLE_FAULT_EVENT
:
6601 kvm
->arch
.triple_fault_event
= cap
->args
[0];
6604 case KVM_CAP_X86_USER_SPACE_MSR
:
6606 if (cap
->args
[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK
)
6608 kvm
->arch
.user_space_msr_mask
= cap
->args
[0];
6611 case KVM_CAP_X86_BUS_LOCK_EXIT
:
6613 if (cap
->args
[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE
)
6616 if ((cap
->args
[0] & KVM_BUS_LOCK_DETECTION_OFF
) &&
6617 (cap
->args
[0] & KVM_BUS_LOCK_DETECTION_EXIT
))
6620 if (kvm_caps
.has_bus_lock_exit
&&
6621 cap
->args
[0] & KVM_BUS_LOCK_DETECTION_EXIT
)
6622 kvm
->arch
.bus_lock_detection_enabled
= true;
6625 #ifdef CONFIG_X86_SGX_KVM
6626 case KVM_CAP_SGX_ATTRIBUTE
: {
6627 unsigned long allowed_attributes
= 0;
6629 r
= sgx_set_attribute(&allowed_attributes
, cap
->args
[0]);
6633 /* KVM only supports the PROVISIONKEY privileged attribute. */
6634 if ((allowed_attributes
& SGX_ATTR_PROVISIONKEY
) &&
6635 !(allowed_attributes
& ~SGX_ATTR_PROVISIONKEY
))
6636 kvm
->arch
.sgx_provisioning_allowed
= true;
6642 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM
:
6644 if (!kvm_x86_ops
.vm_copy_enc_context_from
)
6647 r
= kvm_x86_call(vm_copy_enc_context_from
)(kvm
, cap
->args
[0]);
6649 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM
:
6651 if (!kvm_x86_ops
.vm_move_enc_context_from
)
6654 r
= kvm_x86_call(vm_move_enc_context_from
)(kvm
, cap
->args
[0]);
6656 case KVM_CAP_EXIT_HYPERCALL
:
6657 if (cap
->args
[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK
) {
6661 kvm
->arch
.hypercall_exit_enabled
= cap
->args
[0];
6664 case KVM_CAP_EXIT_ON_EMULATION_FAILURE
:
6666 if (cap
->args
[0] & ~1)
6668 kvm
->arch
.exit_on_emulation_error
= cap
->args
[0];
6671 case KVM_CAP_PMU_CAPABILITY
:
6673 if (!enable_pmu
|| (cap
->args
[0] & ~KVM_CAP_PMU_VALID_MASK
))
6676 mutex_lock(&kvm
->lock
);
6677 if (!kvm
->created_vcpus
) {
6678 kvm
->arch
.enable_pmu
= !(cap
->args
[0] & KVM_PMU_CAP_DISABLE
);
6681 mutex_unlock(&kvm
->lock
);
6683 case KVM_CAP_MAX_VCPU_ID
:
6685 if (cap
->args
[0] > KVM_MAX_VCPU_IDS
)
6688 mutex_lock(&kvm
->lock
);
6689 if (kvm
->arch
.bsp_vcpu_id
> cap
->args
[0]) {
6691 } else if (kvm
->arch
.max_vcpu_ids
== cap
->args
[0]) {
6693 } else if (!kvm
->arch
.max_vcpu_ids
) {
6694 kvm
->arch
.max_vcpu_ids
= cap
->args
[0];
6697 mutex_unlock(&kvm
->lock
);
6699 case KVM_CAP_X86_NOTIFY_VMEXIT
:
6701 if ((u32
)cap
->args
[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS
)
6703 if (!kvm_caps
.has_notify_vmexit
)
6705 if (!((u32
)cap
->args
[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED
))
6707 mutex_lock(&kvm
->lock
);
6708 if (!kvm
->created_vcpus
) {
6709 kvm
->arch
.notify_window
= cap
->args
[0] >> 32;
6710 kvm
->arch
.notify_vmexit_flags
= (u32
)cap
->args
[0];
6713 mutex_unlock(&kvm
->lock
);
6715 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES
:
6719 * Since the risk of disabling NX hugepages is a guest crashing
6720 * the system, ensure the userspace process has permission to
6721 * reboot the system.
6723 * Note that unlike the reboot() syscall, the process must have
6724 * this capability in the root namespace because exposing
6725 * /dev/kvm into a container does not limit the scope of the
6726 * iTLB multihit bug to that container. In other words,
6727 * this must use capable(), not ns_capable().
6729 if (!capable(CAP_SYS_BOOT
)) {
6737 mutex_lock(&kvm
->lock
);
6738 if (!kvm
->created_vcpus
) {
6739 kvm
->arch
.disable_nx_huge_pages
= true;
6742 mutex_unlock(&kvm
->lock
);
6744 case KVM_CAP_X86_APIC_BUS_CYCLES_NS
: {
6745 u64 bus_cycle_ns
= cap
->args
[0];
6749 * Guard against overflow in tmict_to_ns(). 128 is the highest
6750 * divide value that can be programmed in APIC_TDCR.
6753 if (!bus_cycle_ns
||
6754 check_mul_overflow((u64
)U32_MAX
* 128, bus_cycle_ns
, &unused
))
6758 mutex_lock(&kvm
->lock
);
6759 if (!irqchip_in_kernel(kvm
))
6761 else if (kvm
->created_vcpus
)
6764 kvm
->arch
.apic_bus_cycle_ns
= bus_cycle_ns
;
6765 mutex_unlock(&kvm
->lock
);
6775 static struct kvm_x86_msr_filter
*kvm_alloc_msr_filter(bool default_allow
)
6777 struct kvm_x86_msr_filter
*msr_filter
;
6779 msr_filter
= kzalloc(sizeof(*msr_filter
), GFP_KERNEL_ACCOUNT
);
6783 msr_filter
->default_allow
= default_allow
;
6787 static void kvm_free_msr_filter(struct kvm_x86_msr_filter
*msr_filter
)
6794 for (i
= 0; i
< msr_filter
->count
; i
++)
6795 kfree(msr_filter
->ranges
[i
].bitmap
);
6800 static int kvm_add_msr_filter(struct kvm_x86_msr_filter
*msr_filter
,
6801 struct kvm_msr_filter_range
*user_range
)
6803 unsigned long *bitmap
;
6806 if (!user_range
->nmsrs
)
6809 if (user_range
->flags
& ~KVM_MSR_FILTER_RANGE_VALID_MASK
)
6812 if (!user_range
->flags
)
6815 bitmap_size
= BITS_TO_LONGS(user_range
->nmsrs
) * sizeof(long);
6816 if (!bitmap_size
|| bitmap_size
> KVM_MSR_FILTER_MAX_BITMAP_SIZE
)
6819 bitmap
= memdup_user((__user u8
*)user_range
->bitmap
, bitmap_size
);
6821 return PTR_ERR(bitmap
);
6823 msr_filter
->ranges
[msr_filter
->count
] = (struct msr_bitmap_range
) {
6824 .flags
= user_range
->flags
,
6825 .base
= user_range
->base
,
6826 .nmsrs
= user_range
->nmsrs
,
6830 msr_filter
->count
++;
6834 static int kvm_vm_ioctl_set_msr_filter(struct kvm
*kvm
,
6835 struct kvm_msr_filter
*filter
)
6837 struct kvm_x86_msr_filter
*new_filter
, *old_filter
;
6843 if (filter
->flags
& ~KVM_MSR_FILTER_VALID_MASK
)
6846 for (i
= 0; i
< ARRAY_SIZE(filter
->ranges
); i
++)
6847 empty
&= !filter
->ranges
[i
].nmsrs
;
6849 default_allow
= !(filter
->flags
& KVM_MSR_FILTER_DEFAULT_DENY
);
6850 if (empty
&& !default_allow
)
6853 new_filter
= kvm_alloc_msr_filter(default_allow
);
6857 for (i
= 0; i
< ARRAY_SIZE(filter
->ranges
); i
++) {
6858 r
= kvm_add_msr_filter(new_filter
, &filter
->ranges
[i
]);
6860 kvm_free_msr_filter(new_filter
);
6865 mutex_lock(&kvm
->lock
);
6866 old_filter
= rcu_replace_pointer(kvm
->arch
.msr_filter
, new_filter
,
6867 mutex_is_locked(&kvm
->lock
));
6868 mutex_unlock(&kvm
->lock
);
6869 synchronize_srcu(&kvm
->srcu
);
6871 kvm_free_msr_filter(old_filter
);
6873 kvm_make_all_cpus_request(kvm
, KVM_REQ_MSR_FILTER_CHANGED
);
6878 #ifdef CONFIG_KVM_COMPAT
6879 /* for KVM_X86_SET_MSR_FILTER */
6880 struct kvm_msr_filter_range_compat
{
6887 struct kvm_msr_filter_compat
{
6889 struct kvm_msr_filter_range_compat ranges
[KVM_MSR_FILTER_MAX_RANGES
];
6892 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6894 long kvm_arch_vm_compat_ioctl(struct file
*filp
, unsigned int ioctl
,
6897 void __user
*argp
= (void __user
*)arg
;
6898 struct kvm
*kvm
= filp
->private_data
;
6902 case KVM_X86_SET_MSR_FILTER_COMPAT
: {
6903 struct kvm_msr_filter __user
*user_msr_filter
= argp
;
6904 struct kvm_msr_filter_compat filter_compat
;
6905 struct kvm_msr_filter filter
;
6908 if (copy_from_user(&filter_compat
, user_msr_filter
,
6909 sizeof(filter_compat
)))
6912 filter
.flags
= filter_compat
.flags
;
6913 for (i
= 0; i
< ARRAY_SIZE(filter
.ranges
); i
++) {
6914 struct kvm_msr_filter_range_compat
*cr
;
6916 cr
= &filter_compat
.ranges
[i
];
6917 filter
.ranges
[i
] = (struct kvm_msr_filter_range
) {
6921 .bitmap
= (__u8
*)(ulong
)cr
->bitmap
,
6925 r
= kvm_vm_ioctl_set_msr_filter(kvm
, &filter
);
6934 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6935 static int kvm_arch_suspend_notifier(struct kvm
*kvm
)
6937 struct kvm_vcpu
*vcpu
;
6941 mutex_lock(&kvm
->lock
);
6942 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6943 if (!vcpu
->arch
.pv_time
.active
)
6946 ret
= kvm_set_guest_paused(vcpu
);
6948 kvm_err("Failed to pause guest VCPU%d: %d\n",
6949 vcpu
->vcpu_id
, ret
);
6953 mutex_unlock(&kvm
->lock
);
6955 return ret
? NOTIFY_BAD
: NOTIFY_DONE
;
6958 int kvm_arch_pm_notifier(struct kvm
*kvm
, unsigned long state
)
6961 case PM_HIBERNATION_PREPARE
:
6962 case PM_SUSPEND_PREPARE
:
6963 return kvm_arch_suspend_notifier(kvm
);
6968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6970 static int kvm_vm_ioctl_get_clock(struct kvm
*kvm
, void __user
*argp
)
6972 struct kvm_clock_data data
= { 0 };
6974 get_kvmclock(kvm
, &data
);
6975 if (copy_to_user(argp
, &data
, sizeof(data
)))
6981 static int kvm_vm_ioctl_set_clock(struct kvm
*kvm
, void __user
*argp
)
6983 struct kvm_arch
*ka
= &kvm
->arch
;
6984 struct kvm_clock_data data
;
6987 if (copy_from_user(&data
, argp
, sizeof(data
)))
6991 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6992 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6994 if (data
.flags
& ~KVM_CLOCK_VALID_FLAGS
)
6997 kvm_hv_request_tsc_page_update(kvm
);
6998 kvm_start_pvclock_update(kvm
);
6999 pvclock_update_vm_gtod_copy(kvm
);
7002 * This pairs with kvm_guest_time_update(): when masterclock is
7003 * in use, we use master_kernel_ns + kvmclock_offset to set
7004 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
7005 * is slightly ahead) here we risk going negative on unsigned
7006 * 'system_time' when 'data.clock' is very small.
7008 if (data
.flags
& KVM_CLOCK_REALTIME
) {
7009 u64 now_real_ns
= ktime_get_real_ns();
7012 * Avoid stepping the kvmclock backwards.
7014 if (now_real_ns
> data
.realtime
)
7015 data
.clock
+= now_real_ns
- data
.realtime
;
7018 if (ka
->use_master_clock
)
7019 now_raw_ns
= ka
->master_kernel_ns
;
7021 now_raw_ns
= get_kvmclock_base_ns();
7022 ka
->kvmclock_offset
= data
.clock
- now_raw_ns
;
7023 kvm_end_pvclock_update(kvm
);
7027 int kvm_arch_vm_ioctl(struct file
*filp
, unsigned int ioctl
, unsigned long arg
)
7029 struct kvm
*kvm
= filp
->private_data
;
7030 void __user
*argp
= (void __user
*)arg
;
7033 * This union makes it completely explicit to gcc-3.x
7034 * that these two variables' stack usage should be
7035 * combined, not added together.
7038 struct kvm_pit_state ps
;
7039 struct kvm_pit_state2 ps2
;
7040 struct kvm_pit_config pit_config
;
7044 case KVM_SET_TSS_ADDR
:
7045 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
7047 case KVM_SET_IDENTITY_MAP_ADDR
: {
7050 mutex_lock(&kvm
->lock
);
7052 if (kvm
->created_vcpus
)
7053 goto set_identity_unlock
;
7055 if (copy_from_user(&ident_addr
, argp
, sizeof(ident_addr
)))
7056 goto set_identity_unlock
;
7057 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
7058 set_identity_unlock
:
7059 mutex_unlock(&kvm
->lock
);
7062 case KVM_SET_NR_MMU_PAGES
:
7063 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
7065 case KVM_CREATE_IRQCHIP
: {
7066 mutex_lock(&kvm
->lock
);
7069 if (irqchip_in_kernel(kvm
))
7070 goto create_irqchip_unlock
;
7073 if (kvm
->created_vcpus
)
7074 goto create_irqchip_unlock
;
7076 r
= kvm_pic_init(kvm
);
7078 goto create_irqchip_unlock
;
7080 r
= kvm_ioapic_init(kvm
);
7082 kvm_pic_destroy(kvm
);
7083 goto create_irqchip_unlock
;
7086 r
= kvm_setup_default_irq_routing(kvm
);
7088 kvm_ioapic_destroy(kvm
);
7089 kvm_pic_destroy(kvm
);
7090 goto create_irqchip_unlock
;
7092 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7094 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_KERNEL
;
7095 kvm_clear_apicv_inhibit(kvm
, APICV_INHIBIT_REASON_ABSENT
);
7096 create_irqchip_unlock
:
7097 mutex_unlock(&kvm
->lock
);
7100 case KVM_CREATE_PIT
:
7101 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
7103 case KVM_CREATE_PIT2
:
7105 if (copy_from_user(&u
.pit_config
, argp
,
7106 sizeof(struct kvm_pit_config
)))
7109 mutex_lock(&kvm
->lock
);
7112 goto create_pit_unlock
;
7114 if (!pic_in_kernel(kvm
))
7115 goto create_pit_unlock
;
7117 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
7121 mutex_unlock(&kvm
->lock
);
7123 case KVM_GET_IRQCHIP
: {
7124 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7125 struct kvm_irqchip
*chip
;
7127 chip
= memdup_user(argp
, sizeof(*chip
));
7134 if (!irqchip_kernel(kvm
))
7135 goto get_irqchip_out
;
7136 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
7138 goto get_irqchip_out
;
7140 if (copy_to_user(argp
, chip
, sizeof(*chip
)))
7141 goto get_irqchip_out
;
7147 case KVM_SET_IRQCHIP
: {
7148 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7149 struct kvm_irqchip
*chip
;
7151 chip
= memdup_user(argp
, sizeof(*chip
));
7158 if (!irqchip_kernel(kvm
))
7159 goto set_irqchip_out
;
7160 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
7167 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
7170 if (!kvm
->arch
.vpit
)
7172 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
7176 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
7183 if (copy_from_user(&u
.ps
, argp
, sizeof(u
.ps
)))
7185 mutex_lock(&kvm
->lock
);
7187 if (!kvm
->arch
.vpit
)
7189 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
7191 mutex_unlock(&kvm
->lock
);
7194 case KVM_GET_PIT2
: {
7196 if (!kvm
->arch
.vpit
)
7198 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
7202 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
7207 case KVM_SET_PIT2
: {
7209 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
7211 mutex_lock(&kvm
->lock
);
7213 if (!kvm
->arch
.vpit
)
7215 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
7217 mutex_unlock(&kvm
->lock
);
7220 case KVM_REINJECT_CONTROL
: {
7221 struct kvm_reinject_control control
;
7223 if (copy_from_user(&control
, argp
, sizeof(control
)))
7226 if (!kvm
->arch
.vpit
)
7228 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
7231 case KVM_SET_BOOT_CPU_ID
:
7233 mutex_lock(&kvm
->lock
);
7234 if (kvm
->created_vcpus
)
7236 else if (arg
> KVM_MAX_VCPU_IDS
||
7237 (kvm
->arch
.max_vcpu_ids
&& arg
> kvm
->arch
.max_vcpu_ids
))
7240 kvm
->arch
.bsp_vcpu_id
= arg
;
7241 mutex_unlock(&kvm
->lock
);
7243 #ifdef CONFIG_KVM_XEN
7244 case KVM_XEN_HVM_CONFIG
: {
7245 struct kvm_xen_hvm_config xhc
;
7247 if (copy_from_user(&xhc
, argp
, sizeof(xhc
)))
7249 r
= kvm_xen_hvm_config(kvm
, &xhc
);
7252 case KVM_XEN_HVM_GET_ATTR
: {
7253 struct kvm_xen_hvm_attr xha
;
7256 if (copy_from_user(&xha
, argp
, sizeof(xha
)))
7258 r
= kvm_xen_hvm_get_attr(kvm
, &xha
);
7259 if (!r
&& copy_to_user(argp
, &xha
, sizeof(xha
)))
7263 case KVM_XEN_HVM_SET_ATTR
: {
7264 struct kvm_xen_hvm_attr xha
;
7267 if (copy_from_user(&xha
, argp
, sizeof(xha
)))
7269 r
= kvm_xen_hvm_set_attr(kvm
, &xha
);
7272 case KVM_XEN_HVM_EVTCHN_SEND
: {
7273 struct kvm_irq_routing_xen_evtchn uxe
;
7276 if (copy_from_user(&uxe
, argp
, sizeof(uxe
)))
7278 r
= kvm_xen_hvm_evtchn_send(kvm
, &uxe
);
7283 r
= kvm_vm_ioctl_set_clock(kvm
, argp
);
7286 r
= kvm_vm_ioctl_get_clock(kvm
, argp
);
7288 case KVM_SET_TSC_KHZ
: {
7292 user_tsc_khz
= (u32
)arg
;
7294 if (kvm_caps
.has_tsc_control
&&
7295 user_tsc_khz
>= kvm_caps
.max_guest_tsc_khz
)
7298 if (user_tsc_khz
== 0)
7299 user_tsc_khz
= tsc_khz
;
7301 WRITE_ONCE(kvm
->arch
.default_tsc_khz
, user_tsc_khz
);
7306 case KVM_GET_TSC_KHZ
: {
7307 r
= READ_ONCE(kvm
->arch
.default_tsc_khz
);
7310 case KVM_MEMORY_ENCRYPT_OP
: {
7312 if (!kvm_x86_ops
.mem_enc_ioctl
)
7315 r
= kvm_x86_call(mem_enc_ioctl
)(kvm
, argp
);
7318 case KVM_MEMORY_ENCRYPT_REG_REGION
: {
7319 struct kvm_enc_region region
;
7322 if (copy_from_user(®ion
, argp
, sizeof(region
)))
7326 if (!kvm_x86_ops
.mem_enc_register_region
)
7329 r
= kvm_x86_call(mem_enc_register_region
)(kvm
, ®ion
);
7332 case KVM_MEMORY_ENCRYPT_UNREG_REGION
: {
7333 struct kvm_enc_region region
;
7336 if (copy_from_user(®ion
, argp
, sizeof(region
)))
7340 if (!kvm_x86_ops
.mem_enc_unregister_region
)
7343 r
= kvm_x86_call(mem_enc_unregister_region
)(kvm
, ®ion
);
7346 #ifdef CONFIG_KVM_HYPERV
7347 case KVM_HYPERV_EVENTFD
: {
7348 struct kvm_hyperv_eventfd hvevfd
;
7351 if (copy_from_user(&hvevfd
, argp
, sizeof(hvevfd
)))
7353 r
= kvm_vm_ioctl_hv_eventfd(kvm
, &hvevfd
);
7357 case KVM_SET_PMU_EVENT_FILTER
:
7358 r
= kvm_vm_ioctl_set_pmu_event_filter(kvm
, argp
);
7360 case KVM_X86_SET_MSR_FILTER
: {
7361 struct kvm_msr_filter __user
*user_msr_filter
= argp
;
7362 struct kvm_msr_filter filter
;
7364 if (copy_from_user(&filter
, user_msr_filter
, sizeof(filter
)))
7367 r
= kvm_vm_ioctl_set_msr_filter(kvm
, &filter
);
7377 static void kvm_probe_feature_msr(u32 msr_index
)
7381 if (kvm_get_feature_msr(NULL
, msr_index
, &data
, true))
7384 msr_based_features
[num_msr_based_features
++] = msr_index
;
7387 static void kvm_probe_msr_to_save(u32 msr_index
)
7391 if (rdmsr_safe(msr_index
, &dummy
[0], &dummy
[1]))
7395 * Even MSRs that are valid in the host may not be exposed to guests in
7398 switch (msr_index
) {
7399 case MSR_IA32_BNDCFGS
:
7400 if (!kvm_mpx_supported())
7404 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP
) &&
7405 !kvm_cpu_cap_has(X86_FEATURE_RDPID
))
7408 case MSR_IA32_UMWAIT_CONTROL
:
7409 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG
))
7412 case MSR_IA32_RTIT_CTL
:
7413 case MSR_IA32_RTIT_STATUS
:
7414 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT
))
7417 case MSR_IA32_RTIT_CR3_MATCH
:
7418 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT
) ||
7419 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering
))
7422 case MSR_IA32_RTIT_OUTPUT_BASE
:
7423 case MSR_IA32_RTIT_OUTPUT_MASK
:
7424 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT
) ||
7425 (!intel_pt_validate_hw_cap(PT_CAP_topa_output
) &&
7426 !intel_pt_validate_hw_cap(PT_CAP_single_range_output
)))
7429 case MSR_IA32_RTIT_ADDR0_A
... MSR_IA32_RTIT_ADDR3_B
:
7430 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT
) ||
7431 (msr_index
- MSR_IA32_RTIT_ADDR0_A
>=
7432 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges
) * 2))
7435 case MSR_ARCH_PERFMON_PERFCTR0
...
7436 MSR_ARCH_PERFMON_PERFCTR0
+ KVM_MAX_NR_GP_COUNTERS
- 1:
7437 if (msr_index
- MSR_ARCH_PERFMON_PERFCTR0
>=
7438 kvm_pmu_cap
.num_counters_gp
)
7441 case MSR_ARCH_PERFMON_EVENTSEL0
...
7442 MSR_ARCH_PERFMON_EVENTSEL0
+ KVM_MAX_NR_GP_COUNTERS
- 1:
7443 if (msr_index
- MSR_ARCH_PERFMON_EVENTSEL0
>=
7444 kvm_pmu_cap
.num_counters_gp
)
7447 case MSR_ARCH_PERFMON_FIXED_CTR0
...
7448 MSR_ARCH_PERFMON_FIXED_CTR0
+ KVM_MAX_NR_FIXED_COUNTERS
- 1:
7449 if (msr_index
- MSR_ARCH_PERFMON_FIXED_CTR0
>=
7450 kvm_pmu_cap
.num_counters_fixed
)
7453 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL
:
7454 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS
:
7455 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR
:
7456 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2
))
7460 case MSR_IA32_XFD_ERR
:
7461 if (!kvm_cpu_cap_has(X86_FEATURE_XFD
))
7464 case MSR_IA32_TSX_CTRL
:
7465 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR
))
7472 msrs_to_save
[num_msrs_to_save
++] = msr_index
;
7475 static void kvm_init_msr_lists(void)
7479 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS
!= 3,
7480 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7482 num_msrs_to_save
= 0;
7483 num_emulated_msrs
= 0;
7484 num_msr_based_features
= 0;
7486 for (i
= 0; i
< ARRAY_SIZE(msrs_to_save_base
); i
++)
7487 kvm_probe_msr_to_save(msrs_to_save_base
[i
]);
7490 for (i
= 0; i
< ARRAY_SIZE(msrs_to_save_pmu
); i
++)
7491 kvm_probe_msr_to_save(msrs_to_save_pmu
[i
]);
7494 for (i
= 0; i
< ARRAY_SIZE(emulated_msrs_all
); i
++) {
7495 if (!kvm_x86_call(has_emulated_msr
)(NULL
,
7496 emulated_msrs_all
[i
]))
7499 emulated_msrs
[num_emulated_msrs
++] = emulated_msrs_all
[i
];
7502 for (i
= KVM_FIRST_EMULATED_VMX_MSR
; i
<= KVM_LAST_EMULATED_VMX_MSR
; i
++)
7503 kvm_probe_feature_msr(i
);
7505 for (i
= 0; i
< ARRAY_SIZE(msr_based_features_all_except_vmx
); i
++)
7506 kvm_probe_feature_msr(msr_based_features_all_except_vmx
[i
]);
7509 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
7517 if (!(lapic_in_kernel(vcpu
) &&
7518 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
7519 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
7530 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
7537 if (!(lapic_in_kernel(vcpu
) &&
7538 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
7540 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
7542 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, v
);
7552 void kvm_set_segment(struct kvm_vcpu
*vcpu
,
7553 struct kvm_segment
*var
, int seg
)
7555 kvm_x86_call(set_segment
)(vcpu
, var
, seg
);
7558 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
7559 struct kvm_segment
*var
, int seg
)
7561 kvm_x86_call(get_segment
)(vcpu
, var
, seg
);
7564 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u64 access
,
7565 struct x86_exception
*exception
)
7567 struct kvm_mmu
*mmu
= vcpu
->arch
.mmu
;
7570 BUG_ON(!mmu_is_nested(vcpu
));
7572 /* NPT walks are always user-walks */
7573 access
|= PFERR_USER_MASK
;
7574 t_gpa
= mmu
->gva_to_gpa(vcpu
, mmu
, gpa
, access
, exception
);
7579 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
7580 struct x86_exception
*exception
)
7582 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
7584 u64 access
= (kvm_x86_call(get_cpl
)(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
7585 return mmu
->gva_to_gpa(vcpu
, mmu
, gva
, access
, exception
);
7587 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read
);
7589 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
7590 struct x86_exception
*exception
)
7592 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
7594 u64 access
= (kvm_x86_call(get_cpl
)(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
7595 access
|= PFERR_WRITE_MASK
;
7596 return mmu
->gva_to_gpa(vcpu
, mmu
, gva
, access
, exception
);
7598 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write
);
7600 /* uses this to access any guest's mapped memory without checking CPL */
7601 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
7602 struct x86_exception
*exception
)
7604 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
7606 return mmu
->gva_to_gpa(vcpu
, mmu
, gva
, 0, exception
);
7609 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
7610 struct kvm_vcpu
*vcpu
, u64 access
,
7611 struct x86_exception
*exception
)
7613 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
7615 int r
= X86EMUL_CONTINUE
;
7618 gpa_t gpa
= mmu
->gva_to_gpa(vcpu
, mmu
, addr
, access
, exception
);
7619 unsigned offset
= addr
& (PAGE_SIZE
-1);
7620 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
7623 if (gpa
== INVALID_GPA
)
7624 return X86EMUL_PROPAGATE_FAULT
;
7625 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, data
,
7628 r
= X86EMUL_IO_NEEDED
;
7640 /* used for instruction fetching */
7641 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
7642 gva_t addr
, void *val
, unsigned int bytes
,
7643 struct x86_exception
*exception
)
7645 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
7646 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
7647 u64 access
= (kvm_x86_call(get_cpl
)(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
7651 /* Inline kvm_read_guest_virt_helper for speed. */
7652 gpa_t gpa
= mmu
->gva_to_gpa(vcpu
, mmu
, addr
, access
|PFERR_FETCH_MASK
,
7654 if (unlikely(gpa
== INVALID_GPA
))
7655 return X86EMUL_PROPAGATE_FAULT
;
7657 offset
= addr
& (PAGE_SIZE
-1);
7658 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
7659 bytes
= (unsigned)PAGE_SIZE
- offset
;
7660 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, val
,
7662 if (unlikely(ret
< 0))
7663 return X86EMUL_IO_NEEDED
;
7665 return X86EMUL_CONTINUE
;
7668 int kvm_read_guest_virt(struct kvm_vcpu
*vcpu
,
7669 gva_t addr
, void *val
, unsigned int bytes
,
7670 struct x86_exception
*exception
)
7672 u64 access
= (kvm_x86_call(get_cpl
)(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
7675 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7676 * is returned, but our callers are not ready for that and they blindly
7677 * call kvm_inject_page_fault. Ensure that they at least do not leak
7678 * uninitialized kernel stack memory into cr2 and error code.
