1 // SPDX-License-Identifier: GPL-2.0
6 * This file contains the various mmu fetch and update operations.
7 * The most important job they must perform is the mapping between the
8 * domain's pfn and the overall machine mfns.
10 * Xen allows guests to directly update the pagetable, in a controlled
11 * fashion. In other words, the guest modifies the same pagetable
12 * that the CPU actually uses, which eliminates the overhead of having
13 * a separate shadow pagetable.
15 * In order to allow this, it falls on the guest domain to map its
16 * notion of a "physical" pfn - which is just a domain-local linear
17 * address - into a real "machine address" which the CPU's MMU can
20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
21 * inserted directly into the pagetable. When creating a new
22 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
23 * when reading the content back with __(pgd|pmd|pte)_val, it converts
24 * the mfn back into a pfn.
26 * The other constraint is that all pages which make up a pagetable
27 * must be mapped read-only in the guest. This prevents uncontrolled
28 * guest updates to the pagetable. Xen strictly enforces this, and
29 * will disallow any pagetable update which will end up mapping a
30 * pagetable page RW, and will disallow using any writable page as a
33 * Naively, when loading %cr3 with the base of a new pagetable, Xen
34 * would need to validate the whole pagetable before going on.
35 * Naturally, this is quite slow. The solution is to "pin" a
36 * pagetable, which enforces all the constraints on the pagetable even
37 * when it is not actively in use. This means that Xen can be assured
38 * that it is still valid when you do load it into %cr3, and doesn't
39 * need to revalidate it.
41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
43 #include <linux/sched/mm.h>
44 #include <linux/debugfs.h>
45 #include <linux/bug.h>
46 #include <linux/vmalloc.h>
47 #include <linux/export.h>
48 #include <linux/init.h>
49 #include <linux/gfp.h>
50 #include <linux/memblock.h>
51 #include <linux/seq_file.h>
52 #include <linux/crash_dump.h>
53 #include <linux/pgtable.h>
54 #ifdef CONFIG_KEXEC_CORE
55 #include <linux/kexec.h>
58 #include <trace/events/xen.h>
60 #include <asm/tlbflush.h>
61 #include <asm/fixmap.h>
62 #include <asm/mmu_context.h>
63 #include <asm/setup.h>
64 #include <asm/paravirt.h>
65 #include <asm/e820/api.h>
66 #include <asm/linkage.h>
69 #include <asm/memtype.h>
73 #include <asm/xen/hypercall.h>
74 #include <asm/xen/hypervisor.h>
78 #include <xen/interface/xen.h>
79 #include <xen/interface/hvm/hvm_op.h>
80 #include <xen/interface/version.h>
81 #include <xen/interface/memory.h>
82 #include <xen/hvc-console.h>
83 #include <xen/swiotlb-xen.h>
88 * Prototypes for functions called via PV_CALLEE_SAVE_REGS_THUNK() in order
89 * to avoid warnings with "-Wmissing-prototypes".
91 pteval_t
xen_pte_val(pte_t pte
);
92 pgdval_t
xen_pgd_val(pgd_t pgd
);
93 pmdval_t
xen_pmd_val(pmd_t pmd
);
94 pudval_t
xen_pud_val(pud_t pud
);
95 p4dval_t
xen_p4d_val(p4d_t p4d
);
96 pte_t
xen_make_pte(pteval_t pte
);
97 pgd_t
xen_make_pgd(pgdval_t pgd
);
98 pmd_t
xen_make_pmd(pmdval_t pmd
);
99 pud_t
xen_make_pud(pudval_t pud
);
100 p4d_t
xen_make_p4d(p4dval_t p4d
);
101 pte_t
xen_make_pte_init(pteval_t pte
);
103 #ifdef CONFIG_X86_VSYSCALL_EMULATION
104 /* l3 pud for userspace vsyscall mapping */
105 static pud_t level3_user_vsyscall
[PTRS_PER_PUD
] __page_aligned_bss
;
109 * Protects atomic reservation decrease/increase against concurrent increases.
110 * Also protects non-atomic updates of current_pages and balloon lists.
112 static DEFINE_SPINLOCK(xen_reservation_lock
);
115 * Note about cr3 (pagetable base) values:
117 * xen_cr3 contains the current logical cr3 value; it contains the
118 * last set cr3. This may not be the current effective cr3, because
119 * its update may be being lazily deferred. However, a vcpu looking
120 * at its own cr3 can use this value knowing that it everything will
121 * be self-consistent.
123 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
124 * hypercall to set the vcpu cr3 is complete (so it may be a little
125 * out of date, but it will never be set early). If one vcpu is
126 * looking at another vcpu's cr3 value, it should use this variable.
128 DEFINE_PER_CPU(unsigned long, xen_cr3
); /* cr3 stored as physaddr */
129 static DEFINE_PER_CPU(unsigned long, xen_current_cr3
); /* actual vcpu cr3 */
131 static phys_addr_t xen_pt_base
, xen_pt_size __initdata
;
133 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready
);
136 * Just beyond the highest usermode address. STACK_TOP_MAX has a
137 * redzone above it, so round it up to a PGD boundary.
139 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
141 void make_lowmem_page_readonly(void *vaddr
)
144 unsigned long address
= (unsigned long)vaddr
;
147 pte
= lookup_address(address
, &level
);
149 return; /* vaddr missing */
151 ptev
= pte_wrprotect(*pte
);
153 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
157 void make_lowmem_page_readwrite(void *vaddr
)
160 unsigned long address
= (unsigned long)vaddr
;
163 pte
= lookup_address(address
, &level
);
165 return; /* vaddr missing */
167 ptev
= pte_mkwrite_novma(*pte
);
169 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
175 * During early boot all page table pages are pinned, but we do not have struct
176 * pages, so return true until struct pages are ready.
178 static bool xen_page_pinned(void *ptr
)
180 if (static_branch_likely(&xen_struct_pages_ready
)) {
181 struct page
*page
= virt_to_page(ptr
);
183 return PagePinned(page
);
188 static void xen_extend_mmu_update(const struct mmu_update
*update
)
190 struct multicall_space mcs
;
191 struct mmu_update
*u
;
193 mcs
= xen_mc_extend_args(__HYPERVISOR_mmu_update
, sizeof(*u
));
195 if (mcs
.mc
!= NULL
) {
198 mcs
= __xen_mc_entry(sizeof(*u
));
199 MULTI_mmu_update(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
206 static void xen_extend_mmuext_op(const struct mmuext_op
*op
)
208 struct multicall_space mcs
;
211 mcs
= xen_mc_extend_args(__HYPERVISOR_mmuext_op
, sizeof(*u
));
213 if (mcs
.mc
!= NULL
) {
216 mcs
= __xen_mc_entry(sizeof(*u
));
217 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
224 static void xen_set_pmd_hyper(pmd_t
*ptr
, pmd_t val
)
232 /* ptr may be ioremapped for 64-bit pagetable setup */
233 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
234 u
.val
= pmd_val_ma(val
);
235 xen_extend_mmu_update(&u
);
237 xen_mc_issue(XEN_LAZY_MMU
);
242 static void xen_set_pmd(pmd_t
*ptr
, pmd_t val
)
244 trace_xen_mmu_set_pmd(ptr
, val
);
246 /* If page is not pinned, we can just update the entry
248 if (!xen_page_pinned(ptr
)) {
253 xen_set_pmd_hyper(ptr
, val
);
257 * Associate a virtual page frame with a given physical page frame
258 * and protection flags for that frame.
