drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / arch / x86 / kvm / xen.c
blob622fe24da910646ced4300a84ab92fce4ac8e00a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
6 * KVM Xen emulation
7 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include "x86.h"
11 #include "xen.h"
12 #include "hyperv.h"
13 #include "irq.h"
15 #include <linux/eventfd.h>
16 #include <linux/kvm_host.h>
17 #include <linux/sched/stat.h>
19 #include <trace/events/kvm.h>
20 #include <xen/interface/xen.h>
21 #include <xen/interface/vcpu.h>
22 #include <xen/interface/version.h>
23 #include <xen/interface/event_channel.h>
24 #include <xen/interface/sched.h>
26 #include <asm/xen/cpuid.h>
27 #include <asm/pvclock.h>
29 #include "cpuid.h"
30 #include "trace.h"
32 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
33 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
34 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
36 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
38 static int kvm_xen_shared_info_init(struct kvm *kvm)
40 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
41 struct pvclock_wall_clock *wc;
42 u32 *wc_sec_hi;
43 u32 wc_version;
44 u64 wall_nsec;
45 int ret = 0;
46 int idx = srcu_read_lock(&kvm->srcu);
48 read_lock_irq(&gpc->lock);
49 while (!kvm_gpc_check(gpc, PAGE_SIZE)) {
50 read_unlock_irq(&gpc->lock);
52 ret = kvm_gpc_refresh(gpc, PAGE_SIZE);
53 if (ret)
54 goto out;
56 read_lock_irq(&gpc->lock);
60 * This code mirrors kvm_write_wall_clock() except that it writes
61 * directly through the pfn cache and doesn't mark the page dirty.
63 wall_nsec = kvm_get_wall_clock_epoch(kvm);
65 /* Paranoia checks on the 32-bit struct layout */
66 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
67 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
68 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
70 #ifdef CONFIG_X86_64
71 /* Paranoia checks on the 64-bit struct layout */
72 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
73 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
75 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
76 struct shared_info *shinfo = gpc->khva;
78 wc_sec_hi = &shinfo->wc_sec_hi;
79 wc = &shinfo->wc;
80 } else
81 #endif
83 struct compat_shared_info *shinfo = gpc->khva;
85 wc_sec_hi = &shinfo->arch.wc_sec_hi;
86 wc = &shinfo->wc;
89 /* Increment and ensure an odd value */
90 wc_version = wc->version = (wc->version + 1) | 1;
91 smp_wmb();
93 wc->nsec = do_div(wall_nsec, NSEC_PER_SEC);
94 wc->sec = (u32)wall_nsec;
95 *wc_sec_hi = wall_nsec >> 32;
96 smp_wmb();
98 wc->version = wc_version + 1;
99 read_unlock_irq(&gpc->lock);
101 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
103 out:
104 srcu_read_unlock(&kvm->srcu, idx);
105 return ret;
108 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
110 if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
111 struct kvm_xen_evtchn e;
113 e.vcpu_id = vcpu->vcpu_id;
114 e.vcpu_idx = vcpu->vcpu_idx;
115 e.port = vcpu->arch.xen.timer_virq;
116 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
118 kvm_xen_set_evtchn(&e, vcpu->kvm);
120 vcpu->arch.xen.timer_expires = 0;
121 atomic_set(&vcpu->arch.xen.timer_pending, 0);
125 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
127 struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
128 arch.xen.timer);
129 struct kvm_xen_evtchn e;
130 int rc;
132 if (atomic_read(&vcpu->arch.xen.timer_pending))
133 return HRTIMER_NORESTART;
135 e.vcpu_id = vcpu->vcpu_id;
136 e.vcpu_idx = vcpu->vcpu_idx;
137 e.port = vcpu->arch.xen.timer_virq;
138 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
140 rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm);
141 if (rc != -EWOULDBLOCK) {
142 vcpu->arch.xen.timer_expires = 0;
143 return HRTIMER_NORESTART;
146 atomic_inc(&vcpu->arch.xen.timer_pending);
147 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
148 kvm_vcpu_kick(vcpu);
150 return HRTIMER_NORESTART;
153 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs,
154 bool linux_wa)
156 int64_t kernel_now, delta;
157 uint64_t guest_now;
160 * The guest provides the requested timeout in absolute nanoseconds
161 * of the KVM clock — as *it* sees it, based on the scaled TSC and
162 * the pvclock information provided by KVM.
164 * The kernel doesn't support hrtimers based on CLOCK_MONOTONIC_RAW
165 * so use CLOCK_MONOTONIC. In the timescales covered by timers, the
166 * difference won't matter much as there is no cumulative effect.
168 * Calculate the time for some arbitrary point in time around "now"
169 * in terms of both kvmclock and CLOCK_MONOTONIC. Calculate the
170 * delta between the kvmclock "now" value and the guest's requested
171 * timeout, apply the "Linux workaround" described below, and add
172 * the resulting delta to the CLOCK_MONOTONIC "now" value, to get
173 * the absolute CLOCK_MONOTONIC time at which the timer should
174 * fire.
176 if (vcpu->arch.hv_clock.version && vcpu->kvm->arch.use_master_clock &&
177 static_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
178 uint64_t host_tsc, guest_tsc;
180 if (!IS_ENABLED(CONFIG_64BIT) ||
181 !kvm_get_monotonic_and_clockread(&kernel_now, &host_tsc)) {
183 * Don't fall back to get_kvmclock_ns() because it's
184 * broken; it has a systemic error in its results
185 * because it scales directly from host TSC to
186 * nanoseconds, and doesn't scale first to guest TSC
187 * and *then* to nanoseconds as the guest does.
189 * There is a small error introduced here because time
190 * continues to elapse between the ktime_get() and the
191 * subsequent rdtsc(). But not the systemic drift due
192 * to get_kvmclock_ns().
194 kernel_now = ktime_get(); /* This is CLOCK_MONOTONIC */
195 host_tsc = rdtsc();
198 /* Calculate the guest kvmclock as the guest would do it. */
199 guest_tsc = kvm_read_l1_tsc(vcpu, host_tsc);
200 guest_now = __pvclock_read_cycles(&vcpu->arch.hv_clock,
201 guest_tsc);
202 } else {
204 * Without CONSTANT_TSC, get_kvmclock_ns() is the only option.
206 * Also if the guest PV clock hasn't been set up yet, as is
207 * likely to be the case during migration when the vCPU has
208 * not been run yet. It would be possible to calculate the
209 * scaling factors properly in that case but there's not much
210 * point in doing so. The get_kvmclock_ns() drift accumulates
211 * over time, so it's OK to use it at startup. Besides, on
212 * migration there's going to be a little bit of skew in the
213 * precise moment at which timers fire anyway. Often they'll
214 * be in the "past" by the time the VM is running again after
215 * migration.
217 guest_now = get_kvmclock_ns(vcpu->kvm);
218 kernel_now = ktime_get();
221 delta = guest_abs - guest_now;
224 * Xen has a 'Linux workaround' in do_set_timer_op() which checks for
225 * negative absolute timeout values (caused by integer overflow), and
226 * for values about 13 days in the future (2^50ns) which would be
227 * caused by jiffies overflow. For those cases, Xen sets the timeout
228 * 100ms in the future (not *too* soon, since if a guest really did
229 * set a long timeout on purpose we don't want to keep churning CPU
230 * time by waking it up). Emulate Xen's workaround when starting the
231 * timer in response to __HYPERVISOR_set_timer_op.
233 if (linux_wa &&
234 unlikely((int64_t)guest_abs < 0 ||
235 (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
236 delta = 100 * NSEC_PER_MSEC;
237 guest_abs = guest_now + delta;
241 * Avoid races with the old timer firing. Checking timer_expires
242 * to avoid calling hrtimer_cancel() will only have false positives
243 * so is fine.
