1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/memblock.h> /* max_low_pfn */
12 #include <linux/kfence.h> /* kfence_handle_page_fault */
13 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
14 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
15 #include <linux/perf_event.h> /* perf_sw_event */
16 #include <linux/hugetlb.h> /* hstate_index_to_shift */
17 #include <linux/prefetch.h> /* prefetchw */
18 #include <linux/context_tracking.h> /* exception_enter(), ... */
19 #include <linux/uaccess.h> /* faulthandler_disabled() */
20 #include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
21 #include <linux/mm_types.h>
22 #include <linux/mm.h> /* find_and_lock_vma() */
23 #include <linux/vmalloc.h>
25 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
26 #include <asm/traps.h> /* dotraplinkage, ... */
27 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
28 #include <asm/vsyscall.h> /* emulate_vsyscall */
29 #include <asm/vm86.h> /* struct vm86 */
30 #include <asm/mmu_context.h> /* vma_pkey() */
31 #include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/
32 #include <asm/desc.h> /* store_idt(), ... */
33 #include <asm/cpu_entry_area.h> /* exception stack */
34 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
35 #include <asm/kvm_para.h> /* kvm_handle_async_pf */
36 #include <asm/vdso.h> /* fixup_vdso_exception() */
37 #include <asm/irq_stack.h>
39 #include <asm/sev.h> /* snp_dump_hva_rmpentry() */
41 #define CREATE_TRACE_POINTS
42 #include <asm/trace/exceptions.h>
45 * Returns 0 if mmiotrace is disabled, or if the fault is not
46 * handled by mmiotrace:
48 static nokprobe_inline
int
49 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
51 if (unlikely(is_kmmio_active()))
52 if (kmmio_handler(regs
, addr
) == 1)
62 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
63 * Check that here and ignore it. This is AMD erratum #91.
67 * Sometimes the CPU reports invalid exceptions on prefetch.
68 * Check that here and ignore it.
70 * Opcode checker based on code by Richard Brunner.
73 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
74 unsigned char opcode
, int *prefetch
)
76 unsigned char instr_hi
= opcode
& 0xf0;
77 unsigned char instr_lo
= opcode
& 0x0f;
83 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
84 * In X86_64 long mode, the CPU will signal invalid
85 * opcode if some of these prefixes are present so
86 * X86_64 will never get here anyway
88 return ((instr_lo
& 7) == 0x6);
92 * In 64-bit mode 0x40..0x4F are valid REX prefixes
94 return (!user_mode(regs
) || user_64bit_mode(regs
));
97 /* 0x64 thru 0x67 are valid prefixes in all modes. */
98 return (instr_lo
& 0xC) == 0x4;
100 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
101 return !instr_lo
|| (instr_lo
>>1) == 1;
103 /* Prefetch instruction is 0x0F0D or 0x0F18 */
104 if (get_kernel_nofault(opcode
, instr
))
107 *prefetch
= (instr_lo
== 0xF) &&
108 (opcode
== 0x0D || opcode
== 0x18);
115 static bool is_amd_k8_pre_npt(void)
117 struct cpuinfo_x86
*c
= &boot_cpu_data
;
119 return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD
) &&
120 c
->x86_vendor
== X86_VENDOR_AMD
&&
121 c
->x86
== 0xf && c
->x86_model
< 0x40);
125 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
127 unsigned char *max_instr
;
128 unsigned char *instr
;
131 /* Erratum #91 affects AMD K8, pre-NPT CPUs */
132 if (!is_amd_k8_pre_npt())
136 * If it was a exec (instruction fetch) fault on NX page, then
137 * do not ignore the fault:
139 if (error_code
& X86_PF_INSTR
)
142 instr
= (void *)convert_ip_to_linear(current
, regs
);
143 max_instr
= instr
+ 15;
146 * This code has historically always bailed out if IP points to a
147 * not-present page (e.g. due to a race). No one has ever
148 * complained about this.
152 while (instr
< max_instr
) {
153 unsigned char opcode
;
155 if (user_mode(regs
)) {
156 if (get_user(opcode
, (unsigned char __user
*) instr
))
159 if (get_kernel_nofault(opcode
, instr
))
165 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
173 DEFINE_SPINLOCK(pgd_lock
);
177 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
179 unsigned index
= pgd_index(address
);
186 pgd_k
= init_mm
.pgd
+ index
;
188 if (!pgd_present(*pgd_k
))
192 * set_pgd(pgd, *pgd_k); here would be useless on PAE
193 * and redundant with the set_pmd() on non-PAE. As would
196 p4d
= p4d_offset(pgd
, address
);
197 p4d_k
= p4d_offset(pgd_k
, address
);
198 if (!p4d_present(*p4d_k
))
201 pud
= pud_offset(p4d
, address
);
202 pud_k
= pud_offset(p4d_k
, address
);
203 if (!pud_present(*pud_k
))
206 pmd
= pmd_offset(pud
, address
);
207 pmd_k
= pmd_offset(pud_k
, address
);
209 if (pmd_present(*pmd
) != pmd_present(*pmd_k
))
210 set_pmd(pmd
, *pmd_k
);
212 if (!pmd_present(*pmd_k
))
215 BUG_ON(pmd_pfn(*pmd
) != pmd_pfn(*pmd_k
));
221 * Handle a fault on the vmalloc or module mapping area
223 * This is needed because there is a race condition between the time
224 * when the vmalloc mapping code updates the PMD to the point in time
225 * where it synchronizes this update with the other page-tables in the
228 * In this race window another thread/CPU can map an area on the same
229 * PMD, finds it already present and does not synchronize it with the
230 * rest of the system yet. As a result v[mz]alloc might return areas
231 * which are not mapped in every page-table in the system, causing an
232 * unhandled page-fault when they are accessed.