260 void __init
set_pte_mfn(unsigned long vaddr
, unsigned long mfn
, pgprot_t flags
)
262 if (HYPERVISOR_update_va_mapping(vaddr
, mfn_pte(mfn
, flags
),
267 static bool xen_batched_set_pte(pte_t
*ptep
, pte_t pteval
)
271 if (xen_get_lazy_mode() != XEN_LAZY_MMU
)
276 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
277 u
.val
= pte_val_ma(pteval
);
278 xen_extend_mmu_update(&u
);
280 xen_mc_issue(XEN_LAZY_MMU
);
285 static inline void __xen_set_pte(pte_t
*ptep
, pte_t pteval
)
287 if (!xen_batched_set_pte(ptep
, pteval
)) {
289 * Could call native_set_pte() here and trap and
290 * emulate the PTE write, but a hypercall is much cheaper.
294 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
295 u
.val
= pte_val_ma(pteval
);
296 HYPERVISOR_mmu_update(&u
, 1, NULL
, DOMID_SELF
);
300 static void xen_set_pte(pte_t
*ptep
, pte_t pteval
)
302 trace_xen_mmu_set_pte(ptep
, pteval
);
303 __xen_set_pte(ptep
, pteval
);
306 static pte_t
xen_ptep_modify_prot_start(struct vm_area_struct
*vma
,
307 unsigned long addr
, pte_t
*ptep
)
309 /* Just return the pte as-is. We preserve the bits on commit */
310 trace_xen_mmu_ptep_modify_prot_start(vma
->vm_mm
, addr
, ptep
, *ptep
);
314 static void xen_ptep_modify_prot_commit(struct vm_area_struct
*vma
,
316 pte_t
*ptep
, pte_t pte
)
320 trace_xen_mmu_ptep_modify_prot_commit(vma
->vm_mm
, addr
, ptep
, pte
);
323 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_PT_UPDATE_PRESERVE_AD
;
324 u
.val
= pte_val_ma(pte
);
325 xen_extend_mmu_update(&u
);
327 xen_mc_issue(XEN_LAZY_MMU
);
330 /* Assume pteval_t is equivalent to all the other *val_t types. */
331 static pteval_t
pte_mfn_to_pfn(pteval_t val
)
333 if (val
& _PAGE_PRESENT
) {
334 unsigned long mfn
= (val
& XEN_PTE_MFN_MASK
) >> PAGE_SHIFT
;
335 unsigned long pfn
= mfn_to_pfn(mfn
);
337 pteval_t flags
= val
& PTE_FLAGS_MASK
;
338 if (unlikely(pfn
== ~0))
339 val
= flags
& ~_PAGE_PRESENT
;
341 val
= ((pteval_t
)pfn
<< PAGE_SHIFT
) | flags
;
347 static pteval_t
pte_pfn_to_mfn(pteval_t val
)
349 if (val
& _PAGE_PRESENT
) {
350 unsigned long pfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
351 pteval_t flags
= val
& PTE_FLAGS_MASK
;
354 mfn
= __pfn_to_mfn(pfn
);
357 * If there's no mfn for the pfn, then just create an
358 * empty non-present pte. Unfortunately this loses
359 * information about the original pfn, so
360 * pte_mfn_to_pfn is asymmetric.
362 if (unlikely(mfn
== INVALID_P2M_ENTRY
)) {
366 mfn
&= ~(FOREIGN_FRAME_BIT
| IDENTITY_FRAME_BIT
);
367 val
= ((pteval_t
)mfn
<< PAGE_SHIFT
) | flags
;
373 __visible pteval_t
xen_pte_val(pte_t pte
)
375 pteval_t pteval
= pte
.pte
;
377 return pte_mfn_to_pfn(pteval
);
379 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val
);
381 __visible pgdval_t
xen_pgd_val(pgd_t pgd
)
383 return pte_mfn_to_pfn(pgd
.pgd
);
385 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val
);
387 __visible pte_t
xen_make_pte(pteval_t pte
)
389 pte
= pte_pfn_to_mfn(pte
);
391 return native_make_pte(pte
);
393 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte
);
395 __visible pgd_t
xen_make_pgd(pgdval_t pgd
)
397 pgd
= pte_pfn_to_mfn(pgd
);
398 return native_make_pgd(pgd
);
400 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd
);
402 __visible pmdval_t
xen_pmd_val(pmd_t pmd
)
404 return pte_mfn_to_pfn(pmd
.pmd
);
406 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val
);
408 static void xen_set_pud_hyper(pud_t
*ptr
, pud_t val
)
416 /* ptr may be ioremapped for 64-bit pagetable setup */
417 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
418 u
.val
= pud_val_ma(val
);
419 xen_extend_mmu_update(&u
);
421 xen_mc_issue(XEN_LAZY_MMU
);
426 static void xen_set_pud(pud_t
*ptr
, pud_t val
)
428 trace_xen_mmu_set_pud(ptr
, val
);
430 /* If page is not pinned, we can just update the entry
432 if (!xen_page_pinned(ptr
)) {
437 xen_set_pud_hyper(ptr
, val
);
440 __visible pmd_t
xen_make_pmd(pmdval_t pmd
)
442 pmd
= pte_pfn_to_mfn(pmd
);
443 return native_make_pmd(pmd
);
445 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd
);
447 __visible pudval_t
xen_pud_val(pud_t pud
)
449 return pte_mfn_to_pfn(pud
.pud
);
451 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val
);
453 __visible pud_t
xen_make_pud(pudval_t pud
)
455 pud
= pte_pfn_to_mfn(pud
);
457 return native_make_pud(pud
);
459 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud
);
461 static pgd_t
*xen_get_user_pgd(pgd_t
*pgd
)
463 pgd_t
*pgd_page
= (pgd_t
*)(((unsigned long)pgd
) & PAGE_MASK
);
464 unsigned offset
= pgd
- pgd_page
;
465 pgd_t
*user_ptr
= NULL
;
467 if (offset
< pgd_index(USER_LIMIT
)) {
468 struct page
*page
= virt_to_page(pgd_page
);
469 user_ptr
= (pgd_t
*)page
->private;
477 static void __xen_set_p4d_hyper(p4d_t
*ptr
, p4d_t val
)
481 u
.ptr
= virt_to_machine(ptr
).maddr
;
482 u
.val
= p4d_val_ma(val
);
483 xen_extend_mmu_update(&u
);
487 * Raw hypercall-based set_p4d, intended for in early boot before
488 * there's a page structure. This implies:
489 * 1. The only existing pagetable is the kernel's
490 * 2. It is always pinned
491 * 3. It has no user pagetable attached to it
493 static void __init
xen_set_p4d_hyper(p4d_t
*ptr
, p4d_t val
)
499 __xen_set_p4d_hyper(ptr
, val
);
501 xen_mc_issue(XEN_LAZY_MMU
);
506 static void xen_set_p4d(p4d_t
*ptr
, p4d_t val
)
508 pgd_t
*user_ptr
= xen_get_user_pgd((pgd_t
*)ptr
);
511 trace_xen_mmu_set_p4d(ptr
, (p4d_t
*)user_ptr
, val
);
513 /* If page is not pinned, we can just update the entry
515 if (!xen_page_pinned(ptr
)) {
518 WARN_ON(xen_page_pinned(user_ptr
));
519 pgd_val
.pgd
= p4d_val_ma(val
);
525 /* If it's pinned, then we can at least batch the kernel and
526 user updates together. */
529 __xen_set_p4d_hyper(ptr
, val
);
531 __xen_set_p4d_hyper((p4d_t
*)user_ptr
, val
);
533 xen_mc_issue(XEN_LAZY_MMU
);
536 #if CONFIG_PGTABLE_LEVELS >= 5
537 __visible p4dval_t
xen_p4d_val(p4d_t p4d
)
539 return pte_mfn_to_pfn(p4d