245 if (vcpu->arch.xen.timer_expires)
246 hrtimer_cancel(&vcpu->arch.xen.timer);
248 atomic_set(&vcpu->arch.xen.timer_pending, 0);
249 vcpu->arch.xen.timer_expires = guest_abs;
251 if (delta <= 0)
252 xen_timer_callback(&vcpu->arch.xen.timer);
253 else
254 hrtimer_start(&vcpu->arch.xen.timer,
255 ktime_add_ns(kernel_now, delta),
256 HRTIMER_MODE_ABS_HARD);
259 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
261 hrtimer_cancel(&vcpu->arch.xen.timer);
262 vcpu->arch.xen.timer_expires = 0;
263 atomic_set(&vcpu->arch.xen.timer_pending, 0);
266 static void kvm_xen_init_timer(struct kvm_vcpu *vcpu)
268 hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC,
269 HRTIMER_MODE_ABS_HARD);
270 vcpu->arch.xen.timer.function = xen_timer_callback;
273 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
275 struct kvm_vcpu_xen *vx = &v->arch.xen;
276 struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
277 struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
278 size_t user_len, user_len1, user_len2;
279 struct vcpu_runstate_info rs;
280 unsigned long flags;
281 size_t times_ofs;
282 uint8_t *update_bit = NULL;
283 uint64_t entry_time;
284 uint64_t *rs_times;
285 int *rs_state;
288 * The only difference between 32-bit and 64-bit versions of the
289 * runstate struct is the alignment of uint64_t in 32-bit, which
290 * means that the 64-bit version has an additional 4 bytes of
291 * padding after the first field 'state'. Let's be really really
292 * paranoid about that, and matching it with our internal data
293 * structures that we memcpy into it...
295 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
296 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
297 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
298 #ifdef CONFIG_X86_64
300 * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
301 * so each subsequent field is shifted by 4, and it's 4 bytes longer.
303 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
304 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
305 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
306 offsetof(struct compat_vcpu_runstate_info, time) + 4);
307 BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
308 #endif
310 * The state field is in the same place at the start of both structs,
311 * and is the same size (int) as vx->current_runstate.
313 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
314 offsetof(struct compat_vcpu_runstate_info, state));
315 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
316 sizeof(vx->current_runstate));
317 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
318 sizeof(vx->current_runstate));
321 * The state_entry_time field is 64 bits in both versions, and the
322 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
323 * is little-endian means that it's in the last *byte* of the word.
324 * That detail is important later.
326 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
327 sizeof(uint64_t));
328 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
329 sizeof(uint64_t));
330 BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
333 * The time array is four 64-bit quantities in both versions, matching
334 * the vx->runstate_times and immediately following state_entry_time.
336 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
337 offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
338 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
339 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
340 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
341 sizeof_field(struct compat_vcpu_runstate_info, time));
342 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
343 sizeof(vx->runstate_times));
345 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
346 user_len = sizeof(struct vcpu_runstate_info);
347 times_ofs = offsetof(struct vcpu_runstate_info,
348 state_entry_time);
349 } else {
350 user_len = sizeof(struct compat_vcpu_runstate_info);
351 times_ofs = offsetof(struct compat_vcpu_runstate_info,
352 state_entry_time);
356 * There are basically no alignment constraints. The guest can set it
357 * up so it crosses from one page to the next, and at arbitrary byte
358 * alignment (and the 32-bit ABI doesn't align the 64-bit integers
359 * anyway, even if the overall struct had been 64-bit aligned).
361 if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
362 user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
363 user_len2 = user_len - user_len1;
364 } else {
365 user_len1 = user_len;
366 user_len2 = 0;
368 BUG_ON(user_len1 + user_len2 != user_len);
370 retry:
372 * Attempt to obtain the GPC lock on *both* (if there are two)
373 * gfn_to_pfn caches that cover the region.
375 if (atomic) {
376 local_irq_save(flags);
377 if (!read_trylock(&gpc1->lock)) {
378 local_irq_restore(flags);
379 return;
381 } else {
382 read_lock_irqsave(&gpc1->lock, flags);
384 while (!kvm_gpc_check(gpc1, user_len1)) {
385 read_unlock_irqrestore(&gpc1->lock, flags);
387 /* When invoked from kvm_sched_out() we cannot sleep */
388 if (atomic)
389 return;
391 if (kvm_gpc_refresh(gpc1, user_len1))
392 return;
394 read_lock_irqsave(&gpc1->lock, flags);
397 if (likely(!user_len2)) {
399 * Set up three pointers directly to the runstate_info
400 * struct in the guest (via the GPC).
402 * • @rs_state → state field
403 * • @rs_times → state_entry_time field.
404 * • @update_bit → last byte of state_entry_time, which
405 * contains the XEN_RUNSTATE_UPDATE bit.
407 rs_state = gpc1->khva;
408 rs_times = gpc1->khva + times_ofs;
409 if (v->kvm->arch.xen.runstate_update_flag)
410 update_bit = ((void *)(&rs_times[1])) - 1;
411 } else {
413 * The guest's runstate_info is split across two pages and we
414 * need to hold and validate both GPCs simultaneously. We can
415 * declare a lock ordering GPC1 > GPC2 because nothing else
416 * takes them more than one at a time. Set a subclass on the
417 * gpc1 lock to make lockdep shut up about it.
419 lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_);
420 if (atomic) {
421 if (!read_trylock(&gpc2->lock)) {
422 read_unlock_irqrestore(&gpc1->lock, flags);
423 return;
425 } else {
426 read_lock(&gpc2->lock);
429 if (!kvm_gpc_check(gpc2, user_len2)) {
430 read_unlock(&gpc2->lock);
431 read_unlock_irqrestore(&gpc1->lock, flags);
433 /* When invoked from kvm_sched_out() we cannot sleep */
434 if (atomic)
435 return;
438 * Use kvm_gpc_activate() here because if the runstate
439 * area was configured in 32-bit mode and only extends
440 * to the second page now because the guest changed to
441 * 64-bit mode, the second GPC won't have been set up.
443 if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1,
444 user_len2))
445 return;
448 * We dropped the lock on GPC1 so we have to go all the
449 * way back and revalidate that too.
451 goto retry;
455 * In this case, the runstate_info struct will be assembled on
456 * the kernel stack (compat or not as appropriate) and will
457 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
458 * rs pointers accordingly.
460 rs_times = &rs.state_entry_time;
463 * The rs_state pointer points to the start of what we'll
464 * copy to the guest, which in the case of a compat guest
465 * is the 32-bit field that the compiler thinks is padding.
467 rs_state = ((void *)rs_times) - times_ofs;
470 * The update_bit is still directly in the guest memory,
471 * via one GPC or the other.
473 if (v->kvm->arch.xen.runstate_update_flag) {
474 if (user_len1 >= times_ofs + sizeof(uint64_t))
475 update_bit = gpc1->khva + times_ofs +
476 sizeof(uint64_t) - 1;
477 else
478 update_bit = gpc2->khva + times_ofs +
479 sizeof(uint64_t) - 1 - user_len1;
482 #ifdef CONFIG_X86_64
484 * Don't leak kernel memory through the padding in the 64-bit
485 * version of the struct.
487 memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
488 #endif
492 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
493 * state_entry_time field, directly in the guest. We need to set
494 * that (and write-barrier) before writing to the rest of the
495 * structure, and clear it last. Just as Xen does, we address the
496 * single *byte* in which it resides because it might be in a
497 * different cache line to the rest of the 64-bit word, due to
498 * the (lack of) alignment constraints.
500 entry_time = vx->runstate_entry_time;
501 if (update_bit) {
502 entry_time |= XEN_RUNSTATE_UPDATE;
503 *update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
504 smp_wmb();
508 * Now assemble the actual structure, either on our kernel stack
509 * or directly in the guest according to how the rs_state and
510 * rs_times pointers were set up above.