234 static noinline
int vmalloc_fault(unsigned long address
)
236 unsigned long pgd_paddr
;
240 /* Make sure we are in vmalloc area: */
241 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
245 * Synchronize this task's top level page-table
246 * with the 'reference' page table.
248 * Do _not_ use "current" here. We might be inside
249 * an interrupt in the middle of a task switch..
251 pgd_paddr
= read_cr3_pa();
252 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
256 if (pmd_leaf(*pmd_k
))
259 pte_k
= pte_offset_kernel(pmd_k
, address
);
260 if (!pte_present(*pte_k
))
265 NOKPROBE_SYMBOL(vmalloc_fault
);
267 void arch_sync_kernel_mappings(unsigned long start
, unsigned long end
)
271 for (addr
= start
& PMD_MASK
;
272 addr
>= TASK_SIZE_MAX
&& addr
< VMALLOC_END
;
276 spin_lock(&pgd_lock
);
277 list_for_each_entry(page
, &pgd_list
, lru
) {
278 spinlock_t
*pgt_lock
;
280 /* the pgt_lock only for Xen */
281 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
284 vmalloc_sync_one(page_address(page
), addr
);
285 spin_unlock(pgt_lock
);
287 spin_unlock(&pgd_lock
);
291 static bool low_pfn(unsigned long pfn
)
293 return pfn
< max_low_pfn
;
296 static void dump_pagetable(unsigned long address
)
298 pgd_t
*base
= __va(read_cr3_pa());
299 pgd_t
*pgd
= &base
[pgd_index(address
)];
305 #ifdef CONFIG_X86_PAE
306 pr_info("*pdpt = %016Lx ", pgd_val(*pgd
));
307 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
309 #define pr_pde pr_cont
311 #define pr_pde pr_info
313 p4d
= p4d_offset(pgd
, address
);
314 pud
= pud_offset(p4d
, address
);
315 pmd
= pmd_offset(pud
, address
);
316 pr_pde("*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
320 * We must not directly access the pte in the highpte
321 * case if the page table is located in highmem.
322 * And let's rather not kmap-atomic the pte, just in case
323 * it's allocated already:
325 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_leaf(*pmd
))
328 pte
= pte_offset_kernel(pmd
, address
);
329 pr_cont("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
334 #else /* CONFIG_X86_64: */
336 #ifdef CONFIG_CPU_SUP_AMD
337 static const char errata93_warning
[] =
339 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
340 "******* Working around it, but it may cause SEGVs or burn power.\n"
341 "******* Please consider a BIOS update.\n"
342 "******* Disabling USB legacy in the BIOS may also help.\n";
345 static int bad_address(void *p
)
349 return get_kernel_nofault(dummy
, (unsigned long *)p
);
352 static void dump_pagetable(unsigned long address
)
354 pgd_t
*base
= __va(read_cr3_pa());
355 pgd_t
*pgd
= base
+ pgd_index(address
);
361 if (bad_address(pgd
))
364 pr_info("PGD %lx ", pgd_val(*pgd
));
366 if (!pgd_present(*pgd
))
369 p4d
= p4d_offset(pgd
, address
);
370 if (bad_address(p4d
))
373 pr_cont("P4D %lx ", p4d_val(*p4d
));
374 if (!p4d_present(*p4d
) || p4d_leaf(*p4d
))
377 pud
= pud_offset(p4d
, address
);
378 if (bad_address(pud
))
381 pr_cont("PUD %lx ", pud_val(*pud
));
382 if (!pud_present(*pud
) || pud_leaf(*pud
))
385 pmd
= pmd_offset(pud
, address
);
386 if (bad_address(pmd
))
389 pr_cont("PMD %lx ", pmd_val(*pmd
));
390 if (!pmd_present(*pmd
) || pmd_leaf(*pmd
))
393 pte
= pte_offset_kernel(pmd
, address
);
394 if (bad_address(pte
))
397 pr_cont("PTE %lx", pte_val(*pte
));
405 #endif /* CONFIG_X86_64 */
408 * Workaround for K8 erratum #93 & buggy BIOS.
410 * BIOS SMM functions are required to use a specific workaround
411 * to avoid corruption of the 64bit RIP register on C stepping K8.
413 * A lot of BIOS that didn't get tested properly miss this.
415 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
416 * Try to work around it here.
418 * Note we only handle faults in kernel here.
419 * Does nothing on 32-bit.
421 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
423 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
424 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
425 || boot_cpu_data
.x86
!= 0xf)
431 if (address
!= regs
->ip
)
434 if ((address
>> 32) != 0)
437 address
|= 0xffffffffUL
<< 32;
438 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
439 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
440 printk_once(errata93_warning
);
449 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
450 * to illegal addresses >4GB.
452 * We catch this in the page fault handler because these addresses
453 * are not reachable. Just detect this case and return. Any code
454 * segment in LDT is compatibility mode.