7680 memset(exception
, 0, sizeof(*exception
));
7681 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
7684 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
7686 static int emulator_read_std(struct x86_emulate_ctxt
*ctxt
,
7687 gva_t addr
, void *val
, unsigned int bytes
,
7688 struct x86_exception
*exception
, bool system
)
7690 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
7694 access
|= PFERR_IMPLICIT_ACCESS
;
7695 else if (kvm_x86_call(get_cpl
)(vcpu
) == 3)
7696 access
|= PFERR_USER_MASK
;
7698 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
, exception
);
7701 static int kvm_write_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
7702 struct kvm_vcpu
*vcpu
, u64 access
,
7703 struct x86_exception
*exception
)
7705 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
7707 int r
= X86EMUL_CONTINUE
;
7710 gpa_t gpa
= mmu
->gva_to_gpa(vcpu
, mmu
, addr
, access
, exception
);
7711 unsigned offset
= addr
& (PAGE_SIZE
-1);
7712 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
7715 if (gpa
== INVALID_GPA
)
7716 return X86EMUL_PROPAGATE_FAULT
;
7717 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, data
, towrite
);
7719 r
= X86EMUL_IO_NEEDED
;
7731 static int emulator_write_std(struct x86_emulate_ctxt
*ctxt
, gva_t addr
, void *val
,
7732 unsigned int bytes
, struct x86_exception
*exception
,
7735 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
7736 u64 access
= PFERR_WRITE_MASK
;
7739 access
|= PFERR_IMPLICIT_ACCESS
;
7740 else if (kvm_x86_call(get_cpl
)(vcpu
) == 3)
7741 access
|= PFERR_USER_MASK
;
7743 return kvm_write_guest_virt_helper(addr
, val
, bytes
, vcpu
,
7747 int kvm_write_guest_virt_system(struct kvm_vcpu
*vcpu
, gva_t addr
, void *val
,
7748 unsigned int bytes
, struct x86_exception
*exception
)
7750 /* kvm_write_guest_virt_system can pull in tons of pages. */
7751 vcpu
->arch
.l1tf_flush_l1d
= true;
7753 return kvm_write_guest_virt_helper(addr
, val
, bytes
, vcpu
,
7754 PFERR_WRITE_MASK
, exception
);
7756 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
7758 static int kvm_check_emulate_insn(struct kvm_vcpu
*vcpu
, int emul_type
,
7759 void *insn
, int insn_len
)
7761 return kvm_x86_call(check_emulate_instruction
)(vcpu
, emul_type
,
7765 int handle_ud(struct kvm_vcpu
*vcpu
)
7767 static const char kvm_emulate_prefix
[] = { __KVM_EMULATE_PREFIX
};
7768 int fep_flags
= READ_ONCE(force_emulation_prefix
);
7769 int emul_type
= EMULTYPE_TRAP_UD
;
7770 char sig
[5]; /* ud2; .ascii "kvm" */
7771 struct x86_exception e
;
7774 r
= kvm_check_emulate_insn(vcpu
, emul_type
, NULL
, 0);
7775 if (r
!= X86EMUL_CONTINUE
)
7779 kvm_read_guest_virt(vcpu
, kvm_get_linear_rip(vcpu
),
7780 sig
, sizeof(sig
), &e
) == 0 &&
7781 memcmp(sig
, kvm_emulate_prefix
, sizeof(sig
)) == 0) {
7782 if (fep_flags
& KVM_FEP_CLEAR_RFLAGS_RF
)
7783 kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) & ~X86_EFLAGS_RF
);
7784 kvm_rip_write(vcpu
, kvm_rip_read(vcpu
) + sizeof(sig
));
7785 emul_type
= EMULTYPE_TRAP_UD_FORCED
;
7788 return kvm_emulate_instruction(vcpu
, emul_type
);
7790 EXPORT_SYMBOL_GPL(handle_ud
);
7792 static int vcpu_is_mmio_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
7793 gpa_t gpa
, bool write
)
7795 /* For APIC access vmexit */
7796 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
7799 if (vcpu_match_mmio_gpa(vcpu
, gpa
)) {
7800 trace_vcpu_match_mmio(gva
, gpa
, write
, true);
7807 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
7808 gpa_t
*gpa
, struct x86_exception
*exception
,
7811 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
7812 u64 access
= ((kvm_x86_call(get_cpl
)(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
7813 | (write
? PFERR_WRITE_MASK
: 0);
7816 * currently PKRU is only applied to ept enabled guest so
7817 * there is no pkey in EPT page table for L1 guest or EPT
7818 * shadow page table for L2 guest.
7820 if (vcpu_match_mmio_gva(vcpu
, gva
) && (!is_paging(vcpu
) ||
7821 !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
7822 vcpu
->arch
.mmio_access
, 0, access
))) {
7823 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
7824 (gva
& (PAGE_SIZE
- 1));
7825 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
7829 *gpa
= mmu
->gva_to_gpa(vcpu
, mmu
, gva
, access
, exception
);
7831 if (*gpa
== INVALID_GPA
)
7834 return vcpu_is_mmio_gpa(vcpu
, gva
, *gpa
, write
);
7837 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
7838 const void *val
, int bytes
)
7842 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, val
, bytes
);
7845 kvm_page_track_write(vcpu
, gpa
, val
, bytes
);
7849 struct read_write_emulator_ops
{
7850 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
7852 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
7853 void *val
, int bytes
);
7854 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
7855 int bytes
, void *val
);
7856 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
7857 void *val
, int bytes
);
7861 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
7863 if (vcpu
->mmio_read_completed
) {
7864 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
7865 vcpu
->mmio_fragments
[0].gpa
, val
);
7866 vcpu
->mmio_read_completed
= 0;
7873 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
7874 void *val
, int bytes
)
7876 return !kvm_vcpu_read_guest(vcpu
, gpa
, val
, bytes
);
7879 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
7880 void *val
, int bytes
)
7882 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
7885 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
7887 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, val
);
7888 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
7891 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
7892 void *val
, int bytes
)
7894 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, NULL
);
7895 return X86EMUL_IO_NEEDED
;
7898 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
7899 void *val
, int bytes
)
7901 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
7903 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
7904 return X86EMUL_CONTINUE
;
7907 static const struct read_write_emulator_ops read_emultor
= {
7908 .read_write_prepare
= read_prepare
,
7909 .read_write_emulate
= read_emulate
,
7910 .read_write_mmio
= vcpu_mmio_read
,
7911 .read_write_exit_mmio
= read_exit_mmio
,
7914 static const struct read_write_emulator_ops write_emultor
= {
7915 .read_write_emulate
= write_emulate
,
7916 .read_write_mmio
= write_mmio
,
7917 .read_write_exit_mmio
= write_exit_mmio
,
7921 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
7923 struct x86_exception
*exception
,
7924 struct kvm_vcpu
*vcpu
,
7925 const struct read_write_emulator_ops
*ops
)
7929 bool write
= ops
->write
;
7930 struct kvm_mmio_fragment
*frag
;
7931 struct x86_emulate_ctxt
*ctxt
= vcpu
->arch
.emulate_ctxt
;
7934 * If the exit was due to a NPF we may already have a GPA.
7935 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7936 * Note, this cannot be used on string operations since string
7937 * operation using rep will only have the initial GPA from the NPF
7940 if (ctxt
->gpa_available
&& emulator_can_use_gpa(ctxt
) &&
7941 (addr
& ~PAGE_MASK
) == (ctxt
->gpa_val
& ~PAGE_MASK
)) {
7942 gpa
= ctxt
->gpa_val
;
7943 ret
= vcpu_is_mmio_gpa(vcpu
, addr
, gpa
, write
);
7945 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
7947 return X86EMUL_PROPAGATE_FAULT
;
7950 if (!ret
&& ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
7951 return X86EMUL_CONTINUE
;
7954 * Is this MMIO handled locally?
7956 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
7957 if (handled
== bytes
)
7958 return X86EMUL_CONTINUE
;
7964 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
7965 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
7969 return X86EMUL_CONTINUE
;
7972 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
7974 void *val
, unsigned int bytes
,
7975 struct x86_exception
*exception
,
7976 const struct read_write_emulator_ops
*ops
)
7978 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
7982 if (ops
->read_write_prepare
&&
7983 ops
->read_write_prepare(vcpu
, val
, bytes
))
7984 return X86EMUL_CONTINUE
;
7986 vcpu
->mmio_nr_fragments
= 0;
7988 /* Crossing a page boundary? */
7989 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
7992 now
= -addr
& ~PAGE_MASK
;
7993 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
7996 if (rc
!= X86EMUL_CONTINUE
)
7999 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
8005 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
8007 if (rc
!= X86EMUL_CONTINUE
)
8010 if (!vcpu
->mmio_nr_fragments
)
8013 gpa
= vcpu
->mmio_fragments
[0].gpa
;
8015 vcpu
->mmio_needed
= 1;
8016 vcpu
->mmio_cur_fragment
= 0;
8018 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
8019 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
8020 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
8021 vcpu
->run
->mmio
.phys_addr
= gpa
;
8023 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
8026 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
8030 struct x86_exception
*exception
)
8032 return emulator_read_write(ctxt
, addr
, val
, bytes
,
8033 exception
, &read_emultor
);
8036 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
8040 struct x86_exception
*exception
)
8042 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
8043 exception
, &write_emultor
);
8046 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8047 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8049 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
8054 struct x86_exception
*exception
)
8056 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
8062 /* guests cmpxchg8b have to be emulated atomically */
8063 if (bytes
> 8 || (bytes
& (bytes
- 1)))
8066 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
8068 if (gpa
== INVALID_GPA
||
8069 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
8073 * Emulate the atomic as a straight write to avoid #AC if SLD is
8074 * enabled in the host and the access splits a cache line.
8076 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT
))
8077 page_line_mask
= ~(cache_line_size() - 1);
8079 page_line_mask
= PAGE_MASK
;
8081 if (((gpa
+ bytes
- 1) & page_line_mask
) != (gpa
& page_line_mask
))
8084 hva
= kvm_vcpu_gfn_to_hva(vcpu
, gpa_to_gfn(gpa
));
8085 if (kvm_is_error_hva(hva
))
8088 hva
+= offset_in_page(gpa
);
8092 r
= emulator_try_cmpxchg_user(u8
, hva
, old
, new);
8095 r
= emulator_try_cmpxchg_user(u16
, hva
, old
, new);
8098 r
= emulator_try_cmpxchg_user(u32
, hva
, old
, new);
8101 r
= emulator_try_cmpxchg_user(u64
, hva
, old
, new);
8108 return X86EMUL_UNHANDLEABLE
;
8111 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8112 * successful, as the old value is written back on failure. Note, for
8113 * live migration, this is unnecessarily conservative as CMPXCHG writes
8114 * back the original value and the access is atomic, but KVM's ABI is
8115 * that all writes are dirty logged, regardless of the value written.
8117 kvm_vcpu_mark_page_dirty(vcpu
, gpa_to_gfn(gpa
));
8120 return X86EMUL_CMPXCHG_FAILED
;
8122 kvm_page_track_write(vcpu
, gpa
, new, bytes
);
8124 return X86EMUL_CONTINUE
;
8127 pr_warn_once("emulating exchange as write\n");
8129 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
8132 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
8133 unsigned short port
, void *data
,
8134 unsigned int count
, bool in
)
8139 WARN_ON_ONCE(vcpu
->arch
.pio
.count
);
8140 for (i
= 0; i
< count
; i
++) {
8142 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, port
, size
, data
);
8144 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
, port
, size
, data
);
8151 * Userspace must have unregistered the device while PIO
8152 * was running. Drop writes / read as 0.
8155 memset(data
, 0, size
* (count
- i
));
8164 vcpu
->arch
.pio
.port
= port
;
8165 vcpu
->arch
.pio
.in
= in
;
8166 vcpu
->arch
.pio
.count
= count
;
8167 vcpu
->arch
.pio
.size
= size
;
8170 memset(vcpu
->arch
.pio_data
, 0, size
* count
);
8172 memcpy(vcpu
->arch
.pio_data
, data
, size
* count
);
8174 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
8175 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
8176 vcpu
->run
->io
.size
= size
;
8177 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
8178 vcpu
->run
->io
.count
= count
;
8179 vcpu
->run
->io
.port
= port
;
8183 static int emulator_pio_in(struct kvm_vcpu
*vcpu
, int size
,
8184 unsigned short port
, void *val
, unsigned int count
)
8186 int r
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
8188 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, val
);
8193 static void complete_emulator_pio_in(struct kvm_vcpu
*vcpu
, void *val
)
8195 int size
= vcpu
->arch
.pio
.size
;
8196 unsigned int count
= vcpu
->arch
.pio
.count
;
8197 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
8198 trace_kvm_pio(KVM_PIO_IN
, vcpu
->arch
.pio
.port
, size
, count
, vcpu
->arch
.pio_data
);
8199 vcpu
->arch
.pio
.count
= 0;
8202 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
8203 int size
, unsigned short port
, void *val
,
8206 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
8207 if (vcpu
->arch
.pio
.count
) {
8209 * Complete a previous iteration that required userspace I/O.
8210 * Note, @count isn't guaranteed to match pio.count as userspace
8211 * can modify ECX before rerunning the vCPU. Ignore any such
8212 * shenanigans as KVM doesn't support modifying the rep count,
8213 * and the emulator ensures @count doesn't overflow the buffer.
8215 complete_emulator_pio_in(vcpu
, val
);
8219 return emulator_pio_in(vcpu
, size
, port
, val
, count
);
8222 static int emulator_pio_out(struct kvm_vcpu
*vcpu
, int size
,
8223 unsigned short port
, const void *val
,
8226 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, val
);
8227 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
8230 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
8231 int size
, unsigned short port
,
8232 const void *val
, unsigned int count
)
8234 return emulator_pio_out(emul_to_vcpu(ctxt
), size
, port
, val
, count
);
8237 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
8239 return kvm_x86_call(get_segment_base
)(vcpu
, seg
);
8242 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
8244 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
8247 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
8249 if (!need_emulate_wbinvd(vcpu
))
8250 return X86EMUL_CONTINUE
;
8252 if (kvm_x86_call(has_wbinvd_exit
)()) {
8253 int cpu
= get_cpu();
8255 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
8256 on_each_cpu_mask(vcpu
->arch
.wbinvd_dirty_mask
,
8257 wbinvd_ipi
, NULL
, 1);
8259 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
8262 return X86EMUL_CONTINUE
;
8265 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
8267 kvm_emulate_wbinvd_noskip(vcpu
);
8268 return kvm_skip_emulated_instruction(vcpu
);
8270 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
8274 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
8276 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
8279 static unsigned long emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
)
8281 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
);
8284 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
8285 unsigned long value
)
8288 return kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
8291 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
8293 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
8296 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
8298 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
8299 unsigned long value
;
8303 value
= kvm_read_cr0(vcpu
);
8306 value
= vcpu
->arch
.cr2
;
8309 value
= kvm_read_cr3(vcpu
);
8312 value
= kvm_read_cr4(vcpu
);
8315 value
= kvm_get_cr8(vcpu
);
8318 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
8325 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
8327 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
8332 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
8335 vcpu
->arch
.cr2
= val
;
8338 res
= kvm_set_cr3(vcpu
, val
);
8341 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
8344 res
= kvm_set_cr8(vcpu
, val
);
8347 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
8354 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
8356 return kvm_x86_call(get_cpl
)(emul_to_vcpu(ctxt
));
8359 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
8361 kvm_x86_call(get_gdt
)(emul_to_vcpu(ctxt
), dt
);
8364 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
8366 kvm_x86_call(get_idt
)(emul_to_vcpu(ctxt
), dt
);
8369 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
8371 kvm_x86_call(set_gdt
)(emul_to_vcpu(ctxt
), dt
);
8374 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
8376 kvm_x86_call(set_idt
)(emul_to_vcpu(ctxt
), dt
);
8379 static unsigned long emulator_get_cached_segment_base(
8380 struct x86_emulate_ctxt
*ctxt
, int seg
)
8382 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
8385 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
8386 struct desc_struct
*desc
, u32
*base3
,
8389 struct kvm_segment var
;
8391 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
8392 *selector
= var
.selector
;
8395 memset(desc
, 0, sizeof(*desc
));
8403 set_desc_limit(desc
, var
.limit
);
8404 set_desc_base(desc
, (unsigned long)var
.base
);
8405 #ifdef CONFIG_X86_64
8407 *base3
= var
.base
>> 32;
8409 desc
->type
= var
.type
;
8411 desc
->dpl
= var
.dpl
;
8412 desc
->p
= var
.present
;
8413 desc
->avl
= var
.avl
;
8421 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
8422 struct desc_struct
*desc
, u32 base3
,
8425 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
8426 struct kvm_segment var
;
8428 var
.selector
= selector
;
8429 var
.base
= get_desc_base(desc
);
8430 #ifdef CONFIG_X86_64
8431 var
.base
|= ((u64
)base3
) << 32;
8433 var
.limit
= get_desc_limit(desc
);
8435 var
.limit
= (var
.limit
<< 12) | 0xfff;
8436 var
.type
= desc
->type
;
8437 var
.dpl
= desc
->dpl
;
8442 var
.avl
= desc
->avl
;
8443 var
.present
= desc
->p
;
8444 var
.unusable
= !var
.present
;
8447 kvm_set_segment(vcpu
, &var
, seg
);
8451 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt
*ctxt
,
8452 u32 msr_index
, u64
*pdata
)
8454 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
8457 r
= kvm_get_msr_with_filter(vcpu
, msr_index
, pdata
);
8459 return X86EMUL_UNHANDLEABLE
;
8462 if (kvm_msr_user_space(vcpu
, msr_index
, KVM_EXIT_X86_RDMSR
, 0,
8463 complete_emulated_rdmsr
, r
))
8464 return X86EMUL_IO_NEEDED
;
8466 trace_kvm_msr_read_ex(msr_index
);
8467 return X86EMUL_PROPAGATE_FAULT
;
8470 trace_kvm_msr_read(msr_index
, *pdata
);
8471 return X86EMUL_CONTINUE
;
8474 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt
*ctxt
,
8475 u32 msr_index
, u64 data
)
8477 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
8480 r
= kvm_set_msr_with_filter(vcpu
, msr_index
, data
);
8482 return X86EMUL_UNHANDLEABLE
;
8485 if (kvm_msr_user_space(vcpu
, msr_index
, KVM_EXIT_X86_WRMSR
, data
,
8486 complete_emulated_msr_access
, r
))
8487 return X86EMUL_IO_NEEDED
;
8489 trace_kvm_msr_write_ex(msr_index
, data
);
8490 return X86EMUL_PROPAGATE_FAULT
;
8493 trace_kvm_msr_write(msr_index
, data
);
8494 return X86EMUL_CONTINUE
;
8497 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
8498 u32 msr_index
, u64
*pdata
)
8500 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
8503 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt
*ctxt
, u32 pmc
)
8505 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt
), pmc
);
8508 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
8509 u32 pmc
, u64
*pdata
)
8511 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
8514 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
8516 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
8519 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
8520 struct x86_instruction_info
*info
,
8521 enum x86_intercept_stage stage
)
8523 return kvm_x86_call(check_intercept
)(emul_to_vcpu(ctxt
), info
, stage
,
8527 static bool emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
8528 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
,
8531 return kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
, exact_only
);
8534 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt
*ctxt
)
8536 return guest_cpuid_has(emul_to_vcpu(ctxt
), X86_FEATURE_MOVBE
);
8539 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt
*ctxt
)
8541 return guest_cpuid_has(emul_to_vcpu(ctxt
), X86_FEATURE_FXSR
);
8544 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt
*ctxt
)
8546 return guest_cpuid_has(emul_to_vcpu(ctxt
), X86_FEATURE_RDPID
);
8549 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt
*ctxt
)
8551 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt
));
8554 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
8556 return kvm_register_read_raw(emul_to_vcpu(ctxt
), reg
);
8559 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
8561 kvm_register_write_raw(emul_to_vcpu(ctxt
), reg
, val
);
8564 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
8566 kvm_x86_call(set_nmi_mask
)(emul_to_vcpu(ctxt
), masked
);
8569 static bool emulator_is_smm(struct x86_emulate_ctxt
*ctxt
)
8571 return is_smm(emul_to_vcpu(ctxt
));
8574 static bool emulator_is_guest_mode(struct x86_emulate_ctxt
*ctxt
)
8576 return is_guest_mode(emul_to_vcpu(ctxt
));
8579 #ifndef CONFIG_KVM_SMM
8580 static int emulator_leave_smm(struct x86_emulate_ctxt
*ctxt
)
8583 return X86EMUL_UNHANDLEABLE
;
8587 static void emulator_triple_fault(struct x86_emulate_ctxt
*ctxt
)
8589 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, emul_to_vcpu(ctxt
));
8592 static int emulator_set_xcr(struct x86_emulate_ctxt
*ctxt
, u32 index
, u64 xcr
)
8594 return __kvm_set_xcr(emul_to_vcpu(ctxt
), index
, xcr
);
8597 static void emulator_vm_bugged(struct x86_emulate_ctxt
*ctxt
)
8599 struct kvm
*kvm
= emul_to_vcpu(ctxt
)->kvm
;
8601 if (!kvm
->vm_bugged
)
8605 static gva_t
emulator_get_untagged_addr(struct x86_emulate_ctxt
*ctxt
,
8606 gva_t addr
, unsigned int flags
)
8608 if (!kvm_x86_ops
.get_untagged_addr
)
8611 return kvm_x86_call(get_untagged_addr
)(emul_to_vcpu(ctxt
),
8615 static const struct x86_emulate_ops emulate_ops
= {
8616 .vm_bugged
= emulator_vm_bugged
,
8617 .read_gpr
= emulator_read_gpr
,
8618 .write_gpr
= emulator_write_gpr
,
8619 .read_std
= emulator_read_std
,
8620 .write_std
= emulator_write_std
,
8621 .fetch
= kvm_fetch_guest_virt
,
8622 .read_emulated
= emulator_read_emulated
,
8623 .write_emulated
= emulator_write_emulated
,
8624 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
8625 .invlpg
= emulator_invlpg
,
8626 .pio_in_emulated
= emulator_pio_in_emulated
,
8627 .pio_out_emulated
= emulator_pio_out_emulated
,
8628 .get_segment
= emulator_get_segment
,
8629 .set_segment
= emulator_set_segment
,
8630 .get_cached_segment_base
= emulator_get_cached_segment_base
,
8631 .get_gdt
= emulator_get_gdt
,
8632 .get_idt
= emulator_get_idt
,
8633 .set_gdt
= emulator_set_gdt
,
8634 .set_idt
= emulator_set_idt
,
8635 .get_cr
= emulator_get_cr
,
8636 .set_cr
= emulator_set_cr
,
8637 .cpl
= emulator_get_cpl
,
8638 .get_dr
= emulator_get_dr
,
8639 .set_dr
= emulator_set_dr
,
8640 .set_msr_with_filter
= emulator_set_msr_with_filter
,
8641 .get_msr_with_filter
= emulator_get_msr_with_filter
,
8642 .get_msr
= emulator_get_msr
,
8643 .check_rdpmc_early
= emulator_check_rdpmc_early
,
8644 .read_pmc
= emulator_read_pmc
,
8645 .halt
= emulator_halt
,
8646 .wbinvd
= emulator_wbinvd
,
8647 .fix_hypercall
= emulator_fix_hypercall
,
8648 .intercept
= emulator_intercept
,
8649 .get_cpuid
= emulator_get_cpuid
,
8650 .guest_has_movbe
= emulator_guest_has_movbe
,
8651 .guest_has_fxsr
= emulator_guest_has_fxsr
,
8652 .guest_has_rdpid
= emulator_guest_has_rdpid
,
8653 .guest_cpuid_is_intel_compatible
= emulator_guest_cpuid_is_intel_compatible
,
8654 .set_nmi_mask
= emulator_set_nmi_mask
,
8655 .is_smm
= emulator_is_smm
,
8656 .is_guest_mode
= emulator_is_guest_mode
,
8657 .leave_smm
= emulator_leave_smm
,
8658 .triple_fault
= emulator_triple_fault
,
8659 .set_xcr
= emulator_set_xcr
,
8660 .get_untagged_addr
= emulator_get_untagged_addr
,
8663 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
8665 u32 int_shadow
= kvm_x86_call(get_interrupt_shadow
)(vcpu
);
8667 * an sti; sti; sequence only disable interrupts for the first
8668 * instruction. So, if the last instruction, be it emulated or
8669 * not, left the system with the INT_STI flag enabled, it
8670 * means that the last instruction is an sti. We should not
8671 * leave the flag on in this case. The same goes for mov ss
8673 if (int_shadow
& mask
)
8675 if (unlikely(int_shadow
|| mask
)) {
8676 kvm_x86_call(set_interrupt_shadow
)(vcpu
, mask
);
8678 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8682 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
8684 struct x86_emulate_ctxt
*ctxt
= vcpu
->arch
.emulate_ctxt
;
8686 if (ctxt
->exception
.vector
== PF_VECTOR
)
8687 kvm_inject_emulated_page_fault(vcpu
, &ctxt
->exception
);
8688 else if (ctxt
->exception
.error_code_valid
)
8689 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
8690 ctxt
->exception
.error_code
);
8692 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
8695 static struct x86_emulate_ctxt
*alloc_emulate_ctxt(struct kvm_vcpu
*vcpu
)
8697 struct x86_emulate_ctxt
*ctxt
;
8699 ctxt
= kmem_cache_zalloc(x86_emulator_cache
, GFP_KERNEL_ACCOUNT
);
8701 pr_err("failed to allocate vcpu's emulator\n");
8706 ctxt
->ops
= &emulate_ops
;
8707 vcpu
->arch
.emulate_ctxt
= ctxt
;
8712 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
8714 struct x86_emulate_ctxt
*ctxt
= vcpu
->arch
.emulate_ctxt
;
8717 kvm_x86_call(get_cs_db_l_bits
)(vcpu
, &cs_db
, &cs_l
);
8719 ctxt
->gpa_available
= false;
8720 ctxt
->eflags
= kvm_get_rflags(vcpu
);
8721 ctxt
->tf
= (ctxt
->eflags
& X86_EFLAGS_TF
) != 0;
8723 ctxt
->eip
= kvm_rip_read(vcpu
);
8724 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
8725 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
8726 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
8727 cs_db
? X86EMUL_MODE_PROT32
:
8728 X86EMUL_MODE_PROT16
;
8729 ctxt
->interruptibility
= 0;
8730 ctxt
->have_exception
= false;
8731 ctxt
->exception
.vector
= -1;
8732 ctxt
->perm_ok
= false;
8734 init_decode_cache(ctxt
);
8735 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
8738 void kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
8740 struct x86_emulate_ctxt
*ctxt
= vcpu
->arch
.emulate_ctxt
;
8743 init_emulate_ctxt(vcpu
);
8747 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
8748 ret
= emulate_int_real(ctxt
, irq
);
8750 if (ret
!= X86EMUL_CONTINUE
) {
8751 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
8753 ctxt
->eip
= ctxt
->_eip
;
8754 kvm_rip_write(vcpu
, ctxt
->eip
);
8755 kvm_set_rflags(vcpu
, ctxt
->eflags
);
8758 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
8760 static void prepare_emulation_failure_exit(struct kvm_vcpu
*vcpu
, u64
*data
,
8761 u8 ndata
, u8
*insn_bytes
, u8 insn_size
)
8763 struct kvm_run
*run
= vcpu
->run
;
8768 * Zero the whole array used to retrieve the exit info, as casting to
8769 * u32 for select entries will leave some chunks uninitialized.