.p4d
);
541 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val
);
543 __visible p4d_t
xen_make_p4d(p4dval_t p4d
)
545 p4d
= pte_pfn_to_mfn(p4d
);
547 return native_make_p4d(p4d
);
549 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d
);
550 #endif /* CONFIG_PGTABLE_LEVELS >= 5 */
552 static void xen_pmd_walk(struct mm_struct
*mm
, pmd_t
*pmd
,
553 void (*func
)(struct mm_struct
*mm
, struct page
*,
555 bool last
, unsigned long limit
)
559 nr
= last
? pmd_index(limit
) + 1 : PTRS_PER_PMD
;
560 for (i
= 0; i
< nr
; i
++) {
561 if (!pmd_none(pmd
[i
]))
562 (*func
)(mm
, pmd_page(pmd
[i
]), PT_PTE
);
566 static void xen_pud_walk(struct mm_struct
*mm
, pud_t
*pud
,
567 void (*func
)(struct mm_struct
*mm
, struct page
*,
569 bool last
, unsigned long limit
)
573 nr
= last
? pud_index(limit
) + 1 : PTRS_PER_PUD
;
574 for (i
= 0; i
< nr
; i
++) {
577 if (pud_none(pud
[i
]))
580 pmd
= pmd_offset(&pud
[i
], 0);
581 if (PTRS_PER_PMD
> 1)
582 (*func
)(mm
, virt_to_page(pmd
), PT_PMD
);
583 xen_pmd_walk(mm
, pmd
, func
, last
&& i
== nr
- 1, limit
);
587 static void xen_p4d_walk(struct mm_struct
*mm
, p4d_t
*p4d
,
588 void (*func
)(struct mm_struct
*mm
, struct page
*,
590 bool last
, unsigned long limit
)
598 pud
= pud_offset(p4d
, 0);
599 if (PTRS_PER_PUD
> 1)
600 (*func
)(mm
, virt_to_page(pud
), PT_PUD
);
601 xen_pud_walk(mm
, pud
, func
, last
, limit
);
605 * (Yet another) pagetable walker. This one is intended for pinning a
606 * pagetable. This means that it walks a pagetable and calls the
607 * callback function on each page it finds making up the page table,
608 * at every level. It walks the entire pagetable, but it only bothers
609 * pinning pte pages which are below limit. In the normal case this
610 * will be STACK_TOP_MAX, but at boot we need to pin up to
613 * We must skip the Xen hole in the middle of the address space, just after
614 * the big x86-64 virtual hole.
616 static void __xen_pgd_walk(struct mm_struct
*mm
, pgd_t
*pgd
,
617 void (*func
)(struct mm_struct
*mm
, struct page
*,
622 unsigned hole_low
= 0, hole_high
= 0;
624 /* The limit is the last byte to be touched */
626 BUG_ON(limit
>= FIXADDR_TOP
);
629 * 64-bit has a great big hole in the middle of the address
630 * space, which contains the Xen mappings.
632 hole_low
= pgd_index(GUARD_HOLE_BASE_ADDR
);
633 hole_high
= pgd_index(GUARD_HOLE_END_ADDR
);
635 nr
= pgd_index(limit
) + 1;
636 for (i
= 0; i
< nr
; i
++) {
639 if (i
>= hole_low
&& i
< hole_high
)
642 if (pgd_none(pgd
[i
]))
645 p4d
= p4d_offset(&pgd
[i
], 0);
646 xen_p4d_walk(mm
, p4d
, func
, i
== nr
- 1, limit
);
649 /* Do the top level last, so that the callbacks can use it as
650 a cue to do final things like tlb flushes. */
651 (*func
)(mm
, virt_to_page(pgd
), PT_PGD
);
654 static void xen_pgd_walk(struct mm_struct
*mm
,
655 void (*func
)(struct mm_struct
*mm
, struct page
*,
659 __xen_pgd_walk(mm
, mm
->pgd
, func
, limit
);
662 /* If we're using split pte locks, then take the page's lock and
663 return a pointer to it. Otherwise return NULL. */
664 static spinlock_t
*xen_pte_lock(struct page
*page
, struct mm_struct
*mm
)
666 spinlock_t
*ptl
= NULL
;
668 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
669 ptl
= ptlock_ptr(page_ptdesc(page
));
670 spin_lock_nest_lock(ptl
, &mm
->page_table_lock
);
676 static void xen_pte_unlock(void *v
)
682 static void xen_do_pin(unsigned level
, unsigned long pfn
)
687 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
689 xen_extend_mmuext_op(&op
);
692 static void xen_pin_page(struct mm_struct
*mm
, struct page
*page
,
695 unsigned pgfl
= TestSetPagePinned(page
);
698 void *pt
= lowmem_page_address(page
);
699 unsigned long pfn
= page_to_pfn(page
);
700 struct multicall_space mcs
= __xen_mc_entry(0);
704 * We need to hold the pagetable lock between the time
705 * we make the pagetable RO and when we actually pin
706 * it. If we don't, then other users may come in and
707 * attempt to update the pagetable by writing it,
708 * which will fail because the memory is RO but not
709 * pinned, so Xen won't do the trap'n'emulate.
711 * If we're using split pte locks, we can't hold the
712 * entire pagetable's worth of locks during the
713 * traverse, because we may wrap the preempt count (8
714 * bits). The solution is to mark RO and pin each PTE
715 * page while holding the lock. This means the number
716 * of locks we end up holding is never more than a
717 * batch size (~32 entries, at present).
719 * If we're not using split pte locks, we needn't pin
720 * the PTE pages independently, because we're
721 * protected by the overall pagetable lock.
725 ptl
= xen_pte_lock(page
, mm
);
727 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
728 pfn_pte(pfn
, PAGE_KERNEL_RO
),
729 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
732 xen_do_pin(MMUEXT_PIN_L1_TABLE
, pfn
);
734 /* Queue a deferred unlock for when this batch
736 xen_mc_callback(xen_pte_unlock
, ptl
);
741 /* This is called just after a mm has been created, but it has not
742 been used yet. We need to make sure that its pagetable is all
743 read-only, and can be pinned. */
744 static void __xen_pgd_pin(struct mm_struct
*mm
, pgd_t
*pgd
)
746 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
748 trace_xen_mmu_pgd_pin(mm
, pgd
);
752 __xen_pgd_walk(mm
, pgd
, xen_pin_page
, USER_LIMIT
);
754 xen_do_pin(MMUEXT_PIN_L4_TABLE
, PFN_DOWN(__pa(pgd
)));
757 xen_pin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
758 xen_do_pin(MMUEXT_PIN_L4_TABLE
,
759 PFN_DOWN(__pa(user_pgd
)));
765 static void xen_pgd_pin(struct mm_struct
*mm
)
767 __xen_pgd_pin(mm
, mm
->pgd
);
771 * On save, we need to pin all pagetables to make sure they get their
772 * mfns turned into pfns. Search the list for any unpinned pgds and pin
773 * them (unpinned pgds are not currently in use, probably because the
774 * process is under construction or destruction).