456 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
459 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
465 /* Pentium F0 0F C7 C8 bug workaround: */
466 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long error_code
,
467 unsigned long address
)
469 #ifdef CONFIG_X86_F00F_BUG
470 if (boot_cpu_has_bug(X86_BUG_F00F
) && !(error_code
& X86_PF_USER
) &&
471 idt_is_f00f_address(address
)) {
472 handle_invalid_op(regs
);
479 static void show_ldttss(const struct desc_ptr
*gdt
, const char *name
, u16 index
)
481 u32 offset
= (index
>> 3) * sizeof(struct desc_struct
);
483 struct ldttss_desc desc
;
486 pr_alert("%s: NULL\n", name
);
490 if (offset
+ sizeof(struct ldttss_desc
) >= gdt
->size
) {
491 pr_alert("%s: 0x%hx -- out of bounds\n", name
, index
);
495 if (copy_from_kernel_nofault(&desc
, (void *)(gdt
->address
+ offset
),
496 sizeof(struct ldttss_desc
))) {
497 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
502 addr
= desc
.base0
| (desc
.base1
<< 16) | ((unsigned long)desc
.base2
<< 24);
504 addr
|= ((u64
)desc
.base3
<< 32);
506 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
507 name
, index
, addr
, (desc
.limit0
| (desc
.limit1
<< 16)));
511 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
513 if (!oops_may_print())
516 if (error_code
& X86_PF_INSTR
) {
522 pgd
= __va(read_cr3_pa());
523 pgd
+= pgd_index(address
);
525 pte
= lookup_address_in_pgd_attr(pgd
, address
, &level
, &nx
, &rw
);
527 if (pte
&& pte_present(*pte
) && (!pte_exec(*pte
) || nx
))
528 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
529 from_kuid(&init_user_ns
, current_uid()));
530 if (pte
&& pte_present(*pte
) && pte_exec(*pte
) && !nx
&&
531 (pgd_flags(*pgd
) & _PAGE_USER
) &&
532 (__read_cr4() & X86_CR4_SMEP
))
533 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
534 from_kuid(&init_user_ns
, current_uid()));
537 if (address
< PAGE_SIZE
&& !user_mode(regs
))
538 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
541 pr_alert("BUG: unable to handle page fault for address: %px\n",
544 pr_alert("#PF: %s %s in %s mode\n",
545 (error_code
& X86_PF_USER
) ? "user" : "supervisor",
546 (error_code
& X86_PF_INSTR
) ? "instruction fetch" :
547 (error_code
& X86_PF_WRITE
) ? "write access" :
549 user_mode(regs
) ? "user" : "kernel");
550 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code
,
551 !(error_code
& X86_PF_PROT
) ? "not-present page" :
552 (error_code
& X86_PF_RSVD
) ? "reserved bit violation" :
553 (error_code
& X86_PF_PK
) ? "protection keys violation" :
554 (error_code
& X86_PF_RMP
) ? "RMP violation" :
555 "permissions violation");
557 if (!(error_code
& X86_PF_USER
) && user_mode(regs
)) {
558 struct desc_ptr idt
, gdt
;
562 * This can happen for quite a few reasons. The more obvious
563 * ones are faults accessing the GDT, or LDT. Perhaps
564 * surprisingly, if the CPU tries to deliver a benign or
565 * contributory exception from user code and gets a page fault
566 * during delivery, the page fault can be delivered as though
567 * it originated directly from user code. This could happen
568 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
569 * kernel or IST stack.
573 /* Usable even on Xen PV -- it's just slow. */
574 native_store_gdt(&gdt
);
576 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
577 idt
.address
, idt
.size
, gdt
.address
, gdt
.size
);
580 show_ldttss(&gdt
, "LDTR", ldtr
);
583 show_ldttss(&gdt
, "TR", tr
);
586 dump_pagetable(address
);
588 if (error_code
& X86_PF_RMP
)
589 snp_dump_hva_rmpentry(address
);
593 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
594 unsigned long address
)
596 struct task_struct
*tsk
;
600 flags
= oops_begin();
604 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
606 dump_pagetable(address
);
608 if (__die("Bad pagetable", regs
, error_code
))
611 oops_end(flags
, regs
, sig
);
614 static void sanitize_error_code(unsigned long address
,
615 unsigned long *error_code
)
618 * To avoid leaking information about the kernel page
619 * table layout, pretend that user-mode accesses to
620 * kernel addresses are always protection faults.
622 * NB: This means that failed vsyscalls with vsyscall=none
623 * will have the PROT bit. This doesn't leak any
624 * information and does not appear to cause any problems.
626 if (address
>= TASK_SIZE_MAX
)
627 *error_code
|= X86_PF_PROT
;
630 static void set_signal_archinfo(unsigned long address
,
631 unsigned long error_code
)
633 struct task_struct
*tsk
= current
;
635 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
636 tsk
->thread
.error_code
= error_code
| X86_PF_USER
;
637 tsk
->thread
.cr2
= address
;
641 page_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
642 unsigned long address
)
644 #ifdef CONFIG_VMAP_STACK
645 struct stack_info info
;
650 if (user_mode(regs
)) {
652 * Implicit kernel access from user mode? Skip the stack
653 * overflow and EFI special cases.