512 *rs_state = vx->current_runstate;
513 rs_times[0] = entry_time;
514 memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
516 /* For the split case, we have to then copy it to the guest. */
517 if (user_len2) {
518 memcpy(gpc1->khva, rs_state, user_len1);
519 memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
521 smp_wmb();
523 /* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
524 if (update_bit) {
525 entry_time &= ~XEN_RUNSTATE_UPDATE;
526 *update_bit = entry_time >> 56;
527 smp_wmb();
530 if (user_len2) {
531 kvm_gpc_mark_dirty_in_slot(gpc2);
532 read_unlock(&gpc2->lock);
535 kvm_gpc_mark_dirty_in_slot(gpc1);
536 read_unlock_irqrestore(&gpc1->lock, flags);
539 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
541 struct kvm_vcpu_xen *vx = &v->arch.xen;
542 u64 now = get_kvmclock_ns(v->kvm);
543 u64 delta_ns = now - vx->runstate_entry_time;
544 u64 run_delay = current->sched_info.run_delay;
546 if (unlikely(!vx->runstate_entry_time))
547 vx->current_runstate = RUNSTATE_offline;
550 * Time waiting for the scheduler isn't "stolen" if the
551 * vCPU wasn't running anyway.
553 if (vx->current_runstate == RUNSTATE_running) {
554 u64 steal_ns = run_delay - vx->last_steal;
556 delta_ns -= steal_ns;
558 vx->runstate_times[RUNSTATE_runnable] += steal_ns;
560 vx->last_steal = run_delay;
562 vx->runstate_times[vx->current_runstate] += delta_ns;
563 vx->current_runstate = state;
564 vx->runstate_entry_time = now;
566 if (vx->runstate_cache.active)
567 kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable);
570 void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
572 struct kvm_lapic_irq irq = { };
574 irq.dest_id = v->vcpu_id;
575 irq.vector = v->arch.xen.upcall_vector;
576 irq.dest_mode = APIC_DEST_PHYSICAL;
577 irq.shorthand = APIC_DEST_NOSHORT;
578 irq.delivery_mode = APIC_DM_FIXED;
579 irq.level = 1;
581 kvm_irq_delivery_to_apic(v->kvm, NULL, &irq, NULL);
585 * On event channel delivery, the vcpu_info may not have been accessible.
586 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
587 * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
588 * Do so now that we can sleep in the context of the vCPU to bring the
589 * page in, and refresh the pfn cache for it.
591 void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
593 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
594 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
595 unsigned long flags;
597 if (!evtchn_pending_sel)
598 return;
601 * Yes, this is an open-coded loop. But that's just what put_user()
602 * does anyway. Page it in and retry the instruction. We're just a
603 * little more honest about it.
605 read_lock_irqsave(&gpc->lock, flags);
606 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
607 read_unlock_irqrestore(&gpc->lock, flags);
609 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info)))
610 return;
612 read_lock_irqsave(&gpc->lock, flags);
615 /* Now gpc->khva is a valid kernel address for the vcpu_info */
616 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
617 struct vcpu_info *vi = gpc->khva;
619 asm volatile(LOCK_PREFIX "orq %0, %1\n"
620 "notq %0\n"
621 LOCK_PREFIX "andq %0, %2\n"
622 : "=r" (evtchn_pending_sel),
623 "+m" (vi->evtchn_pending_sel),
624 "+m" (v->arch.xen.evtchn_pending_sel)
625 : "0" (evtchn_pending_sel));
626 WRITE_ONCE(vi->evtchn_upcall_pending, 1);
627 } else {
628 u32 evtchn_pending_sel32 = evtchn_pending_sel;
629 struct compat_vcpu_info *vi = gpc->khva;
631 asm volatile(LOCK_PREFIX "orl %0, %1\n"
632 "notl %0\n"
633 LOCK_PREFIX "andl %0, %2\n"
634 : "=r" (evtchn_pending_sel32),
635 "+m" (vi->evtchn_pending_sel),
636 "+m" (v->arch.xen.evtchn_pending_sel)
637 : "0" (evtchn_pending_sel32));
638 WRITE_ONCE(vi->evtchn_upcall_pending, 1);
641 kvm_gpc_mark_dirty_in_slot(gpc);
642 read_unlock_irqrestore(&gpc->lock, flags);
644 /* For the per-vCPU lapic vector, deliver it as MSI. */
645 if (v->arch.xen.upcall_vector)
646 kvm_xen_inject_vcpu_vector(v);
649 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
651 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
652 unsigned long flags;
653 u8 rc = 0;
656 * If the global upcall vector (HVMIRQ_callback_vector) is set and
657 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
660 /* No need for compat handling here */
661 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
662 offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
663 BUILD_BUG_ON(sizeof(rc) !=
664 sizeof_field(struct vcpu_info, evtchn_upcall_pending));
665 BUILD_BUG_ON(sizeof(rc) !=
666 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
668 read_lock_irqsave(&gpc->lock, flags);
669 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
670 read_unlock_irqrestore(&gpc->lock, flags);
673 * This function gets called from kvm_vcpu_block() after setting the
674 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
675 * from a HLT. So we really mustn't sleep. If the page ended up absent
676 * at that point, just return 1 in order to trigger an immediate wake,
677 * and we'll end up getting called again from a context where we *can*
678 * fault in the page and wait for it.
680 if (in_atomic() || !task_is_running(current))
681 return 1;
683 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) {
685 * If this failed, userspace has screwed up the
686 * vcpu_info mapping. No interrupts for you.
688 return 0;
690 read_lock_irqsave(&gpc->lock, flags);
693 rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
694 read_unlock_irqrestore(&gpc->lock, flags);
695 return rc;
698 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
700 int r = -ENOENT;
703 switch (data->type) {
704 case KVM_XEN_ATTR_TYPE_LONG_MODE:
705 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
706 r = -EINVAL;
707 } else {
708 mutex_lock(&kvm->arch.xen.xen_lock);
709 kvm->arch.xen.long_mode = !!data->u.long_mode;
712 * Re-initialize shared_info to put the wallclock in the
713 * correct place. Whilst it's not necessary to do this
714 * unless the mode is actually changed, it does no harm
715 * to make the call anyway.
717 r = kvm->arch.xen.shinfo_cache.active ?