8771 memset(&info
, 0, sizeof(info
));
8773 kvm_x86_call(get_exit_info
)(vcpu
, (u32
*)&info
[0], &info
[1], &info
[2],
8774 (u32
*)&info
[3], (u32
*)&info
[4]);
8776 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
8777 run
->emulation_failure
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
8780 * There's currently space for 13 entries, but 5 are used for the exit
8781 * reason and info. Restrict to 4 to reduce the maintenance burden
8782 * when expanding kvm_run.emulation_failure in the future.
8784 if (WARN_ON_ONCE(ndata
> 4))
8787 /* Always include the flags as a 'data' entry. */
8789 run
->emulation_failure
.flags
= 0;
8792 BUILD_BUG_ON((sizeof(run
->emulation_failure
.insn_size
) +
8793 sizeof(run
->emulation_failure
.insn_bytes
) != 16));
8795 run
->emulation_failure
.flags
|=
8796 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES
;
8797 run
->emulation_failure
.insn_size
= insn_size
;
8798 memset(run
->emulation_failure
.insn_bytes
, 0x90,
8799 sizeof(run
->emulation_failure
.insn_bytes
));
8800 memcpy(run
->emulation_failure
.insn_bytes
, insn_bytes
, insn_size
);
8803 memcpy(&run
->internal
.data
[info_start
], info
, sizeof(info
));
8804 memcpy(&run
->internal
.data
[info_start
+ ARRAY_SIZE(info
)], data
,
8805 ndata
* sizeof(data
[0]));
8807 run
->emulation_failure
.ndata
= info_start
+ ARRAY_SIZE(info
) + ndata
;
8810 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu
*vcpu
)
8812 struct x86_emulate_ctxt
*ctxt
= vcpu
->arch
.emulate_ctxt
;
8814 prepare_emulation_failure_exit(vcpu
, NULL
, 0, ctxt
->fetch
.data
,
8815 ctxt
->fetch
.end
- ctxt
->fetch
.data
);
8818 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu
*vcpu
, u64
*data
,
8821 prepare_emulation_failure_exit(vcpu
, data
, ndata
, NULL
, 0);
8823 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit
);
8825 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu
*vcpu
)
8827 __kvm_prepare_emulation_failure_exit(vcpu
, NULL
, 0);
8829 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit
);
8831 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
, int emulation_type
)
8833 struct kvm
*kvm
= vcpu
->kvm
;
8835 ++vcpu
->stat
.insn_emulation_fail
;
8836 trace_kvm_emulate_insn_failed(vcpu
);
8838 if (emulation_type
& EMULTYPE_VMWARE_GP
) {
8839 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
8843 if (kvm
->arch
.exit_on_emulation_error
||
8844 (emulation_type
& EMULTYPE_SKIP
)) {
8845 prepare_emulation_ctxt_failure_exit(vcpu
);
8849 kvm_queue_exception(vcpu
, UD_VECTOR
);
8851 if (!is_guest_mode(vcpu
) && kvm_x86_call(get_cpl
)(vcpu
) == 0) {
8852 prepare_emulation_ctxt_failure_exit(vcpu
);
8859 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu
*vcpu
,
8863 if (!(emulation_type
& EMULTYPE_ALLOW_RETRY_PF
))
8867 * If the failed instruction faulted on an access to page tables that
8868 * are used to translate any part of the instruction, KVM can't resolve
8869 * the issue by unprotecting the gfn, as zapping the shadow page will
8870 * result in the instruction taking a !PRESENT page fault and thus put
8871 * the vCPU into an infinite loop of page faults. E.g. KVM will create
8872 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8873 * then zap the SPTE to unprotect the gfn, and then do it all over
8874 * again. Report the error to userspace.
8876 if (emulation_type
& EMULTYPE_WRITE_PF_TO_SP
)
8880 * If emulation may have been triggered by a write to a shadowed page
8881 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8882 * guest to let the CPU re-execute the instruction in the hope that the
8883 * CPU can cleanly execute the instruction that KVM failed to emulate.
8885 __kvm_mmu_unprotect_gfn_and_retry(vcpu
, cr2_or_gpa
, true);
8888 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8889 * all SPTEs were already zapped by a different task. The alternative
8890 * is to report the error to userspace and likely terminate the guest,
8891 * and the last_retry_{eip,addr} checks will prevent retrying the page
8892 * fault indefinitely, i.e. there's nothing to lose by retrying.
8897 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
8898 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
8900 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
8909 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
8910 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
8915 static int kvm_vcpu_do_singlestep(struct kvm_vcpu
*vcpu
)
8917 struct kvm_run
*kvm_run
= vcpu
->run
;
8919 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
8920 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_ACTIVE_LOW
;
8921 kvm_run
->debug
.arch
.pc
= kvm_get_linear_rip(vcpu
);
8922 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
8923 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
8926 kvm_queue_exception_p(vcpu
, DB_VECTOR
, DR6_BS
);
8930 int kvm_skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
8932 unsigned long rflags
= kvm_x86_call(get_rflags
)(vcpu
);
8935 r
= kvm_x86_call(skip_emulated_instruction
)(vcpu
);
8939 kvm_pmu_trigger_event(vcpu
, kvm_pmu_eventsel
.INSTRUCTIONS_RETIRED
);
8942 * rflags is the old, "raw" value of the flags. The new value has
8943 * not been saved yet.
8945 * This is correct even for TF set by the guest, because "the
8946 * processor will not generate this exception after the instruction
8947 * that sets the TF flag".
8949 if (unlikely(rflags
& X86_EFLAGS_TF
))
8950 r
= kvm_vcpu_do_singlestep(vcpu
);
8953 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction
);
8955 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu
*vcpu
)
8957 if (kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)
8961 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
8962 * active, but AMD compatible CPUs do not.
8964 if (!guest_cpuid_is_intel_compatible(vcpu
))
8967 return kvm_x86_call(get_interrupt_shadow
)(vcpu
) & KVM_X86_SHADOW_INT_MOV_SS
;
8970 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu
*vcpu
,
8971 int emulation_type
, int *r
)
8973 WARN_ON_ONCE(emulation_type
& EMULTYPE_NO_DECODE
);
8976 * Do not check for code breakpoints if hardware has already done the
8977 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8978 * the instruction has passed all exception checks, and all intercepted
8979 * exceptions that trigger emulation have lower priority than code
8980 * breakpoints, i.e. the fact that the intercepted exception occurred
8981 * means any code breakpoints have already been serviced.
8983 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8984 * hardware has checked the RIP of the magic prefix, but not the RIP of
8985 * the instruction being emulated. The intent of forced emulation is
8986 * to behave as if KVM intercepted the instruction without an exception
8987 * and without a prefix.
8989 if (emulation_type
& (EMULTYPE_NO_DECODE
| EMULTYPE_SKIP
|
8990 EMULTYPE_TRAP_UD
| EMULTYPE_VMWARE_GP
| EMULTYPE_PF
))
8993 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
8994 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
8995 struct kvm_run
*kvm_run
= vcpu
->run
;
8996 unsigned long eip
= kvm_get_linear_rip(vcpu
);
8997 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
8998 vcpu
->arch
.guest_debug_dr7
,
9002 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_ACTIVE_LOW
;
9003 kvm_run
->debug
.arch
.pc
= eip
;
9004 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
9005 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
9011 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
9012 !kvm_is_code_breakpoint_inhibited(vcpu
)) {
9013 unsigned long eip
= kvm_get_linear_rip(vcpu
);
9014 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
9019 kvm_queue_exception_p(vcpu
, DB_VECTOR
, dr6
);
9028 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt
*ctxt
)
9030 switch (ctxt
->opcode_len
) {
9037 case 0xe6: /* OUT */
9041 case 0x6c: /* INS */
9043 case 0x6e: /* OUTS */
9050 case 0x33: /* RDPMC */
9060 * Decode an instruction for emulation. The caller is responsible for handling
9061 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9062 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9063 * code breakpoints have higher priority and thus have already been done by
9066 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9067 * response to a machine check.
9069 int x86_decode_emulated_instruction(struct kvm_vcpu
*vcpu
, int emulation_type
,
9070 void *insn
, int insn_len
)
9072 struct x86_emulate_ctxt
*ctxt
= vcpu
->arch
.emulate_ctxt
;
9075 init_emulate_ctxt(vcpu
);
9077 r
= x86_decode_insn(ctxt
, insn
, insn_len
, emulation_type
);
9079 trace_kvm_emulate_insn_start(vcpu
);
9080 ++vcpu
->stat
.insn_emulation
;
9084 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction
);
9086 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
, gpa_t cr2_or_gpa
,
9087 int emulation_type
, void *insn
, int insn_len
)
9090 struct x86_emulate_ctxt
*ctxt
= vcpu
->arch
.emulate_ctxt
;
9091 bool writeback
= true;
9093 if ((emulation_type
& EMULTYPE_ALLOW_RETRY_PF
) &&
9094 (WARN_ON_ONCE(is_guest_mode(vcpu
)) ||
9095 WARN_ON_ONCE(!(emulation_type
& EMULTYPE_PF
))))
9096 emulation_type
&= ~EMULTYPE_ALLOW_RETRY_PF
;
9098 r
= kvm_check_emulate_insn(vcpu
, emulation_type
, insn
, insn_len
);
9099 if (r
!= X86EMUL_CONTINUE
) {
9100 if (r
== X86EMUL_RETRY_INSTR
|| r
== X86EMUL_PROPAGATE_FAULT
)
9103 WARN_ON_ONCE(r
!= X86EMUL_UNHANDLEABLE
);
9104 return handle_emulation_failure(vcpu
, emulation_type
);
9107 vcpu
->arch
.l1tf_flush_l1d
= true;
9109 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
9110 kvm_clear_exception_queue(vcpu
);
9113 * Return immediately if RIP hits a code breakpoint, such #DBs
9114 * are fault-like and are higher priority than any faults on
9115 * the code fetch itself.
9117 if (kvm_vcpu_check_code_breakpoint(vcpu
, emulation_type
, &r
))
9120 r
= x86_decode_emulated_instruction(vcpu
, emulation_type
,
9122 if (r
!= EMULATION_OK
) {
9123 if ((emulation_type
& EMULTYPE_TRAP_UD
) ||
9124 (emulation_type
& EMULTYPE_TRAP_UD_FORCED
)) {
9125 kvm_queue_exception(vcpu
, UD_VECTOR
);
9128 if (kvm_unprotect_and_retry_on_failure(vcpu
, cr2_or_gpa
,
9132 if (ctxt
->have_exception
&&
9133 !(emulation_type
& EMULTYPE_SKIP
)) {
9135 * #UD should result in just EMULATION_FAILED, and trap-like
9136 * exception should not be encountered during decode.
9138 WARN_ON_ONCE(ctxt
->exception
.vector
== UD_VECTOR
||
9139 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
);
9140 inject_emulated_exception(vcpu
);
9143 return handle_emulation_failure(vcpu
, emulation_type
);
9147 if ((emulation_type
& EMULTYPE_VMWARE_GP
) &&
9148 !is_vmware_backdoor_opcode(ctxt
)) {
9149 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
9154 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9155 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9156 * The caller is responsible for updating interruptibility state and
9157 * injecting single-step #DBs.
9159 if (emulation_type
& EMULTYPE_SKIP
) {
9160 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
9161 ctxt
->eip
= (u32
)ctxt
->_eip
;
9163 ctxt
->eip
= ctxt
->_eip
;
9165 if (emulation_type
& EMULTYPE_COMPLETE_USER_EXIT
) {
9170 kvm_rip_write(vcpu
, ctxt
->eip
);
9171 if (ctxt
->eflags
& X86_EFLAGS_RF
)
9172 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
9177 * If emulation was caused by a write-protection #PF on a non-page_table
9178 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9179 * and retry the instruction, as the vCPU is likely no longer using the
9180 * gfn as a page table.
9182 if ((emulation_type
& EMULTYPE_ALLOW_RETRY_PF
) &&
9183 !x86_page_table_writing_insn(ctxt
) &&
9184 kvm_mmu_unprotect_gfn_and_retry(vcpu
, cr2_or_gpa
))
9187 /* this is needed for vmware backdoor interface to work since it
9188 changes registers values during IO operation */
9189 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
9190 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
9191 emulator_invalidate_register_cache(ctxt
);
9195 if (emulation_type
& EMULTYPE_PF
) {
9196 /* Save the faulting GPA (cr2) in the address field */
9197 ctxt
->exception
.address
= cr2_or_gpa
;
9199 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9200 if (vcpu
->arch
.mmu
->root_role
.direct
) {
9201 ctxt
->gpa_available
= true;
9202 ctxt
->gpa_val
= cr2_or_gpa
;
9205 /* Sanitize the address out of an abundance of paranoia. */
9206 ctxt
->exception
.address
= 0;
9209 r
= x86_emulate_insn(ctxt
);
9211 if (r
== EMULATION_INTERCEPTED
)
9214 if (r
== EMULATION_FAILED
) {
9215 if (kvm_unprotect_and_retry_on_failure(vcpu
, cr2_or_gpa
,
9219 return handle_emulation_failure(vcpu
, emulation_type
);
9222 if (ctxt
->have_exception
) {
9223 WARN_ON_ONCE(vcpu
->mmio_needed
&& !vcpu
->mmio_is_write
);
9224 vcpu
->mmio_needed
= false;
9226 inject_emulated_exception(vcpu
);
9227 } else if (vcpu
->arch
.pio
.count
) {
9228 if (!vcpu
->arch
.pio
.in
) {
9229 /* FIXME: return into emulator if single-stepping. */
9230 vcpu
->arch
.pio
.count
= 0;
9233 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
9236 } else if (vcpu
->mmio_needed
) {
9237 ++vcpu
->stat
.mmio_exits
;
9239 if (!vcpu
->mmio_is_write
)
9242 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
9243 } else if (vcpu
->arch
.complete_userspace_io
) {
9246 } else if (r
== EMULATION_RESTART
)
9253 unsigned long rflags
= kvm_x86_call(get_rflags
)(vcpu
);
9254 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
9255 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
9258 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9259 * only supports code breakpoints and general detect #DB, both
9260 * of which are fault-like.
9262 if (!ctxt
->have_exception
||
9263 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
) {
9264 kvm_pmu_trigger_event(vcpu
, kvm_pmu_eventsel
.INSTRUCTIONS_RETIRED
);
9265 if (ctxt
->is_branch
)
9266 kvm_pmu_trigger_event(vcpu
, kvm_pmu_eventsel
.BRANCH_INSTRUCTIONS_RETIRED
);
9267 kvm_rip_write(vcpu
, ctxt
->eip
);
9268 if (r
&& (ctxt
->tf
|| (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)))
9269 r
= kvm_vcpu_do_singlestep(vcpu
);
9270 kvm_x86_call(update_emulated_instruction
)(vcpu
);
9271 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
9275 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9276 * do nothing, and it will be requested again as soon as
9277 * the shadow expires. But we still need to check here,
9278 * because POPF has no interrupt shadow.
9280 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
9281 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
9283 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
9288 int kvm_emulate_instruction(struct kvm_vcpu
*vcpu
, int emulation_type
)
9290 return x86_emulate_instruction(vcpu
, 0, emulation_type
, NULL
, 0);
9292 EXPORT_SYMBOL_GPL(kvm_emulate_instruction
);
9294 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu
*vcpu
,
9295 void *insn
, int insn_len
)
9297 return x86_emulate_instruction(vcpu
, 0, 0, insn
, insn_len
);
9299 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer
);
9301 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu
*vcpu
)
9303 vcpu
->arch
.pio
.count
= 0;
9307 static int complete_fast_pio_out(struct kvm_vcpu
*vcpu
)
9309 vcpu
->arch
.pio
.count
= 0;
9311 if (unlikely(!kvm_is_linear_rip(vcpu
, vcpu
->arch
.pio
.linear_rip
)))
9314 return kvm_skip_emulated_instruction(vcpu
);
9317 static int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
,
9318 unsigned short port
)
9320 unsigned long val
= kvm_rax_read(vcpu
);
9321 int ret
= emulator_pio_out(vcpu
, size
, port
, &val
, 1);
9327 * Workaround userspace that relies on old KVM behavior of %rip being
9328 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9331 kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_OUT_7E_INC_RIP
)) {
9332 vcpu
->arch
.complete_userspace_io
=
9333 complete_fast_pio_out_port_0x7e
;
9334 kvm_skip_emulated_instruction(vcpu
);
9336 vcpu
->arch
.pio
.linear_rip
= kvm_get_linear_rip(vcpu
);
9337 vcpu
->arch
.complete_userspace_io
= complete_fast_pio_out
;
9342 static int complete_fast_pio_in(struct kvm_vcpu
*vcpu
)
9346 /* We should only ever be called with arch.pio.count equal to 1 */
9347 BUG_ON(vcpu
->arch
.pio
.count
!= 1);
9349 if (unlikely(!kvm_is_linear_rip(vcpu
, vcpu
->arch
.pio
.linear_rip
))) {
9350 vcpu
->arch
.pio
.count
= 0;
9354 /* For size less than 4 we merge, else we zero extend */
9355 val
= (vcpu
->arch
.pio
.size
< 4) ? kvm_rax_read(vcpu
) : 0;
9357 complete_emulator_pio_in(vcpu
, &val
);
9358 kvm_rax_write(vcpu
, val
);
9360 return kvm_skip_emulated_instruction(vcpu
);
9363 static int kvm_fast_pio_in(struct kvm_vcpu
*vcpu
, int size
,
9364 unsigned short port
)
9369 /* For size less than 4 we merge, else we zero extend */
9370 val
= (size
< 4) ? kvm_rax_read(vcpu
) : 0;
9372 ret
= emulator_pio_in(vcpu
, size
, port
, &val
, 1);
9374 kvm_rax_write(vcpu
, val
);
9378 vcpu
->arch
.pio
.linear_rip
= kvm_get_linear_rip(vcpu
);
9379 vcpu
->arch
.complete_userspace_io
= complete_fast_pio_in
;
9384 int kvm_fast_pio(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
, int in
)
9389 ret
= kvm_fast_pio_in(vcpu
, size
, port
);
9391 ret
= kvm_fast_pio_out(vcpu
, size
, port
);
9392 return ret
&& kvm_skip_emulated_instruction(vcpu
);
9394 EXPORT_SYMBOL_GPL(kvm_fast_pio
);
9396 static int kvmclock_cpu_down_prep(unsigned int cpu
)
9398 __this_cpu_write(cpu_tsc_khz
, 0);
9402 static void tsc_khz_changed(void *data
)
9404 struct cpufreq_freqs
*freq
= data
;
9407 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC
));
9412 khz
= cpufreq_quick_get(raw_smp_processor_id());
9415 __this_cpu_write(cpu_tsc_khz
, khz
);
9418 #ifdef CONFIG_X86_64
9419 static void kvm_hyperv_tsc_notifier(void)
9424 mutex_lock(&kvm_lock
);
9425 list_for_each_entry(kvm
, &vm_list
, vm_list
)
9426 kvm_make_mclock_inprogress_request(kvm
);
9428 /* no guest entries from this point */
9429 hyperv_stop_tsc_emulation();
9431 /* TSC frequency always matches when on Hyper-V */
9432 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
9433 for_each_present_cpu(cpu
)
9434 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
9436 kvm_caps
.max_guest_tsc_khz
= tsc_khz
;
9438 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
9439 __kvm_start_pvclock_update(kvm
);
9440 pvclock_update_vm_gtod_copy(kvm
);
9441 kvm_end_pvclock_update(kvm
);
9444 mutex_unlock(&kvm_lock
);
9448 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs
*freq
, int cpu
)
9451 struct kvm_vcpu
*vcpu
;
9456 * We allow guests to temporarily run on slowing clocks,
9457 * provided we notify them after, or to run on accelerating
9458 * clocks, provided we notify them before. Thus time never
9461 * However, we have a problem. We can't atomically update
9462 * the frequency of a given CPU from this function; it is
9463 * merely a notifier, which can be called from any CPU.
9464 * Changing the TSC frequency at arbitrary points in time
9465 * requires a recomputation of local variables related to
9466 * the TSC for each VCPU. We must flag these local variables
9467 * to be updated and be sure the update takes place with the
9468 * new frequency before any guests proceed.
9470 * Unfortunately, the combination of hotplug CPU and frequency
9471 * change creates an intractable locking scenario; the order
9472 * of when these callouts happen is undefined with respect to
9473 * CPU hotplug, and they can race with each other. As such,
9474 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9475 * undefined; you can actually have a CPU frequency change take
9476 * place in between the computation of X and the setting of the
9477 * variable. To protect against this problem, all updates of
9478 * the per_cpu tsc_khz variable are done in an interrupt
9479 * protected IPI, and all callers wishing to update the value
9480 * must wait for a synchronous IPI to complete (which is trivial
9481 * if the caller is on the CPU already). This establishes the
9482 * necessary total order on variable updates.
9484 * Note that because a guest time update may take place
9485 * anytime after the setting of the VCPU's request bit, the
9486 * correct TSC value must be set before the request. However,
9487 * to ensure the update actually makes it to any guest which
9488 * starts running in hardware virtualization between the set
9489 * and the acquisition of the spinlock, we must also ping the
9490 * CPU after setting the request bit.
9494 smp_call_function_single(cpu
, tsc_khz_changed
, freq
, 1);
9496 mutex_lock(&kvm_lock
);
9497 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
9498 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
9499 if (vcpu
->cpu
!= cpu
)
9501 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
9502 if (vcpu
->cpu
!= raw_smp_processor_id())
9506 mutex_unlock(&kvm_lock
);
9508 if (freq
->old
< freq
->new && send_ipi
) {
9510 * We upscale the frequency. Must make the guest
9511 * doesn't see old kvmclock values while running with
9512 * the new frequency, otherwise we risk the guest sees
9513 * time go backwards.
9515 * In case we update the frequency for another cpu
9516 * (which might be in guest context) send an interrupt
9517 * to kick the cpu out of guest context. Next time
9518 * guest context is entered kvmclock will be updated,
9519 * so the guest will not see stale values.
9521 smp_call_function_single(cpu
, tsc_khz_changed
, freq
, 1);
9525 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
9528 struct cpufreq_freqs
*freq
= data
;
9531 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
9533 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
9536 for_each_cpu(cpu
, freq
->policy
->cpus
)
9537 __kvmclock_cpufreq_notifier(freq
, cpu
);
9542 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
9543 .notifier_call
= kvmclock_cpufreq_notifier
9546 static int kvmclock_cpu_online(unsigned int cpu
)
9548 tsc_khz_changed(NULL
);
9552 static void kvm_timer_init(void)
9554 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
9555 max_tsc_khz
= tsc_khz
;
9557 if (IS_ENABLED(CONFIG_CPU_FREQ
)) {
9558 struct cpufreq_policy
*policy
;
9562 policy
= cpufreq_cpu_get(cpu
);
9564 if (policy
->cpuinfo
.max_freq
)
9565 max_tsc_khz
= policy
->cpuinfo
.max_freq
;
9566 cpufreq_cpu_put(policy
);
9570 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
9571 CPUFREQ_TRANSITION_NOTIFIER
);
9573 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE
, "x86/kvm/clk:online",
9574 kvmclock_cpu_online
, kvmclock_cpu_down_prep
);
9578 #ifdef CONFIG_X86_64
9579 static void pvclock_gtod_update_fn(struct work_struct
*work
)
9582 struct kvm_vcpu
*vcpu
;
9585 mutex_lock(&kvm_lock
);
9586 list_for_each_entry(kvm
, &vm_list
, vm_list
)
9587 kvm_for_each_vcpu(i
, vcpu
, kvm
)
9588 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
9589 atomic_set(&kvm_guest_has_master_clock
, 0);
9590 mutex_unlock(&kvm_lock
);
9593 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
9596 * Indirection to move queue_work() out of the tk_core.seq write held
9597 * region to prevent possible deadlocks against time accessors which
9598 * are invoked with work related locks held.
9600 static void pvclock_irq_work_fn(struct irq_work
*w
)
9602 queue_work(system_long_wq
, &pvclock_gtod_work
);
9605 static DEFINE_IRQ_WORK(pvclock_irq_work
, pvclock_irq_work_fn
);
9608 * Notification about pvclock gtod data update.
9610 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
9613 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
9614 struct timekeeper
*tk
= priv
;
9616 update_pvclock_gtod(tk
);
9619 * Disable master clock if host does not trust, or does not use,
9620 * TSC based clocksource. Delegate queue_work() to irq_work as
9621 * this is invoked with tk_core.seq write held.