658 #ifdef CONFIG_VMAP_STACK
660 * Stack overflow? During boot, we can fault near the initial
661 * stack in the direct map, but that's not an overflow -- check
662 * that we're in vmalloc space to avoid this.
664 if (is_vmalloc_addr((void *)address
) &&
665 get_stack_guard_info((void *)address
, &info
)) {
667 * We're likely to be running with very little stack space
668 * left. It's plausible that we'd hit this condition but
669 * double-fault even before we get this far, in which case
670 * we're fine: the double-fault handler will deal with it.
672 * We don't want to make it all the way into the oops code
673 * and then double-fault, though, because we're likely to
674 * break the console driver and lose most of the stack dump.
676 call_on_stack(__this_cpu_ist_top_va(DF
) - sizeof(void*),
677 handle_stack_overflow
,
679 , [arg1
] "r" (regs
), [arg2
] "r" (address
), [arg3
] "r" (&info
));
686 * Buggy firmware could access regions which might page fault. If
687 * this happens, EFI has a special OOPS path that will try to
688 * avoid hanging the system.
690 if (IS_ENABLED(CONFIG_EFI
))
691 efi_crash_gracefully_on_page_fault(address
);
693 /* Only not-present faults should be handled by KFENCE. */
694 if (!(error_code
& X86_PF_PROT
) &&
695 kfence_handle_page_fault(address
, error_code
& X86_PF_WRITE
, regs
))
700 * Oops. The kernel tried to access some bad page. We'll have to
701 * terminate things with extreme prejudice:
703 flags
= oops_begin();
705 show_fault_oops(regs
, error_code
, address
);
707 if (task_stack_end_corrupted(current
))
708 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
711 if (__die("Oops", regs
, error_code
))
714 /* Executive summary in case the body of the oops scrolled away */
715 printk(KERN_DEFAULT
"CR2: %016lx\n", address
);
717 oops_end(flags
, regs
, sig
);
721 kernelmode_fixup_or_oops(struct pt_regs
*regs
, unsigned long error_code
,
722 unsigned long address
, int signal
, int si_code
,
725 WARN_ON_ONCE(user_mode(regs
));
727 /* Are we prepared to handle this kernel fault? */
728 if (fixup_exception(regs
, X86_TRAP_PF
, error_code
, address
))
732 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
735 if (is_prefetch(regs
, error_code
, address
))
738 page_fault_oops(regs
, error_code
, address
);
742 * Print out info about fatal segfaults, if the show_unhandled_signals
746 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
747 unsigned long address
, struct task_struct
*tsk
)
749 const char *loglvl
= task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
;
750 /* This is a racy snapshot, but it's better than nothing. */
751 int cpu
= raw_smp_processor_id();
753 if (!unhandled_signal(tsk
, SIGSEGV
))
756 if (!printk_ratelimit())
759 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
760 loglvl
, tsk
->comm
, task_pid_nr(tsk
), address
,
761 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
763 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
766 * Dump the likely CPU where the fatal segfault happened.
767 * This can help identify faulty hardware.
769 printk(KERN_CONT
" likely on CPU %d (core %d, socket %d)", cpu
,
770 topology_core_id(cpu
), topology_physical_package_id(cpu
));
773 printk(KERN_CONT
"\n");
775 show_opcodes(regs
, loglvl
);
779 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
780 unsigned long address
, u32 pkey
, int si_code
)
782 struct task_struct
*tsk
= current
;
784 if (!user_mode(regs
)) {
785 kernelmode_fixup_or_oops(regs
, error_code
, address
,
786 SIGSEGV
, si_code
, pkey
);
790 if (!(error_code
& X86_PF_USER
)) {
791 /* Implicit user access to kernel memory -- just oops */
792 page_fault_oops(regs
, error_code
, address
);
797 * User mode accesses just cause a SIGSEGV.
798 * It's possible to have interrupts off here:
803 * Valid to do another page fault here because this one came
806 if (is_prefetch(regs
, error_code
, address
))
809 if (is_errata100(regs
, address
))
812 sanitize_error_code(address
, &error_code
);
814 if (fixup_vdso_exception(regs
, X86_TRAP_PF
, error_code
, address
))
817 if (likely(show_unhandled_signals
))
818 show_signal_msg(regs
, error_code
, address
, tsk
);
820 set_signal_archinfo(address
, error_code
);
822 if (si_code
== SEGV_PKUERR
)
823 force_sig_pkuerr((void __user
*)address
, pkey
);
825 force_sig_fault(SIGSEGV
, si_code
, (void __user
*)address
);
831 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
832 unsigned long address
)
834 __bad_area_nosemaphore(regs
, error_code
, address
, 0, SEGV_MAPERR
);
838 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
839 unsigned long address
, struct mm_struct
*mm
,
840 struct vm_area_struct
*vma
, u32 pkey
, int si_code
)
843 * Something tried to access memory that isn't in our memory map..
844 * Fix it, but check if it's kernel or user first..