718 kvm_xen_shared_info_init(kvm) : 0;
719 mutex_unlock(&kvm->arch.xen.xen_lock);
721 break;
723 case KVM_XEN_ATTR_TYPE_SHARED_INFO:
724 case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: {
725 int idx;
727 mutex_lock(&kvm->arch.xen.xen_lock);
729 idx = srcu_read_lock(&kvm->srcu);
731 if (data->type == KVM_XEN_ATTR_TYPE_SHARED_INFO) {
732 gfn_t gfn = data->u.shared_info.gfn;
734 if (gfn == KVM_XEN_INVALID_GFN) {
735 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
736 r = 0;
737 } else {
738 r = kvm_gpc_activate(&kvm->arch.xen.shinfo_cache,
739 gfn_to_gpa(gfn), PAGE_SIZE);
741 } else {
742 void __user * hva = u64_to_user_ptr(data->u.shared_info.hva);
744 if (!PAGE_ALIGNED(hva)) {
745 r = -EINVAL;
746 } else if (!hva) {
747 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
748 r = 0;
749 } else {
750 r = kvm_gpc_activate_hva(&kvm->arch.xen.shinfo_cache,
751 (unsigned long)hva, PAGE_SIZE);
755 srcu_read_unlock(&kvm->srcu, idx);
757 if (!r && kvm->arch.xen.shinfo_cache.active)
758 r = kvm_xen_shared_info_init(kvm);
760 mutex_unlock(&kvm->arch.xen.xen_lock);
761 break;
763 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
764 if (data->u.vector && data->u.vector < 0x10)
765 r = -EINVAL;
766 else {
767 mutex_lock(&kvm->arch.xen.xen_lock);
768 kvm->arch.xen.upcall_vector = data->u.vector;
769 mutex_unlock(&kvm->arch.xen.xen_lock);
770 r = 0;
772 break;
774 case KVM_XEN_ATTR_TYPE_EVTCHN:
775 r = kvm_xen_setattr_evtchn(kvm, data);
776 break;
778 case KVM_XEN_ATTR_TYPE_XEN_VERSION:
779 mutex_lock(&kvm->arch.xen.xen_lock);
780 kvm->arch.xen.xen_version = data->u.xen_version;
781 mutex_unlock(&kvm->arch.xen.xen_lock);
782 r = 0;
783 break;
785 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
786 if (!sched_info_on()) {
787 r = -EOPNOTSUPP;
788 break;
790 mutex_lock(&kvm->arch.xen.xen_lock);
791 kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
792 mutex_unlock(&kvm->arch.xen.xen_lock);
793 r = 0;
794 break;
796 default:
797 break;
800 return r;
803 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
805 int r = -ENOENT;
807 mutex_lock(&kvm->arch.xen.xen_lock);
809 switch (data->type) {
810 case KVM_XEN_ATTR_TYPE_LONG_MODE:
811 data->u.long_mode = kvm->arch.xen.long_mode;
812 r = 0;
813 break;
815 case KVM_XEN_ATTR_TYPE_SHARED_INFO:
816 if (kvm_gpc_is_gpa_active(&kvm->arch.xen.shinfo_cache))
817 data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
818 else
819 data->u.shared_info.gfn = KVM_XEN_INVALID_GFN;
820 r = 0;
821 break;
823 case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA:
824 if (kvm_gpc_is_hva_active(&kvm->arch.xen.shinfo_cache))
825 data->u.shared_info.hva = kvm->arch.xen.shinfo_cache.uhva;
826 else
827 data->u.shared_info.hva = 0;
828 r = 0;
829 break;
831 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
832 data->u.vector = kvm->arch.xen.upcall_vector;
833 r = 0;
834 break;
836 case KVM_XEN_ATTR_TYPE_XEN_VERSION:
837 data->u.xen_version = kvm->arch.xen.xen_version;
838 r = 0;
839 break;
841 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
842 if (!sched_info_on()) {
843 r = -EOPNOTSUPP;
844 break;
846 data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
847 r = 0;
848 break;
850 default:
851 break;
854 mutex_unlock(&kvm->arch.xen.xen_lock);
855 return r;
858 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
860 int idx, r = -ENOENT;
862 mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
863 idx = srcu_read_lock(&vcpu->kvm->srcu);
865 switch (data->type) {
866 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
867 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA:
868 /* No compat necessary here. */
869 BUILD_BUG_ON(sizeof(struct vcpu_info) !=
870 sizeof(struct compat_vcpu_info));
871 BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
872 offsetof(struct compat_vcpu_info, time));
874 if (data->type == KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO) {
875 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
876 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
877 r = 0;
878 break;
881 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache,
882 data->u.gpa, sizeof(struct vcpu_info));
883 } else {
884 if (data->u.hva == 0) {
885 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
886 r = 0;
887 break;
890 r = kvm_gpc_activate_hva(&vcpu->arch.xen.vcpu_info_cache,
891 data->u.hva, sizeof(struct vcpu_info));
894 if (!r)
895 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
897 break;
899 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
900 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
901 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
902 r = 0;
903 break;
906 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache,
907 data->u.gpa,
908 sizeof(struct pvclock_vcpu_time_info));
909 if (!r)
910 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
911 break;
913 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
914 size_t sz, sz1, sz2;
916 if (!sched_info_on()) {
917 r = -EOPNOTSUPP;
918 break;
920 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
921 r = 0;
922 deactivate_out:
923 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
924 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
925 break;
929 * If the guest switches to 64-bit mode after setting the runstate
930 * address, that's actually OK. kvm_xen_update_runstate_guest()
931 * will cope.
933 if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
934 sz = sizeof(struct vcpu_runstate_info);
935 else
936 sz = sizeof(struct compat_vcpu_runstate_info);
938 /* How much fits in the (first) page? */
939 sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
940 r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache,
941 data->u.gpa, sz1);
942 if (r)
943 goto deactivate_out;
945 /* Either map the second page, or deactivate the second GPC */
946 if (sz1 >= sz) {
947 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
948 } else {
949 sz2 = sz - sz1;
950 BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
951 r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache,
952 data->u.gpa + sz1, sz2);
953 if (r)
954 goto deactivate_out;
957 kvm_xen_update_runstate_guest(vcpu, false);
958 break;
960 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
961 if (!sched_info_on()) {
962 r = -EOPNOTSUPP;
963 break;
965 if (data->u.runstate.state > RUNSTATE_offline) {
966 r = -EINVAL;
967 break;
970 kvm_xen_update_runstate(vcpu, data->u.runstate.state);
971 r = 0;
972 break;
974 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
975 if (!sched_info_on()) {
976 r = -EOPNOTSUPP;
977 break;
979 if (data->u.runstate.state > RUNSTATE_offline) {
980 r = -EINVAL;
981 break;
983 if (data->u.runstate.state_entry_time !=
984 (data->u.runstate.time_running +
985 data->u.runstate.time_runnable +
986 data->u.runstate.time_blocked +
987 data->u.runstate.time_offline)) {
988 r = -EINVAL;
989 break;
991 if (get_kvmclock_ns(vcpu->kvm) <
992 data->u.runstate.state_entry_time) {
993 r = -EINVAL;
994 break;
997 vcpu->arch.xen.current_runstate = data->u.runstate.state;
998 vcpu->arch.xen.runstate_entry_time =
999 data->u.runstate.state_entry_time;
1000 vcpu->arch.xen.runstate_times[RUNSTATE_running] =
1001 data->u.runstate.time_running;
1002 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
1003 data->u.runstate.time_runnable;
1004 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
1005 data->u.runstate.time_blocked;
1006 vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
1007 data->u.runstate.time_offline;
1008 vcpu->arch.xen.last_steal = current->sched_info.run_delay;
1009 r = 0;
1010 break;
1012 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1013 if (!sched_info_on()) {
1014 r = -EOPNOTSUPP;
1015 break;
1017 if (data->u.runstate.state > RUNSTATE_offline &&
1018 data->u.runstate.state != (u64)-1) {
1019 r = -EINVAL;
1020 break;
1022 /* The adjustment must add up */
1023 if (data->u.runstate.state_entry_time !=
1024 (data->u.runstate.time_running +
1025 data->u.runstate.time_runnable +
1026 data->u.runstate.time_blocked +
1027 data->u.runstate.time_offline)) {
1028 r = -EINVAL;
1029 break;
1032 if (get_kvmclock_ns(vcpu->kvm) <
1033 (vcpu->arch.xen.runstate_entry_time +
1034 data->u.runstate.state_entry_time)) {
1035 r = -EINVAL;
1036 break;
1039 vcpu->arch.xen.runstate_entry_time +=
1040 data->u.runstate.state_entry_time;
1041 vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
1042 data->u.runstate.time_running;
1043 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
1044 data->u.runstate.time_runnable;
1045 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
1046 data->u.runstate.time_blocked;
1047 vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
1048 data->u.runstate.time_offline;
1050 if (data->u.runstate.state <= RUNSTATE_offline)
1051 kvm_xen_update_runstate(vcpu, data->u.runstate.state);
1052 else if (vcpu->arch.xen.runstate_cache.active)
1053 kvm_xen_update_runstate_guest(vcpu, false);
1054 r = 0;
1055 break;
1057 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1058 if (data->u.vcpu_id >= KVM_MAX_VCPUS)
1059 r = -EINVAL;
1060 else {
1061 vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
1062 r = 0;
1064 break;
1066 case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1067 if (data->u.timer.port &&
1068 data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
1069 r = -EINVAL;
1070 break;
1073 if (!vcpu->arch.xen.timer.function)
1074 kvm_xen_init_timer(vcpu);
1076 /* Stop the timer (if it's running) before changing the vector */
1077 kvm_xen_stop_timer(vcpu);
1078 vcpu->arch.xen.timer_virq = data->u.timer.port;
1080 /* Start the timer if the new value has a valid vector+expiry. */
1081 if (data->u.timer.port && data->u.timer.expires_ns)
1082 kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, false);
1084 r = 0;
1085 break;
1087 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1088 if (data->u.vector && data->u.vector < 0x10)
1089 r = -EINVAL;
1090 else {
1091 vcpu->arch.xen.upcall_vector = data->u.vector;
1092 r = 0;
1094 break;
1096 default:
1097 break;
1100 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1101 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1102 return r;
1105 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
1107 int r = -ENOENT;
1109 mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
1111 switch (data->type) {
1112 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
1113 if (kvm_gpc_is_gpa_active(&vcpu->arch.xen.vcpu_info_cache))
1114 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
1115 else
1116 data->u.gpa = KVM_XEN_INVALID_GPA;
1117 r = 0;
1118 break;
1120 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA:
1121 if (kvm_gpc_is_hva_active(&vcpu->arch.xen.vcpu_info_cache))
1122 data->u.hva = vcpu->arch.xen.vcpu_info_cache.uhva;
1123 else
1124 data->u.hva = 0;
1125 r = 0;
1126 break;
1128 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
1129 if (vcpu->arch.xen.vcpu_time_info_cache.active)
1130 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
1131 else
1132 data->u.gpa = KVM_XEN_INVALID_GPA;
1133 r = 0;
1134 break;
1136 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
1137 if (!sched_info_on()) {
1138 r = -EOPNOTSUPP;
1139 break;
1141 if (vcpu->arch.xen.runstate_cache.active) {
1142 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
1143 r = 0;
1145 break;
1147 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
1148 if (!sched_info_on()) {
1149 r = -EOPNOTSUPP;
1150 break;
1152 data->u.runstate.state = vcpu->arch.xen.current_runstate;
1153 r = 0;
1154 break;
1156 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
1157 if (!sched_info_on()) {
1158 r = -EOPNOTSUPP;
1159 break;
1161 data->u.runstate.state = vcpu->arch.xen.current_runstate;
1162 data->u.runstate.state_entry_time =
1163 vcpu->arch.xen.runstate_entry_time;
1164 data->u.runstate.time_running =
1165 vcpu->arch.xen.runstate_times[RUNSTATE_running];
1166 data->u.runstate.time_runnable =
1167 vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
1168 data->u.runstate.time_blocked =
1169 vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
1170 data->u.runstate.time_offline =
1171 vcpu->arch.xen.runstate_times[RUNSTATE_offline];
1172 r = 0;
1173 break;
1175 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1176 r = -EINVAL;
1177 break;
1179 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1180 data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
1181 r = 0;
1182 break;
1184 case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1186 * Ensure a consistent snapshot of state is captured, with a
1187 * timer either being pending, or the event channel delivered
1188 * to the corresponding bit in the shared_info. Not still
1189 * lurking in the timer_pending flag for deferred delivery.