9623 if (!gtod_is_based_on_tsc(gtod
->clock
.vclock_mode
) &&
9624 atomic_read(&kvm_guest_has_master_clock
) != 0)
9625 irq_work_queue(&pvclock_irq_work
);
9629 static struct notifier_block pvclock_gtod_notifier
= {
9630 .notifier_call
= pvclock_gtod_notify
,
9634 static inline void kvm_ops_update(struct kvm_x86_init_ops
*ops
)
9636 memcpy(&kvm_x86_ops
, ops
->runtime_ops
, sizeof(kvm_x86_ops
));
9638 #define __KVM_X86_OP(func) \
9639 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9640 #define KVM_X86_OP(func) \
9641 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9642 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9643 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9644 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9645 (void *)__static_call_return0);
9646 #include <asm/kvm-x86-ops.h>
9649 kvm_pmu_ops_update(ops
->pmu_ops
);
9652 static int kvm_x86_check_processor_compatibility(void)
9654 int cpu
= smp_processor_id();
9655 struct cpuinfo_x86
*c
= &cpu_data(cpu
);
9658 * Compatibility checks are done when loading KVM and when enabling
9659 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9660 * compatible, i.e. KVM should never perform a compatibility check on
9663 WARN_ON(!cpu_online(cpu
));
9665 if (__cr4_reserved_bits(cpu_has
, c
) !=
9666 __cr4_reserved_bits(cpu_has
, &boot_cpu_data
))
9669 return kvm_x86_call(check_processor_compatibility
)();
9672 static void kvm_x86_check_cpu_compat(void *ret
)
9674 *(int *)ret
= kvm_x86_check_processor_compatibility();
9677 int kvm_x86_vendor_init(struct kvm_x86_init_ops
*ops
)
9682 guard(mutex
)(&vendor_module_lock
);
9684 if (kvm_x86_ops
.enable_virtualization_cpu
) {
9685 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops
.name
);
9690 * KVM explicitly assumes that the guest has an FPU and
9691 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9692 * vCPU's FPU state as a fxregs_state struct.
9694 if (!boot_cpu_has(X86_FEATURE_FPU
) || !boot_cpu_has(X86_FEATURE_FXSR
)) {
9695 pr_err("inadequate fpu\n");
9699 if (IS_ENABLED(CONFIG_PREEMPT_RT
) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
9700 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9705 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9706 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9707 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9708 * with an exception. PAT[0] is set to WB on RESET and also by the
9709 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9711 if (rdmsrl_safe(MSR_IA32_CR_PAT
, &host_pat
) ||
9712 (host_pat
& GENMASK(2, 0)) != 6) {
9713 pr_err("host PAT[0] is not WB\n");
9717 memset(&kvm_caps
, 0, sizeof(kvm_caps
));
9719 x86_emulator_cache
= kvm_alloc_emulator_cache();
9720 if (!x86_emulator_cache
) {
9721 pr_err("failed to allocate cache for x86 emulator\n");
9725 user_return_msrs
= alloc_percpu(struct kvm_user_return_msrs
);
9726 if (!user_return_msrs
) {
9727 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9729 goto out_free_x86_emulator_cache
;
9731 kvm_nr_uret_msrs
= 0;
9733 r
= kvm_mmu_vendor_module_init();
9735 goto out_free_percpu
;
9737 kvm_caps
.supported_vm_types
= BIT(KVM_X86_DEFAULT_VM
);
9738 kvm_caps
.supported_mce_cap
= MCG_CTL_P
| MCG_SER_P
;
9740 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
9741 kvm_host
.xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
9742 kvm_caps
.supported_xcr0
= kvm_host
.xcr0
& KVM_SUPPORTED_XCR0
;
9745 rdmsrl_safe(MSR_EFER
, &kvm_host
.efer
);
9747 if (boot_cpu_has(X86_FEATURE_XSAVES
))
9748 rdmsrl(MSR_IA32_XSS
, kvm_host
.xss
);
9750 kvm_init_pmu_capability(ops
->pmu_ops
);
9752 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES
))
9753 rdmsrl(MSR_IA32_ARCH_CAPABILITIES
, kvm_host
.arch_capabilities
);
9755 r
= ops
->hardware_setup();
9759 kvm_ops_update(ops
);
9761 for_each_online_cpu(cpu
) {
9762 smp_call_function_single(cpu
, kvm_x86_check_cpu_compat
, &r
, 1);
9764 goto out_unwind_ops
;
9768 * Point of no return! DO NOT add error paths below this point unless
9769 * absolutely necessary, as most operations from this point forward
9770 * require unwinding.
9774 if (pi_inject_timer
== -1)
9775 pi_inject_timer
= housekeeping_enabled(HK_TYPE_TIMER
);
9776 #ifdef CONFIG_X86_64
9777 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
9779 if (hypervisor_is_type(X86_HYPER_MS_HYPERV
))
9780 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier
);
9783 kvm_register_perf_callbacks(ops
->handle_intel_pt_intr
);
9785 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM
) && tdp_mmu_enabled
)
9786 kvm_caps
.supported_vm_types
|= BIT(KVM_X86_SW_PROTECTED_VM
);
9788 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES
))
9789 kvm_caps
.supported_xss
= 0;
9791 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9792 cr4_reserved_bits
= __cr4_reserved_bits(__kvm_cpu_cap_has
, UNUSED_
);
9793 #undef __kvm_cpu_cap_has
9795 if (kvm_caps
.has_tsc_control
) {
9797 * Make sure the user can only configure tsc_khz values that
9798 * fit into a signed integer.
9799 * A min value is not calculated because it will always
9800 * be 1 on all machines.
9802 u64 max
= min(0x7fffffffULL
,
9803 __scale_tsc(kvm_caps
.max_tsc_scaling_ratio
, tsc_khz
));
9804 kvm_caps
.max_guest_tsc_khz
= max
;
9806 kvm_caps
.default_tsc_scaling_ratio
= 1ULL << kvm_caps
.tsc_scaling_ratio_frac_bits
;
9807 kvm_init_msr_lists();
9811 kvm_x86_ops
.enable_virtualization_cpu
= NULL
;
9812 kvm_x86_call(hardware_unsetup
)();
9814 kvm_mmu_vendor_module_exit();
9816 free_percpu(user_return_msrs
);
9817 out_free_x86_emulator_cache
:
9818 kmem_cache_destroy(x86_emulator_cache
);
9821 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init
);
9823 void kvm_x86_vendor_exit(void)
9825 kvm_unregister_perf_callbacks();
9827 #ifdef CONFIG_X86_64
9828 if (hypervisor_is_type(X86_HYPER_MS_HYPERV
))
9829 clear_hv_tscchange_cb();
9833 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
9834 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
9835 CPUFREQ_TRANSITION_NOTIFIER
);
9836 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE
);
9838 #ifdef CONFIG_X86_64
9839 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
9840 irq_work_sync(&pvclock_irq_work
);
9841 cancel_work_sync(&pvclock_gtod_work
);
9843 kvm_x86_call(hardware_unsetup
)();
9844 kvm_mmu_vendor_module_exit();
9845 free_percpu(user_return_msrs
);
9846 kmem_cache_destroy(x86_emulator_cache
);
9847 #ifdef CONFIG_KVM_XEN
9848 static_key_deferred_flush(&kvm_xen_enabled
);
9849 WARN_ON(static_branch_unlikely(&kvm_xen_enabled
.key
));
9851 mutex_lock(&vendor_module_lock
);
9852 kvm_x86_ops
.enable_virtualization_cpu
= NULL
;
9853 mutex_unlock(&vendor_module_lock
);
9855 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit
);
9857 #ifdef CONFIG_X86_64
9858 static int kvm_pv_clock_pairing(struct kvm_vcpu
*vcpu
, gpa_t paddr
,
9859 unsigned long clock_type
)
9861 struct kvm_clock_pairing clock_pairing
;
9862 struct timespec64 ts
;
9866 if (clock_type
!= KVM_CLOCK_PAIRING_WALLCLOCK
)
9867 return -KVM_EOPNOTSUPP
;
9870 * When tsc is in permanent catchup mode guests won't be able to use
9871 * pvclock_read_retry loop to get consistent view of pvclock
9873 if (vcpu
->arch
.tsc_always_catchup
)
9874 return -KVM_EOPNOTSUPP
;
9876 if (!kvm_get_walltime_and_clockread(&ts
, &cycle
))
9877 return -KVM_EOPNOTSUPP
;
9879 clock_pairing
.sec
= ts
.tv_sec
;
9880 clock_pairing
.nsec
= ts
.tv_nsec
;
9881 clock_pairing
.tsc
= kvm_read_l1_tsc(vcpu
, cycle
);
9882 clock_pairing
.flags
= 0;
9883 memset(&clock_pairing
.pad
, 0, sizeof(clock_pairing
.pad
));
9886 if (kvm_write_guest(vcpu
->kvm
, paddr
, &clock_pairing
,
9887 sizeof(struct kvm_clock_pairing
)))
9895 * kvm_pv_kick_cpu_op: Kick a vcpu.
9897 * @apicid - apicid of vcpu to be kicked.
9899 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, int apicid
)
9902 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9903 * common code, e.g. for tracing. Defer initialization to the compiler.
9905 struct kvm_lapic_irq lapic_irq
= {
9906 .delivery_mode
= APIC_DM_REMRD
,
9907 .dest_mode
= APIC_DEST_PHYSICAL
,
9908 .shorthand
= APIC_DEST_NOSHORT
,
9912 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
9915 bool kvm_apicv_activated(struct kvm
*kvm
)
9917 return (READ_ONCE(kvm
->arch
.apicv_inhibit_reasons
) == 0);
9919 EXPORT_SYMBOL_GPL(kvm_apicv_activated
);
9921 bool kvm_vcpu_apicv_activated(struct kvm_vcpu
*vcpu
)
9923 ulong vm_reasons
= READ_ONCE(vcpu
->kvm
->arch
.apicv_inhibit_reasons
);
9924 ulong vcpu_reasons
=
9925 kvm_x86_call(vcpu_get_apicv_inhibit_reasons
)(vcpu
);
9927 return (vm_reasons
| vcpu_reasons
) == 0;
9929 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated
);
9931 static void set_or_clear_apicv_inhibit(unsigned long *inhibits
,
9932 enum kvm_apicv_inhibit reason
, bool set
)
9934 const struct trace_print_flags apicv_inhibits
[] = { APICV_INHIBIT_REASONS
};
9936 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits
) != NR_APICV_INHIBIT_REASONS
);
9939 __set_bit(reason
, inhibits
);
9941 __clear_bit(reason
, inhibits
);
9943 trace_kvm_apicv_inhibit_changed(reason
, set
, *inhibits
);
9946 static void kvm_apicv_init(struct kvm
*kvm
)
9948 enum kvm_apicv_inhibit reason
= enable_apicv
? APICV_INHIBIT_REASON_ABSENT
:
9949 APICV_INHIBIT_REASON_DISABLED
;
9951 set_or_clear_apicv_inhibit(&kvm
->arch
.apicv_inhibit_reasons
, reason
, true);
9953 init_rwsem(&kvm
->arch
.apicv_update_lock
);
9956 static void kvm_sched_yield(struct kvm_vcpu
*vcpu
, unsigned long dest_id
)
9958 struct kvm_vcpu
*target
= NULL
;
9959 struct kvm_apic_map
*map
;
9961 vcpu
->stat
.directed_yield_attempted
++;
9963 if (single_task_running())
9967 map
= rcu_dereference(vcpu
->kvm
->arch
.apic_map
);
9969 if (likely(map
) && dest_id
<= map
->max_apic_id
&& map
->phys_map
[dest_id
])
9970 target
= map
->phys_map
[dest_id
]->vcpu
;
9974 if (!target
|| !READ_ONCE(target
->ready
))
9977 /* Ignore requests to yield to self */
9981 if (kvm_vcpu_yield_to(target
) <= 0)
9984 vcpu
->stat
.directed_yield_successful
++;
9990 static int complete_hypercall_exit(struct kvm_vcpu
*vcpu
)
9992 u64 ret
= vcpu
->run
->hypercall
.ret
;
9994 if (!is_64_bit_mode(vcpu
))
9996 kvm_rax_write(vcpu
, ret
);
9997 ++vcpu
->stat
.hypercalls
;
9998 return kvm_skip_emulated_instruction(vcpu
);
10001 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
, unsigned long nr
,
10002 unsigned long a0
, unsigned long a1
,
10003 unsigned long a2
, unsigned long a3
,
10004 int op_64_bit
, int cpl
)
10008 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
10026 case KVM_HC_VAPIC_POLL_IRQ
:
10029 case KVM_HC_KICK_CPU
:
10030 if (!guest_pv_has(vcpu
, KVM_FEATURE_PV_UNHALT
))
10033 kvm_pv_kick_cpu_op(vcpu
->kvm
, a1
);
10034 kvm_sched_yield(vcpu
, a1
);
10037 #ifdef CONFIG_X86_64
10038 case KVM_HC_CLOCK_PAIRING
:
10039 ret
= kvm_pv_clock_pairing(vcpu
, a0
, a1
);
10042 case KVM_HC_SEND_IPI
:
10043 if (!guest_pv_has(vcpu
, KVM_FEATURE_PV_SEND_IPI
))
10046 ret
= kvm_pv_send_ipi(vcpu
->kvm
, a0
, a1
, a2
, a3
, op_64_bit
);
10048 case KVM_HC_SCHED_YIELD
:
10049 if (!guest_pv_has(vcpu
, KVM_FEATURE_PV_SCHED_YIELD
))
10052 kvm_sched_yield(vcpu
, a0
);
10055 case KVM_HC_MAP_GPA_RANGE
: {
10056 u64 gpa
= a0
, npages
= a1
, attrs
= a2
;
10059 if (!(vcpu
->kvm
->arch
.hypercall_exit_enabled
& (1 << KVM_HC_MAP_GPA_RANGE
)))
10062 if (!PAGE_ALIGNED(gpa
) || !npages
||
10063 gpa_to_gfn(gpa
) + npages
<= gpa_to_gfn(gpa
)) {
10068 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERCALL
;
10069 vcpu
->run
->hypercall
.nr
= KVM_HC_MAP_GPA_RANGE
;
10070 vcpu
->run
->hypercall
.args
[0] = gpa
;
10071 vcpu
->run
->hypercall
.args
[1] = npages
;
10072 vcpu
->run
->hypercall
.args
[2] = attrs
;
10073 vcpu
->run
->hypercall
.flags
= 0;
10075 vcpu
->run
->hypercall
.flags
|= KVM_EXIT_HYPERCALL_LONG_MODE
;
10077 WARN_ON_ONCE(vcpu
->run
->hypercall
.flags
& KVM_EXIT_HYPERCALL_MBZ
);
10078 vcpu
->arch
.complete_userspace_io
= complete_hypercall_exit
;
10079 /* stat is incremented on completion. */
10088 ++vcpu
->stat
.hypercalls
;
10091 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall
);
10093 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
10095 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
10099 if (kvm_xen_hypercall_enabled(vcpu
->kvm
))
10100 return kvm_xen_hypercall(vcpu
);
10102 if (kvm_hv_hypercall_enabled(vcpu
))
10103 return kvm_hv_hypercall(vcpu
);
10105 nr
= kvm_rax_read(vcpu
);
10106 a0
= kvm_rbx_read(vcpu
);
10107 a1
= kvm_rcx_read(vcpu
);
10108 a2
= kvm_rdx_read(vcpu
);
10109 a3
= kvm_rsi_read(vcpu
);
10110 op_64_bit
= is_64_bit_hypercall(vcpu
);
10111 cpl
= kvm_x86_call(get_cpl
)(vcpu
);
10113 ret
= __kvm_emulate_hypercall(vcpu
, nr
, a0
, a1
, a2
, a3
, op_64_bit
, cpl
);
10114 if (nr
== KVM_HC_MAP_GPA_RANGE
&& !ret
)
10115 /* MAP_GPA tosses the request to the user space. */
10120 kvm_rax_write(vcpu
, ret
);
10122 return kvm_skip_emulated_instruction(vcpu
);
10124 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
10126 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
10128 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
10129 char instruction
[3];
10130 unsigned long rip
= kvm_rip_read(vcpu
);
10133 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10136 if (!kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_FIX_HYPERCALL_INSN
)) {
10137 ctxt
->exception
.error_code_valid
= false;
10138 ctxt
->exception
.vector
= UD_VECTOR
;
10139 ctxt
->have_exception
= true;
10140 return X86EMUL_PROPAGATE_FAULT
;
10143 kvm_x86_call(patch_hypercall
)(vcpu
, instruction
);
10145 return emulator_write_emulated(ctxt
, rip
, instruction
, 3,
10149 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
10151 return vcpu
->run
->request_interrupt_window
&&
10152 likely(!pic_in_kernel(vcpu
->kvm
));
10155 /* Called within kvm->srcu read side. */
10156 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
10158 struct kvm_run
*kvm_run
= vcpu
->run
;
10160 kvm_run
->if_flag
= kvm_x86_call(get_if_flag
)(vcpu
);
10161 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
10162 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
10164 kvm_run
->ready_for_interrupt_injection
=
10165 pic_in_kernel(vcpu
->kvm
) ||
10166 kvm_vcpu_ready_for_interrupt_injection(vcpu
);
10169 kvm_run
->flags
|= KVM_RUN_X86_SMM
;
10170 if (is_guest_mode(vcpu
))
10171 kvm_run
->flags
|= KVM_RUN_X86_GUEST_MODE
;
10174 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
10178 if (!kvm_x86_ops
.update_cr8_intercept
)
10181 if (!lapic_in_kernel(vcpu
))
10184 if (vcpu
->arch
.apic
->apicv_active
)
10187 if (!vcpu
->arch
.apic
->vapic_addr
)
10188 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
10195 tpr
= kvm_lapic_get_cr8(vcpu
);
10197 kvm_x86_call(update_cr8_intercept
)(vcpu
, tpr
, max_irr
);
10201 int kvm_check_nested_events(struct kvm_vcpu
*vcpu
)
10203 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
10204 kvm_x86_ops
.nested_ops
->triple_fault(vcpu
);
10208 return kvm_x86_ops
.nested_ops
->check_events(vcpu
);
10211 static void kvm_inject_exception(struct kvm_vcpu
*vcpu
)
10214 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10215 * exceptions don't report error codes. The presence of an error code
10216 * is carried with the exception and only stripped when the exception
10217 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10218 * report an error code despite the CPU being in Real Mode.
10220 vcpu
->arch
.exception
.has_error_code
&= is_protmode(vcpu
);
10222 trace_kvm_inj_exception(vcpu
->arch
.exception
.vector
,
10223 vcpu
->arch
.exception
.has_error_code
,
10224 vcpu
->arch
.exception
.error_code
,
10225 vcpu
->arch
.exception
.injected
);
10227 kvm_x86_call(inject_exception
)(vcpu
);
10231 * Check for any event (interrupt or exception) that is ready to be injected,
10232 * and if there is at least one event, inject the event with the highest
10233 * priority. This handles both "pending" events, i.e. events that have never
10234 * been injected into the guest, and "injected" events, i.e. events that were
10235 * injected as part of a previous VM-Enter, but weren't successfully delivered
10236 * and need to be re-injected.
10238 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10239 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10240 * be able to inject exceptions in the "middle" of an instruction, and so must
10241 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10242 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10243 * boundaries is necessary and correct.
10245 * For simplicity, KVM uses a single path to inject all events (except events
10246 * that are injected directly from L1 to L2) and doesn't explicitly track
10247 * instruction boundaries for asynchronous events. However, because VM-Exits
10248 * that can occur during instruction execution typically result in KVM skipping
10249 * the instruction or injecting an exception, e.g. instruction and exception
10250 * intercepts, and because pending exceptions have higher priority than pending
10251 * interrupts, KVM still honors instruction boundaries in most scenarios.
10253 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10254 * the instruction or inject an exception, then KVM can incorrecty inject a new
10255 * asynchronous event if the event became pending after the CPU fetched the
10256 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10257 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10258 * injected on the restarted instruction instead of being deferred until the
10259 * instruction completes.
10261 * In practice, this virtualization hole is unlikely to be observed by the
10262 * guest, and even less likely to cause functional problems. To detect the
10263 * hole, the guest would have to trigger an event on a side effect of an early
10264 * phase of instruction execution, e.g. on the instruction fetch from memory.
10265 * And for it to be a functional problem, the guest would need to depend on the
10266 * ordering between that side effect, the instruction completing, _and_ the
10267 * delivery of the asynchronous event.
10269 static int kvm_check_and_inject_events(struct kvm_vcpu
*vcpu
,
10270 bool *req_immediate_exit
)
10276 * Process nested events first, as nested VM-Exit supersedes event
10277 * re-injection. If there's an event queued for re-injection, it will
10278 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10280 if (is_guest_mode(vcpu
))
10281 r
= kvm_check_nested_events(vcpu
);
10286 * Re-inject exceptions and events *especially* if immediate entry+exit
10287 * to/from L2 is needed, as any event that has already been injected
10288 * into L2 needs to complete its lifecycle before injecting a new event.
10290 * Don't re-inject an NMI or interrupt if there is a pending exception.
10291 * This collision arises if an exception occurred while vectoring the
10292 * injected event, KVM intercepted said exception, and KVM ultimately
10293 * determined the fault belongs to the guest and queues the exception
10294 * for injection back into the guest.
10296 * "Injected" interrupts can also collide with pending exceptions if
10297 * userspace ignores the "ready for injection" flag and blindly queues
10298 * an interrupt. In that case, prioritizing the exception is correct,
10299 * as the exception "occurred" before the exit to userspace. Trap-like
10300 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10301 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10302 * priority, they're only generated (pended) during instruction
10303 * execution, and interrupts are recognized at instruction boundaries.
10304 * Thus a pending fault-like exception means the fault occurred on the
10305 * *previous* instruction and must be serviced prior to recognizing any
10306 * new events in order to fully complete the previous instruction.
10308 if (vcpu
->arch
.exception
.injected
)
10309 kvm_inject_exception(vcpu
);
10310 else if (kvm_is_exception_pending(vcpu
))
10312 else if (vcpu
->arch
.nmi_injected
)
10313 kvm_x86_call(inject_nmi
)(vcpu
);
10314 else if (vcpu
->arch
.interrupt
.injected
)
10315 kvm_x86_call(inject_irq
)(vcpu
, true);
10318 * Exceptions that morph to VM-Exits are handled above, and pending
10319 * exceptions on top of injected exceptions that do not VM-Exit should
10320 * either morph to #DF or, sadly, override the injected exception.
10322 WARN_ON_ONCE(vcpu
->arch
.exception
.injected
&&
10323 vcpu
->arch
.exception
.pending
);
10326 * Bail if immediate entry+exit to/from the guest is needed to complete
10327 * nested VM-Enter or event re-injection so that a different pending
10328 * event can be serviced (or if KVM needs to exit to userspace).
10330 * Otherwise, continue processing events even if VM-Exit occurred. The
10331 * VM-Exit will have cleared exceptions that were meant for L2, but
10332 * there may now be events that can be injected into L1.
10338 * A pending exception VM-Exit should either result in nested VM-Exit
10339 * or force an immediate re-entry and exit to/from L2, and exception
10340 * VM-Exits cannot be injected (flag should _never_ be set).
10342 WARN_ON_ONCE(vcpu
->arch
.exception_vmexit
.injected
||
10343 vcpu
->arch
.exception_vmexit
.pending
);
10346 * New events, other than exceptions, cannot be injected if KVM needs
10347 * to re-inject a previous event. See above comments on re-injecting
10348 * for why pending exceptions get priority.
10350 can_inject
= !kvm_event_needs_reinjection(vcpu
);
10352 if (vcpu
->arch
.exception
.pending
) {
10354 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10355 * value pushed on the stack. Trap-like exception and all #DBs
10356 * leave RF as-is (KVM follows Intel's behavior in this regard;
10357 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10359 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10360 * describe the behavior of General Detect #DBs, which are
10361 * fault-like. They do _not_ set RF, a la code breakpoints.
10363 if (exception_type(vcpu
->arch
.exception
.vector
) == EXCPT_FAULT
)
10364 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
10367 if (vcpu
->arch
.exception
.vector
== DB_VECTOR
) {
10368 kvm_deliver_exception_payload(vcpu
, &vcpu
->arch
.exception
);
10369 if (vcpu
->arch
.dr7
& DR7_GD
) {
10370 vcpu
->arch
.dr7
&= ~DR7_GD
;
10371 kvm_update_dr7(vcpu
);
10375 kvm_inject_exception(vcpu
);
10377 vcpu
->arch
.exception
.pending
= false;
10378 vcpu
->arch
.exception
.injected
= true;
10380 can_inject
= false;
10383 /* Don't inject interrupts if the user asked to avoid doing so */
10384 if (vcpu
->guest_debug
& KVM_GUESTDBG_BLOCKIRQ
)
10388 * Finally, inject interrupt events. If an event cannot be injected
10389 * due to architectural conditions (e.g. IF=0) a window-open exit
10390 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10391 * and can architecturally be injected, but we cannot do it right now:
10392 * an interrupt could have arrived just now and we have to inject it
10393 * as a vmexit, or there could already an event in the queue, which is
10394 * indicated by can_inject. In that case we request an immediate exit
10395 * in order to make progress and get back here for another iteration.
10396 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10398 #ifdef CONFIG_KVM_SMM
10399 if (vcpu
->arch
.smi_pending
) {
10400 r
= can_inject
? kvm_x86_call(smi_allowed
)(vcpu
, true) :
10405 vcpu
->arch
.smi_pending
= false;
10406 ++vcpu
->arch
.smi_count
;
10408 can_inject
= false;
10410 kvm_x86_call(enable_smi_window
)(vcpu
);
10414 if (vcpu
->arch
.nmi_pending
) {
10415 r
= can_inject
? kvm_x86_call(nmi_allowed
)(vcpu
, true) :
10420 --vcpu
->arch
.nmi_pending
;
10421 vcpu
->arch
.nmi_injected
= true;
10422 kvm_x86_call(inject_nmi
)(vcpu
);
10423 can_inject
= false;
10424 WARN_ON(kvm_x86_call(nmi_allowed
)(vcpu
, true) < 0);
10426 if (vcpu
->arch
.nmi_pending
)
10427 kvm_x86_call(enable_nmi_window
)(vcpu
);
10430 if (kvm_cpu_has_injectable_intr(vcpu
)) {
10431 r
= can_inject
? kvm_x86_call(interrupt_allowed
)(vcpu
, true) :
10436 int irq
= kvm_cpu_get_interrupt(vcpu
);
10438 if (!WARN_ON_ONCE(irq
== -1)) {
10439 kvm_queue_interrupt(vcpu
, irq
, false);
10440 kvm_x86_call(inject_irq
)(vcpu
, false);
10441 WARN_ON(kvm_x86_call(interrupt_allowed
)(vcpu
, true) < 0);
10444 if (kvm_cpu_has_injectable_intr(vcpu
))
10445 kvm_x86_call(enable_irq_window
)(vcpu
);
10448 if (is_guest_mode(vcpu
) &&
10449 kvm_x86_ops
.nested_ops
->has_events
&&
10450 kvm_x86_ops
.nested_ops
->has_events(vcpu
, true))
10451 *req_immediate_exit
= true;
10454 * KVM must never queue a new exception while injecting an event; KVM
10455 * is done emulating and should only propagate the to-be-injected event
10456 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10457 * infinite loop as KVM will bail from VM-Enter to inject the pending
10458 * exception and start the cycle all over.