847 mmap_read_unlock(mm
);
851 __bad_area_nosemaphore(regs
, error_code
, address
, pkey
, si_code
);
854 static inline bool bad_area_access_from_pkeys(unsigned long error_code
,
855 struct vm_area_struct
*vma
)
857 /* This code is always called on the current mm */
858 bool foreign
= false;
860 if (!cpu_feature_enabled(X86_FEATURE_OSPKE
))
862 if (error_code
& X86_PF_PK
)
864 /* this checks permission keys on the VMA: */
865 if (!arch_vma_access_permitted(vma
, (error_code
& X86_PF_WRITE
),
866 (error_code
& X86_PF_INSTR
), foreign
))
872 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
873 unsigned long address
, struct mm_struct
*mm
,
874 struct vm_area_struct
*vma
)
877 * This OSPKE check is not strictly necessary at runtime.
878 * But, doing it this way allows compiler optimizations
879 * if pkeys are compiled out.
881 if (bad_area_access_from_pkeys(error_code
, vma
)) {
883 * A protection key fault means that the PKRU value did not allow
884 * access to some PTE. Userspace can figure out what PKRU was
885 * from the XSAVE state. This function captures the pkey from
886 * the vma and passes it to userspace so userspace can discover
887 * which protection key was set on the PTE.
889 * If we get here, we know that the hardware signaled a X86_PF_PK
890 * fault and that there was a VMA once we got in the fault
891 * handler. It does *not* guarantee that the VMA we find here
892 * was the one that we faulted on.
894 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
895 * 2. T1 : set PKRU to deny access to pkey=4, touches page
897 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
898 * 5. T1 : enters fault handler, takes mmap_lock, etc...
899 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
900 * faulted on a pte with its pkey=4.
902 u32 pkey
= vma_pkey(vma
);
904 __bad_area(regs
, error_code
, address
, mm
, vma
, pkey
, SEGV_PKUERR
);
906 __bad_area(regs
, error_code
, address
, mm
, vma
, 0, SEGV_ACCERR
);
911 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
914 /* Kernel mode? Handle exceptions or die: */
915 if (!user_mode(regs
)) {
916 kernelmode_fixup_or_oops(regs
, error_code
, address
,
917 SIGBUS
, BUS_ADRERR
, ARCH_DEFAULT_PKEY
);
921 /* User-space => ok to do another page fault: */
922 if (is_prefetch(regs
, error_code
, address
))
925 sanitize_error_code(address
, &error_code
);
927 if (fixup_vdso_exception(regs
, X86_TRAP_PF
, error_code
, address
))
930 set_signal_archinfo(address
, error_code
);
932 #ifdef CONFIG_MEMORY_FAILURE
933 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
934 struct task_struct
*tsk
= current
;
938 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
939 tsk
->comm
, tsk
->pid
, address
);
940 if (fault
& VM_FAULT_HWPOISON_LARGE
)
941 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
942 if (fault
& VM_FAULT_HWPOISON
)
944 force_sig_mceerr(BUS_MCEERR_AR
, (void __user
*)address
, lsb
);
948 force_sig_fault(SIGBUS
, BUS_ADRERR
, (void __user
*)address
);
951 static int spurious_kernel_fault_check(unsigned long error_code
, pte_t
*pte
)
953 if ((error_code
& X86_PF_WRITE
) && !pte_write(*pte
))
956 if ((error_code
& X86_PF_INSTR
) && !pte_exec(*pte
))
963 * Handle a spurious fault caused by a stale TLB entry.
965 * This allows us to lazily refresh the TLB when increasing the
966 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
967 * eagerly is very expensive since that implies doing a full
968 * cross-processor TLB flush, even if no stale TLB entries exist
969 * on other processors.
971 * Spurious faults may only occur if the TLB contains an entry with
972 * fewer permission than the page table entry. Non-present (P = 0)
973 * and reserved bit (R = 1) faults are never spurious.
975 * There are no security implications to leaving a stale TLB when
976 * increasing the permissions on a page.
978 * Returns non-zero if a spurious fault was handled, zero otherwise.
980 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
981 * (Optional Invalidation).
984 spurious_kernel_fault(unsigned long error_code
, unsigned long address
)
994 * Only writes to RO or instruction fetches from NX may cause
997 * These could be from user or supervisor accesses but the TLB
998 * is only lazily flushed after a kernel mapping protection
999 * change, so user accesses are not expected to cause spurious
1002 if (error_code
!= (X86_PF_WRITE
| X86_PF_PROT
) &&
1003 error_code
!= (X86_PF_INSTR
| X86_PF_PROT
))
1006 pgd
= init_mm
.pgd
+ pgd_index(address
);
1007 if (!pgd_present(*pgd
))
1010 p4d
= p4d_offset(pgd
, address
);
1011 if (!p4d_present(*p4d
))
1015 return spurious_kernel_fault_check(error_code
, (pte_t
*) p4d
);
1017 pud
= pud_offset(p4d
, address
);
1018 if (!pud_present(*pud
))
1022 return spurious_kernel_fault_check(error_code
, (pte_t
*) pud
);
1024 pmd
= pmd_offset(pud
, address
);
1025 if (!pmd_present(*pmd
))
1029 return spurious_kernel_fault_check(error_code
, (pte_t
*) pmd
);
1031 pte
= pte_offset_kernel(pmd
, address
);
1032 if (!pte_present(*pte
))
1035 ret
= spurious_kernel_fault_check(error_code
, pte
);
1040 * Make sure we have permissions in PMD.