776 * Expected to be called in stop_machine() ("equivalent to taking
777 * every spinlock in the system"), so the locking doesn't really
778 * matter all that much.
780 void xen_mm_pin_all(void)
784 spin_lock(&pgd_lock
);
786 list_for_each_entry(page
, &pgd_list
, lru
) {
787 if (!PagePinned(page
)) {
788 __xen_pgd_pin(&init_mm
, (pgd_t
*)page_address(page
));
789 SetPageSavePinned(page
);
793 spin_unlock(&pgd_lock
);
796 static void __init
xen_mark_pinned(struct mm_struct
*mm
, struct page
*page
,
803 * The init_mm pagetable is really pinned as soon as its created, but
804 * that's before we have page structures to store the bits. So do all
805 * the book-keeping now once struct pages for allocated pages are
806 * initialized. This happens only after memblock_free_all() is called.
808 static void __init
xen_after_bootmem(void)
810 static_branch_enable(&xen_struct_pages_ready
);
811 #ifdef CONFIG_X86_VSYSCALL_EMULATION
812 SetPagePinned(virt_to_page(level3_user_vsyscall
));
814 xen_pgd_walk(&init_mm
, xen_mark_pinned
, FIXADDR_TOP
);
817 static void xen_unpin_page(struct mm_struct
*mm
, struct page
*page
,
820 unsigned pgfl
= TestClearPagePinned(page
);
823 void *pt
= lowmem_page_address(page
);
824 unsigned long pfn
= page_to_pfn(page
);
825 spinlock_t
*ptl
= NULL
;
826 struct multicall_space mcs
;
829 * Do the converse to pin_page. If we're using split
830 * pte locks, we must be holding the lock for while
831 * the pte page is unpinned but still RO to prevent
832 * concurrent updates from seeing it in this
833 * partially-pinned state.
835 if (level
== PT_PTE
) {
836 ptl
= xen_pte_lock(page
, mm
);
839 xen_do_pin(MMUEXT_UNPIN_TABLE
, pfn
);
842 mcs
= __xen_mc_entry(0);
844 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
845 pfn_pte(pfn
, PAGE_KERNEL
),
846 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
849 /* unlock when batch completed */
850 xen_mc_callback(xen_pte_unlock
, ptl
);
855 /* Release a pagetables pages back as normal RW */
856 static void __xen_pgd_unpin(struct mm_struct
*mm
, pgd_t
*pgd
)
858 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
860 trace_xen_mmu_pgd_unpin(mm
, pgd
);
864 xen_do_pin(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
867 xen_do_pin(MMUEXT_UNPIN_TABLE
,
868 PFN_DOWN(__pa(user_pgd
)));
869 xen_unpin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
872 __xen_pgd_walk(mm
, pgd
, xen_unpin_page
, USER_LIMIT
);
877 static void xen_pgd_unpin(struct mm_struct
*mm
)
879 __xen_pgd_unpin(mm
, mm
->pgd
);
883 * On resume, undo any pinning done at save, so that the rest of the
884 * kernel doesn't see any unexpected pinned pagetables.
886 void xen_mm_unpin_all(void)
890 spin_lock(&pgd_lock
);
892 list_for_each_entry(page
, &pgd_list
, lru
) {
893 if (PageSavePinned(page
)) {
894 BUG_ON(!PagePinned(page
));
895 __xen_pgd_unpin(&init_mm
, (pgd_t
*)page_address(page
));
896 ClearPageSavePinned(page
);
900 spin_unlock(&pgd_lock
);
903 static void xen_enter_mmap(struct mm_struct
*mm
)
905 spin_lock(&mm
->page_table_lock
);
907 spin_unlock(&mm
->page_table_lock
);
910 static void drop_mm_ref_this_cpu(void *info
)
912 struct mm_struct
*mm
= info
;
914 if (this_cpu_read(cpu_tlbstate
.loaded_mm
) == mm
)
918 * If this cpu still has a stale cr3 reference, then make sure
919 * it has been flushed.
921 if (this_cpu_read(xen_current_cr3
) == __pa(mm
->pgd
))
927 * Another cpu may still have their %cr3 pointing at the pagetable, so
928 * we need to repoint it somewhere else before we can unpin it.
930 static void xen_drop_mm_ref(struct mm_struct
*mm
)
935 drop_mm_ref_this_cpu(mm
);
937 /* Get the "official" set of cpus referring to our pagetable. */
938 if (!alloc_cpumask_var(&mask
, GFP_ATOMIC
)) {
939 for_each_online_cpu(cpu
) {
940 if (per_cpu(xen_current_cr3
, cpu
) != __pa(mm
->pgd
))
942 smp_call_function_single(cpu
, drop_mm_ref_this_cpu
, mm
, 1);
948 * It's possible that a vcpu may have a stale reference to our
949 * cr3, because its in lazy mode, and it hasn't yet flushed
950 * its set of pending hypercalls yet. In this case, we can
951 * look at its actual current cr3 value, and force it to flush
955 for_each_online_cpu(cpu
) {
956 if (per_cpu(xen_current_cr3
, cpu
) == __pa(mm
->pgd
))
957 cpumask_set_cpu(cpu
, mask
);
960 smp_call_function_many(mask
, drop_mm_ref_this_cpu
, mm
, 1);
961 free_cpumask_var(mask
);
964 static void xen_drop_mm_ref(struct mm_struct
*mm
)
966 drop_mm_ref_this_cpu(mm
);
971 * While a process runs, Xen pins its pagetables, which means that the
972 * hypervisor forces it to be read-only, and it controls all updates
973 * to it. This means that all pagetable updates have to go via the
974 * hypervisor, which is moderately expensive.
976 * Since we're pulling the pagetable down, we switch to use init_mm,
977 * unpin old process pagetable and mark it all read-write, which
978 * allows further operations on it to be simple memory accesses.
980 * The only subtle point is that another CPU may be still using the
981 * pagetable because of lazy tlb flushing. This means we need need to
982 * switch all CPUs off this pagetable before we can unpin it.
984 static void xen_exit_mmap(struct mm_struct
*mm
)
986 get_cpu(); /* make sure we don't move around */
990 spin_lock(&mm
->page_table_lock
);
992 /* pgd may not be pinned in the error exit path of execve */
993 if (xen_page_pinned(mm
->pgd
))
996 spin_unlock(&mm
->page_table_lock
);
999 static void xen_post_allocator_init(void);
1001 static void __init
pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1003 struct mmuext_op op
;
1006 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
1007 if (HYPERVISOR_mmuext_op(&op
, 1, NULL
, DOMID_SELF
))
1011 static void __init
xen_cleanhighmap(unsigned long vaddr
,
1012 unsigned long vaddr_end
)
1014 unsigned long kernel_end
= roundup((unsigned long)_brk_end
, PMD_SIZE
) - 1;
1015 pmd_t
*pmd
= level2_kernel_pgt
+ pmd_index(vaddr
);
1017 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1018 * We include the PMD passed in on _both_ boundaries. */
1019 for (; vaddr
<= vaddr_end
&& (pmd
< (level2_kernel_pgt
+ PTRS_PER_PMD
));
1020 pmd
++, vaddr
+= PMD_SIZE
) {
1023 if (vaddr
< (unsigned long) _text
|| vaddr
> kernel_end
)
1024 set_pmd(pmd
, __pmd(0));
1026 /* In case we did something silly, we should crash in this function
1027 * instead of somewhere later and be confusing. */
1032 * Make a page range writeable and free it.