1190 * Purely as an optimisation, if the timer_expires field is
1191 * zero, that means the timer isn't active (or even in the
1192 * timer_pending flag) and there is no need to cancel it.
1194 if (vcpu->arch.xen.timer_expires) {
1195 hrtimer_cancel(&vcpu->arch.xen.timer);
1196 kvm_xen_inject_timer_irqs(vcpu);
1199 data->u.timer.port = vcpu->arch.xen.timer_virq;
1200 data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1201 data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1204 * The hrtimer may trigger and raise the IRQ immediately,
1205 * while the returned state causes it to be set up and
1206 * raised again on the destination system after migration.
1207 * That's fine, as the guest won't even have had a chance
1208 * to run and handle the interrupt. Asserting an already
1209 * pending event channel is idempotent.
1211 if (vcpu->arch.xen.timer_expires)
1212 hrtimer_start_expires(&vcpu->arch.xen.timer,
1213 HRTIMER_MODE_ABS_HARD);
1215 r = 0;
1216 break;
1218 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1219 data->u.vector = vcpu->arch.xen.upcall_vector;
1220 r = 0;
1221 break;
1223 default:
1224 break;
1227 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1228 return r;
1231 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1233 struct kvm *kvm = vcpu->kvm;
1234 u32 page_num = data & ~PAGE_MASK;
1235 u64 page_addr = data & PAGE_MASK;
1236 bool lm = is_long_mode(vcpu);
1237 int r = 0;
1239 mutex_lock(&kvm->arch.xen.xen_lock);
1240 if (kvm->arch.xen.long_mode != lm) {
1241 kvm->arch.xen.long_mode = lm;
1244 * Re-initialize shared_info to put the wallclock in the
1245 * correct place.
1247 if (kvm->arch.xen.shinfo_cache.active &&
1248 kvm_xen_shared_info_init(kvm))
1249 r = 1;
1251 mutex_unlock(&kvm->arch.xen.xen_lock);
1253 if (r)
1254 return r;
1257 * If Xen hypercall intercept is enabled, fill the hypercall
1258 * page with VMCALL/VMMCALL instructions since that's what
1259 * we catch. Else the VMM has provided the hypercall pages
1260 * with instructions of its own choosing, so use those.
1262 if (kvm_xen_hypercall_enabled(kvm)) {
1263 u8 instructions[32];
1264 int i;
1266 if (page_num)
1267 return 1;
1269 /* mov imm32, %eax */
1270 instructions[0] = 0xb8;
1272 /* vmcall / vmmcall */
1273 kvm_x86_call(patch_hypercall)(vcpu, instructions + 5);
1275 /* ret */
1276 instructions[8] = 0xc3;
1278 /* int3 to pad */
1279 memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1281 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1282 *(u32 *)&instructions[1] = i;
1283 if (kvm_vcpu_write_guest(vcpu,
1284 page_addr + (i * sizeof(instructions)),
1285 instructions, sizeof(instructions)))
1286 return 1;
1288 } else {
1290 * Note, truncation is a non-issue as 'lm' is guaranteed to be
1291 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1293 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
1294 : kvm->arch.xen_hvm_config.blob_addr_32;
1295 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1296 : kvm->arch.xen_hvm_config.blob_size_32;
1297 u8 *page;
1298 int ret;
1300 if (page_num >= blob_size)
1301 return 1;
1303 blob_addr += page_num * PAGE_SIZE;
1305 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1306 if (IS_ERR(page))
1307 return PTR_ERR(page);
1309 ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE);
1310 kfree(page);
1311 if (ret)
1312 return 1;
1314 return 0;
1317 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1319 /* Only some feature flags need to be *enabled* by userspace */
1320 u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1321 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
1322 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
1323 u32 old_flags;
1325 if (xhc->flags & ~permitted_flags)
1326 return -EINVAL;
1329 * With hypercall interception the kernel generates its own
1330 * hypercall page so it must not be provided.
1332 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1333 (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1334 xhc->blob_size_32 || xhc->blob_size_64))
1335 return -EINVAL;
1337 mutex_lock(&kvm->arch.xen.xen_lock);
1339 if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
1340 static_branch_inc(&kvm_xen_enabled.key);
1341 else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
1342 static_branch_slow_dec_deferred(&kvm_xen_enabled);
1344 old_flags = kvm->arch.xen_hvm_config.flags;
1345 memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
1347 mutex_unlock(&kvm->arch.xen.xen_lock);
1349 if ((old_flags ^ xhc->flags) & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
1350 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
1352 return 0;
1355 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1357 kvm_rax_write(vcpu, result);
1358 return kvm_skip_emulated_instruction(vcpu);
1361 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1363 struct kvm_run *run = vcpu->run;
1365 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1366 return 1;
1368 return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
1371 static inline int max_evtchn_port(struct kvm *kvm)
1373 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1374 return EVTCHN_2L_NR_CHANNELS;
1375 else
1376 return COMPAT_EVTCHN_2L_NR_CHANNELS;
1379 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1380 evtchn_port_t *ports)
1382 struct kvm *kvm = vcpu->kvm;
1383 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1384 unsigned long *pending_bits;
1385 unsigned long flags;
1386 bool ret = true;
1387 int idx, i;
1389 idx = srcu_read_lock(&kvm->srcu);
1390 read_lock_irqsave(&gpc->lock, flags);
1391 if (!kvm_gpc_check(gpc, PAGE_SIZE))
1392 goto out_rcu;
1394 ret = false;
1395 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1396 struct shared_info *shinfo = gpc->khva;
1397 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1398 } else {
1399 struct compat_shared_info *shinfo = gpc->khva;
1400 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1403 for (i = 0; i < nr_ports; i++) {
1404 if (test_bit(ports[i], pending_bits)) {
1405 ret = true;
1406 break;
1410 out_rcu:
1411 read_unlock_irqrestore(&gpc->lock, flags);
1412 srcu_read_unlock(&kvm->srcu, idx);
1414 return ret;
1417 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1418 u64 param, u64 *r)
1420 struct sched_poll sched_poll;
1421 evtchn_port_t port, *ports;
1422 struct x86_exception e;
1423 int i;
1425 if (!lapic_in_kernel(vcpu) ||
1426 !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1427 return false;
1429 if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1430 struct compat_sched_poll sp32;
1432 /* Sanity check that the compat struct definition is correct */
1433 BUILD_BUG_ON(sizeof(sp32) != 16);
1435 if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) {
1436 *r = -EFAULT;
1437 return true;
1441 * This is a 32-bit pointer to an array of evtchn_port_t which
1442 * are uint32_t, so once it's converted no further compat
1443 * handling is needed.