1041 * If not, then there's a bug in the page tables:
1043 ret
= spurious_kernel_fault_check(error_code
, (pte_t
*) pmd
);
1044 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
1048 NOKPROBE_SYMBOL(spurious_kernel_fault
);
1050 int show_unhandled_signals
= 1;
1053 access_error(unsigned long error_code
, struct vm_area_struct
*vma
)
1055 /* This is only called for the current mm, so: */
1056 bool foreign
= false;
1059 * Read or write was blocked by protection keys. This is
1060 * always an unconditional error and can never result in
1061 * a follow-up action to resolve the fault, like a COW.
1063 if (error_code
& X86_PF_PK
)
1067 * SGX hardware blocked the access. This usually happens
1068 * when the enclave memory contents have been destroyed, like
1069 * after a suspend/resume cycle. In any case, the kernel can't
1070 * fix the cause of the fault. Handle the fault as an access
1071 * error even in cases where no actual access violation
1072 * occurred. This allows userspace to rebuild the enclave in
1073 * response to the signal.
1075 if (unlikely(error_code
& X86_PF_SGX
))
1079 * Make sure to check the VMA so that we do not perform
1080 * faults just to hit a X86_PF_PK as soon as we fill in a
1083 if (!arch_vma_access_permitted(vma
, (error_code
& X86_PF_WRITE
),
1084 (error_code
& X86_PF_INSTR
), foreign
))
1088 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1089 * shadow stack VMAs. All other accesses result in an error.
1091 if (error_code
& X86_PF_SHSTK
) {
1092 if (unlikely(!(vma
->vm_flags
& VM_SHADOW_STACK
)))
1094 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
1099 if (error_code
& X86_PF_WRITE
) {
1100 /* write, present and write, not present: */
1101 if (unlikely(vma
->vm_flags
& VM_SHADOW_STACK
))
1103 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
1108 /* read, present: */
1109 if (unlikely(error_code
& X86_PF_PROT
))
1112 /* read, not present: */
1113 if (unlikely(!vma_is_accessible(vma
)))
1119 bool fault_in_kernel_space(unsigned long address
)
1122 * On 64-bit systems, the vsyscall page is at an address above
1123 * TASK_SIZE_MAX, but is not considered part of the kernel
1126 if (IS_ENABLED(CONFIG_X86_64
) && is_vsyscall_vaddr(address
))
1129 return address
>= TASK_SIZE_MAX
;
1133 * Called for all faults where 'address' is part of the kernel address
1134 * space. Might get called for faults that originate from *code* that
1135 * ran in userspace or the kernel.
1138 do_kern_addr_fault(struct pt_regs
*regs
, unsigned long hw_error_code
,
1139 unsigned long address
)
1142 * Protection keys exceptions only happen on user pages. We
1143 * have no user pages in the kernel portion of the address
1144 * space, so do not expect them here.
1146 WARN_ON_ONCE(hw_error_code
& X86_PF_PK
);
1148 #ifdef CONFIG_X86_32
1150 * We can fault-in kernel-space virtual memory on-demand. The
1151 * 'reference' page table is init_mm.pgd.
1153 * NOTE! We MUST NOT take any locks for this case. We may
1154 * be in an interrupt or a critical region, and should
1155 * only copy the information from the master page table,
1158 * Before doing this on-demand faulting, ensure that the
1159 * fault is not any of the following:
1160 * 1. A fault on a PTE with a reserved bit set.
1161 * 2. A fault caused by a user-mode access. (Do not demand-
1162 * fault kernel memory due to user-mode accesses).
1163 * 3. A fault caused by a page-level protection violation.
1164 * (A demand fault would be on a non-present page which
1165 * would have X86_PF_PROT==0).
1167 * This is only needed to close a race condition on x86-32 in
1168 * the vmalloc mapping/unmapping code. See the comment above
1169 * vmalloc_fault() for details. On x86-64 the race does not
1170 * exist as the vmalloc mappings don't need to be synchronized
1173 if (!(hw_error_code
& (X86_PF_RSVD
| X86_PF_USER
| X86_PF_PROT
))) {
1174 if (vmalloc_fault(address
) >= 0)
1179 if (is_f00f_bug(regs
, hw_error_code
, address
))
1182 /* Was the fault spurious, caused by lazy TLB invalidation? */
1183 if (spurious_kernel_fault(hw_error_code
, address
))
1186 /* kprobes don't want to hook the spurious faults: */
1187 if (WARN_ON_ONCE(kprobe_page_fault(regs
, X86_TRAP_PF
)))
1191 * Note, despite being a "bad area", there are quite a few
1192 * acceptable reasons to get here, such as erratum fixups
1193 * and handling kernel code that can fault, like get_user().
1195 * Don't take the mm semaphore here. If we fixup a prefetch
1196 * fault we could otherwise deadlock:
1198 bad_area_nosemaphore(regs
, hw_error_code
, address
);
1200 NOKPROBE_SYMBOL(do_kern_addr_fault
);
1203 * Handle faults in the user portion of the address space. Nothing in here
1204 * should check X86_PF_USER without a specific justification: for almost
1205 * all purposes, we should treat a normal kernel access to user memory
1206 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1207 * The one exception is AC flag handling, which is, per the x86
1208 * architecture, special for WRUSS.