1034 static void __init
xen_free_ro_pages(unsigned long paddr
, unsigned long size
)
1036 void *vaddr
= __va(paddr
);
1037 void *vaddr_end
= vaddr
+ size
;
1039 for (; vaddr
< vaddr_end
; vaddr
+= PAGE_SIZE
)
1040 make_lowmem_page_readwrite(vaddr
);
1042 memblock_phys_free(paddr
, size
);
1045 static void __init
xen_cleanmfnmap_free_pgtbl(void *pgtbl
, bool unpin
)
1047 unsigned long pa
= __pa(pgtbl
) & PHYSICAL_PAGE_MASK
;
1050 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(pa
));
1051 ClearPagePinned(virt_to_page(__va(pa
)));
1052 xen_free_ro_pages(pa
, PAGE_SIZE
);
1055 static void __init
xen_cleanmfnmap_pmd(pmd_t
*pmd
, bool unpin
)
1061 if (pmd_leaf(*pmd
)) {
1062 pa
= pmd_val(*pmd
) & PHYSICAL_PAGE_MASK
;
1063 xen_free_ro_pages(pa
, PMD_SIZE
);
1067 pte_tbl
= pte_offset_kernel(pmd
, 0);
1068 for (i
= 0; i
< PTRS_PER_PTE
; i
++) {
1069 if (pte_none(pte_tbl
[i
]))
1071 pa
= pte_pfn(pte_tbl
[i
]) << PAGE_SHIFT
;
1072 xen_free_ro_pages(pa
, PAGE_SIZE
);
1074 set_pmd(pmd
, __pmd(0));
1075 xen_cleanmfnmap_free_pgtbl(pte_tbl
, unpin
);
1078 static void __init
xen_cleanmfnmap_pud(pud_t
*pud
, bool unpin
)
1084 if (pud_leaf(*pud
)) {
1085 pa
= pud_val(*pud
) & PHYSICAL_PAGE_MASK
;
1086 xen_free_ro_pages(pa
, PUD_SIZE
);
1090 pmd_tbl
= pmd_offset(pud
, 0);
1091 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
1092 if (pmd_none(pmd_tbl
[i
]))
1094 xen_cleanmfnmap_pmd(pmd_tbl
+ i
, unpin
);
1096 set_pud(pud
, __pud(0));
1097 xen_cleanmfnmap_free_pgtbl(pmd_tbl
, unpin
);
1100 static void __init
xen_cleanmfnmap_p4d(p4d_t
*p4d
, bool unpin
)
1106 if (p4d_leaf(*p4d
)) {
1107 pa
= p4d_val(*p4d
) & PHYSICAL_PAGE_MASK
;
1108 xen_free_ro_pages(pa
, P4D_SIZE
);
1112 pud_tbl
= pud_offset(p4d
, 0);
1113 for (i
= 0; i
< PTRS_PER_PUD
; i
++) {
1114 if (pud_none(pud_tbl
[i
]))
1116 xen_cleanmfnmap_pud(pud_tbl
+ i
, unpin
);
1118 set_p4d(p4d
, __p4d(0));
1119 xen_cleanmfnmap_free_pgtbl(pud_tbl
, unpin
);
1123 * Since it is well isolated we can (and since it is perhaps large we should)
1124 * also free the page tables mapping the initial P->M table.
1126 static void __init
xen_cleanmfnmap(unsigned long vaddr
)
1132 unpin
= (vaddr
== 2 * PGDIR_SIZE
);
1134 pgd
= pgd_offset_k(vaddr
);
1135 p4d
= p4d_offset(pgd
, 0);
1136 if (!p4d_none(*p4d
))
1137 xen_cleanmfnmap_p4d(p4d
, unpin
);
1140 static void __init
xen_pagetable_p2m_free(void)
1145 size
= PAGE_ALIGN(xen_start_info
->nr_pages
* sizeof(unsigned long));
1147 /* No memory or already called. */
1148 if ((unsigned long)xen_p2m_addr
== xen_start_info
->mfn_list
)
1151 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1152 memset((void *)xen_start_info
->mfn_list
, 0xff, size
);
1154 addr
= xen_start_info
->mfn_list
;
1156 * We could be in __ka space.
1157 * We roundup to the PMD, which means that if anybody at this stage is
1158 * using the __ka address of xen_start_info or
1159 * xen_start_info->shared_info they are in going to crash. Fortunately
1160 * we have already revectored in xen_setup_kernel_pagetable.
1162 size
= roundup(size
, PMD_SIZE
);
1164 if (addr
>= __START_KERNEL_map
) {
1165 xen_cleanhighmap(addr
, addr
+ size
);
1166 size
= PAGE_ALIGN(xen_start_info
->nr_pages
*
1167 sizeof(unsigned long));
1168 memblock_free((void *)addr
, size
);
1170 xen_cleanmfnmap(addr
);
1174 static void __init
xen_pagetable_cleanhighmap(void)
1179 /* At this stage, cleanup_highmap has already cleaned __ka space
1180 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1181 * the ramdisk). We continue on, erasing PMD entries that point to page
1182 * tables - do note that they are accessible at this stage via __va.
1183 * As Xen is aligning the memory end to a 4MB boundary, for good
1184 * measure we also round up to PMD_SIZE * 2 - which means that if
1185 * anybody is using __ka address to the initial boot-stack - and try
1186 * to use it - they are going to crash. The xen_start_info has been
1187 * taken care of already in xen_setup_kernel_pagetable. */
1188 addr
= xen_start_info
->pt_base
;
1189 size
= xen_start_info
->nr_pt_frames
* PAGE_SIZE
;
1191 xen_cleanhighmap(addr
, roundup(addr
+ size
, PMD_SIZE
* 2));
1192 xen_start_info
->pt_base
= (unsigned long)__va(__pa(xen_start_info
->pt_base
));
1195 static void __init
xen_pagetable_p2m_setup(void)
1197 xen_vmalloc_p2m_tree();
1199 xen_pagetable_p2m_free();
1201 xen_pagetable_cleanhighmap();
1203 /* And revector! Bye bye old array */
1204 xen_start_info
->mfn_list
= (unsigned long)xen_p2m_addr
;
1207 static void __init
xen_pagetable_init(void)
1210 * The majority of further PTE writes is to pagetables already
1211 * announced as such to Xen. Hence it is more efficient to use
1212 * hypercalls for these updates.