1445 sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1446 sched_poll.nr_ports = sp32.nr_ports;
1447 sched_poll.timeout = sp32.timeout;
1448 } else {
1449 if (kvm_read_guest_virt(vcpu, param, &sched_poll,
1450 sizeof(sched_poll), &e)) {
1451 *r = -EFAULT;
1452 return true;
1456 if (unlikely(sched_poll.nr_ports > 1)) {
1457 /* Xen (unofficially) limits number of pollers to 128 */
1458 if (sched_poll.nr_ports > 128) {
1459 *r = -EINVAL;
1460 return true;
1463 ports = kmalloc_array(sched_poll.nr_ports,
1464 sizeof(*ports), GFP_KERNEL);
1465 if (!ports) {
1466 *r = -ENOMEM;
1467 return true;
1469 } else
1470 ports = &port;
1472 if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports,
1473 sched_poll.nr_ports * sizeof(*ports), &e)) {
1474 *r = -EFAULT;
1475 return true;
1478 for (i = 0; i < sched_poll.nr_ports; i++) {
1479 if (ports[i] >= max_evtchn_port(vcpu->kvm)) {
1480 *r = -EINVAL;
1481 goto out;
1485 if (sched_poll.nr_ports == 1)
1486 vcpu->arch.xen.poll_evtchn = port;
1487 else
1488 vcpu->arch.xen.poll_evtchn = -1;
1490 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1492 if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1493 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1495 if (sched_poll.timeout)
1496 mod_timer(&vcpu->arch.xen.poll_timer,
1497 jiffies + nsecs_to_jiffies(sched_poll.timeout));
1499 kvm_vcpu_halt(vcpu);
1501 if (sched_poll.timeout)
1502 del_timer(&vcpu->arch.xen.poll_timer);
1504 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1507 vcpu->arch.xen.poll_evtchn = 0;
1508 *r = 0;
1509 out:
1510 /* Really, this is only needed in case of timeout */
1511 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1513 if (unlikely(sched_poll.nr_ports > 1))
1514 kfree(ports);
1515 return true;
1518 static void cancel_evtchn_poll(struct timer_list *t)
1520 struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1522 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1523 kvm_vcpu_kick(vcpu);
1526 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1527 int cmd, u64 param, u64 *r)
1529 switch (cmd) {
1530 case SCHEDOP_poll:
1531 if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1532 return true;
1533 fallthrough;
1534 case SCHEDOP_yield:
1535 kvm_vcpu_on_spin(vcpu, true);
1536 *r = 0;
1537 return true;
1538 default:
1539 break;
1542 return false;
1545 struct compat_vcpu_set_singleshot_timer {
1546 uint64_t timeout_abs_ns;
1547 uint32_t flags;
1548 } __attribute__((packed));
1550 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1551 int vcpu_id, u64 param, u64 *r)
1553 struct vcpu_set_singleshot_timer oneshot;
1554 struct x86_exception e;
1556 if (!kvm_xen_timer_enabled(vcpu))
1557 return false;
1559 switch (cmd) {
1560 case VCPUOP_set_singleshot_timer:
1561 if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1562 *r = -EINVAL;
1563 return true;
1567 * The only difference for 32-bit compat is the 4 bytes of
1568 * padding after the interesting part of the structure. So
1569 * for a faithful emulation of Xen we have to *try* to copy
1570 * the padding and return -EFAULT if we can't. Otherwise we
1571 * might as well just have copied the 12-byte 32-bit struct.
1573 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1574 offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1575 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1576 sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1577 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1578 offsetof(struct vcpu_set_singleshot_timer, flags));
1579 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1580 sizeof_field(struct vcpu_set_singleshot_timer, flags));
1582 if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) :
1583 sizeof(struct compat_vcpu_set_singleshot_timer), &e)) {
1584 *r = -EFAULT;
1585 return true;
1588 kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, false);
1589 *r = 0;
1590 return true;
1592 case VCPUOP_stop_singleshot_timer:
1593 if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1594 *r = -EINVAL;
1595 return true;
1597 kvm_xen_stop_timer(vcpu);
1598 *r = 0;
1599 return true;
1602 return false;
1605 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1606 u64 *r)
1608 if (!kvm_xen_timer_enabled(vcpu))
1609 return false;
1611 if (timeout)
1612 kvm_xen_start_timer(vcpu, timeout, true);
1613 else
1614 kvm_xen_stop_timer(vcpu);
1616 *r = 0;
1617 return true;
1620 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1622 bool longmode;
1623 u64 input, params[6], r = -ENOSYS;
1624 bool handled = false;
1625 u8 cpl;
1627 input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1629 /* Hyper-V hypercalls get bit 31 set in EAX */
1630 if ((input & 0x80000000) &&
1631 kvm_hv_hypercall_enabled(vcpu))
1632 return kvm_hv_hypercall(vcpu);
1634 longmode = is_64_bit_hypercall(vcpu);
1635 if (!longmode) {
1636 params[0] = (u32)kvm_rbx_read(vcpu);
1637 params[1] = (u32)kvm_rcx_read(vcpu);
1638 params[2] = (u32)kvm_rdx_read(vcpu);
1639 params[3] = (u32)kvm_rsi_read(vcpu);
1640 params[4] = (u32)kvm_rdi_read(vcpu);
1641 params[5] = (u32)kvm_rbp_read(vcpu);
1643 #ifdef CONFIG_X86_64
1644 else {
1645 params[0] = (u64)kvm_rdi_read(vcpu);
1646 params[1] = (u64)kvm_rsi_read(vcpu);
1647 params[2] = (u64)kvm_rdx_read(vcpu);
1648 params[3] = (u64)kvm_r10_read(vcpu);
1649 params[4] = (u64)kvm_r8_read(vcpu);
1650 params[5] = (u64)kvm_r9_read(vcpu);
1652 #endif
1653 cpl = kvm_x86_call(get_cpl)(vcpu);
1654 trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2],
1655 params[3], params[4], params[5]);
1658 * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1659 * are permitted in guest userspace can be handled by the VMM.
1661 if (unlikely(cpl > 0))
1662 goto handle_in_userspace;
1664 switch (input) {
1665 case __HYPERVISOR_xen_version:
1666 if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1667 r = vcpu->kvm->arch.xen.xen_version;
1668 handled = true;
1670 break;
1671 case __HYPERVISOR_event_channel_op:
1672 if (params[0] == EVTCHNOP_send)
1673 handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1674 break;
1675 case __HYPERVISOR_sched_op:
1676 handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1677 params[1], &r);
1678 break;
1679 case __HYPERVISOR_vcpu_op:
1680 handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1681 params[2], &r);
1682 break;
1683 case __HYPERVISOR_set_timer_op: {
1684 u64 timeout = params[0];
1685 /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1686 if (!longmode)
1687 timeout |= params[1] << 32;
1688 handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1689 break;
1691 default:
1692 break;
1695 if (handled)
1696 return kvm_xen_hypercall_set_result(vcpu, r);
1698 handle_in_userspace:
1699 vcpu->run->exit_reason = KVM_EXIT_XEN;
1700 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1701 vcpu->run->xen.u.hcall.longmode = longmode;
1702 vcpu->run->xen.u.hcall.cpl = cpl;
1703 vcpu->run->xen.u.hcall.input = input;
1704 vcpu->run->xen.u.hcall.params[0] = params[0];
1705 vcpu->run->xen.u.hcall.params[1] = params[1];
1706 vcpu->run->xen.u.hcall.params[2] = params[2];
1707 vcpu->run->xen.u.hcall.params[3] = params[3];
1708 vcpu->run->xen.u.hcall.params[4] = params[4];
1709 vcpu->run->xen.u.hcall.params[5] = params[5];
1710 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1711 vcpu->arch.complete_userspace_io =
1712 kvm_xen_hypercall_complete_userspace;
1714 return 0;
1717 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1719 int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1721 if ((poll_evtchn == port || poll_evtchn == -1) &&
1722 test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1723 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1724 kvm_vcpu_kick(vcpu);
1729 * The return value from this function is propagated to kvm_set_irq() API,
1730 * so it returns:
1731 * < 0 Interrupt was ignored (masked or not delivered for other reasons)
1732 * = 0 Interrupt was coalesced (previous irq is still pending)
1733 * > 0 Number of CPUs interrupt was delivered to
1735 * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1736 * only check on its return value is a comparison with -EWOULDBLOCK'.
