1 // SPDX-License-Identifier: GPL-2.0
2 /*---------------------------------------------------------------------------+
5 | Computation of an approximation of the sin function and the cosine |
6 | function by a polynomial. |
8 | Copyright (C) 1992,1993,1994,1997,1999 |
9 | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
10 | E-mail billm@melbpc.org.au |
13 +---------------------------------------------------------------------------*/
15 #include "exception.h"
16 #include "reg_constant.h"
18 #include "fpu_system.h"
19 #include "control_w.h"
25 static const unsigned long long pos_terms_l
[N_COEFF_P
] = {
32 static const unsigned long long neg_terms_l
[N_COEFF_N
] = {
41 static const unsigned long long pos_terms_h
[N_COEFF_PH
] = {
48 static const unsigned long long neg_terms_h
[N_COEFF_NH
] = {
55 /*--- poly_sine() -----------------------------------------------------------+
57 +---------------------------------------------------------------------------*/
58 void poly_sine(FPU_REG
*st0_ptr
)
60 int exponent
, echange
;
61 Xsig accumulator
, argSqrd
, argTo4
;
62 unsigned long fix_up
, adj
;
63 unsigned long long fixed_arg
;
66 exponent
= exponent(st0_ptr
);
68 accumulator
.lsw
= accumulator
.midw
= accumulator
.msw
= 0;
70 /* Split into two ranges, for arguments below and above 1.0 */
71 /* The boundary between upper and lower is approx 0.88309101259 */
73 || ((exponent
== -1) && (st0_ptr
->sigh
<= 0xe21240aa))) {
74 /* The argument is <= 0.88309101259 */
76 argSqrd
.msw
= st0_ptr
->sigh
;
77 argSqrd
.midw
= st0_ptr
->sigl
;
79 mul64_Xsig(&argSqrd
, &significand(st0_ptr
));
80 shr_Xsig(&argSqrd
, 2 * (-1 - exponent
));
81 argTo4
.msw
= argSqrd
.msw
;
82 argTo4
.midw
= argSqrd
.midw
;
83 argTo4
.lsw
= argSqrd
.lsw
;
84 mul_Xsig_Xsig(&argTo4
, &argTo4
);
86 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), neg_terms_l
,
88 mul_Xsig_Xsig(&accumulator
, &argSqrd
);
89 negate_Xsig(&accumulator
);
91 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), pos_terms_l
,
94 shr_Xsig(&accumulator
, 2); /* Divide by four */
95 accumulator
.msw
|= 0x80000000; /* Add 1.0 */
97 mul64_Xsig(&accumulator
, &significand(st0_ptr
));
98 mul64_Xsig(&accumulator
, &significand(st0_ptr
));
99 mul64_Xsig(&accumulator
, &significand(st0_ptr
));
101 /* Divide by four, FPU_REG compatible, etc */
102 exponent
= 3 * exponent
;
104 /* The minimum exponent difference is 3 */
105 shr_Xsig(&accumulator
, exponent(st0_ptr
) - exponent
);
107 negate_Xsig(&accumulator
);
108 XSIG_LL(accumulator
) += significand(st0_ptr
);
110 echange
= round_Xsig(&accumulator
);
112 setexponentpos(&result
, exponent(st0_ptr
) + echange
);
114 /* The argument is > 0.88309101259 */
115 /* We use sin(st(0)) = cos(pi/2-st(0)) */
117 fixed_arg
= significand(st0_ptr
);
120 /* The argument is >= 1.0 */
122 /* Put the binary point at the left. */
125 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
126 fixed_arg
= 0x921fb54442d18469LL
- fixed_arg
;
127 /* There is a special case which arises due to rounding, to fix here. */
128 if (fixed_arg
== 0xffffffffffffffffLL
)
131 XSIG_LL(argSqrd
) = fixed_arg
;
133 mul64_Xsig(&argSqrd
, &fixed_arg