1214 pv_ops
.mmu
.set_pte
= __xen_set_pte
;
1217 xen_post_allocator_init();
1219 xen_pagetable_p2m_setup();
1221 /* Allocate and initialize top and mid mfn levels for p2m structure */
1222 xen_build_mfn_list_list();
1224 /* Remap memory freed due to conflicts with E820 map */
1226 xen_setup_mfn_list_list();
1229 static noinstr
void xen_write_cr2(unsigned long cr2
)
1231 this_cpu_read(xen_vcpu
)->arch
.cr2
= cr2
;
1234 static noinline
void xen_flush_tlb(void)
1236 struct mmuext_op
*op
;
1237 struct multicall_space mcs
;
1241 mcs
= xen_mc_entry(sizeof(*op
));
1244 op
->cmd
= MMUEXT_TLB_FLUSH_LOCAL
;
1245 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1247 xen_mc_issue(XEN_LAZY_MMU
);
1252 static void xen_flush_tlb_one_user(unsigned long addr
)
1254 struct mmuext_op
*op
;
1255 struct multicall_space mcs
;
1257 trace_xen_mmu_flush_tlb_one_user(addr
);
1261 mcs
= xen_mc_entry(sizeof(*op
));
1263 op
->cmd
= MMUEXT_INVLPG_LOCAL
;
1264 op
->arg1
.linear_addr
= addr
& PAGE_MASK
;
1265 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1267 xen_mc_issue(XEN_LAZY_MMU
);
1272 static void xen_flush_tlb_multi(const struct cpumask
*cpus
,
1273 const struct flush_tlb_info
*info
)
1276 struct mmuext_op op
;
1277 DECLARE_BITMAP(mask
, NR_CPUS
);
1279 struct multicall_space mcs
;
1280 const size_t mc_entry_size
= sizeof(args
->op
) +
1281 sizeof(args
->mask
[0]) * BITS_TO_LONGS(num_possible_cpus());
1283 trace_xen_mmu_flush_tlb_multi(cpus
, info
->mm
, info
->start
, info
->end
);
1285 if (cpumask_empty(cpus
))
1286 return; /* nothing to do */
1288 mcs
= xen_mc_entry(mc_entry_size
);
1290 args
->op
.arg2
.vcpumask
= to_cpumask(args
->mask
);
1292 /* Remove any offline CPUs */
1293 cpumask_and(to_cpumask(args
->mask
), cpus
, cpu_online_mask
);
1295 args
->op
.cmd
= MMUEXT_TLB_FLUSH_MULTI
;
1296 if (info
->end
!= TLB_FLUSH_ALL
&&
1297 (info
->end
- info
->start
) <= PAGE_SIZE
) {
1298 args
->op
.cmd
= MMUEXT_INVLPG_MULTI
;
1299 args
->op
.arg1
.linear_addr
= info
->start
;
1302 MULTI_mmuext_op(mcs
.mc
, &args
->op
, 1, NULL
, DOMID_SELF
);
1304 xen_mc_issue(XEN_LAZY_MMU
);
1307 static unsigned long xen_read_cr3(void)
1309 return this_cpu_read(xen_cr3
);
1312 static void set_current_cr3(void *v
)
1314 this_cpu_write(xen_current_cr3
, (unsigned long)v
);
1317 static void __xen_write_cr3(bool kernel
, unsigned long cr3
)
1319 struct mmuext_op op
;
1322 trace_xen_mmu_write_cr3(kernel
, cr3
);
1325 mfn
= pfn_to_mfn(PFN_DOWN(cr3
));
1329 WARN_ON(mfn
== 0 && kernel
);
1331 op
.cmd
= kernel
? MMUEXT_NEW_BASEPTR
: MMUEXT_NEW_USER_BASEPTR
;
1334 xen_extend_mmuext_op(&op
);
1337 this_cpu_write(xen_cr3
, cr3
);
1339 /* Update xen_current_cr3 once the batch has actually
1341 xen_mc_callback(set_current_cr3
, (void *)cr3
);
1344 static void xen_write_cr3(unsigned long cr3
)
1346 pgd_t
*user_pgd
= xen_get_user_pgd(__va(cr3
));
1348 BUG_ON(preemptible());
1350 xen_mc_batch(); /* disables interrupts */
1352 /* Update while interrupts are disabled, so its atomic with
1354 this_cpu_write(xen_cr3
, cr3
);
1356 __xen_write_cr3(true, cr3
);
1359 __xen_write_cr3(false, __pa(user_pgd
));
1361 __xen_write_cr3(false, 0);
1363 xen_mc_issue(XEN_LAZY_CPU
); /* interrupts restored */
1367 * At the start of the day - when Xen launches a guest, it has already
1368 * built pagetables for the guest. We diligently look over them
1369 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1370 * init_top_pgt and its friends. Then when we are happy we load
1371 * the new init_top_pgt - and continue on.
1373 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1374 * up the rest of the pagetables. When it has completed it loads the cr3.
1375 * N.B. that baremetal would start at 'start_kernel' (and the early
1376 * #PF handler would create bootstrap pagetables) - so we are running
1377 * with the same assumptions as what to do when write_cr3 is executed
1380 * Since there are no user-page tables at all, we have two variants
1381 * of xen_write_cr3 - the early bootup (this one), and the late one
1382 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1383 * the Linux kernel and user-space are both in ring 3 while the
1384 * hypervisor is in ring 0.
1386 static void __init
xen_write_cr3_init(unsigned long cr3
)
1388 BUG_ON(preemptible());
1390 xen_mc_batch(); /* disables interrupts */
1392 /* Update while interrupts are disabled, so its atomic with
1394 this_cpu_write(xen_cr3
, cr3
);
1396 __xen_write_cr3(true, cr3
);
1398 xen_mc_issue(XEN_LAZY_CPU
); /* interrupts restored */
1401 static int xen_pgd_alloc(struct mm_struct
*mm
)
1403 pgd_t
*pgd
= mm
->pgd
;
1404 struct page
*page
= virt_to_page(pgd
);
1408 BUG_ON(PagePinned(virt_to_page(pgd
)));
1409 BUG_ON(page
->private != 0);
1411 user_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
1412 page
->private = (unsigned long)user_pgd
;
1414 if (user_pgd
!= NULL
) {
1415 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1416 user_pgd
[pgd_index(VSYSCALL_ADDR
)] =
1417 __pgd(__pa(level3_user_vsyscall
) | _PAGE_TABLE
);
1422 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd
))));
1427 static void xen_pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
1429 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
1432 free_page((unsigned long)user_pgd
);
1436 * Init-time set_pte while constructing initial pagetables, which
1437 * doesn't allow RO page table pages to be remapped RW.
1439 * If there is no MFN for this PFN then this page is initially
1440 * ballooned out so clear the PTE (as in decrease_reservation() in
1441 * drivers/xen/balloon.c).
1443 * Many of these PTE updates are done on unpinned and writable pages
1444 * and doing a hypercall for these is unnecessary and expensive. At
1445 * this point it is rarely possible to tell if a page is pinned, so
1446 * mostly write the PTE directly and rely on Xen trapping and
1447 * emulating any updates as necessary.