10460 * Exempt triple faults as they have special handling and won't put the
10461 * vCPU into an infinite loop. Triple fault can be queued when running
10462 * VMX without unrestricted guest, as that requires KVM to emulate Real
10463 * Mode events (see kvm_inject_realmode_interrupt()).
10465 WARN_ON_ONCE(vcpu
->arch
.exception
.pending
||
10466 vcpu
->arch
.exception_vmexit
.pending
);
10471 *req_immediate_exit
= true;
10477 static void process_nmi(struct kvm_vcpu
*vcpu
)
10479 unsigned int limit
;
10482 * x86 is limited to one NMI pending, but because KVM can't react to
10483 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10484 * scheduled out, KVM needs to play nice with two queued NMIs showing
10485 * up at the same time. To handle this scenario, allow two NMIs to be
10486 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10487 * waiting for a previous NMI injection to complete (which effectively
10488 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10489 * will request an NMI window to handle the second NMI.
10491 if (kvm_x86_call(get_nmi_mask
)(vcpu
) || vcpu
->arch
.nmi_injected
)
10497 * Adjust the limit to account for pending virtual NMIs, which aren't
10498 * tracked in vcpu->arch.nmi_pending.
10500 if (kvm_x86_call(is_vnmi_pending
)(vcpu
))
10503 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
10504 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
10506 if (vcpu
->arch
.nmi_pending
&&
10507 (kvm_x86_call(set_vnmi_pending
)(vcpu
)))
10508 vcpu
->arch
.nmi_pending
--;
10510 if (vcpu
->arch
.nmi_pending
)
10511 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
10514 /* Return total number of NMIs pending injection to the VM */
10515 int kvm_get_nr_pending_nmis(struct kvm_vcpu
*vcpu
)
10517 return vcpu
->arch
.nmi_pending
+
10518 kvm_x86_call(is_vnmi_pending
)(vcpu
);
10521 void kvm_make_scan_ioapic_request_mask(struct kvm
*kvm
,
10522 unsigned long *vcpu_bitmap
)
10524 kvm_make_vcpus_request_mask(kvm
, KVM_REQ_SCAN_IOAPIC
, vcpu_bitmap
);
10527 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
10529 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
10532 void __kvm_vcpu_update_apicv(struct kvm_vcpu
*vcpu
)
10534 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
10537 if (!lapic_in_kernel(vcpu
))
10540 down_read(&vcpu
->kvm
->arch
.apicv_update_lock
);
10543 /* Do not activate APICV when APIC is disabled */
10544 activate
= kvm_vcpu_apicv_activated(vcpu
) &&
10545 (kvm_get_apic_mode(vcpu
) != LAPIC_MODE_DISABLED
);
10547 if (apic
->apicv_active
== activate
)
10550 apic
->apicv_active
= activate
;
10551 kvm_apic_update_apicv(vcpu
);
10552 kvm_x86_call(refresh_apicv_exec_ctrl
)(vcpu
);
10555 * When APICv gets disabled, we may still have injected interrupts
10556 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10557 * still active when the interrupt got accepted. Make sure
10558 * kvm_check_and_inject_events() is called to check for that.
10560 if (!apic
->apicv_active
)
10561 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
10565 up_read(&vcpu
->kvm
->arch
.apicv_update_lock
);
10567 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv
);
10569 static void kvm_vcpu_update_apicv(struct kvm_vcpu
*vcpu
)
10571 if (!lapic_in_kernel(vcpu
))
10575 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10576 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10577 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10578 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10579 * this case so that KVM can the AVIC doorbell to inject interrupts to
10580 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10581 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10582 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10583 * access page is sticky.
10585 if (apic_x2apic_mode(vcpu
->arch
.apic
) &&
10586 kvm_x86_ops
.allow_apicv_in_x2apic_without_x2apic_virtualization
)
10587 kvm_inhibit_apic_access_page(vcpu
);
10589 __kvm_vcpu_update_apicv(vcpu
);
10592 void __kvm_set_or_clear_apicv_inhibit(struct kvm
*kvm
,
10593 enum kvm_apicv_inhibit reason
, bool set
)
10595 unsigned long old
, new;
10597 lockdep_assert_held_write(&kvm
->arch
.apicv_update_lock
);
10599 if (!(kvm_x86_ops
.required_apicv_inhibits
& BIT(reason
)))
10602 old
= new = kvm
->arch
.apicv_inhibit_reasons
;
10604 set_or_clear_apicv_inhibit(&new, reason
, set
);
10606 if (!!old
!= !!new) {
10608 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10609 * false positives in the sanity check WARN in svm_vcpu_run().
10610 * This task will wait for all vCPUs to ack the kick IRQ before
10611 * updating apicv_inhibit_reasons, and all other vCPUs will
10612 * block on acquiring apicv_update_lock so that vCPUs can't
10613 * redo svm_vcpu_run() without seeing the new inhibit state.
10615 * Note, holding apicv_update_lock and taking it in the read
10616 * side (handling the request) also prevents other vCPUs from
10617 * servicing the request with a stale apicv_inhibit_reasons.
10619 kvm_make_all_cpus_request(kvm
, KVM_REQ_APICV_UPDATE
);
10620 kvm
->arch
.apicv_inhibit_reasons
= new;
10622 unsigned long gfn
= gpa_to_gfn(APIC_DEFAULT_PHYS_BASE
);
10623 int idx
= srcu_read_lock(&kvm
->srcu
);
10625 kvm_zap_gfn_range(kvm
, gfn
, gfn
+1);
10626 srcu_read_unlock(&kvm
->srcu
, idx
);
10629 kvm
->arch
.apicv_inhibit_reasons
= new;
10633 void kvm_set_or_clear_apicv_inhibit(struct kvm
*kvm
,
10634 enum kvm_apicv_inhibit reason
, bool set
)
10639 down_write(&kvm
->arch
.apicv_update_lock
);
10640 __kvm_set_or_clear_apicv_inhibit(kvm
, reason
, set
);
10641 up_write(&kvm
->arch
.apicv_update_lock
);
10643 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit
);
10645 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
10647 if (!kvm_apic_present(vcpu
))
10650 bitmap_zero(vcpu
->arch
.ioapic_handled_vectors
, 256);
10652 kvm_x86_call(sync_pir_to_irr
)(vcpu
);
10654 if (irqchip_split(vcpu
->kvm
))
10655 kvm_scan_ioapic_routes(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
10656 else if (ioapic_in_kernel(vcpu
->kvm
))
10657 kvm_ioapic_scan_entry(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
10659 if (is_guest_mode(vcpu
))
10660 vcpu
->arch
.load_eoi_exitmap_pending
= true;
10662 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP
, vcpu
);
10665 static void vcpu_load_eoi_exitmap(struct kvm_vcpu
*vcpu
)
10667 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
10670 #ifdef CONFIG_KVM_HYPERV
10671 if (to_hv_vcpu(vcpu
)) {
10672 u64 eoi_exit_bitmap
[4];
10674 bitmap_or((ulong
*)eoi_exit_bitmap
,
10675 vcpu
->arch
.ioapic_handled_vectors
,
10676 to_hv_synic(vcpu
)->vec_bitmap
, 256);
10677 kvm_x86_call(load_eoi_exitmap
)(vcpu
, eoi_exit_bitmap
);
10681 kvm_x86_call(load_eoi_exitmap
)(
10682 vcpu
, (u64
*)vcpu
->arch
.ioapic_handled_vectors
);
10685 void kvm_arch_guest_memory_reclaimed(struct kvm
*kvm
)
10687 kvm_x86_call(guest_memory_reclaimed
)(kvm
);
10690 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
10692 if (!lapic_in_kernel(vcpu
))
10695 kvm_x86_call(set_apic_access_page_addr
)(vcpu
);
10699 * Called within kvm->srcu read side.
10700 * Returns 1 to let vcpu_run() continue the guest execution loop without
10701 * exiting to the userspace. Otherwise, the value will be returned to the
10704 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
10708 dm_request_for_irq_injection(vcpu
) &&
10709 kvm_cpu_accept_dm_intr(vcpu
);
10710 fastpath_t exit_fastpath
;
10712 bool req_immediate_exit
= false;
10714 if (kvm_request_pending(vcpu
)) {
10715 if (kvm_check_request(KVM_REQ_VM_DEAD
, vcpu
)) {
10720 if (kvm_dirty_ring_check_request(vcpu
)) {
10725 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES
, vcpu
)) {
10726 if (unlikely(!kvm_x86_ops
.nested_ops
->get_nested_state_pages(vcpu
))) {
10731 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS
, vcpu
))
10732 kvm_mmu_free_obsolete_roots(vcpu
);
10733 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
10734 __kvm_migrate_timers(vcpu
);
10735 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
10736 kvm_update_masterclock(vcpu
->kvm
);
10737 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
10738 kvm_gen_kvmclock_update(vcpu
);
10739 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
10740 r
= kvm_guest_time_update(vcpu
);
10744 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
10745 kvm_mmu_sync_roots(vcpu
);
10746 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD
, vcpu
))
10747 kvm_mmu_load_pgd(vcpu
);
10750 * Note, the order matters here, as flushing "all" TLB entries
10751 * also flushes the "current" TLB entries, i.e. servicing the
10752 * flush "all" will clear any request to flush "current".
10754 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
10755 kvm_vcpu_flush_tlb_all(vcpu
);
10757 kvm_service_local_tlb_flush_requests(vcpu
);
10760 * Fall back to a "full" guest flush if Hyper-V's precise
10761 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10762 * the flushes are considered "remote" and not "local" because
10763 * the requests can be initiated from other vCPUs.
10765 #ifdef CONFIG_KVM_HYPERV
10766 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH
, vcpu
) &&
10767 kvm_hv_vcpu_flush_tlb(vcpu
))
10768 kvm_vcpu_flush_tlb_guest(vcpu
);
10771 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
10772 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
10776 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
10777 if (is_guest_mode(vcpu
))
10778 kvm_x86_ops
.nested_ops
->triple_fault(vcpu
);
10780 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
10781 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
10782 vcpu
->mmio_needed
= 0;
10787 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
10788 /* Page is swapped out. Do synthetic halt */
10789 vcpu
->arch
.apf
.halted
= true;
10793 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
10794 record_steal_time(vcpu
);
10795 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
10796 kvm_pmu_handle_event(vcpu
);
10797 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
10798 kvm_pmu_deliver_pmi(vcpu
);
10799 #ifdef CONFIG_KVM_SMM
10800 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
10803 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
10805 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT
, vcpu
)) {
10806 BUG_ON(vcpu
->arch
.pending_ioapic_eoi
> 255);
10807 if (test_bit(vcpu
->arch
.pending_ioapic_eoi
,
10808 vcpu
->arch
.ioapic_handled_vectors
)) {
10809 vcpu
->run
->exit_reason
= KVM_EXIT_IOAPIC_EOI
;
10810 vcpu
->run
->eoi
.vector
=
10811 vcpu
->arch
.pending_ioapic_eoi
;
10816 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
10817 vcpu_scan_ioapic(vcpu
);
10818 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP
, vcpu
))
10819 vcpu_load_eoi_exitmap(vcpu
);
10820 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
10821 kvm_vcpu_reload_apic_access_page(vcpu
);
10822 #ifdef CONFIG_KVM_HYPERV
10823 if (kvm_check_request(KVM_REQ_HV_CRASH
, vcpu
)) {
10824 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
10825 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_CRASH
;
10826 vcpu
->run
->system_event
.ndata
= 0;
10830 if (kvm_check_request(KVM_REQ_HV_RESET
, vcpu
)) {
10831 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
10832 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_RESET
;
10833 vcpu
->run
->system_event
.ndata
= 0;
10837 if (kvm_check_request(KVM_REQ_HV_EXIT
, vcpu
)) {
10838 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
10840 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERV
;
10841 vcpu
->run
->hyperv
= hv_vcpu
->exit
;
10847 * KVM_REQ_HV_STIMER has to be processed after
10848 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10849 * depend on the guest clock being up-to-date
10851 if (kvm_check_request(KVM_REQ_HV_STIMER
, vcpu
))
10852 kvm_hv_process_stimers(vcpu
);
10854 if (kvm_check_request(KVM_REQ_APICV_UPDATE
, vcpu
))
10855 kvm_vcpu_update_apicv(vcpu
);
10856 if (kvm_check_request(KVM_REQ_APF_READY
, vcpu
))
10857 kvm_check_async_pf_completion(vcpu
);
10858 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED
, vcpu
))
10859 kvm_x86_call(msr_filter_changed
)(vcpu
);
10861 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING
, vcpu
))
10862 kvm_x86_call(update_cpu_dirty_logging
)(vcpu
);
10864 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE
, vcpu
)) {
10865 kvm_vcpu_reset(vcpu
, true);
10866 if (vcpu
->arch
.mp_state
!= KVM_MP_STATE_RUNNABLE
) {
10873 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
||
10874 kvm_xen_has_interrupt(vcpu
)) {
10875 ++vcpu
->stat
.req_event
;
10876 r
= kvm_apic_accept_events(vcpu
);
10881 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
10886 r
= kvm_check_and_inject_events(vcpu
, &req_immediate_exit
);
10892 kvm_x86_call(enable_irq_window
)(vcpu
);
10894 if (kvm_lapic_enabled(vcpu
)) {
10895 update_cr8_intercept(vcpu
);
10896 kvm_lapic_sync_to_vapic(vcpu
);
10900 r
= kvm_mmu_reload(vcpu
);
10902 goto cancel_injection
;
10907 kvm_x86_call(prepare_switch_to_guest
)(vcpu
);
10910 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10911 * IPI are then delayed after guest entry, which ensures that they
10912 * result in virtual interrupt delivery.
10914 local_irq_disable();
10916 /* Store vcpu->apicv_active before vcpu->mode. */
10917 smp_store_release(&vcpu
->mode
, IN_GUEST_MODE
);
10919 kvm_vcpu_srcu_read_unlock(vcpu
);
10922 * 1) We should set ->mode before checking ->requests. Please see
10923 * the comment in kvm_vcpu_exiting_guest_mode().
10925 * 2) For APICv, we should set ->mode before checking PID.ON. This
10926 * pairs with the memory barrier implicit in pi_test_and_set_on
10927 * (see vmx_deliver_posted_interrupt).
10929 * 3) This also orders the write to mode from any reads to the page
10930 * tables done while the VCPU is running. Please see the comment
10931 * in kvm_flush_remote_tlbs.
10933 smp_mb__after_srcu_read_unlock();
10936 * Process pending posted interrupts to handle the case where the
10937 * notification IRQ arrived in the host, or was never sent (because the
10938 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10939 * status, KVM doesn't update assigned devices when APICv is inhibited,
10940 * i.e. they can post interrupts even if APICv is temporarily disabled.
10942 if (kvm_lapic_enabled(vcpu
))
10943 kvm_x86_call(sync_pir_to_irr
)(vcpu
);
10945 if (kvm_vcpu_exit_request(vcpu
)) {
10946 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
10948 local_irq_enable();
10950 kvm_vcpu_srcu_read_lock(vcpu
);
10952 goto cancel_injection
;
10955 if (req_immediate_exit
)
10956 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
10958 fpregs_assert_state_consistent();
10959 if (test_thread_flag(TIF_NEED_FPU_LOAD
))
10960 switch_fpu_return();
10962 if (vcpu
->arch
.guest_fpu
.xfd_err
)
10963 wrmsrl(MSR_IA32_XFD_ERR
, vcpu
->arch
.guest_fpu
.xfd_err
);
10965 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
10966 set_debugreg(0, 7);
10967 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
10968 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
10969 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
10970 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
10971 } else if (unlikely(hw_breakpoint_active())) {
10972 set_debugreg(0, 7);
10975 guest_timing_enter_irqoff();
10979 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10980 * update must kick and wait for all vCPUs before toggling the
10981 * per-VM state, and responding vCPUs must wait for the update
10982 * to complete before servicing KVM_REQ_APICV_UPDATE.
10984 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu
) != kvm_vcpu_apicv_active(vcpu
)) &&
10985 (kvm_get_apic_mode(vcpu
) != LAPIC_MODE_DISABLED
));
10987 exit_fastpath
= kvm_x86_call(vcpu_run
)(vcpu
,
10988 req_immediate_exit
);
10989 if (likely(exit_fastpath
!= EXIT_FASTPATH_REENTER_GUEST
))
10992 if (kvm_lapic_enabled(vcpu
))
10993 kvm_x86_call(sync_pir_to_irr
)(vcpu
);
10995 if (unlikely(kvm_vcpu_exit_request(vcpu
))) {
10996 exit_fastpath
= EXIT_FASTPATH_EXIT_HANDLED
;
11000 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11001 ++vcpu
->stat
.exits
;
11005 * Do this here before restoring debug registers on the host. And
11006 * since we do this before handling the vmexit, a DR access vmexit
11007 * can (a) read the correct value of the debug registers, (b) set
11008 * KVM_DEBUGREG_WONT_EXIT again.
11010 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
11011 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
11012 kvm_x86_call(sync_dirty_debug_regs
)(vcpu
);
11013 kvm_update_dr0123(vcpu
);
11014 kvm_update_dr7(vcpu
);
11018 * If the guest has used debug registers, at least dr7
11019 * will be disabled while returning to the host.
11020 * If we don't have active breakpoints in the host, we don't
11021 * care about the messed up debug address registers. But if
11022 * we have some of them active, restore the old state.
11024 if (hw_breakpoint_active())
11025 hw_breakpoint_restore();
11027 vcpu
->arch
.last_vmentry_cpu
= vcpu
->cpu
;
11028 vcpu
->arch
.last_guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
11030 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
11034 * Sync xfd before calling handle_exit_irqoff() which may
11035 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11036 * in #NM irqoff handler).
11038 if (vcpu
->arch
.xfd_no_write_intercept
)
11039 fpu_sync_guest_vmexit_xfd_state();
11041 kvm_x86_call(handle_exit_irqoff
)(vcpu
);
11043 if (vcpu
->arch
.guest_fpu
.xfd_err
)
11044 wrmsrl(MSR_IA32_XFD_ERR
, 0);
11047 * Consume any pending interrupts, including the possible source of
11048 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11049 * An instruction is required after local_irq_enable() to fully unblock
11050 * interrupts on processors that implement an interrupt shadow, the
11051 * stat.exits increment will do nicely.
11053 kvm_before_interrupt(vcpu
, KVM_HANDLING_IRQ
);
11054 local_irq_enable();
11055 ++vcpu
->stat
.exits
;
11056 local_irq_disable();
11057 kvm_after_interrupt(vcpu
);
11060 * Wait until after servicing IRQs to account guest time so that any
11061 * ticks that occurred while running the guest are properly accounted
11062 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11063 * of accounting via context tracking, but the loss of accuracy is
11064 * acceptable for all known use cases.
11066 guest_timing_exit_irqoff();
11068 local_irq_enable();
11071 kvm_vcpu_srcu_read_lock(vcpu
);
11074 * Call this to ensure WC buffers in guest are evicted after each VM
11075 * Exit, so that the evicted WC writes can be snooped across all cpus
11077 smp_mb__after_srcu_read_lock();
11080 * Profile KVM exit RIPs:
11082 if (unlikely(prof_on
== KVM_PROFILING
)) {
11083 unsigned long rip
= kvm_rip_read(vcpu
);
11084 profile_hit(KVM_PROFILING
, (void *)rip
);
11087 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
11088 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
11090 if (vcpu
->arch
.apic_attention
)
11091 kvm_lapic_sync_from_vapic(vcpu
);
11093 if (unlikely(exit_fastpath
== EXIT_FASTPATH_EXIT_USERSPACE
))
11096 r
= kvm_x86_call(handle_exit
)(vcpu
, exit_fastpath
);
11100 if (req_immediate_exit
)
11101 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
11102 kvm_x86_call(cancel_injection
)(vcpu
);
11103 if (unlikely(vcpu
->arch
.apic_attention
))
11104 kvm_lapic_sync_from_vapic(vcpu
);
11109 static bool kvm_vcpu_running(struct kvm_vcpu
*vcpu
)
11111 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
11112 !vcpu
->arch
.apf
.halted
);
11115 static bool kvm_vcpu_has_events(struct kvm_vcpu
*vcpu
)
11117 if (!list_empty_careful(&vcpu
->async_pf
.done
))
11120 if (kvm_apic_has_pending_init_or_sipi(vcpu
) &&
11121 kvm_apic_init_sipi_allowed(vcpu
))
11124 if (vcpu
->arch
.pv
.pv_unhalted
)
11127 if (kvm_is_exception_pending(vcpu
))
11130 if (kvm_test_request(KVM_REQ_NMI
, vcpu
) ||
11131 (vcpu
->arch
.nmi_pending
&&
11132 kvm_x86_call(nmi_allowed
)(vcpu
, false)))
11135 #ifdef CONFIG_KVM_SMM
11136 if (kvm_test_request(KVM_REQ_SMI
, vcpu
) ||
11137 (vcpu
->arch
.smi_pending
&&
11138 kvm_x86_call(smi_allowed
)(vcpu
, false)))
11142 if (kvm_test_request(KVM_REQ_PMI
, vcpu
))
11145 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE
, vcpu
))
11148 if (kvm_arch_interrupt_allowed(vcpu
) && kvm_cpu_has_interrupt(vcpu
))
11151 if (kvm_hv_has_stimer_pending(vcpu
))
11154 if (is_guest_mode(vcpu
) &&
11155 kvm_x86_ops
.nested_ops
->has_events
&&
11156 kvm_x86_ops
.nested_ops
->has_events(vcpu
, false))
11159 if (kvm_xen_has_pending_events(vcpu
))
11165 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
11167 return kvm_vcpu_running(vcpu
) || kvm_vcpu_has_events(vcpu
);
11170 /* Called within kvm->srcu read side. */
11171 static inline int vcpu_block(struct kvm_vcpu
*vcpu
)
11175 if (!kvm_arch_vcpu_runnable(vcpu
)) {
11177 * Switch to the software timer before halt-polling/blocking as
11178 * the guest's timer may be a break event for the vCPU, and the
11179 * hypervisor timer runs only when the CPU is in guest mode.
11180 * Switch before halt-polling so that KVM recognizes an expired
11181 * timer before blocking.
11183 hv_timer
= kvm_lapic_hv_timer_in_use(vcpu
);
11185 kvm_lapic_switch_to_sw_timer(vcpu
);
11187 kvm_vcpu_srcu_read_unlock(vcpu
);
11188 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
11189 kvm_vcpu_halt(vcpu
);
11191 kvm_vcpu_block(vcpu
);
11192 kvm_vcpu_srcu_read_lock(vcpu
);
11195 kvm_lapic_switch_to_hv_timer(vcpu
);
11198 * If the vCPU is not runnable, a signal or another host event
11199 * of some kind is pending; service it without changing the
11200 * vCPU's activity state.
11202 if (!kvm_arch_vcpu_runnable(vcpu
))
11207 * Evaluate nested events before exiting the halted state. This allows
11208 * the halt state to be recorded properly in the VMCS12's activity
11209 * state field (AMD does not have a similar field and a VM-Exit always
11210 * causes a spurious wakeup from HLT).
11212 if (is_guest_mode(vcpu
)) {
11213 int r
= kvm_check_nested_events(vcpu
);
11215 WARN_ON_ONCE(r
== -EBUSY
);
11220 if (kvm_apic_accept_events(vcpu
) < 0)
11222 switch(vcpu
->arch
.mp_state
) {
11223 case KVM_MP_STATE_HALTED
:
11224 case KVM_MP_STATE_AP_RESET_HOLD
:
11225 vcpu
->arch
.pv
.pv_unhalted
= false;
11226 vcpu
->arch
.mp_state
=
11227 KVM_MP_STATE_RUNNABLE
;
11229 case KVM_MP_STATE_RUNNABLE
:
11230 vcpu
->arch
.apf
.halted
= false;
11232 case KVM_MP_STATE_INIT_RECEIVED
:
11241 /* Called within kvm->srcu read side. */
11242 static int vcpu_run(struct kvm_vcpu
*vcpu
)
11246 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
11250 * If another guest vCPU requests a PV TLB flush in the middle
11251 * of instruction emulation, the rest of the emulation could
11252 * use a stale page translation. Assume that any code after
11253 * this point can start executing an instruction.
11255 vcpu
->arch
.at_instruction_boundary
= false;
11256 if (kvm_vcpu_running(vcpu
)) {
11257 r
= vcpu_enter_guest(vcpu
);
11259 r
= vcpu_block(vcpu
);
11265 kvm_clear_request(KVM_REQ_UNBLOCK
, vcpu
);
11266 if (kvm_xen_has_pending_events(vcpu
))
11267 kvm_xen_inject_pending_events(vcpu
);
11269 if (kvm_cpu_has_pending_timer(vcpu
))
11270 kvm_inject_pending_timer_irqs(vcpu
);
11272 if (dm_request_for_irq_injection(vcpu
) &&
11273 kvm_vcpu_ready_for_interrupt_injection(vcpu
)) {
11275 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
11276 ++vcpu
->stat
.request_irq_exits
;
11280 if (__xfer_to_guest_mode_work_pending()) {
11281 kvm_vcpu_srcu_read_unlock(vcpu
);
11282 r
= xfer_to_guest_mode_handle_work(vcpu
);
11283 kvm_vcpu_srcu_read_lock(vcpu
);
11292 static int __kvm_emulate_halt(struct kvm_vcpu
*vcpu
, int state
, int reason
)
11295 * The vCPU has halted, e.g. executed HLT. Update the run state if the
11296 * local APIC is in-kernel, the run loop will detect the non-runnable
11297 * state and halt the vCPU. Exit to userspace if the local APIC is
11298 * managed by userspace, in which case userspace is responsible for
11299 * handling wake events.
11301 ++vcpu
->stat
.halt_exits
;
11302 if (lapic_in_kernel(vcpu
)) {
11303 if (kvm_vcpu_has_events(vcpu
))
11304 vcpu
->arch
.pv
.pv_unhalted
= false;
11306 vcpu
->arch
.mp_state
= state
;
11309 vcpu
->run
->exit_reason
= reason
;
11314 int kvm_emulate_halt_noskip(struct kvm_vcpu
*vcpu
)
11316 return __kvm_emulate_halt(vcpu
, KVM_MP_STATE_HALTED
, KVM_EXIT_HLT
);
11318 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip
);
11320 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
11322 int ret
= kvm_skip_emulated_instruction(vcpu
);
11324 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11325 * KVM_EXIT_DEBUG here.