);
135 XSIG_LL(argTo4
) = XSIG_LL(argSqrd
);
136 argTo4
.lsw
= argSqrd
.lsw
;
137 mul_Xsig_Xsig(&argTo4
, &argTo4
);
139 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), neg_terms_h
,
141 mul_Xsig_Xsig(&accumulator
, &argSqrd
);
142 negate_Xsig(&accumulator
);
144 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), pos_terms_h
,
146 negate_Xsig(&accumulator
);
148 mul64_Xsig(&accumulator
, &fixed_arg
);
149 mul64_Xsig(&accumulator
, &fixed_arg
);
151 shr_Xsig(&accumulator
, 3);
152 negate_Xsig(&accumulator
);
154 add_Xsig_Xsig(&accumulator
, &argSqrd
);
156 shr_Xsig(&accumulator
, 1);
158 accumulator
.lsw
|= 1; /* A zero accumulator here would cause problems */
159 negate_Xsig(&accumulator
);
161 /* The basic computation is complete. Now fix the answer to
162 compensate for the error due to the approximation used for
166 /* This has an exponent of -65 */
168 /* The fix-up needs to be improved for larger args */
169 if (argSqrd
.msw
& 0xffc00000) {
170 /* Get about 32 bit precision in these: */
171 fix_up
-= mul_32_32(0x898cc517, argSqrd
.msw
) / 6;
173 fix_up
= mul_32_32(fix_up
, LL_MSW(fixed_arg
));
175 adj
= accumulator
.lsw
; /* temp save */
176 accumulator
.lsw
-= fix_up
;
177 if (accumulator
.lsw
> adj
)
178 XSIG_LL(accumulator
)--;
180 echange
= round_Xsig(&accumulator
);
182 setexponentpos(&result
, echange
- 1);
185 significand(&result
) = XSIG_LL(accumulator
);
186 setsign(&result
, getsign(st0_ptr
));
187 FPU_copy_to_reg0(&result
, TAG_Valid
);
190 if ((exponent(&result
) >= 0)
191 && (significand(&result
) > 0x8000000000000000LL
)) {
192 EXCEPTION(EX_INTERNAL
| 0x150);
194 #endif /* PARANOID */
198 /*--- poly_cos() ------------------------------------------------------------+
200 +---------------------------------------------------------------------------*/
201 void poly_cos(FPU_REG
*st0_ptr
)
204 long int exponent
, exp2
, echange
;
205 Xsig accumulator
, argSqrd
, fix_up
, argTo4
;
206 unsigned long long fixed_arg
;
209 if ((exponent(st0_ptr
) > 0)
210 || ((exponent(st0_ptr
) == 0)
211 && (significand(st0_ptr
) > 0xc90fdaa22168c234LL
))) {
212 EXCEPTION(EX_Invalid
);
213 FPU_copy_to_reg0(&CONST_QNaN
, TAG_Special
);
216 #endif /* PARANOID */
218 exponent
= exponent(st0_ptr
);
220 accumulator
.lsw
= accumulator
.midw
= accumulator
.msw
= 0;
223 || ((exponent
== -1) && (st0_ptr
->sigh
<= 0xb00d6f54))) {
224 /* arg is < 0.687705 */
226 argSqrd
.msw
= st0_ptr
->sigh
;
227 argSqrd
.midw
= st0_ptr
->sigl
;
229 mul64_Xsig(&argSqrd
, &significand(st0_ptr
));
232 /* shift the argument right by the required places */
233 shr_Xsig(&argSqrd
, 2 * (-1 - exponent
));
236 argTo4
.msw
= argSqrd
.msw
;
237 argTo4
.midw
= argSqrd
.midw
;
238 argTo4
.lsw
= argSqrd
.lsw
;
239 mul_Xsig_Xsig(&argTo4
, &argTo4
);
241 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), neg_terms_h
,
243 mul_Xsig_Xsig(&accumulator
, &argSqrd
);
244 negate_Xsig(&accumulator
);
246 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), pos_terms_h
,
248 negate_Xsig(&accumulator
);
250 mul64_Xsig(&accumulator
, &significand(st0_ptr
));
251 mul64_Xsig(&accumulator
, &significand(st0_ptr
));
252 shr_Xsig(&accumulator