1211 void do_user_addr_fault(struct pt_regs
*regs
,
1212 unsigned long error_code
,
1213 unsigned long address
)
1215 struct vm_area_struct
*vma
;
1216 struct task_struct
*tsk
;
1217 struct mm_struct
*mm
;
1219 unsigned int flags
= FAULT_FLAG_DEFAULT
;
1224 if (unlikely((error_code
& (X86_PF_USER
| X86_PF_INSTR
)) == X86_PF_INSTR
)) {
1226 * Whoops, this is kernel mode code trying to execute from
1227 * user memory. Unless this is AMD erratum #93, which
1228 * corrupts RIP such that it looks like a user address,
1229 * this is unrecoverable. Don't even try to look up the
1230 * VMA or look for extable entries.
1232 if (is_errata93(regs
, address
))
1235 page_fault_oops(regs
, error_code
, address
);
1239 /* kprobes don't want to hook the spurious faults: */
1240 if (WARN_ON_ONCE(kprobe_page_fault(regs
, X86_TRAP_PF
)))
1244 * Reserved bits are never expected to be set on
1245 * entries in the user portion of the page tables.
1247 if (unlikely(error_code
& X86_PF_RSVD
))
1248 pgtable_bad(regs
, error_code
, address
);
1251 * If SMAP is on, check for invalid kernel (supervisor) access to user
1252 * pages in the user address space. The odd case here is WRUSS,
1253 * which, according to the preliminary documentation, does not respect
1254 * SMAP and will have the USER bit set so, in all cases, SMAP
1255 * enforcement appears to be consistent with the USER bit.
1257 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP
) &&
1258 !(error_code
& X86_PF_USER
) &&
1259 !(regs
->flags
& X86_EFLAGS_AC
))) {
1261 * No extable entry here. This was a kernel access to an
1262 * invalid pointer. get_kernel_nofault() will not get here.
1264 page_fault_oops(regs
, error_code
, address
);
1269 * If we're in an interrupt, have no user context or are running
1270 * in a region with pagefaults disabled then we must not take the fault
1272 if (unlikely(faulthandler_disabled() || !mm
)) {
1273 bad_area_nosemaphore(regs
, error_code
, address
);
1277 /* Legacy check - remove this after verifying that it doesn't trigger */
1278 if (WARN_ON_ONCE(!(regs
->flags
& X86_EFLAGS_IF
))) {
1279 bad_area_nosemaphore(regs
, error_code
, address
);
1285 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
1288 * Read-only permissions can not be expressed in shadow stack PTEs.
1289 * Treat all shadow stack accesses as WRITE faults. This ensures
1290 * that the MM will prepare everything (e.g., break COW) such that
1291 * maybe_mkwrite() can create a proper shadow stack PTE.
1293 if (error_code
& X86_PF_SHSTK
)
1294 flags
|= FAULT_FLAG_WRITE
;
1295 if (error_code
& X86_PF_WRITE
)
1296 flags
|= FAULT_FLAG_WRITE
;
1297 if (error_code
& X86_PF_INSTR
)
1298 flags
|= FAULT_FLAG_INSTRUCTION
;
1301 * We set FAULT_FLAG_USER based on the register state, not
1302 * based on X86_PF_USER. User space accesses that cause
1303 * system page faults are still user accesses.
1305 if (user_mode(regs
))
1306 flags
|= FAULT_FLAG_USER
;
1308 #ifdef CONFIG_X86_64
1310 * Faults in the vsyscall page might need emulation. The
1311 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1312 * considered to be part of the user address space.
1314 * The vsyscall page does not have a "real" VMA, so do this
1315 * emulation before we go searching for VMAs.
1317 * PKRU never rejects instruction fetches, so we don't need
1318 * to consider the PF_PK bit.
1320 if (is_vsyscall_vaddr(address
)) {
1321 if (emulate_vsyscall(error_code
, regs
, address
))
1326 if (!(flags
& FAULT_FLAG_USER
))
1329 vma
= lock_vma_under_rcu(mm
, address
);
1333 if (unlikely(access_error(error_code
, vma
))) {
1334 bad_area_access_error(regs
, error_code
, address
, NULL
, vma
);
1335 count_vm_vma_lock_event(VMA_LOCK_SUCCESS
);
1338 fault
= handle_mm_fault(vma
, address
, flags
| FAULT_FLAG_VMA_LOCK
, regs
);
1339 if (!(fault
& (VM_FAULT_RETRY
| VM_FAULT_COMPLETED
)))
1342 if (!(fault
& VM_FAULT_RETRY
)) {
1343 count_vm_vma_lock_event(VMA_LOCK_SUCCESS
);
1346 count_vm_vma_lock_event(VMA_LOCK_RETRY
);
1347 if (fault
& VM_FAULT_MAJOR
)
1348 flags
|= FAULT_FLAG_TRIED
;
1350 /* Quick path to respond to signals */
1351 if (fault_signal_pending(fault
, regs
)) {
1352 if (!user_mode(regs
))
1353 kernelmode_fixup_or_oops(regs
, error_code
, address
,
1361 vma
= lock_mm_and_find_vma(mm
, address
, regs
);
1362 if (unlikely(!vma
)) {
1363 bad_area_nosemaphore(regs
, error_code
, address
);
1368 * Ok, we have a good vm_area for this memory access, so
1369 * we can handle it..