11327 return kvm_emulate_halt_noskip(vcpu
) && ret
;
11329 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
11331 fastpath_t
handle_fastpath_hlt(struct kvm_vcpu
*vcpu
)
11335 kvm_vcpu_srcu_read_lock(vcpu
);
11336 ret
= kvm_emulate_halt(vcpu
);
11337 kvm_vcpu_srcu_read_unlock(vcpu
);
11340 return EXIT_FASTPATH_EXIT_USERSPACE
;
11342 if (kvm_vcpu_running(vcpu
))
11343 return EXIT_FASTPATH_REENTER_GUEST
;
11345 return EXIT_FASTPATH_EXIT_HANDLED
;
11347 EXPORT_SYMBOL_GPL(handle_fastpath_hlt
);
11349 int kvm_emulate_ap_reset_hold(struct kvm_vcpu
*vcpu
)
11351 int ret
= kvm_skip_emulated_instruction(vcpu
);
11353 return __kvm_emulate_halt(vcpu
, KVM_MP_STATE_AP_RESET_HOLD
,
11354 KVM_EXIT_AP_RESET_HOLD
) && ret
;
11356 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold
);
11358 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu
*vcpu
)
11360 return kvm_vcpu_apicv_active(vcpu
) &&
11361 kvm_x86_call(dy_apicv_has_pending_interrupt
)(vcpu
);
11364 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu
*vcpu
)
11366 return vcpu
->arch
.preempted_in_kernel
;
11369 bool kvm_arch_dy_runnable(struct kvm_vcpu
*vcpu
)
11371 if (READ_ONCE(vcpu
->arch
.pv
.pv_unhalted
))
11374 if (kvm_test_request(KVM_REQ_NMI
, vcpu
) ||
11375 #ifdef CONFIG_KVM_SMM
11376 kvm_test_request(KVM_REQ_SMI
, vcpu
) ||
11378 kvm_test_request(KVM_REQ_EVENT
, vcpu
))
11381 return kvm_arch_dy_has_pending_interrupt(vcpu
);
11384 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
11386 return kvm_emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
11389 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
11391 BUG_ON(!vcpu
->arch
.pio
.count
);
11393 return complete_emulated_io(vcpu
);
11397 * Implements the following, as a state machine:
11400 * for each fragment
11401 * for each mmio piece in the fragment
11408 * for each fragment
11409 * for each mmio piece in the fragment
11414 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
11416 struct kvm_run
*run
= vcpu
->run
;
11417 struct kvm_mmio_fragment
*frag
;
11420 BUG_ON(!vcpu
->mmio_needed
);
11422 /* Complete previous fragment */
11423 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
11424 len
= min(8u, frag
->len
);
11425 if (!vcpu
->mmio_is_write
)
11426 memcpy(frag
->data
, run
->mmio
.data
, len
);
11428 if (frag
->len
<= 8) {
11429 /* Switch to the next fragment. */
11431 vcpu
->mmio_cur_fragment
++;
11433 /* Go forward to the next mmio piece. */
11439 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
11440 vcpu
->mmio_needed
= 0;
11442 /* FIXME: return into emulator if single-stepping. */
11443 if (vcpu
->mmio_is_write
)
11445 vcpu
->mmio_read_completed
= 1;
11446 return complete_emulated_io(vcpu
);
11449 run
->exit_reason
= KVM_EXIT_MMIO
;
11450 run
->mmio
.phys_addr
= frag
->gpa
;
11451 if (vcpu
->mmio_is_write
)
11452 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
11453 run
->mmio
.len
= min(8u, frag
->len
);
11454 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
11455 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
11459 /* Swap (qemu) user FPU context for the guest FPU context. */
11460 static void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
11462 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11463 fpu_swap_kvm_fpstate(&vcpu
->arch
.guest_fpu
, true);
11467 /* When vcpu_run ends, restore user space FPU context. */
11468 static void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
11470 fpu_swap_kvm_fpstate(&vcpu
->arch
.guest_fpu
, false);
11471 ++vcpu
->stat
.fpu_reload
;
11475 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
)
11477 struct kvm_queued_exception
*ex
= &vcpu
->arch
.exception
;
11478 struct kvm_run
*kvm_run
= vcpu
->run
;
11482 kvm_sigset_activate(vcpu
);
11483 kvm_run
->flags
= 0;
11484 kvm_load_guest_fpu(vcpu
);
11486 kvm_vcpu_srcu_read_lock(vcpu
);
11487 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
11488 if (!vcpu
->wants_to_run
) {
11494 * Don't bother switching APIC timer emulation from the
11495 * hypervisor timer to the software timer, the only way for the
11496 * APIC timer to be active is if userspace stuffed vCPU state,
11497 * i.e. put the vCPU into a nonsensical state. Only an INIT
11498 * will transition the vCPU out of UNINITIALIZED (without more
11499 * state stuffing from userspace), which will reset the local
11500 * APIC and thus cancel the timer or drop the IRQ (if the timer
11501 * already expired).
11503 kvm_vcpu_srcu_read_unlock(vcpu
);
11504 kvm_vcpu_block(vcpu
);
11505 kvm_vcpu_srcu_read_lock(vcpu
);
11507 if (kvm_apic_accept_events(vcpu
) < 0) {
11512 if (signal_pending(current
)) {
11514 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
11515 ++vcpu
->stat
.signal_exits
;
11520 if ((kvm_run
->kvm_valid_regs
& ~KVM_SYNC_X86_VALID_FIELDS
) ||
11521 (kvm_run
->kvm_dirty_regs
& ~KVM_SYNC_X86_VALID_FIELDS
)) {
11526 if (kvm_run
->kvm_dirty_regs
) {
11527 r
= sync_regs(vcpu
);
11532 /* re-sync apic's tpr */
11533 if (!lapic_in_kernel(vcpu
)) {
11534 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
11541 * If userspace set a pending exception and L2 is active, convert it to
11542 * a pending VM-Exit if L1 wants to intercept the exception.
11544 if (vcpu
->arch
.exception_from_userspace
&& is_guest_mode(vcpu
) &&
11545 kvm_x86_ops
.nested_ops
->is_exception_vmexit(vcpu
, ex
->vector
,
11547 kvm_queue_exception_vmexit(vcpu
, ex
->vector
,
11548 ex
->has_error_code
, ex
->error_code
,
11549 ex
->has_payload
, ex
->payload
);
11550 ex
->injected
= false;
11551 ex
->pending
= false;
11553 vcpu
->arch
.exception_from_userspace
= false;
11555 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
11556 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
11557 vcpu
->arch
.complete_userspace_io
= NULL
;
11562 WARN_ON_ONCE(vcpu
->arch
.pio
.count
);
11563 WARN_ON_ONCE(vcpu
->mmio_needed
);
11566 if (!vcpu
->wants_to_run
) {
11571 r
= kvm_x86_call(vcpu_pre_run
)(vcpu
);
11575 r
= vcpu_run(vcpu
);
11578 kvm_put_guest_fpu(vcpu
);
11579 if (kvm_run
->kvm_valid_regs
)
11581 post_kvm_run_save(vcpu
);
11582 kvm_vcpu_srcu_read_unlock(vcpu
);
11584 kvm_sigset_deactivate(vcpu
);
11589 static void __get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
11591 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
11593 * We are here if userspace calls get_regs() in the middle of
11594 * instruction emulation. Registers state needs to be copied
11595 * back from emulation context to vcpu. Userspace shouldn't do
11596 * that usually, but some bad designed PV devices (vmware
11597 * backdoor interface) need this to work
11599 emulator_writeback_register_cache(vcpu
->arch
.emulate_ctxt
);
11600 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
11602 regs
->rax
= kvm_rax_read(vcpu
);
11603 regs
->rbx
= kvm_rbx_read(vcpu
);
11604 regs
->rcx
= kvm_rcx_read(vcpu
);
11605 regs
->rdx
= kvm_rdx_read(vcpu
);
11606 regs
->rsi
= kvm_rsi_read(vcpu
);
11607 regs
->rdi
= kvm_rdi_read(vcpu
);
11608 regs
->rsp
= kvm_rsp_read(vcpu
);
11609 regs
->rbp
= kvm_rbp_read(vcpu
);
11610 #ifdef CONFIG_X86_64
11611 regs
->r8
= kvm_r8_read(vcpu
);
11612 regs
->r9
= kvm_r9_read(vcpu
);
11613 regs
->r10
= kvm_r10_read(vcpu
);
11614 regs
->r11
= kvm_r11_read(vcpu
);
11615 regs
->r12
= kvm_r12_read(vcpu
);
11616 regs
->r13
= kvm_r13_read(vcpu
);
11617 regs
->r14
= kvm_r14_read(vcpu
);
11618 regs
->r15
= kvm_r15_read(vcpu
);
11621 regs
->rip
= kvm_rip_read(vcpu
);
11622 regs
->rflags
= kvm_get_rflags(vcpu
);
11625 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
11627 if (vcpu
->kvm
->arch
.has_protected_state
&&
11628 vcpu
->arch
.guest_state_protected
)
11632 __get_regs(vcpu
, regs
);
11637 static void __set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
11639 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
11640 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
11642 kvm_rax_write(vcpu
, regs
->rax
);
11643 kvm_rbx_write(vcpu
, regs
->rbx
);
11644 kvm_rcx_write(vcpu
, regs
->rcx
);
11645 kvm_rdx_write(vcpu
, regs
->rdx
);
11646 kvm_rsi_write(vcpu
, regs
->rsi
);
11647 kvm_rdi_write(vcpu
, regs
->rdi
);
11648 kvm_rsp_write(vcpu
, regs
->rsp
);
11649 kvm_rbp_write(vcpu
, regs
->rbp
);
11650 #ifdef CONFIG_X86_64
11651 kvm_r8_write(vcpu
, regs
->r8
);
11652 kvm_r9_write(vcpu
, regs
->r9
);
11653 kvm_r10_write(vcpu
, regs
->r10
);
11654 kvm_r11_write(vcpu
, regs
->r11
);
11655 kvm_r12_write(vcpu
, regs
->r12
);
11656 kvm_r13_write(vcpu
, regs
->r13
);
11657 kvm_r14_write(vcpu
, regs
->r14
);
11658 kvm_r15_write(vcpu
, regs
->r15
);
11661 kvm_rip_write(vcpu
, regs
->rip
);
11662 kvm_set_rflags(vcpu
, regs
->rflags
| X86_EFLAGS_FIXED
);
11664 vcpu
->arch
.exception
.pending
= false;
11665 vcpu
->arch
.exception_vmexit
.pending
= false;
11667 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
11670 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
11672 if (vcpu
->kvm
->arch
.has_protected_state
&&
11673 vcpu
->arch
.guest_state_protected
)
11677 __set_regs(vcpu
, regs
);
11682 static void __get_sregs_common(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
11684 struct desc_ptr dt
;
11686 if (vcpu
->arch
.guest_state_protected
)
11687 goto skip_protected_regs
;
11689 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
11690 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
11691 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
11692 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
11693 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
11694 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
11696 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
11697 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
11699 kvm_x86_call(get_idt
)(vcpu
, &dt
);
11700 sregs
->idt
.limit
= dt
.size
;
11701 sregs
->idt
.base
= dt
.address
;
11702 kvm_x86_call(get_gdt
)(vcpu
, &dt
);
11703 sregs
->gdt
.limit
= dt
.size
;
11704 sregs
->gdt
.base
= dt
.address
;
11706 sregs
->cr2
= vcpu
->arch
.cr2
;
11707 sregs
->cr3
= kvm_read_cr3(vcpu
);
11709 skip_protected_regs
:
11710 sregs
->cr0
= kvm_read_cr0(vcpu
);
11711 sregs
->cr4
= kvm_read_cr4(vcpu
);
11712 sregs
->cr8
= kvm_get_cr8(vcpu
);
11713 sregs
->efer
= vcpu
->arch
.efer
;
11714 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
11717 static void __get_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
11719 __get_sregs_common(vcpu
, sregs
);
11721 if (vcpu
->arch
.guest_state_protected
)
11724 if (vcpu
->arch
.interrupt
.injected
&& !vcpu
->arch
.interrupt
.soft
)
11725 set_bit(vcpu
->arch
.interrupt
.nr
,
11726 (unsigned long *)sregs
->interrupt_bitmap
);
11729 static void __get_sregs2(struct kvm_vcpu
*vcpu
, struct kvm_sregs2
*sregs2
)
11733 __get_sregs_common(vcpu
, (struct kvm_sregs
*)sregs2
);
11735 if (vcpu
->arch
.guest_state_protected
)
11738 if (is_pae_paging(vcpu
)) {
11739 for (i
= 0 ; i
< 4 ; i
++)
11740 sregs2
->pdptrs
[i
] = kvm_pdptr_read(vcpu
, i
);
11741 sregs2
->flags
|= KVM_SREGS2_FLAGS_PDPTRS_VALID
;
11745 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
11746 struct kvm_sregs
*sregs
)
11748 if (vcpu
->kvm
->arch
.has_protected_state
&&
11749 vcpu
->arch
.guest_state_protected
)
11753 __get_sregs(vcpu
, sregs
);
11758 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
11759 struct kvm_mp_state
*mp_state
)
11764 if (kvm_mpx_supported())
11765 kvm_load_guest_fpu(vcpu
);
11767 r
= kvm_apic_accept_events(vcpu
);
11772 if ((vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
||
11773 vcpu
->arch
.mp_state
== KVM_MP_STATE_AP_RESET_HOLD
) &&
11774 vcpu
->arch
.pv
.pv_unhalted
)
11775 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
11777 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
11780 if (kvm_mpx_supported())
11781 kvm_put_guest_fpu(vcpu
);
11786 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
11787 struct kvm_mp_state
*mp_state
)
11793 switch (mp_state
->mp_state
) {
11794 case KVM_MP_STATE_UNINITIALIZED
:
11795 case KVM_MP_STATE_HALTED
:
11796 case KVM_MP_STATE_AP_RESET_HOLD
:
11797 case KVM_MP_STATE_INIT_RECEIVED
:
11798 case KVM_MP_STATE_SIPI_RECEIVED
:
11799 if (!lapic_in_kernel(vcpu
))
11803 case KVM_MP_STATE_RUNNABLE
:
11811 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11812 * forcing the guest into INIT/SIPI if those events are supposed to be
11813 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11814 * if an SMI is pending as well.
11816 if ((!kvm_apic_init_sipi_allowed(vcpu
) || vcpu
->arch
.smi_pending
) &&
11817 (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
||
11818 mp_state
->mp_state
== KVM_MP_STATE_INIT_RECEIVED
))
11821 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
11822 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
11823 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
11825 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
11826 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
11834 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
11835 int reason
, bool has_error_code
, u32 error_code
)
11837 struct x86_emulate_ctxt
*ctxt
= vcpu
->arch
.emulate_ctxt
;
11840 init_emulate_ctxt(vcpu
);
11842 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
11843 has_error_code
, error_code
);
11846 * Report an error userspace if MMIO is needed, as KVM doesn't support
11847 * MMIO during a task switch (or any other complex operation).
11849 if (ret
|| vcpu
->mmio_needed
) {
11850 vcpu
->mmio_needed
= false;
11851 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
11852 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
11853 vcpu
->run
->internal
.ndata
= 0;
11857 kvm_rip_write(vcpu
, ctxt
->eip
);
11858 kvm_set_rflags(vcpu
, ctxt
->eflags
);
11861 EXPORT_SYMBOL_GPL(kvm_task_switch
);
11863 static bool kvm_is_valid_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
11865 if ((sregs
->efer
& EFER_LME
) && (sregs
->cr0
& X86_CR0_PG
)) {
11867 * When EFER.LME and CR0.PG are set, the processor is in
11868 * 64-bit mode (though maybe in a 32-bit code segment).
11869 * CR4.PAE and EFER.LMA must be set.
11871 if (!(sregs
->cr4
& X86_CR4_PAE
) || !(sregs
->efer
& EFER_LMA
))
11873 if (!kvm_vcpu_is_legal_cr3(vcpu
, sregs
->cr3
))
11877 * Not in 64-bit mode: EFER.LMA is clear and the code
11878 * segment cannot be 64-bit.
11880 if (sregs
->efer
& EFER_LMA
|| sregs
->cs
.l
)
11884 return kvm_is_valid_cr4(vcpu
, sregs
->cr4
) &&
11885 kvm_is_valid_cr0(vcpu
, sregs
->cr0
);
11888 static int __set_sregs_common(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
,
11889 int *mmu_reset_needed
, bool update_pdptrs
)
11891 struct msr_data apic_base_msr
;
11893 struct desc_ptr dt
;
11895 if (!kvm_is_valid_sregs(vcpu
, sregs
))
11898 apic_base_msr
.data
= sregs
->apic_base
;
11899 apic_base_msr
.host_initiated
= true;
11900 if (kvm_set_apic_base(vcpu
, &apic_base_msr
))
11903 if (vcpu
->arch
.guest_state_protected
)
11906 dt
.size
= sregs
->idt
.limit
;
11907 dt
.address
= sregs
->idt
.base
;
11908 kvm_x86_call(set_idt
)(vcpu
, &dt
);
11909 dt
.size
= sregs
->gdt
.limit
;
11910 dt
.address
= sregs
->gdt
.base
;
11911 kvm_x86_call(set_gdt
)(vcpu
, &dt
);
11913 vcpu
->arch
.cr2
= sregs
->cr2
;
11914 *mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
11915 vcpu
->arch
.cr3
= sregs
->cr3
;
11916 kvm_register_mark_dirty(vcpu
, VCPU_EXREG_CR3
);
11917 kvm_x86_call(post_set_cr3
)(vcpu
, sregs
->cr3
);
11919 kvm_set_cr8(vcpu
, sregs
->cr8
);
11921 *mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
11922 kvm_x86_call(set_efer
)(vcpu
, sregs
->efer
);
11924 *mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
11925 kvm_x86_call(set_cr0
)(vcpu
, sregs
->cr0
);
11927 *mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
11928 kvm_x86_call(set_cr4
)(vcpu
, sregs
->cr4
);
11930 if (update_pdptrs
) {
11931 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
11932 if (is_pae_paging(vcpu
)) {
11933 load_pdptrs(vcpu
, kvm_read_cr3(vcpu
));
11934 *mmu_reset_needed
= 1;
11936 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
11939 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
11940 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
11941 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
11942 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
11943 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
11944 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
11946 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
11947 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
11949 update_cr8_intercept(vcpu
);
11951 /* Older userspace won't unhalt the vcpu on reset. */
11952 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
11953 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
11954 !is_protmode(vcpu
))
11955 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
11960 static int __set_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
11962 int pending_vec
, max_bits
;
11963 int mmu_reset_needed
= 0;
11964 int ret
= __set_sregs_common(vcpu
, sregs
, &mmu_reset_needed
, true);
11969 if (mmu_reset_needed
) {
11970 kvm_mmu_reset_context(vcpu
);
11971 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST
, vcpu
);
11974 max_bits
= KVM_NR_INTERRUPTS
;
11975 pending_vec
= find_first_bit(
11976 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
11978 if (pending_vec
< max_bits
) {
11979 kvm_queue_interrupt(vcpu
, pending_vec
, false);
11980 pr_debug("Set back pending irq %d\n", pending_vec
);
11981 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
11986 static int __set_sregs2(struct kvm_vcpu
*vcpu
, struct kvm_sregs2
*sregs2
)
11988 int mmu_reset_needed
= 0;
11989 bool valid_pdptrs
= sregs2
->flags
& KVM_SREGS2_FLAGS_PDPTRS_VALID
;
11990 bool pae
= (sregs2
->cr0
& X86_CR0_PG
) && (sregs2
->cr4
& X86_CR4_PAE
) &&
11991 !(sregs2
->efer
& EFER_LMA
);
11994 if (sregs2
->flags
& ~KVM_SREGS2_FLAGS_PDPTRS_VALID
)
11997 if (valid_pdptrs
&& (!pae
|| vcpu
->arch
.guest_state_protected
))
12000 ret
= __set_sregs_common(vcpu
, (struct kvm_sregs
*)sregs2
,
12001 &mmu_reset_needed
, !valid_pdptrs
);
12005 if (valid_pdptrs
) {
12006 for (i
= 0; i
< 4 ; i
++)
12007 kvm_pdptr_write(vcpu
, i
, sregs2
->pdptrs
[i
]);
12009 kvm_register_mark_dirty(vcpu
, VCPU_EXREG_PDPTR
);
12010 mmu_reset_needed
= 1;
12011 vcpu
->arch
.pdptrs_from_userspace
= true;
12013 if (mmu_reset_needed
) {
12014 kvm_mmu_reset_context(vcpu
);
12015 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST
, vcpu
);
12020 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
12021 struct kvm_sregs
*sregs
)
12025 if (vcpu
->kvm
->arch
.has_protected_state
&&
12026 vcpu
->arch
.guest_state_protected
)
12030 ret
= __set_sregs(vcpu
, sregs
);
12035 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm
*kvm
)
12038 struct kvm_vcpu
*vcpu
;
12044 down_write(&kvm
->arch
.apicv_update_lock
);
12046 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
12047 if (vcpu
->guest_debug
& KVM_GUESTDBG_BLOCKIRQ
) {
12052 __kvm_set_or_clear_apicv_inhibit(kvm
, APICV_INHIBIT_REASON_BLOCKIRQ
, set
);
12053 up_write(&kvm
->arch
.apicv_update_lock
);
12056 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
12057 struct kvm_guest_debug
*dbg
)
12059 unsigned long rflags
;
12062 if (vcpu
->arch
.guest_state_protected
)
12067 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
12069 if (kvm_is_exception_pending(vcpu
))
12071 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
12072 kvm_queue_exception(vcpu
, DB_VECTOR
);
12074 kvm_queue_exception(vcpu
, BP_VECTOR
);
12078 * Read rflags as long as potentially injected trace flags are still
12081 rflags
= kvm_get_rflags(vcpu
);
12083 vcpu
->guest_debug
= dbg
->control
;
12084 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
12085 vcpu
->guest_debug
= 0;
12087 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
12088 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
12089 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
12090 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
12092 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
12093 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
12095 kvm_update_dr7(vcpu
);
12097 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
12098 vcpu
->arch
.singlestep_rip
= kvm_get_linear_rip(vcpu
);
12101 * Trigger an rflags update that will inject or remove the trace
12104 kvm_set_rflags(vcpu
, rflags
);
12106 kvm_x86_call(update_exception_bitmap
)(vcpu
);
12108 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu
->kvm
);
12118 * Translate a guest virtual address to a guest physical address.
12120 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
12121 struct kvm_translation
*tr
)
12123 unsigned long vaddr
= tr
->linear_address
;
12129 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
12130 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
12131 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
12132 tr
->physical_address
= gpa
;
12133 tr
->valid
= gpa
!= INVALID_GPA
;
12141 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
12143 struct fxregs_state
*fxsave
;
12145 if (fpstate_is_confidential(&vcpu
->arch
.guest_fpu
))
12146 return vcpu
->kvm
->arch
.has_protected_state
? -EINVAL
: 0;
12150 fxsave
= &vcpu
->arch
.guest_fpu
.fpstate
->regs
.fxsave
;
12151 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
12152 fpu
->fcw
= fxsave
->cwd
;
12153 fpu
->fsw
= fxsave
->swd
;
12154 fpu
->ftwx
= fxsave
->twd
;
12155 fpu
->last_opcode
= fxsave
->fop
;
12156 fpu
->last_ip
= fxsave
->rip
;
12157 fpu
->last_dp
= fxsave
->rdp
;
12158 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof(fxsave
->xmm_space
));
12164 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
12166 struct fxregs_state
*fxsave
;
12168 if (fpstate_is_confidential(&vcpu
->arch
.guest_fpu
))
12169 return vcpu
->kvm
->arch
.has_protected_state
? -EINVAL
: 0;
12173 fxsave
= &vcpu
->arch
.guest_fpu
.fpstate
->regs
.fxsave
;
12175 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
12176 fxsave
->cwd
= fpu
->fcw
;
12177 fxsave
->swd
= fpu
->fsw
;
12178 fxsave
->twd
= fpu
->ftwx
;
12179 fxsave
->fop
= fpu
->last_opcode
;
12180 fxsave
->rip
= fpu
->last_ip
;
12181 fxsave
->rdp
= fpu
->last_dp
;
12182 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof(fxsave
->xmm_space
));
12188 static void store_regs(struct kvm_vcpu
*vcpu
)
12190 BUILD_BUG_ON(sizeof(struct kvm_sync_regs
) > SYNC_REGS_SIZE_BYTES
);
12192 if (vcpu
->run
->kvm_valid_regs
& KVM_SYNC_X86_REGS
)
12193 __get_regs(vcpu
, &vcpu
->run
->s
.regs
.regs
);
12195 if (vcpu
->run
->kvm_valid_regs
& KVM_SYNC_X86_SREGS
)
12196 __get_sregs(vcpu
, &vcpu
->run
->s
.regs
.sregs
);
12198 if (vcpu
->run
->kvm_valid_regs
& KVM_SYNC_X86_EVENTS
)
12199 kvm_vcpu_ioctl_x86_get_vcpu_events(
12200 vcpu
, &vcpu
->run
->s
.regs
.events
);
12203 static int sync_regs(struct kvm_vcpu
*vcpu
)
12205 if (vcpu
->run
->kvm_dirty_regs
& KVM_SYNC_X86_REGS
) {
12206 __set_regs(vcpu
, &vcpu
->run
->s
.regs
.regs
);
12207 vcpu
->run
->kvm_dirty_regs
&= ~KVM_SYNC_X86_REGS
;
12210 if (vcpu
->run
->kvm_dirty_regs
& KVM_SYNC_X86_SREGS
) {
12211 struct kvm_sregs sregs
= vcpu
->run
->s
.regs
.sregs
;
12213 if (__set_sregs(vcpu
, &sregs
))
12216 vcpu
->run
->kvm_dirty_regs
&= ~KVM_SYNC_X86_SREGS
;
12219 if (vcpu
->run
->kvm_dirty_regs
& KVM_SYNC_X86_EVENTS
) {
12220 struct kvm_vcpu_events events
= vcpu
->run
->s
.regs
.events
;
12222 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
))
12225 vcpu
->run
->kvm_dirty_regs
&= ~KVM_SYNC_X86_EVENTS
;
12231 int kvm_arch_vcpu_precreate(struct kvm
*kvm
, unsigned int id
)
12233 if (kvm_check_tsc_unstable() && kvm
->created_vcpus
)
12234 pr_warn_once("SMP vm created on host with unstable TSC; "
12235 "guest TSC will not be reliable\n");
12237 if (!kvm
->arch
.max_vcpu_ids
)
12238 kvm
->arch
.max_vcpu_ids
= KVM_MAX_VCPU_IDS
;
12240 if (id
>= kvm
->arch
.max_vcpu_ids
)
12243 return kvm_x86_call(vcpu_precreate
)(kvm
);
12246 int kvm_arch_vcpu_create(struct kvm_vcpu
*vcpu
)
12251 vcpu
->arch
.last_vmentry_cpu
= -1;
12252 vcpu
->arch
.regs_avail
= ~0;
12253 vcpu
->arch
.regs_dirty
= ~0;
12255 kvm_gpc_init(&vcpu
->arch
.pv_time
, vcpu
->kvm
);
12257 if (!irqchip_in_kernel(vcpu
->kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
12258 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
12260 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
12262 r
= kvm_mmu_create(vcpu
);
12266 r
= kvm_create_lapic(vcpu
);
12268 goto fail_mmu_destroy
;
12272 page
= alloc_page(GFP_KERNEL_ACCOUNT
| __GFP_ZERO
);
12274 goto fail_free_lapic
;
12275 vcpu
->arch
.pio_data
= page_address(page
);
12277 vcpu
->arch
.mce_banks
= kcalloc(KVM_MAX_MCE_BANKS
* 4, sizeof(u64
),
12278 GFP_KERNEL_ACCOUNT
);
12279 vcpu
->arch
.mci_ctl2_banks
= kcalloc(KVM_MAX_MCE_BANKS
, sizeof(u64
),
12280 GFP_KERNEL_ACCOUNT
);
12281 if (!vcpu
->arch
.mce_banks
|| !vcpu
->arch
.mci_ctl2_banks
)
12282 goto fail_free_mce_banks
;
12283 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
12285 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
,
12286 GFP_KERNEL_ACCOUNT
))
12287 goto fail_free_mce_banks
;
12289 if (!alloc_emulate_ctxt(vcpu
))
12290 goto free_wbinvd_dirty_mask
;
12292 if (!fpu_alloc_guest_fpstate(&vcpu
->arch
.guest_fpu
)) {
12293 pr_err("failed to allocate vcpu's fpu\n");
12294 goto free_emulate_ctxt
;
12297 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
12298 vcpu
->arch
.reserved_gpa_bits
= kvm_vcpu_reserved_gpa_bits_raw(vcpu
);
12300 kvm_async_pf_hash_reset(vcpu
);
12302 vcpu
->arch
.perf_capabilities
= kvm_caps
.supported_perf_cap
;
12303 kvm_pmu_init(vcpu
);
12305 vcpu
->arch
.pending_external_vector
= -1;
12306 vcpu
->arch
.preempted_in_kernel
= false;
12308 #if IS_ENABLED(CONFIG_HYPERV)
12309 vcpu
->arch
.hv_root_tdp
= INVALID_PAGE
;
12312 r
= kvm_x86_call(vcpu_create
)(vcpu
);
12314 goto free_guest_fpu
;
12316 vcpu
->arch
.arch_capabilities
= kvm_get_arch_capabilities();
12317 vcpu
->arch
.msr_platform_info
= MSR_PLATFORM_INFO_CPUID_FAULT
;
12318 kvm_xen_init_vcpu(vcpu
);
12320 kvm_set_tsc_khz(vcpu
, vcpu
->kvm
->arch
.default_tsc_khz
);
12321 kvm_vcpu_reset(vcpu
, false);
12322 kvm_init_mmu(vcpu
);
12327 fpu_free_guest_fpstate(&vcpu
->arch
.guest_fpu
);
12329 kmem_cache_free(x86_emulator_cache
, vcpu
->arch
.emulate_ctxt
);
12330 free_wbinvd_dirty_mask
:
12331 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
12332 fail_free_mce_banks
:
12333 kfree(vcpu
->arch
.mce_banks
);
12334 kfree(vcpu
->arch
.mci_ctl2_banks
);
12335 free_page((unsigned long)vcpu
->arch
.pio_data
);
12337 kvm_free_lapic(vcpu
);
12339 kvm_mmu_destroy(vcpu
);
12343 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
12345 struct kvm
*kvm
= vcpu
->kvm
;
12347 if (mutex_lock_killable(&vcpu
->mutex
))
12350 kvm_synchronize_tsc(vcpu
, NULL
);
12353 /* poll control enabled by default */
12354 vcpu
->arch
.msr_kvm_poll_control
= 1;
12356 mutex_unlock(&vcpu
->mutex
);
12358 if (kvmclock_periodic_sync
&& vcpu
->vcpu_idx
== 0)
12359 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
12360 KVMCLOCK_SYNC_PERIOD
);
12363 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
12367 kvmclock_reset(vcpu
);
12369 kvm_x86_call(vcpu_free
)(vcpu
);
12371 kmem_cache_free(x86_emulator_cache
, vcpu
->arch
.emulate_ctxt
);
12372 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
12373 fpu_free_guest_fpstate(&vcpu
->arch
.guest_fpu
);
12375 kvm_xen_destroy_vcpu(vcpu
);
12376 kvm_hv_vcpu_uninit(vcpu
);
12377 kvm_pmu_destroy(vcpu
);
12378 kfree(vcpu
->arch
.mce_banks
);
12379 kfree(vcpu
->arch
.mci_ctl2_banks
);
12380 kvm_free_lapic(vcpu
);
12381 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
12382 kvm_mmu_destroy(vcpu
);
12383 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
12384 free_page((unsigned long)vcpu
->arch
.pio_data
);
12385 kvfree(vcpu
->arch
.cpuid_entries
);
12388 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
12390 struct kvm_cpuid_entry2
*cpuid_0x1
;
12391 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
12392 unsigned long new_cr0
;
12395 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12396 * to handle side effects. RESET emulation hits those flows and relies
12397 * on emulated/virtualized registers, including those that are loaded
12398 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12399 * to detect improper or missing initialization.