1738 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1740 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1741 struct kvm_vcpu *vcpu;
1742 unsigned long *pending_bits, *mask_bits;
1743 unsigned long flags;
1744 int port_word_bit;
1745 bool kick_vcpu = false;
1746 int vcpu_idx, idx, rc;
1748 vcpu_idx = READ_ONCE(xe->vcpu_idx);
1749 if (vcpu_idx >= 0)
1750 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1751 else {
1752 vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1753 if (!vcpu)
1754 return -EINVAL;
1755 WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1758 if (xe->port >= max_evtchn_port(kvm))
1759 return -EINVAL;
1761 rc = -EWOULDBLOCK;
1763 idx = srcu_read_lock(&kvm->srcu);
1765 read_lock_irqsave(&gpc->lock, flags);
1766 if (!kvm_gpc_check(gpc, PAGE_SIZE))
1767 goto out_rcu;
1769 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1770 struct shared_info *shinfo = gpc->khva;
1771 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1772 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1773 port_word_bit = xe->port / 64;
1774 } else {
1775 struct compat_shared_info *shinfo = gpc->khva;
1776 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1777 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1778 port_word_bit = xe->port / 32;
1782 * If this port wasn't already set, and if it isn't masked, then
1783 * we try to set the corresponding bit in the in-kernel shadow of
1784 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1785 * already set, then we kick the vCPU in question to write to the
1786 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1788 if (test_and_set_bit(xe->port, pending_bits)) {
1789 rc = 0; /* It was already raised */
1790 } else if (test_bit(xe->port, mask_bits)) {
1791 rc = -ENOTCONN; /* Masked */
1792 kvm_xen_check_poller(vcpu, xe->port);
1793 } else {
1794 rc = 1; /* Delivered to the bitmap in shared_info. */
1795 /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1796 read_unlock_irqrestore(&gpc->lock, flags);
1797 gpc = &vcpu->arch.xen.vcpu_info_cache;
1799 read_lock_irqsave(&gpc->lock, flags);
1800 if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
1802 * Could not access the vcpu_info. Set the bit in-kernel
1803 * and prod the vCPU to deliver it for itself.
1805 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1806 kick_vcpu = true;
1807 goto out_rcu;
1810 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1811 struct vcpu_info *vcpu_info = gpc->khva;
1812 if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1813 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1814 kick_vcpu = true;
1816 } else {
1817 struct compat_vcpu_info *vcpu_info = gpc->khva;
1818 if (!test_and_set_bit(port_word_bit,
1819 (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1820 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1821 kick_vcpu = true;
1825 /* For the per-vCPU lapic vector, deliver it as MSI. */
1826 if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1827 kvm_xen_inject_vcpu_vector(vcpu);
1828 kick_vcpu = false;
1832 out_rcu:
1833 read_unlock_irqrestore(&gpc->lock, flags);
1834 srcu_read_unlock(&kvm->srcu, idx);
1836 if (kick_vcpu) {
1837 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1838 kvm_vcpu_kick(vcpu);
1841 return rc;
1844 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1846 bool mm_borrowed = false;
1847 int rc;
1849 rc = kvm_xen_set_evtchn_fast(xe, kvm);
1850 if (rc != -EWOULDBLOCK)
1851 return rc;
1853 if (current->mm != kvm->mm) {
1855 * If not on a thread which already belongs to this KVM,
1856 * we'd better be in the irqfd workqueue.
1858 if (WARN_ON_ONCE(current->mm))
1859 return -EINVAL;
1861 kthread_use_mm(kvm->mm);
1862 mm_borrowed = true;
1866 * It is theoretically possible for the page to be unmapped
1867 * and the MMU notifier to invalidate the shared_info before
1868 * we even get to use it. In that case, this looks like an
1869 * infinite loop. It was tempting to do it via the userspace
1870 * HVA instead... but that just *hides* the fact that it's
1871 * an infinite loop, because if a fault occurs and it waits
1872 * for the page to come back, it can *still* immediately
1873 * fault and have to wait again, repeatedly.
1875 * Conversely, the page could also have been reinstated by
1876 * another thread before we even obtain the mutex above, so
1877 * check again *first* before remapping it.
1879 do {
1880 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1881 int idx;
1883 rc = kvm_xen_set_evtchn_fast(xe, kvm);
1884 if (rc != -EWOULDBLOCK)
1885 break;
1887 idx = srcu_read_lock(&kvm->srcu);
1888 rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1889 srcu_read_unlock(&kvm->srcu, idx);
1890 } while(!rc);
1892 if (mm_borrowed)
1893 kthread_unuse_mm(kvm->mm);
1895 return rc;
1898 /* This is the version called from kvm_set_irq() as the .set function */
1899 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1900 int irq_source_id, int level, bool line_status)
1902 if (!level)
1903 return -EINVAL;
1905 return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1909 * Set up an event channel interrupt from the KVM IRQ routing table.
1910 * Used for e.g. PIRQ from passed through physical devices.
1912 int kvm_xen_setup_evtchn(struct kvm *kvm,
1913 struct kvm_kernel_irq_routing_entry *e,
1914 const struct kvm_irq_routing_entry *ue)
1917 struct kvm_vcpu *vcpu;
1919 if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1920 return -EINVAL;
1922 /* We only support 2 level event channels for now */
1923 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1924 return -EINVAL;
1927 * Xen gives us interesting mappings from vCPU index to APIC ID,
1928 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1929 * to find it. Do that once at setup time, instead of every time.
1930 * But beware that on live update / live migration, the routing
1931 * table might be reinstated before the vCPU threads have finished
1932 * recreating their vCPUs.
1934 vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1935 if (vcpu)
1936 e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1937 else
1938 e->xen_evtchn.vcpu_idx = -1;
1940 e->xen_evtchn.port = ue->u.xen_evtchn.port;
1941 e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1942 e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1943 e->set = evtchn_set_fn;
1945 return 0;
1949 * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1951 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1953 struct kvm_xen_evtchn e;
1954 int ret;
1956 if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1957 return -EINVAL;
1959 /* We only support 2 level event channels for now */
1960 if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1961 return -EINVAL;
1963 e.port = uxe->port;
1964 e.vcpu_id = uxe->vcpu;
1965 e.vcpu_idx = -1;
1966 e.priority = uxe->priority;
1968 ret = kvm_xen_set_evtchn(&e, kvm);
1971 * None of that 'return 1 if it actually got delivered' nonsense.
1972 * We don't care if it was masked (-ENOTCONN) either.
1974 if (ret > 0 || ret == -ENOTCONN)
1975 ret = 0;
1977 return ret;
1981 * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1983 struct evtchnfd {
1984 u32 send_port;
1985 u32 type;
1986 union {
1987 struct kvm_xen_evtchn port;
1988 struct {
1989 u32 port; /* zero */
1990 struct eventfd_ctx *ctx;
1991 } eventfd;
1992 } deliver;
1996 * Update target vCPU or priority for a registered sending channel.