, -2 * (1 + exponent
));
254 shr_Xsig(&accumulator
, 3);
255 negate_Xsig(&accumulator
);
257 add_Xsig_Xsig(&accumulator
, &argSqrd
);
259 shr_Xsig(&accumulator
, 1);
261 /* It doesn't matter if accumulator is all zero here, the
262 following code will work ok */
263 negate_Xsig(&accumulator
);
265 if (accumulator
.lsw
& 0x80000000)
266 XSIG_LL(accumulator
)++;
267 if (accumulator
.msw
== 0) {
268 /* The result is 1.0 */
269 FPU_copy_to_reg0(&CONST_1
, TAG_Valid
);
272 significand(&result
) = XSIG_LL(accumulator
);
274 /* will be a valid positive nr with expon = -1 */
275 setexponentpos(&result
, -1);
278 fixed_arg
= significand(st0_ptr
);
281 /* The argument is >= 1.0 */
283 /* Put the binary point at the left. */
286 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
287 fixed_arg
= 0x921fb54442d18469LL
- fixed_arg
;
288 /* There is a special case which arises due to rounding, to fix here. */
289 if (fixed_arg
== 0xffffffffffffffffLL
)
295 /* A shift is needed here only for a narrow range of arguments,
296 i.e. for fixed_arg approx 2^-32, but we pick up more... */
297 if (!(LL_MSW(fixed_arg
) & 0xffff0000)) {
303 XSIG_LL(argSqrd
) = fixed_arg
;
305 mul64_Xsig(&argSqrd
, &fixed_arg
);
308 /* shift the argument right by the required places */
309 shr_Xsig(&argSqrd
, 2 * (-1 - exponent
));
312 argTo4
.msw
= argSqrd
.msw
;
313 argTo4
.midw
= argSqrd
.midw
;
314 argTo4
.lsw
= argSqrd
.lsw
;
315 mul_Xsig_Xsig(&argTo4
, &argTo4
);
317 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), neg_terms_l
,
319 mul_Xsig_Xsig(&accumulator
, &argSqrd
);
320 negate_Xsig(&accumulator
);
322 polynomial_Xsig(&accumulator
, &XSIG_LL(argTo4
), pos_terms_l
,
325 shr_Xsig(&accumulator
, 2); /* Divide by four */
326 accumulator
.msw
|= 0x80000000; /* Add 1.0 */
328 mul64_Xsig(&accumulator
, &fixed_arg
);
329 mul64_Xsig(&accumulator
, &fixed_arg
);
330 mul64_Xsig(&accumulator
, &fixed_arg
);
332 /* Divide by four, FPU_REG compatible, etc */
333 exponent
= 3 * exponent
;
335 /* The minimum exponent difference is 3 */
336 shr_Xsig(&accumulator
, exp2
- exponent
);
338 negate_Xsig(&accumulator
);
339 XSIG_LL(accumulator
) += fixed_arg
;
341 /* The basic computation is complete. Now fix the answer to
342 compensate for the error due to the approximation used for
346 /* This has an exponent of -65 */
347 XSIG_LL(fix_up
) = 0x898cc51701b839a2ll
;
350 /* The fix-up needs to be improved for larger args */
351 if (argSqrd
.msw
& 0xffc00000) {
352 /* Get about 32 bit precision in these: */
353 fix_up
.msw
-= mul_32_32(0x898cc517, argSqrd
.msw
) / 2;
354 fix_up
.msw
+= mul_32_32(0x898cc517, argTo4
.msw
) / 24;
357 exp2
+= norm_Xsig(&accumulator
);
358 shr_Xsig(&accumulator
, 1); /* Prevent overflow */
360 shr_Xsig(&fix_up
, 65 + exp2
);
362 add_Xsig_Xsig(&accumulator
, &fix_up
);
364 echange
= round_Xsig(&accumulator
);
366 setexponentpos(&result
, exp2
+ echange
);
367 significand(&result
) = XSIG_LL(accumulator
);
370 FPU_copy_to_reg0(&result
, TAG_Valid
);
373 if ((exponent(&result
) >= 0)
374 && (significand(&result
) > 0x8000000000000000LL
)) {
375 EXCEPTION(EX_INTERNAL
| 0x151);
377 #endif /* PARANOID */