12401 WARN_ON_ONCE(!init_event
&&
12402 (old_cr0
|| kvm_read_cr3(vcpu
) || kvm_read_cr4(vcpu
)));
12405 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12406 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12407 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12408 * bits), i.e. virtualization is disabled.
12410 if (is_guest_mode(vcpu
))
12411 kvm_leave_nested(vcpu
);
12413 kvm_lapic_reset(vcpu
, init_event
);
12415 WARN_ON_ONCE(is_guest_mode(vcpu
) || is_smm(vcpu
));
12416 vcpu
->arch
.hflags
= 0;
12418 vcpu
->arch
.smi_pending
= 0;
12419 vcpu
->arch
.smi_count
= 0;
12420 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
12421 vcpu
->arch
.nmi_pending
= 0;
12422 vcpu
->arch
.nmi_injected
= false;
12423 kvm_clear_interrupt_queue(vcpu
);
12424 kvm_clear_exception_queue(vcpu
);
12426 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
12427 kvm_update_dr0123(vcpu
);
12428 vcpu
->arch
.dr6
= DR6_ACTIVE_LOW
;
12429 vcpu
->arch
.dr7
= DR7_FIXED_1
;
12430 kvm_update_dr7(vcpu
);
12432 vcpu
->arch
.cr2
= 0;
12434 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
12435 vcpu
->arch
.apf
.msr_en_val
= 0;
12436 vcpu
->arch
.apf
.msr_int_val
= 0;
12437 vcpu
->arch
.st
.msr_val
= 0;
12439 kvmclock_reset(vcpu
);
12441 kvm_clear_async_pf_completion_queue(vcpu
);
12442 kvm_async_pf_hash_reset(vcpu
);
12443 vcpu
->arch
.apf
.halted
= false;
12445 if (vcpu
->arch
.guest_fpu
.fpstate
&& kvm_mpx_supported()) {
12446 struct fpstate
*fpstate
= vcpu
->arch
.guest_fpu
.fpstate
;
12449 * All paths that lead to INIT are required to load the guest's
12450 * FPU state (because most paths are buried in KVM_RUN).
12453 kvm_put_guest_fpu(vcpu
);
12455 fpstate_clear_xstate_component(fpstate
, XFEATURE_BNDREGS
);
12456 fpstate_clear_xstate_component(fpstate
, XFEATURE_BNDCSR
);
12459 kvm_load_guest_fpu(vcpu
);
12463 vcpu
->arch
.smbase
= 0x30000;
12465 vcpu
->arch
.pat
= MSR_IA32_CR_PAT_DEFAULT
;
12467 vcpu
->arch
.msr_misc_features_enables
= 0;
12468 vcpu
->arch
.ia32_misc_enable_msr
= MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
|
12469 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
;
12471 __kvm_set_xcr(vcpu
, 0, XFEATURE_MASK_FP
);
12472 __kvm_set_msr(vcpu
, MSR_IA32_XSS
, 0, true);
12475 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12476 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
12477 kvm_register_mark_dirty(vcpu
, VCPU_REGS_RSP
);
12480 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12481 * if no CPUID match is found. Note, it's impossible to get a match at
12482 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12483 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12484 * on RESET. But, go through the motions in case that's ever remedied.
12486 cpuid_0x1
= kvm_find_cpuid_entry(vcpu
, 1);
12487 kvm_rdx_write(vcpu
, cpuid_0x1
? cpuid_0x1
->eax
: 0x600);
12489 kvm_x86_call(vcpu_reset
)(vcpu
, init_event
);
12491 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
12492 kvm_rip_write(vcpu
, 0xfff0);
12494 vcpu
->arch
.cr3
= 0;
12495 kvm_register_mark_dirty(vcpu
, VCPU_EXREG_CR3
);
12498 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12499 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12500 * (or qualify) that with a footnote stating that CD/NW are preserved.
12502 new_cr0
= X86_CR0_ET
;
12504 new_cr0
|= (old_cr0
& (X86_CR0_NW
| X86_CR0_CD
));
12506 new_cr0
|= X86_CR0_NW
| X86_CR0_CD
;
12508 kvm_x86_call(set_cr0
)(vcpu
, new_cr0
);
12509 kvm_x86_call(set_cr4
)(vcpu
, 0);
12510 kvm_x86_call(set_efer
)(vcpu
, 0);
12511 kvm_x86_call(update_exception_bitmap
)(vcpu
);
12514 * On the standard CR0/CR4/EFER modification paths, there are several
12515 * complex conditions determining whether the MMU has to be reset and/or
12516 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12517 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12518 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12519 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12521 if (old_cr0
& X86_CR0_PG
) {
12522 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST
, vcpu
);
12523 kvm_mmu_reset_context(vcpu
);
12527 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12528 * APM states the TLBs are untouched by INIT, but it also states that
12529 * the TLBs are flushed on "External initialization of the processor."
12530 * Flush the guest TLB regardless of vendor, there is no meaningful
12531 * benefit in relying on the guest to flush the TLB immediately after
12532 * INIT. A spurious TLB flush is benign and likely negligible from a
12533 * performance perspective.
12536 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST
, vcpu
);
12538 EXPORT_SYMBOL_GPL(kvm_vcpu_reset
);
12540 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
12542 struct kvm_segment cs
;
12544 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
12545 cs
.selector
= vector
<< 8;
12546 cs
.base
= vector
<< 12;
12547 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
12548 kvm_rip_write(vcpu
, 0);
12550 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector
);
12552 void kvm_arch_enable_virtualization(void)
12554 cpu_emergency_register_virt_callback(kvm_x86_ops
.emergency_disable_virtualization_cpu
);
12557 void kvm_arch_disable_virtualization(void)
12559 cpu_emergency_unregister_virt_callback(kvm_x86_ops
.emergency_disable_virtualization_cpu
);
12562 int kvm_arch_enable_virtualization_cpu(void)
12565 struct kvm_vcpu
*vcpu
;
12570 bool stable
, backwards_tsc
= false;
12572 kvm_user_return_msr_cpu_online();
12574 ret
= kvm_x86_check_processor_compatibility();
12578 ret
= kvm_x86_call(enable_virtualization_cpu
)();
12582 local_tsc
= rdtsc();
12583 stable
= !kvm_check_tsc_unstable();
12584 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
12585 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
12586 if (!stable
&& vcpu
->cpu
== smp_processor_id())
12587 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
12588 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
12589 backwards_tsc
= true;
12590 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
12591 max_tsc
= vcpu
->arch
.last_host_tsc
;
12597 * Sometimes, even reliable TSCs go backwards. This happens on
12598 * platforms that reset TSC during suspend or hibernate actions, but
12599 * maintain synchronization. We must compensate. Fortunately, we can
12600 * detect that condition here, which happens early in CPU bringup,
12601 * before any KVM threads can be running. Unfortunately, we can't
12602 * bring the TSCs fully up to date with real time, as we aren't yet far
12603 * enough into CPU bringup that we know how much real time has actually
12604 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12605 * variables that haven't been updated yet.
12607 * So we simply find the maximum observed TSC above, then record the
12608 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12609 * the adjustment will be applied. Note that we accumulate
12610 * adjustments, in case multiple suspend cycles happen before some VCPU
12611 * gets a chance to run again. In the event that no KVM threads get a
12612 * chance to run, we will miss the entire elapsed period, as we'll have
12613 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12614 * loose cycle time. This isn't too big a deal, since the loss will be
12615 * uniform across all VCPUs (not to mention the scenario is extremely
12616 * unlikely). It is possible that a second hibernate recovery happens
12617 * much faster than a first, causing the observed TSC here to be
12618 * smaller; this would require additional padding adjustment, which is
12619 * why we set last_host_tsc to the local tsc observed here.
12621 * N.B. - this code below runs only on platforms with reliable TSC,
12622 * as that is the only way backwards_tsc is set above. Also note
12623 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12624 * have the same delta_cyc adjustment applied if backwards_tsc
12625 * is detected. Note further, this adjustment is only done once,
12626 * as we reset last_host_tsc on all VCPUs to stop this from being
12627 * called multiple times (one for each physical CPU bringup).
12629 * Platforms with unreliable TSCs don't have to deal with this, they
12630 * will be compensated by the logic in vcpu_load, which sets the TSC to
12631 * catchup mode. This will catchup all VCPUs to real time, but cannot
12632 * guarantee that they stay in perfect synchronization.
12634 if (backwards_tsc
) {
12635 u64 delta_cyc
= max_tsc
- local_tsc
;
12636 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
12637 kvm
->arch
.backwards_tsc_observed
= true;
12638 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
12639 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
12640 vcpu
->arch
.last_host_tsc
= local_tsc
;
12641 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
12645 * We have to disable TSC offset matching.. if you were
12646 * booting a VM while issuing an S4 host suspend....
12647 * you may have some problem. Solving this issue is
12648 * left as an exercise to the reader.
12650 kvm
->arch
.last_tsc_nsec
= 0;
12651 kvm
->arch
.last_tsc_write
= 0;
12658 void kvm_arch_disable_virtualization_cpu(void)
12660 kvm_x86_call(disable_virtualization_cpu
)();
12661 drop_user_return_notifiers();
12664 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu
*vcpu
)
12666 return vcpu
->kvm
->arch
.bsp_vcpu_id
== vcpu
->vcpu_id
;
12669 bool kvm_vcpu_is_bsp(struct kvm_vcpu
*vcpu
)
12671 return (vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_BSP
) != 0;
12674 void kvm_arch_free_vm(struct kvm
*kvm
)
12676 #if IS_ENABLED(CONFIG_HYPERV)
12677 kfree(kvm
->arch
.hv_pa_pg
);
12679 __kvm_arch_free_vm(kvm
);
12683 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
12686 unsigned long flags
;
12688 if (!kvm_is_vm_type_supported(type
))
12691 kvm
->arch
.vm_type
= type
;
12692 kvm
->arch
.has_private_mem
=
12693 (type
== KVM_X86_SW_PROTECTED_VM
);
12694 /* Decided by the vendor code for other VM types. */
12695 kvm
->arch
.pre_fault_allowed
=
12696 type
== KVM_X86_DEFAULT_VM
|| type
== KVM_X86_SW_PROTECTED_VM
;
12698 ret
= kvm_page_track_init(kvm
);
12702 kvm_mmu_init_vm(kvm
);
12704 ret
= kvm_x86_call(vm_init
)(kvm
);
12706 goto out_uninit_mmu
;
12708 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
12709 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
12711 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12712 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
12713 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12714 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
12715 &kvm
->arch
.irq_sources_bitmap
);
12717 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
12718 mutex_init(&kvm
->arch
.apic_map_lock
);
12719 seqcount_raw_spinlock_init(&kvm
->arch
.pvclock_sc
, &kvm
->arch
.tsc_write_lock
);
12720 kvm
->arch
.kvmclock_offset
= -get_kvmclock_base_ns();
12722 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
12723 pvclock_update_vm_gtod_copy(kvm
);
12724 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
12726 kvm
->arch
.default_tsc_khz
= max_tsc_khz
? : tsc_khz
;
12727 kvm
->arch
.apic_bus_cycle_ns
= APIC_BUS_CYCLE_NS_DEFAULT
;
12728 kvm
->arch
.guest_can_read_msr_platform_info
= true;
12729 kvm
->arch
.enable_pmu
= enable_pmu
;
12731 #if IS_ENABLED(CONFIG_HYPERV)
12732 spin_lock_init(&kvm
->arch
.hv_root_tdp_lock
);
12733 kvm
->arch
.hv_root_tdp
= INVALID_PAGE
;
12736 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
12737 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
12739 kvm_apicv_init(kvm
);
12740 kvm_hv_init_vm(kvm
);
12741 kvm_xen_init_vm(kvm
);
12746 kvm_mmu_uninit_vm(kvm
);
12747 kvm_page_track_cleanup(kvm
);
12752 int kvm_arch_post_init_vm(struct kvm
*kvm
)
12754 return kvm_mmu_post_init_vm(kvm
);
12757 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
12760 kvm_mmu_unload(vcpu
);
12764 static void kvm_unload_vcpu_mmus(struct kvm
*kvm
)
12767 struct kvm_vcpu
*vcpu
;
12769 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
12770 kvm_clear_async_pf_completion_queue(vcpu
);
12771 kvm_unload_vcpu_mmu(vcpu
);
12775 void kvm_arch_sync_events(struct kvm
*kvm
)
12777 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
12778 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
12783 * __x86_set_memory_region: Setup KVM internal memory slot
12785 * @kvm: the kvm pointer to the VM.
12786 * @id: the slot ID to setup.
12787 * @gpa: the GPA to install the slot (unused when @size == 0).
12788 * @size: the size of the slot. Set to zero to uninstall a slot.
12790 * This function helps to setup a KVM internal memory slot. Specify
12791 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12792 * slot. The return code can be one of the following:
12794 * HVA: on success (uninstall will return a bogus HVA)
12797 * The caller should always use IS_ERR() to check the return value
12798 * before use. Note, the KVM internal memory slots are guaranteed to
12799 * remain valid and unchanged until the VM is destroyed, i.e., the
12800 * GPA->HVA translation will not change. However, the HVA is a user
12801 * address, i.e. its accessibility is not guaranteed, and must be
12802 * accessed via __copy_{to,from}_user().
12804 void __user
* __x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
,
12808 unsigned long hva
, old_npages
;
12809 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
12810 struct kvm_memory_slot
*slot
;
12812 /* Called with kvm->slots_lock held. */
12813 if (WARN_ON(id
>= KVM_MEM_SLOTS_NUM
))
12814 return ERR_PTR_USR(-EINVAL
);
12816 slot
= id_to_memslot(slots
, id
);
12818 if (slot
&& slot
->npages
)
12819 return ERR_PTR_USR(-EEXIST
);
12822 * MAP_SHARED to prevent internal slot pages from being moved
12825 hva
= vm_mmap(NULL
, 0, size
, PROT_READ
| PROT_WRITE
,
12826 MAP_SHARED
| MAP_ANONYMOUS
, 0);
12827 if (IS_ERR_VALUE(hva
))
12828 return (void __user
*)hva
;
12830 if (!slot
|| !slot
->npages
)
12833 old_npages
= slot
->npages
;
12834 hva
= slot
->userspace_addr
;
12837 for (i
= 0; i
< kvm_arch_nr_memslot_as_ids(kvm
); i
++) {
12838 struct kvm_userspace_memory_region2 m
;
12840 m
.slot
= id
| (i
<< 16);
12842 m
.guest_phys_addr
= gpa
;
12843 m
.userspace_addr
= hva
;
12844 m
.memory_size
= size
;
12845 r
= __kvm_set_memory_region(kvm
, &m
);
12847 return ERR_PTR_USR(r
);
12851 vm_munmap(hva
, old_npages
* PAGE_SIZE
);
12853 return (void __user
*)hva
;
12855 EXPORT_SYMBOL_GPL(__x86_set_memory_region
);
12857 void kvm_arch_pre_destroy_vm(struct kvm
*kvm
)
12859 kvm_mmu_pre_destroy_vm(kvm
);
12862 void kvm_arch_destroy_vm(struct kvm
*kvm
)
12864 if (current
->mm
== kvm
->mm
) {
12866 * Free memory regions allocated on behalf of userspace,
12867 * unless the memory map has changed due to process exit
12870 mutex_lock(&kvm
->slots_lock
);
12871 __x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
,
12873 __x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
,
12875 __x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, 0, 0);
12876 mutex_unlock(&kvm
->slots_lock
);
12878 kvm_unload_vcpu_mmus(kvm
);
12879 kvm_x86_call(vm_destroy
)(kvm
);
12880 kvm_free_msr_filter(srcu_dereference_check(kvm
->arch
.msr_filter
, &kvm
->srcu
, 1));
12881 kvm_pic_destroy(kvm
);
12882 kvm_ioapic_destroy(kvm
);
12883 kvm_destroy_vcpus(kvm
);
12884 kvfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
12885 kfree(srcu_dereference_check(kvm
->arch
.pmu_event_filter
, &kvm
->srcu
, 1));
12886 kvm_mmu_uninit_vm(kvm
);
12887 kvm_page_track_cleanup(kvm
);
12888 kvm_xen_destroy_vm(kvm
);
12889 kvm_hv_destroy_vm(kvm
);
12892 static void memslot_rmap_free(struct kvm_memory_slot
*slot
)
12896 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
12897 vfree(slot
->arch
.rmap
[i
]);
12898 slot
->arch
.rmap
[i
] = NULL
;
12902 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
)
12906 memslot_rmap_free(slot
);
12908 for (i
= 1; i
< KVM_NR_PAGE_SIZES
; ++i
) {
12909 vfree(slot
->arch
.lpage_info
[i
- 1]);
12910 slot
->arch
.lpage_info
[i
- 1] = NULL
;
12913 kvm_page_track_free_memslot(slot
);
12916 int memslot_rmap_alloc(struct kvm_memory_slot
*slot
, unsigned long npages
)
12918 const int sz
= sizeof(*slot
->arch
.rmap
[0]);
12921 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
12923 int lpages
= __kvm_mmu_slot_lpages(slot
, npages
, level
);
12925 if (slot
->arch
.rmap
[i
])
12928 slot
->arch
.rmap
[i
] = __vcalloc(lpages
, sz
, GFP_KERNEL_ACCOUNT
);
12929 if (!slot
->arch
.rmap
[i
]) {
12930 memslot_rmap_free(slot
);
12938 static int kvm_alloc_memslot_metadata(struct kvm
*kvm
,
12939 struct kvm_memory_slot
*slot
)
12941 unsigned long npages
= slot
->npages
;
12945 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12946 * old arrays will be freed by __kvm_set_memory_region() if installing
12947 * the new memslot is successful.
12949 memset(&slot
->arch
, 0, sizeof(slot
->arch
));
12951 if (kvm_memslots_have_rmaps(kvm
)) {
12952 r
= memslot_rmap_alloc(slot
, npages
);
12957 for (i
= 1; i
< KVM_NR_PAGE_SIZES
; ++i
) {
12958 struct kvm_lpage_info
*linfo
;
12959 unsigned long ugfn
;
12963 lpages
= __kvm_mmu_slot_lpages(slot
, npages
, level
);
12965 linfo
= __vcalloc(lpages
, sizeof(*linfo
), GFP_KERNEL_ACCOUNT
);
12969 slot
->arch
.lpage_info
[i
- 1] = linfo
;
12971 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
12972 linfo
[0].disallow_lpage
= 1;
12973 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
12974 linfo
[lpages
- 1].disallow_lpage
= 1;
12975 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
12977 * If the gfn and userspace address are not aligned wrt each
12978 * other, disable large page support for this slot.
12980 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1)) {
12983 for (j
= 0; j
< lpages
; ++j
)
12984 linfo
[j
].disallow_lpage
= 1;
12988 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12989 kvm_mmu_init_memslot_memory_attributes(kvm
, slot
);
12992 if (kvm_page_track_create_memslot(kvm
, slot
, npages
))
12998 memslot_rmap_free(slot
);
13000 for (i
= 1; i
< KVM_NR_PAGE_SIZES
; ++i
) {
13001 vfree(slot
->arch
.lpage_info
[i
- 1]);
13002 slot
->arch
.lpage_info
[i
- 1] = NULL
;
13007 void kvm_arch_memslots_updated(struct kvm
*kvm
, u64 gen
)
13009 struct kvm_vcpu
*vcpu
;
13013 * memslots->generation has been incremented.
13014 * mmio generation may have reached its maximum value.
13016 kvm_mmu_invalidate_mmio_sptes(kvm
, gen
);
13018 /* Force re-initialization of steal_time cache */
13019 kvm_for_each_vcpu(i
, vcpu
, kvm
)
13020 kvm_vcpu_kick(vcpu
);
13023 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
13024 const struct kvm_memory_slot
*old
,
13025 struct kvm_memory_slot
*new,
13026 enum kvm_mr_change change
)
13029 * KVM doesn't support moving memslots when there are external page
13030 * trackers attached to the VM, i.e. if KVMGT is in use.
13032 if (change
== KVM_MR_MOVE
&& kvm_page_track_has_external_user(kvm
))
13035 if (change
== KVM_MR_CREATE
|| change
== KVM_MR_MOVE
) {
13036 if ((new->base_gfn
+ new->npages
- 1) > kvm_mmu_max_gfn())
13039 return kvm_alloc_memslot_metadata(kvm
, new);
13042 if (change
== KVM_MR_FLAGS_ONLY
)
13043 memcpy(&new->arch
, &old
->arch
, sizeof(old
->arch
));
13044 else if (WARN_ON_ONCE(change
!= KVM_MR_DELETE
))
13051 static void kvm_mmu_update_cpu_dirty_logging(struct kvm
*kvm
, bool enable
)
13055 if (!kvm_x86_ops
.cpu_dirty_log_size
)
13058 nr_slots
= atomic_read(&kvm
->nr_memslots_dirty_logging
);
13059 if ((enable
&& nr_slots
== 1) || !nr_slots
)
13060 kvm_make_all_cpus_request(kvm
, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING
);
13063 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
13064 struct kvm_memory_slot
*old
,
13065 const struct kvm_memory_slot
*new,
13066 enum kvm_mr_change change
)
13068 u32 old_flags
= old
? old
->flags
: 0;
13069 u32 new_flags
= new ? new->flags
: 0;
13070 bool log_dirty_pages
= new_flags
& KVM_MEM_LOG_DIRTY_PAGES
;
13073 * Update CPU dirty logging if dirty logging is being toggled. This
13074 * applies to all operations.
13076 if ((old_flags
^ new_flags
) & KVM_MEM_LOG_DIRTY_PAGES
)
13077 kvm_mmu_update_cpu_dirty_logging(kvm
, log_dirty_pages
);
13080 * Nothing more to do for RO slots (which can't be dirtied and can't be
13081 * made writable) or CREATE/MOVE/DELETE of a slot.
13083 * For a memslot with dirty logging disabled:
13084 * CREATE: No dirty mappings will already exist.
13085 * MOVE/DELETE: The old mappings will already have been cleaned up by
13086 * kvm_arch_flush_shadow_memslot()
13088 * For a memslot with dirty logging enabled:
13089 * CREATE: No shadow pages exist, thus nothing to write-protect
13090 * and no dirty bits to clear.
13091 * MOVE/DELETE: The old mappings will already have been cleaned up by
13092 * kvm_arch_flush_shadow_memslot().