1371 if (unlikely(access_error(error_code
, vma
))) {
1372 bad_area_access_error(regs
, error_code
, address
, mm
, vma
);
1377 * If for any reason at all we couldn't handle the fault,
1378 * make sure we exit gracefully rather than endlessly redo
1379 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1380 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1382 * Note that handle_userfault() may also release and reacquire mmap_lock
1383 * (and not return with VM_FAULT_RETRY), when returning to userland to
1384 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1385 * (potentially after handling any pending signal during the return to
1386 * userland). The return to userland is identified whenever
1387 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1389 fault
= handle_mm_fault(vma
, address
, flags
, regs
);
1391 if (fault_signal_pending(fault
, regs
)) {
1393 * Quick path to respond to signals. The core mm code
1394 * has unlocked the mm for us if we get here.
1396 if (!user_mode(regs
))
1397 kernelmode_fixup_or_oops(regs
, error_code
, address
,
1403 /* The fault is fully completed (including releasing mmap lock) */
1404 if (fault
& VM_FAULT_COMPLETED
)
1408 * If we need to retry the mmap_lock has already been released,
1409 * and if there is a fatal signal pending there is no guarantee
1410 * that we made any progress. Handle this case first.
1412 if (unlikely(fault
& VM_FAULT_RETRY
)) {
1413 flags
|= FAULT_FLAG_TRIED
;
1417 mmap_read_unlock(mm
);
1419 if (likely(!(fault
& VM_FAULT_ERROR
)))
1422 if (fatal_signal_pending(current
) && !user_mode(regs
)) {
1423 kernelmode_fixup_or_oops(regs
, error_code
, address
,
1424 0, 0, ARCH_DEFAULT_PKEY
);
1428 if (fault
& VM_FAULT_OOM
) {
1429 /* Kernel mode? Handle exceptions or die: */
1430 if (!user_mode(regs
)) {
1431 kernelmode_fixup_or_oops(regs
, error_code
, address
,
1432 SIGSEGV
, SEGV_MAPERR
,
1438 * We ran out of memory, call the OOM killer, and return the
1439 * userspace (which will retry the fault, or kill us if we got
1442 pagefault_out_of_memory();
1444 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
1445 VM_FAULT_HWPOISON_LARGE
))
1446 do_sigbus(regs
, error_code
, address
, fault
);
1447 else if (fault
& VM_FAULT_SIGSEGV
)
1448 bad_area_nosemaphore(regs
, error_code
, address
);
1453 NOKPROBE_SYMBOL(do_user_addr_fault
);
1455 static __always_inline
void
1456 trace_page_fault_entries(struct pt_regs
*regs
, unsigned long error_code
,
1457 unsigned long address
)
1459 if (!trace_pagefault_enabled())
1462 if (user_mode(regs
))
1463 trace_page_fault_user(address
, regs
, error_code
);
1465 trace_page_fault_kernel(address
, regs
, error_code
);
1468 static __always_inline
void
1469 handle_page_fault(struct pt_regs
*regs
, unsigned long error_code
,
1470 unsigned long address
)
1472 trace_page_fault_entries(regs
, error_code
, address
);
1474 if (unlikely(kmmio_fault(regs
, address
)))
1477 /* Was the fault on kernel-controlled part of the address space? */
1478 if (unlikely(fault_in_kernel_space(address
))) {
1479 do_kern_addr_fault(regs
, error_code
, address
);
1481 do_user_addr_fault(regs
, error_code
, address
);
1483 * User address page fault handling might have reenabled
1484 * interrupts. Fixing up all potential exit points of
1485 * do_user_addr_fault() and its leaf functions is just not
1486 * doable w/o creating an unholy mess or turning the code
1489 local_irq_disable();
1493 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault
)
1495 irqentry_state_t state
;
1496 unsigned long address
;
1498 address
= cpu_feature_enabled(X86_FEATURE_FRED
) ? fred_event_data(regs
) : read_cr2();
1500 prefetchw(¤t
->mm
->mmap_lock
);
1503 * KVM uses #PF vector to deliver 'page not present' events to guests
1504 * (asynchronous page fault mechanism). The event happens when a
1505 * userspace task is trying to access some valid (from guest's point of
1506 * view) memory which is not currently mapped by the host (e.g. the
1507 * memory is swapped out). Note, the corresponding "page ready" event
1508 * which is injected when the memory becomes available, is delivered via
1509 * an interrupt mechanism and not a #PF exception
1510 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1512 * We are relying on the interrupted context being sane (valid RSP,
1513 * relevant locks not held, etc.), which is fine as long as the
1514 * interrupted context had IF=1. We are also relying on the KVM
1515 * async pf type field and CR2 being read consistently instead of
1516 * getting values from real and async page faults mixed up.
1520 * The async #PF handling code takes care of idtentry handling
1523 if (kvm_handle_async_pf(regs
, (u32
)address
))
1527 * Entry handling for valid #PF from kernel mode is slightly
1528 * different: RCU is already watching and ct_irq_enter() must not
1529 * be invoked because a kernel fault on a user space address might
1532 * In case the fault hit a RCU idle region the conditional entry
1533 * code reenabled RCU to avoid subsequent wreckage which helps
1536 state
= irqentry_enter(regs
);
1538 instrumentation_begin();
1539 handle_page_fault(regs
, error_code
, address
);
1540 instrumentation_end();
1542 irqentry_exit(regs
, state
);