1449 static void __init
xen_set_pte_init(pte_t
*ptep
, pte_t pte
)
1451 if (unlikely(is_early_ioremap_ptep(ptep
)))
1452 __xen_set_pte(ptep
, pte
);
1454 native_set_pte(ptep
, pte
);
1457 __visible pte_t
xen_make_pte_init(pteval_t pte
)
1462 * Pages belonging to the initial p2m list mapped outside the default
1463 * address range must be mapped read-only. This region contains the
1464 * page tables for mapping the p2m list, too, and page tables MUST be
1467 pfn
= (pte
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
1468 if (xen_start_info
->mfn_list
< __START_KERNEL_map
&&
1469 pfn
>= xen_start_info
->first_p2m_pfn
&&
1470 pfn
< xen_start_info
->first_p2m_pfn
+ xen_start_info
->nr_p2m_frames
)
1473 pte
= pte_pfn_to_mfn(pte
);
1474 return native_make_pte(pte
);
1476 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init
);
1478 /* Early in boot, while setting up the initial pagetable, assume
1479 everything is pinned. */
1480 static void __init
xen_alloc_pte_init(struct mm_struct
*mm
, unsigned long pfn
)
1482 #ifdef CONFIG_FLATMEM
1483 BUG_ON(mem_map
); /* should only be used early */
1485 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1486 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1489 /* Used for pmd and pud */
1490 static void __init
xen_alloc_pmd_init(struct mm_struct
*mm
, unsigned long pfn
)
1492 #ifdef CONFIG_FLATMEM
1493 BUG_ON(mem_map
); /* should only be used early */
1495 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1498 /* Early release_pte assumes that all pts are pinned, since there's
1499 only init_mm and anything attached to that is pinned. */
1500 static void __init
xen_release_pte_init(unsigned long pfn
)
1502 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1503 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1506 static void __init
xen_release_pmd_init(unsigned long pfn
)
1508 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1511 static inline void __pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1513 struct multicall_space mcs
;
1514 struct mmuext_op
*op
;
1516 mcs
= __xen_mc_entry(sizeof(*op
));
1519 op
->arg1
.mfn
= pfn_to_mfn(pfn
);
1521 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
1524 static inline void __set_pfn_prot(unsigned long pfn
, pgprot_t prot
)
1526 struct multicall_space mcs
;
1527 unsigned long addr
= (unsigned long)__va(pfn
<< PAGE_SHIFT
);
1529 mcs
= __xen_mc_entry(0);
1530 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)addr
,
1531 pfn_pte(pfn
, prot
), 0);
1534 /* This needs to make sure the new pte page is pinned iff its being
1535 attached to a pinned pagetable. */
1536 static inline void xen_alloc_ptpage(struct mm_struct
*mm
, unsigned long pfn
,
1539 bool pinned
= xen_page_pinned(mm
->pgd
);
1541 trace_xen_mmu_alloc_ptpage(mm
, pfn
, level
, pinned
);
1544 struct page
*page
= pfn_to_page(pfn
);
1547 if (static_branch_likely(&xen_struct_pages_ready
)) {
1548 pinned
= PagePinned(page
);
1549 SetPagePinned(page
);
1554 __set_pfn_prot(pfn
, PAGE_KERNEL_RO
);
1556 if (level
== PT_PTE
&& IS_ENABLED(CONFIG_SPLIT_PTE_PTLOCKS
) &&
1558 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1560 xen_mc_issue(XEN_LAZY_MMU
);
1564 static void xen_alloc_pte(struct mm_struct
*mm
, unsigned long pfn
)
1566 xen_alloc_ptpage(mm
, pfn
, PT_PTE
);
1569 static void xen_alloc_pmd(struct mm_struct
*mm
, unsigned long pfn
)
1571 xen_alloc_ptpage(mm
, pfn
, PT_PMD
);
1574 /* This should never happen until we're OK to use struct page */
1575 static inline void xen_release_ptpage(unsigned long pfn
, unsigned level
)
1577 struct page
*page
= pfn_to_page(pfn
);
1578 bool pinned
= PagePinned(page
);
1580 trace_xen_mmu_release_ptpage(pfn
, level
, pinned
);
1585 if (level
== PT_PTE
&& IS_ENABLED(CONFIG_SPLIT_PTE_PTLOCKS
))
1586 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1588 __set_pfn_prot(pfn
, PAGE_KERNEL
);
1590 xen_mc_issue(XEN_LAZY_MMU
);
1592 ClearPagePinned(page
);
1596 static void xen_release_pte(unsigned long pfn
)
1598 xen_release_ptpage(pfn
, PT_PTE
);
1601 static void xen_release_pmd(unsigned long pfn
)
1603 xen_release_ptpage(pfn
, PT_PMD
);
1606 static void xen_alloc_pud(struct mm_struct
*mm
, unsigned long pfn
)
1608 xen_alloc_ptpage(mm
, pfn
, PT_PUD
);
1611 static void xen_release_pud(unsigned long pfn
)
1613 xen_release_ptpage(pfn
, PT_PUD
);
1617 * Like __va(), but returns address in the kernel mapping (which is
1618 * all we have until the physical memory mapping has been set up.
1620 static void * __init
__ka(phys_addr_t paddr
)
1622 return (void *)(paddr
+ __START_KERNEL_map
);
1625 /* Convert a machine address to physical address */
1626 static unsigned long __init
m2p(phys_addr_t maddr
)
1630 maddr
&= XEN_PTE_MFN_MASK
;
1631 paddr
= mfn_to_pfn(maddr
>> PAGE_SHIFT
) << PAGE_SHIFT
;
1636 /* Convert a machine address to kernel virtual */
1637 static void * __init
m2v(phys_addr_t maddr
)
1639 return __ka(m2p(maddr
));
1642 /* Set the page permissions on an identity-mapped pages */
1643 static void __init
set_page_prot_flags(void *addr
, pgprot_t prot
,
1644 unsigned long flags
)
1646 unsigned long pfn
= __pa(addr
) >> PAGE_SHIFT
;
1647 pte_t pte
= pfn_pte(pfn
, prot
);
1649 if (HYPERVISOR_update_va_mapping((unsigned long)addr
, pte
, flags
))
1652 static void __init
set_page_prot(void *addr
, pgprot_t prot
)
1654 return set_page_prot_flags(addr
, prot
, UVMF_NONE
);
1657 void __init
xen_setup_machphys_mapping(void)
1659 struct xen_machphys_mapping mapping
;
1661 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping
, &mapping
) == 0) {
1662 machine_to_phys_mapping
= (unsigned long *)mapping
.v_start
;
1663 machine_to_phys_nr
= mapping
.max_mfn
+ 1;
1665 machine_to_phys_nr
= MACH2PHYS_NR_ENTRIES
;
1669 static void __init
convert_pfn_mfn(void *v
)
1674 /* All levels are converted the same way, so just treat them
1676 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
1677 pte
[i
] = xen_make_pte(pte
[i
].pte
);
1679 static void __init
check_pt_base(unsigned long *pt_base
, unsigned long *pt_end
,
1682 if (*pt_base
== PFN_DOWN(__pa(addr
))) {
1683 set_page_prot_flags((void *)addr
, PAGE_KERNEL
, UVMF_INVLPG
);
1684 clear_page((void *)addr
);
1687 if (*pt_end
== PFN_DOWN(__pa(addr
))) {
1688 set_page_prot_flags((void *)addr
, PAGE_KERNEL
, UVMF_INVLPG
);
1689 clear_page((void *)addr
);
1694 * Set up the initial kernel pagetable.
1696 * We can construct this by grafting the Xen provided pagetable into
1697 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1698 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1699 * kernel has a physical mapping to start with - but that's enough to
1700 * get __va working. We need to fill in the rest of the physical
1701 * mapping once some sort of allocator has been set up.