1998 static int kvm_xen_eventfd_update(struct kvm *kvm,
1999 struct kvm_xen_hvm_attr *data)
2001 u32 port = data->u.evtchn.send_port;
2002 struct evtchnfd *evtchnfd;
2003 int ret;
2005 /* Protect writes to evtchnfd as well as the idr lookup. */
2006 mutex_lock(&kvm->arch.xen.xen_lock);
2007 evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
2009 ret = -ENOENT;
2010 if (!evtchnfd)
2011 goto out_unlock;
2013 /* For an UPDATE, nothing may change except the priority/vcpu */
2014 ret = -EINVAL;
2015 if (evtchnfd->type != data->u.evtchn.type)
2016 goto out_unlock;
2019 * Port cannot change, and if it's zero that was an eventfd
2020 * which can't be changed either.
2022 if (!evtchnfd->deliver.port.port ||
2023 evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
2024 goto out_unlock;
2026 /* We only support 2 level event channels for now */
2027 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
2028 goto out_unlock;
2030 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
2031 if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
2032 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
2033 evtchnfd->deliver.port.vcpu_idx = -1;
2035 ret = 0;
2036 out_unlock:
2037 mutex_unlock(&kvm->arch.xen.xen_lock);
2038 return ret;
2042 * Configure the target (eventfd or local port delivery) for sending on
2043 * a given event channel.
2045 static int kvm_xen_eventfd_assign(struct kvm *kvm,
2046 struct kvm_xen_hvm_attr *data)
2048 u32 port = data->u.evtchn.send_port;
2049 struct eventfd_ctx *eventfd = NULL;
2050 struct evtchnfd *evtchnfd;
2051 int ret = -EINVAL;
2053 evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
2054 if (!evtchnfd)
2055 return -ENOMEM;
2057 switch(data->u.evtchn.type) {
2058 case EVTCHNSTAT_ipi:
2059 /* IPI must map back to the same port# */
2060 if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
2061 goto out_noeventfd; /* -EINVAL */
2062 break;
2064 case EVTCHNSTAT_interdomain:
2065 if (data->u.evtchn.deliver.port.port) {
2066 if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
2067 goto out_noeventfd; /* -EINVAL */
2068 } else {
2069 eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
2070 if (IS_ERR(eventfd)) {
2071 ret = PTR_ERR(eventfd);
2072 goto out_noeventfd;
2075 break;
2077 case EVTCHNSTAT_virq:
2078 case EVTCHNSTAT_closed:
2079 case EVTCHNSTAT_unbound:
2080 case EVTCHNSTAT_pirq:
2081 default: /* Unknown event channel type */
2082 goto out; /* -EINVAL */
2085 evtchnfd->send_port = data->u.evtchn.send_port;
2086 evtchnfd->type = data->u.evtchn.type;
2087 if (eventfd) {
2088 evtchnfd->deliver.eventfd.ctx = eventfd;
2089 } else {
2090 /* We only support 2 level event channels for now */
2091 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
2092 goto out; /* -EINVAL; */
2094 evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
2095 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
2096 evtchnfd->deliver.port.vcpu_idx = -1;
2097 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
2100 mutex_lock(&kvm->arch.xen.xen_lock);
2101 ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
2102 GFP_KERNEL);
2103 mutex_unlock(&kvm->arch.xen.xen_lock);
2104 if (ret >= 0)
2105 return 0;
2107 if (ret == -ENOSPC)
2108 ret = -EEXIST;
2109 out:
2110 if (eventfd)
2111 eventfd_ctx_put(eventfd);
2112 out_noeventfd:
2113 kfree(evtchnfd);
2114 return ret;
2117 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
2119 struct evtchnfd *evtchnfd;
2121 mutex_lock(&kvm->arch.xen.xen_lock);
2122 evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
2123 mutex_unlock(&kvm->arch.xen.xen_lock);
2125 if (!evtchnfd)
2126 return -ENOENT;
2128 synchronize_srcu(&kvm->srcu);
2129 if (!evtchnfd->deliver.port.port)
2130 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2131 kfree(evtchnfd);
2132 return 0;
2135 static int kvm_xen_eventfd_reset(struct kvm *kvm)
2137 struct evtchnfd *evtchnfd, **all_evtchnfds;
2138 int i;
2139 int n = 0;
2141 mutex_lock(&kvm->arch.xen.xen_lock);
2144 * Because synchronize_srcu() cannot be called inside the
2145 * critical section, first collect all the evtchnfd objects
2146 * in an array as they are removed from evtchn_ports.
2148 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i)
2149 n++;
2151 all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL);
2152 if (!all_evtchnfds) {
2153 mutex_unlock(&kvm->arch.xen.xen_lock);
2154 return -ENOMEM;
2157 n = 0;
2158 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2159 all_evtchnfds[n++] = evtchnfd;
2160 idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
2162 mutex_unlock(&kvm->arch.xen.xen_lock);
2164 synchronize_srcu(&kvm->srcu);
2166 while (n--) {
2167 evtchnfd = all_evtchnfds[n];
2168 if (!evtchnfd->deliver.port.port)
2169 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2170 kfree(evtchnfd);
2172 kfree(all_evtchnfds);
2174 return 0;
2177 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
2179 u32 port = data->u.evtchn.send_port;
2181 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
2182 return kvm_xen_eventfd_reset(kvm);
2184 if (!port || port >= max_evtchn_port(kvm))
2185 return -EINVAL;
2187 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
2188 return kvm_xen_eventfd_deassign(kvm, port);
2189 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
2190 return kvm_xen_eventfd_update(kvm, data);
2191 if (data->u.evtchn.flags)
2192 return -EINVAL;
2194 return kvm_xen_eventfd_assign(kvm, data);
2197 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2199 struct evtchnfd *evtchnfd;
2200 struct evtchn_send send;
2201 struct x86_exception e;
2203 /* Sanity check: this structure is the same for 32-bit and 64-bit */
2204 BUILD_BUG_ON(sizeof(send) != 4);
2205 if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) {
2206 *r = -EFAULT;
2207 return true;
2211 * evtchnfd is protected by kvm->srcu; the idr lookup instead
2212 * is protected by RCU.
2214 rcu_read_lock();
2215 evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
2216 rcu_read_unlock();
2217 if (!evtchnfd)
2218 return false;
2220 if (evtchnfd->deliver.port.port) {
2221 int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
2222 if (ret < 0 && ret != -ENOTCONN)
2223 return false;
2224 } else {
2225 eventfd_signal(evtchnfd->deliver.eventfd.ctx);
2228 *r = 0;
2229 return true;
2232 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2234 vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2235 vcpu->arch.xen.poll_evtchn = 0;
2237 timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2239 kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm);
2240 kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm);
2241 kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm);
2242 kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm);
2245 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2247 if (kvm_xen_timer_enabled(vcpu))
2248 kvm_xen_stop_timer(vcpu);
2250 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
2251 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
2252 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
2253 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
2255 del_timer_sync(&vcpu->arch.xen.poll_timer);
2258 void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu)
2260 struct kvm_cpuid_entry2 *entry;
2261 u32 function;
2263 if (!vcpu->arch.xen.cpuid.base)
2264 return;
2266 function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3);
2267 if (function > vcpu->arch.xen.cpuid.limit)
2268 return;
2270 entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
2271 if (entry) {
2272 entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul;
2273 entry->edx = vcpu->arch.hv_clock.tsc_shift;
2276 entry = kvm_find_cpuid_entry_index(vcpu, function, 2);
2277 if (entry)
2278 entry->eax = vcpu->arch.hw_tsc_khz;
2281 void kvm_xen_init_vm(struct kvm *kvm)
2283 mutex_init(&kvm->arch.xen.xen_lock);
2284 idr_init(&kvm->arch.xen.evtchn_ports);
2285 kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm);
2288 void kvm_xen_destroy_vm(struct kvm *kvm)
2290 struct evtchnfd *evtchnfd;
2291 int i;
2293 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
2295 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2296 if (!evtchnfd->deliver.port.port)
2297 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2298 kfree(evtchnfd);
2300 idr_destroy(&kvm->arch.xen.evtchn_ports);
2302 if (kvm->arch.xen_hvm_config.msr)
2303 static_branch_slow_dec_deferred(&kvm_xen_enabled);