13094 if ((change
!= KVM_MR_FLAGS_ONLY
) || (new_flags
& KVM_MEM_READONLY
))
13098 * READONLY and non-flags changes were filtered out above, and the only
13099 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13100 * logging isn't being toggled on or off.
13102 if (WARN_ON_ONCE(!((old_flags
^ new_flags
) & KVM_MEM_LOG_DIRTY_PAGES
)))
13105 if (!log_dirty_pages
) {
13107 * Dirty logging tracks sptes in 4k granularity, meaning that
13108 * large sptes have to be split. If live migration succeeds,
13109 * the guest in the source machine will be destroyed and large
13110 * sptes will be created in the destination. However, if the
13111 * guest continues to run in the source machine (for example if
13112 * live migration fails), small sptes will remain around and
13113 * cause bad performance.
13115 * Scan sptes if dirty logging has been stopped, dropping those
13116 * which can be collapsed into a single large-page spte. Later
13117 * page faults will create the large-page sptes.
13119 kvm_mmu_zap_collapsible_sptes(kvm
, new);
13122 * Initially-all-set does not require write protecting any page,
13123 * because they're all assumed to be dirty.
13125 if (kvm_dirty_log_manual_protect_and_init_set(kvm
))
13128 if (READ_ONCE(eager_page_split
))
13129 kvm_mmu_slot_try_split_huge_pages(kvm
, new, PG_LEVEL_4K
);
13131 if (kvm_x86_ops
.cpu_dirty_log_size
) {
13132 kvm_mmu_slot_leaf_clear_dirty(kvm
, new);
13133 kvm_mmu_slot_remove_write_access(kvm
, new, PG_LEVEL_2M
);
13135 kvm_mmu_slot_remove_write_access(kvm
, new, PG_LEVEL_4K
);
13139 * Unconditionally flush the TLBs after enabling dirty logging.
13140 * A flush is almost always going to be necessary (see below),
13141 * and unconditionally flushing allows the helpers to omit
13142 * the subtly complex checks when removing write access.
13144 * Do the flush outside of mmu_lock to reduce the amount of
13145 * time mmu_lock is held. Flushing after dropping mmu_lock is
13146 * safe as KVM only needs to guarantee the slot is fully
13147 * write-protected before returning to userspace, i.e. before
13148 * userspace can consume the dirty status.
13150 * Flushing outside of mmu_lock requires KVM to be careful when
13151 * making decisions based on writable status of an SPTE, e.g. a
13152 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13154 * Specifically, KVM also write-protects guest page tables to
13155 * monitor changes when using shadow paging, and must guarantee
13156 * no CPUs can write to those page before mmu_lock is dropped.
13157 * Because CPUs may have stale TLB entries at this point, a
13158 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13160 * KVM also allows making SPTES writable outside of mmu_lock,
13161 * e.g. to allow dirty logging without taking mmu_lock.
13163 * To handle these scenarios, KVM uses a separate software-only
13164 * bit (MMU-writable) to track if a SPTE is !writable due to
13165 * a guest page table being write-protected (KVM clears the
13166 * MMU-writable flag when write-protecting for shadow paging).
13168 * The use of MMU-writable is also the primary motivation for
13169 * the unconditional flush. Because KVM must guarantee that a
13170 * CPU doesn't contain stale, writable TLB entries for a
13171 * !MMU-writable SPTE, KVM must flush if it encounters any
13172 * MMU-writable SPTE regardless of whether the actual hardware
13173 * writable bit was set. I.e. KVM is almost guaranteed to need
13174 * to flush, while unconditionally flushing allows the "remove
13175 * write access" helpers to ignore MMU-writable entirely.
13177 * See is_writable_pte() for more details (the case involving
13178 * access-tracked SPTEs is particularly relevant).
13180 kvm_flush_remote_tlbs_memslot(kvm
, new);
13184 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
13185 struct kvm_memory_slot
*old
,
13186 const struct kvm_memory_slot
*new,
13187 enum kvm_mr_change change
)
13189 if (change
== KVM_MR_DELETE
)
13190 kvm_page_track_delete_slot(kvm
, old
);
13192 if (!kvm
->arch
.n_requested_mmu_pages
&&
13193 (change
== KVM_MR_CREATE
|| change
== KVM_MR_DELETE
)) {
13194 unsigned long nr_mmu_pages
;
13196 nr_mmu_pages
= kvm
->nr_memslot_pages
/ KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO
;
13197 nr_mmu_pages
= max(nr_mmu_pages
, KVM_MIN_ALLOC_MMU_PAGES
);
13198 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
13201 kvm_mmu_slot_apply_flags(kvm
, old
, new, change
);
13203 /* Free the arrays associated with the old memslot. */
13204 if (change
== KVM_MR_MOVE
)
13205 kvm_arch_free_memslot(kvm
, old
);
13208 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
13210 if (vcpu
->arch
.guest_state_protected
)
13213 return kvm_x86_call(get_cpl
)(vcpu
) == 0;
13216 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu
*vcpu
)
13218 return kvm_rip_read(vcpu
);
13221 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
13223 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
13226 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
13228 return kvm_x86_call(interrupt_allowed
)(vcpu
, false);
13231 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
13233 /* Can't read the RIP when guest state is protected, just return 0 */
13234 if (vcpu
->arch
.guest_state_protected
)
13237 if (is_64_bit_mode(vcpu
))
13238 return kvm_rip_read(vcpu
);
13239 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
13240 kvm_rip_read(vcpu
));
13242 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
13244 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
13246 return kvm_get_linear_rip(vcpu
) == linear_rip
;
13248 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
13250 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
13252 unsigned long rflags
;
13254 rflags
= kvm_x86_call(get_rflags
)(vcpu
);
13255 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
13256 rflags
&= ~X86_EFLAGS_TF
;
13259 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
13261 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
13263 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
13264 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
13265 rflags
|= X86_EFLAGS_TF
;
13266 kvm_x86_call(set_rflags
)(vcpu
, rflags
);
13269 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
13271 __kvm_set_rflags(vcpu
, rflags
);
13272 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
13274 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
13276 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
13278 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU
));
13280 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
13283 static inline u32
kvm_async_pf_next_probe(u32 key
)
13285 return (key
+ 1) & (ASYNC_PF_PER_VCPU
- 1);
13288 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
13290 u32 key
= kvm_async_pf_hash_fn(gfn
);
13292 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
13293 key
= kvm_async_pf_next_probe(key
);
13295 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
13298 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
13301 u32 key
= kvm_async_pf_hash_fn(gfn
);
13303 for (i
= 0; i
< ASYNC_PF_PER_VCPU
&&
13304 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
13305 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
13306 key
= kvm_async_pf_next_probe(key
);
13311 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
13313 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
13316 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
13320 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
13322 if (WARN_ON_ONCE(vcpu
->arch
.apf
.gfns
[i
] != gfn
))
13326 vcpu
->arch
.apf
.gfns
[i
] = ~0;
13328 j
= kvm_async_pf_next_probe(j
);
13329 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
13331 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
13333 * k lies cyclically in ]i,j]
13335 * |....j i.k.| or |.k..j i...|
13337 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
13338 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
13343 static inline int apf_put_user_notpresent(struct kvm_vcpu
*vcpu
)
13345 u32 reason
= KVM_PV_REASON_PAGE_NOT_PRESENT
;
13347 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &reason
,
13351 static inline int apf_put_user_ready(struct kvm_vcpu
*vcpu
, u32 token
)
13353 unsigned int offset
= offsetof(struct kvm_vcpu_pv_apf_data
, token
);
13355 return kvm_write_guest_offset_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
,
13356 &token
, offset
, sizeof(token
));
13359 static inline bool apf_pageready_slot_free(struct kvm_vcpu
*vcpu
)
13361 unsigned int offset
= offsetof(struct kvm_vcpu_pv_apf_data
, token
);
13364 if (kvm_read_guest_offset_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
,
13365 &val
, offset
, sizeof(val
)))
13371 static bool kvm_can_deliver_async_pf(struct kvm_vcpu
*vcpu
)
13374 if (!kvm_pv_async_pf_enabled(vcpu
))
13377 if (vcpu
->arch
.apf
.send_user_only
&&
13378 kvm_x86_call(get_cpl
)(vcpu
) == 0)
13381 if (is_guest_mode(vcpu
)) {
13383 * L1 needs to opt into the special #PF vmexits that are
13384 * used to deliver async page faults.
13386 return vcpu
->arch
.apf
.delivery_as_pf_vmexit
;
13389 * Play it safe in case the guest temporarily disables paging.
13390 * The real mode IDT in particular is unlikely to have a #PF
13393 return is_paging(vcpu
);
13397 bool kvm_can_do_async_pf(struct kvm_vcpu
*vcpu
)
13399 if (unlikely(!lapic_in_kernel(vcpu
) ||
13400 kvm_event_needs_reinjection(vcpu
) ||
13401 kvm_is_exception_pending(vcpu
)))
13404 if (kvm_hlt_in_guest(vcpu
->kvm
) && !kvm_can_deliver_async_pf(vcpu
))
13408 * If interrupts are off we cannot even use an artificial
13411 return kvm_arch_interrupt_allowed(vcpu
);
13414 bool kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
13415 struct kvm_async_pf
*work
)
13417 struct x86_exception fault
;
13419 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->cr2_or_gpa
);
13420 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
13422 if (kvm_can_deliver_async_pf(vcpu
) &&
13423 !apf_put_user_notpresent(vcpu
)) {
13424 fault
.vector
= PF_VECTOR
;
13425 fault
.error_code_valid
= true;
13426 fault
.error_code
= 0;
13427 fault
.nested_page_fault
= false;
13428 fault
.address
= work
->arch
.token
;
13429 fault
.async_page_fault
= true;
13430 kvm_inject_page_fault(vcpu
, &fault
);
13434 * It is not possible to deliver a paravirtualized asynchronous
13435 * page fault, but putting the guest in an artificial halt state
13436 * can be beneficial nevertheless: if an interrupt arrives, we
13437 * can deliver it timely and perhaps the guest will schedule
13438 * another process. When the instruction that triggered a page
13439 * fault is retried, hopefully the page will be ready in the host.
13441 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
13446 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
13447 struct kvm_async_pf
*work
)
13449 struct kvm_lapic_irq irq
= {
13450 .delivery_mode
= APIC_DM_FIXED
,
13451 .vector
= vcpu
->arch
.apf
.vec
13454 if (work
->wakeup_all
)
13455 work
->arch
.token
= ~0; /* broadcast wakeup */
13457 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
13458 trace_kvm_async_pf_ready(work
->arch
.token
, work
->cr2_or_gpa
);
13460 if ((work
->wakeup_all
|| work
->notpresent_injected
) &&
13461 kvm_pv_async_pf_enabled(vcpu
) &&
13462 !apf_put_user_ready(vcpu
, work
->arch
.token
)) {
13463 vcpu
->arch
.apf
.pageready_pending
= true;
13464 kvm_apic_set_irq(vcpu
, &irq
, NULL
);
13467 vcpu
->arch
.apf
.halted
= false;
13468 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
13471 void kvm_arch_async_page_present_queued(struct kvm_vcpu
*vcpu
)
13473 kvm_make_request(KVM_REQ_APF_READY
, vcpu
);
13474 if (!vcpu
->arch
.apf
.pageready_pending
)
13475 kvm_vcpu_kick(vcpu
);
13478 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu
*vcpu
)
13480 if (!kvm_pv_async_pf_enabled(vcpu
))
13483 return kvm_lapic_enabled(vcpu
) && apf_pageready_slot_free(vcpu
);
13486 void kvm_arch_start_assignment(struct kvm
*kvm
)
13488 if (atomic_inc_return(&kvm
->arch
.assigned_device_count
) == 1)
13489 kvm_x86_call(pi_start_assignment
)(kvm
);
13491 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment
);
13493 void kvm_arch_end_assignment(struct kvm
*kvm
)
13495 atomic_dec(&kvm
->arch
.assigned_device_count
);
13497 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment
);
13499 bool noinstr
kvm_arch_has_assigned_device(struct kvm
*kvm
)
13501 return raw_atomic_read(&kvm
->arch
.assigned_device_count
);
13503 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device
);
13505 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm
*kvm
)
13508 * Non-coherent DMA assignment and de-assignment may affect whether or
13509 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13510 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13511 * (or last) non-coherent device is (un)registered to so that new SPTEs
13512 * with the correct "ignore guest PAT" setting are created.
13514 if (kvm_mmu_may_ignore_guest_pat())
13515 kvm_zap_gfn_range(kvm
, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13518 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
13520 if (atomic_inc_return(&kvm
->arch
.noncoherent_dma_count
) == 1)
13521 kvm_noncoherent_dma_assignment_start_or_stop(kvm
);
13523 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
13525 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
13527 if (!atomic_dec_return(&kvm
->arch
.noncoherent_dma_count
))
13528 kvm_noncoherent_dma_assignment_start_or_stop(kvm
);
13530 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
13532 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
13534 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
13536 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
13538 bool kvm_arch_has_irq_bypass(void)
13540 return enable_apicv
&& irq_remapping_cap(IRQ_POSTING_CAP
);
13543 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
13544 struct irq_bypass_producer
*prod
)
13546 struct kvm_kernel_irqfd
*irqfd
=
13547 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
13550 irqfd
->producer
= prod
;
13551 kvm_arch_start_assignment(irqfd
->kvm
);
13552 ret
= kvm_x86_call(pi_update_irte
)(irqfd
->kvm
,
13553 prod
->irq
, irqfd
->gsi
, 1);
13555 kvm_arch_end_assignment(irqfd
->kvm
);
13560 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
13561 struct irq_bypass_producer
*prod
)
13564 struct kvm_kernel_irqfd
*irqfd
=
13565 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
13567 WARN_ON(irqfd
->producer
!= prod
);
13568 irqfd
->producer
= NULL
;
13571 * When producer of consumer is unregistered, we change back to
13572 * remapped mode, so we can re-use the current implementation
13573 * when the irq is masked/disabled or the consumer side (KVM
13574 * int this case doesn't want to receive the interrupts.
13576 ret
= kvm_x86_call(pi_update_irte
)(irqfd
->kvm
,
13577 prod
->irq
, irqfd
->gsi
, 0);
13579 printk(KERN_INFO
"irq bypass consumer (token %p) unregistration"
13580 " fails: %d\n", irqfd
->consumer
.token
, ret
);
13582 kvm_arch_end_assignment(irqfd
->kvm
);
13585 int kvm_arch_update_irqfd_routing(struct kvm
*kvm
, unsigned int host_irq
,
13586 uint32_t guest_irq
, bool set
)
13588 return kvm_x86_call(pi_update_irte
)(kvm
, host_irq
, guest_irq
, set
);
13591 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry
*old
,
13592 struct kvm_kernel_irq_routing_entry
*new)
13594 if (new->type
!= KVM_IRQ_ROUTING_MSI
)
13597 return !!memcmp(&old
->msi
, &new->msi
, sizeof(new->msi
));
13600 bool kvm_vector_hashing_enabled(void)
13602 return vector_hashing
;
13605 bool kvm_arch_no_poll(struct kvm_vcpu
*vcpu
)
13607 return (vcpu
->arch
.msr_kvm_poll_control
& 1) == 0;
13609 EXPORT_SYMBOL_GPL(kvm_arch_no_poll
);
13611 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
13612 int kvm_arch_gmem_prepare(struct kvm
*kvm
, gfn_t gfn
, kvm_pfn_t pfn
, int max_order
)
13614 return kvm_x86_call(gmem_prepare
)(kvm
, pfn
, gfn
, max_order
);
13618 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
13619 void kvm_arch_gmem_invalidate(kvm_pfn_t start
, kvm_pfn_t end
)
13621 kvm_x86_call(gmem_invalidate
)(start
, end
);
13625 int kvm_spec_ctrl_test_value(u64 value
)
13628 * test that setting IA32_SPEC_CTRL to given value
13629 * is allowed by the host processor
13633 unsigned long flags
;
13636 local_irq_save(flags
);
13638 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL
, &saved_value
))
13640 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL
, value
))
13643 wrmsrl(MSR_IA32_SPEC_CTRL
, saved_value
);
13645 local_irq_restore(flags
);
13649 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value
);
13651 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu
*vcpu
, gva_t gva
, u16 error_code
)
13653 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
13654 struct x86_exception fault
;
13655 u64 access
= error_code
&
13656 (PFERR_WRITE_MASK
| PFERR_FETCH_MASK
| PFERR_USER_MASK
);
13658 if (!(error_code
& PFERR_PRESENT_MASK
) ||
13659 mmu
->gva_to_gpa(vcpu
, mmu
, gva
, access
, &fault
) != INVALID_GPA
) {
13661 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13662 * tables probably do not match the TLB. Just proceed
13663 * with the error code that the processor gave.
13665 fault
.vector
= PF_VECTOR
;
13666 fault
.error_code_valid
= true;
13667 fault
.error_code
= error_code
;
13668 fault
.nested_page_fault
= false;
13669 fault
.address
= gva
;
13670 fault
.async_page_fault
= false;
13672 vcpu
->arch
.walk_mmu
->inject_page_fault(vcpu
, &fault
);
13674 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error
);
13677 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13678 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13679 * indicates whether exit to userspace is needed.
13681 int kvm_handle_memory_failure(struct kvm_vcpu
*vcpu
, int r
,
13682 struct x86_exception
*e
)
13684 if (r
== X86EMUL_PROPAGATE_FAULT
) {
13685 if (KVM_BUG_ON(!e
, vcpu
->kvm
))
13688 kvm_inject_emulated_page_fault(vcpu
, e
);
13693 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13694 * while handling a VMX instruction KVM could've handled the request
13695 * correctly by exiting to userspace and performing I/O but there
13696 * doesn't seem to be a real use-case behind such requests, just return
13697 * KVM_EXIT_INTERNAL_ERROR for now.
13699 kvm_prepare_emulation_failure_exit(vcpu
);
13703 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure
);
13705 int kvm_handle_invpcid(struct kvm_vcpu
*vcpu
, unsigned long type
, gva_t gva
)
13708 struct x86_exception e
;
13715 r
= kvm_read_guest_virt(vcpu
, gva
, &operand
, sizeof(operand
), &e
);
13716 if (r
!= X86EMUL_CONTINUE
)
13717 return kvm_handle_memory_failure(vcpu
, r
, &e
);
13719 if (operand
.pcid
>> 12 != 0) {
13720 kvm_inject_gp(vcpu
, 0);
13724 pcid_enabled
= kvm_is_cr4_bit_set(vcpu
, X86_CR4_PCIDE
);
13727 case INVPCID_TYPE_INDIV_ADDR
:
13729 * LAM doesn't apply to addresses that are inputs to TLB
13732 if ((!pcid_enabled
&& (operand
.pcid
!= 0)) ||
13733 is_noncanonical_address(operand
.gla
, vcpu
)) {
13734 kvm_inject_gp(vcpu
, 0);
13737 kvm_mmu_invpcid_gva(vcpu
, operand
.gla
, operand
.pcid
);
13738 return kvm_skip_emulated_instruction(vcpu
);
13740 case INVPCID_TYPE_SINGLE_CTXT
:
13741 if (!pcid_enabled
&& (operand
.pcid
!= 0)) {
13742 kvm_inject_gp(vcpu
, 0);
13746 kvm_invalidate_pcid(vcpu
, operand
.pcid
);
13747 return kvm_skip_emulated_instruction(vcpu
);
13749 case INVPCID_TYPE_ALL_NON_GLOBAL
:
13751 * Currently, KVM doesn't mark global entries in the shadow
13752 * page tables, so a non-global flush just degenerates to a
13753 * global flush. If needed, we could optimize this later by
13754 * keeping track of global entries in shadow page tables.
13758 case INVPCID_TYPE_ALL_INCL_GLOBAL
:
13759 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST
, vcpu
);
13760 return kvm_skip_emulated_instruction(vcpu
);
13763 kvm_inject_gp(vcpu
, 0);
13767 EXPORT_SYMBOL_GPL(kvm_handle_invpcid
);
13769 static int complete_sev_es_emulated_mmio(struct kvm_vcpu
*vcpu
)
13771 struct kvm_run
*run
= vcpu
->run
;
13772 struct kvm_mmio_fragment
*frag
;
13775 BUG_ON(!vcpu
->mmio_needed
);
13777 /* Complete previous fragment */
13778 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
13779 len
= min(8u, frag
->len
);
13780 if (!vcpu
->mmio_is_write
)
13781 memcpy(frag
->data
, run
->mmio
.data
, len
);
13783 if (frag
->len
<= 8) {
13784 /* Switch to the next fragment. */
13786 vcpu
->mmio_cur_fragment
++;
13788 /* Go forward to the next mmio piece. */
13794 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
13795 vcpu
->mmio_needed
= 0;
13797 // VMG change, at this point, we're always done
13798 // RIP has already been advanced
13802 // More MMIO is needed
13803 run
->mmio
.phys_addr
= frag
->gpa
;
13804 run
->mmio
.len
= min(8u, frag
->len
);
13805 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
13806 if (run
->mmio
.is_write
)
13807 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
13808 run
->exit_reason
= KVM_EXIT_MMIO
;
13810 vcpu
->arch
.complete_userspace_io
= complete_sev_es_emulated_mmio
;
13815 int kvm_sev_es_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
, unsigned int bytes
,
13819 struct kvm_mmio_fragment
*frag
;
13824 handled
= write_emultor
.read_write_mmio(vcpu
, gpa
, bytes
, data
);
13825 if (handled
== bytes
)
13832 /*TODO: Check if need to increment number of frags */
13833 frag
= vcpu
->mmio_fragments
;
13834 vcpu
->mmio_nr_fragments
= 1;
13839 vcpu
->mmio_needed
= 1;
13840 vcpu
->mmio_cur_fragment
= 0;
13842 vcpu
->run
->mmio
.phys_addr
= gpa
;
13843 vcpu
->run
->mmio
.len
= min(8u, frag
->len
);
13844 vcpu
->run
->mmio
.is_write
= 1;
13845 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
13846 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
13848 vcpu
->arch
.complete_userspace_io
= complete_sev_es_emulated_mmio
;
13852 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write
);
13854 int kvm_sev_es_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t gpa
, unsigned int bytes
,
13858 struct kvm_mmio_fragment
*frag
;
13863 handled
= read_emultor
.read_write_mmio(vcpu
, gpa
, bytes
, data
);
13864 if (handled
== bytes
)
13871 /*TODO: Check if need to increment number of frags */
13872 frag
= vcpu
->mmio_fragments
;
13873 vcpu
->mmio_nr_fragments
= 1;
13878 vcpu
->mmio_needed
= 1;
13879 vcpu
->mmio_cur_fragment
= 0;
13881 vcpu
->run
->mmio
.phys_addr
= gpa
;
13882 vcpu
->run
->mmio
.len
= min(8u, frag
->len
);
13883 vcpu
->run
->mmio
.is_write
= 0;
13884 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
13886 vcpu
->arch
.complete_userspace_io
= complete_sev_es_emulated_mmio
;
13890 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read
);
13892 static void advance_sev_es_emulated_pio(struct kvm_vcpu
*vcpu
, unsigned count
, int size
)
13894 vcpu
->arch
.sev_pio_count
-= count
;
13895 vcpu
->arch
.sev_pio_data
+= count
* size
;
13898 static int kvm_sev_es_outs(struct kvm_vcpu
*vcpu
, unsigned int size
,
13899 unsigned int port
);
13901 static int complete_sev_es_emulated_outs(struct kvm_vcpu
*vcpu
)
13903 int size
= vcpu
->arch
.pio
.size
;
13904 int port
= vcpu
->arch
.pio
.port
;
13906 vcpu
->arch
.pio
.count
= 0;
13907 if (vcpu
->arch
.sev_pio_count
)
13908 return kvm_sev_es_outs(vcpu
, size
, port
);
13912 static int kvm_sev_es_outs(struct kvm_vcpu
*vcpu
, unsigned int size
,
13916 unsigned int count
=
13917 min_t(unsigned int, PAGE_SIZE
/ size
, vcpu
->arch
.sev_pio_count
);
13918 int ret
= emulator_pio_out(vcpu
, size
, port
, vcpu
->arch
.sev_pio_data
, count
);
13920 /* memcpy done already by emulator_pio_out. */
13921 advance_sev_es_emulated_pio(vcpu
, count
, size
);
13925 /* Emulation done by the kernel. */
13926 if (!vcpu
->arch
.sev_pio_count
)
13930 vcpu
->arch
.complete_userspace_io
= complete_sev_es_emulated_outs
;
13934 static int kvm_sev_es_ins(struct kvm_vcpu
*vcpu
, unsigned int size
,
13935 unsigned int port
);
13937 static int complete_sev_es_emulated_ins(struct kvm_vcpu
*vcpu
)
13939 unsigned count
= vcpu
->arch
.pio
.count
;
13940 int size
= vcpu
->arch
.pio
.size
;
13941 int port
= vcpu
->arch
.pio
.port
;
13943 complete_emulator_pio_in(vcpu
, vcpu
->arch
.sev_pio_data
);
13944 advance_sev_es_emulated_pio(vcpu
, count
, size
);
13945 if (vcpu
->arch
.sev_pio_count
)
13946 return kvm_sev_es_ins(vcpu
, size
, port
);
13950 static int kvm_sev_es_ins(struct kvm_vcpu
*vcpu
, unsigned int size
,
13954 unsigned int count
=
13955 min_t(unsigned int, PAGE_SIZE
/ size
, vcpu
->arch
.sev_pio_count
);
13956 if (!emulator_pio_in(vcpu
, size
, port
, vcpu
->arch
.sev_pio_data
, count
))
13959 /* Emulation done by the kernel. */
13960 advance_sev_es_emulated_pio(vcpu
, count
, size
);
13961 if (!vcpu
->arch
.sev_pio_count
)
13965 vcpu
->arch
.complete_userspace_io
= complete_sev_es_emulated_ins
;
13969 int kvm_sev_es_string_io(struct kvm_vcpu
*vcpu
, unsigned int size
,
13970 unsigned int port
, void *data
, unsigned int count
,
13973 vcpu
->arch
.sev_pio_data
= data
;
13974 vcpu
->arch
.sev_pio_count
= count
;
13975 return in
? kvm_sev_es_ins(vcpu
, size
, port
)
13976 : kvm_sev_es_outs(vcpu
, size
, port
);
13978 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io
);
13980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry
);
13981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
13982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio
);
13983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
13984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
13985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
13986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
13987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter
);
13988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
13989 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
13990 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
13991 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed
);
13992 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
13993 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
13994 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
13995 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
13996 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update
);
13997 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);
13998 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update
);
13999 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access
);
14000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi
);
14001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log
);
14002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath
);
14003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell
);
14004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq
);
14005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter
);
14006 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit
);
14007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter
);
14008 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit
);
14009 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault
);
14011 static int __init
kvm_x86_init(void)
14013 kvm_mmu_x86_module_init();
14014 mitigate_smt_rsb
&= boot_cpu_has_bug(X86_BUG_SMT_RSB
) && cpu_smt_possible();
14017 module_init(kvm_x86_init
);
14019 static void __exit
kvm_x86_exit(void)
14021 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu
));
14023 module_exit(kvm_x86_exit
);