1703 void __init
xen_setup_kernel_pagetable(pgd_t
*pgd
, unsigned long max_pfn
)
1707 unsigned long addr
[3];
1708 unsigned long pt_base
, pt_end
;
1711 /* max_pfn_mapped is the last pfn mapped in the initial memory
1712 * mappings. Considering that on Xen after the kernel mappings we
1713 * have the mappings of some pages that don't exist in pfn space, we
1714 * set max_pfn_mapped to the last real pfn mapped. */
1715 if (xen_start_info
->mfn_list
< __START_KERNEL_map
)
1716 max_pfn_mapped
= xen_start_info
->first_p2m_pfn
;
1718 max_pfn_mapped
= PFN_DOWN(__pa(xen_start_info
->mfn_list
));
1720 pt_base
= PFN_DOWN(__pa(xen_start_info
->pt_base
));
1721 pt_end
= pt_base
+ xen_start_info
->nr_pt_frames
;
1723 /* Zap identity mapping */
1724 init_top_pgt
[0] = __pgd(0);
1726 /* Pre-constructed entries are in pfn, so convert to mfn */
1727 /* L4[273] -> level3_ident_pgt */
1728 /* L4[511] -> level3_kernel_pgt */
1729 convert_pfn_mfn(init_top_pgt
);
1731 /* L3_i[0] -> level2_ident_pgt */
1732 convert_pfn_mfn(level3_ident_pgt
);
1733 /* L3_k[510] -> level2_kernel_pgt */
1734 /* L3_k[511] -> level2_fixmap_pgt */
1735 convert_pfn_mfn(level3_kernel_pgt
);
1737 /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1738 convert_pfn_mfn(level2_fixmap_pgt
);
1740 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1741 l3
= m2v(pgd
[pgd_index(__START_KERNEL_map
)].pgd
);
1742 l2
= m2v(l3
[pud_index(__START_KERNEL_map
)].pud
);
1744 addr
[0] = (unsigned long)pgd
;
1745 addr
[1] = (unsigned long)l3
;
1746 addr
[2] = (unsigned long)l2
;
1747 /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1748 * Both L4[273][0] and L4[511][510] have entries that point to the same
1749 * L2 (PMD) tables. Meaning that if you modify it in __va space
1750 * it will be also modified in the __ka space! (But if you just
1751 * modify the PMD table to point to other PTE's or none, then you
1752 * are OK - which is what cleanup_highmap does) */
1753 copy_page(level2_ident_pgt
, l2
);
1754 /* Graft it onto L4[511][510] */
1755 copy_page(level2_kernel_pgt
, l2
);
1758 * Zap execute permission from the ident map. Due to the sharing of
1759 * L1 entries we need to do this in the L2.
1761 if (__supported_pte_mask
& _PAGE_NX
) {
1762 for (i
= 0; i
< PTRS_PER_PMD
; ++i
) {
1763 if (pmd_none(level2_ident_pgt
[i
]))
1765 level2_ident_pgt
[i
] = pmd_set_flags(level2_ident_pgt
[i
], _PAGE_NX
);
1769 /* Copy the initial P->M table mappings if necessary. */
1770 i
= pgd_index(xen_start_info
->mfn_list
);
1771 if (i
&& i
< pgd_index(__START_KERNEL_map
))
1772 init_top_pgt
[i
] = ((pgd_t
*)xen_start_info
->pt_base
)[i
];
1774 /* Make pagetable pieces RO */
1775 set_page_prot(init_top_pgt
, PAGE_KERNEL_RO
);
1776 set_page_prot(level3_ident_pgt
, PAGE_KERNEL_RO
);
1777 set_page_prot(level3_kernel_pgt
, PAGE_KERNEL_RO
);
1778 set_page_prot(level2_ident_pgt
, PAGE_KERNEL_RO
);
1779 set_page_prot(level2_kernel_pgt
, PAGE_KERNEL_RO
);
1780 set_page_prot(level2_fixmap_pgt
, PAGE_KERNEL_RO
);
1782 for (i
= 0; i
< FIXMAP_PMD_NUM
; i
++) {
1783 set_page_prot(level1_fixmap_pgt
+ i
* PTRS_PER_PTE
,
1787 /* Pin down new L4 */
1788 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE
,
1789 PFN_DOWN(__pa_symbol(init_top_pgt
)));
1791 /* Unpin Xen-provided one */
1792 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
1794 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1795 /* Pin user vsyscall L3 */
1796 set_page_prot(level3_user_vsyscall
, PAGE_KERNEL_RO
);
1797 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
,
1798 PFN_DOWN(__pa_symbol(level3_user_vsyscall
)));
1802 * At this stage there can be no user pgd, and no page structure to
1803 * attach it to, so make sure we just set kernel pgd.
1806 __xen_write_cr3(true, __pa(init_top_pgt
));
1807 xen_mc_issue(XEN_LAZY_CPU
);
1809 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1810 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1811 * the initial domain. For guests using the toolstack, they are in:
1812 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1813 * rip out the [L4] (pgd), but for guests we shave off three pages.
1815 for (i
= 0; i
< ARRAY_SIZE(addr
); i
++)
1816 check_pt_base(&pt_base
, &pt_end
, addr
[i
]);
1818 /* Our (by three pages) smaller Xen pagetable that we are using */
1819 xen_pt_base
= PFN_PHYS(pt_base
);
1820 xen_pt_size
= (pt_end
- pt_base
) * PAGE_SIZE
;
1821 memblock_reserve(xen_pt_base
, xen_pt_size
);
1823 /* Revector the xen_start_info */
1824 xen_start_info
= (struct start_info
*)__va(__pa(xen_start_info
));
1828 * Read a value from a physical address.
1830 static unsigned long __init
xen_read_phys_ulong(phys_addr_t addr
)
1832 unsigned long *vaddr
;
1835 vaddr
= early_memremap_ro(addr
, sizeof(val
));
1837 early_memunmap(vaddr
, sizeof(val
));
1842 * Translate a virtual address to a physical one without relying on mapped
1843 * page tables. Don't rely on big pages being aligned in (guest) physical
1846 static phys_addr_t __init
xen_early_virt_to_phys(unsigned long vaddr
)
1855 pgd
= native_make_pgd(xen_read_phys_ulong(pa
+ pgd_index(vaddr
) *
1857 if (!pgd_present(pgd
))
1860 pa
= pgd_val(pgd
) & PTE_PFN_MASK
;
1861 pud
= native_make_pud(xen_read_phys_ulong(pa
+ pud_index(vaddr
) *
1863 if (!pud_present(pud
))
1865 pa
= pud_val(pud
) & PTE_PFN_MASK
;
1867 return pa
+ (vaddr
& ~PUD_MASK
);
1869 pmd
= native_make_pmd(xen_read_phys_ulong(pa
+ pmd_index(vaddr
) *
1871 if (!pmd_present(pmd
))
1873 pa
= pmd_val(pmd
) & PTE_PFN_MASK
;
1875 return pa
+ (vaddr
& ~PMD_MASK
);
1877 pte
= native_make_pte(xen_read_phys_ulong(pa
+ pte_index(vaddr
) *
1879 if (!pte_present(pte
))
1881 pa
= pte_pfn(pte
) << PAGE_SHIFT
;
1883 return pa
| (vaddr
& ~PAGE_MASK
);
1887 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1890 void __init
xen_relocate_p2m(void)
1892 phys_addr_t size
, new_area
, pt_phys
, pmd_phys
, pud_phys
;
1893 unsigned long p2m_pfn
, p2m_pfn_end
, n_frames
, pfn
, pfn_end
;
1894 int n_pte
, n_pt
, n_pmd
, n_pud
, idx_pte
, idx_pt
, idx_pmd
, idx_pud
;
1899 unsigned long *new_p2m
;
1901 size
= PAGE_ALIGN(xen_start_info
->nr_pages
* sizeof(unsigned long));
1902 n_pte
= roundup(size
, PAGE_SIZE
) >> PAGE_SHIFT
;
1903 n_pt
= roundup(size
, PMD_SIZE
) >> PMD_SHIFT
;
1904 n_pmd
= roundup(size
, PUD_SIZE
) >> PUD_SHIFT
;
1905 n_pud
= roundup(size
, P4D_SIZE
) >> P4D_SHIFT
;
1906 n_frames
= n_pte
+ n_pt
+ n_pmd
+ n_pud
;
1908 new_area
= xen_find_free_area(PFN_PHYS(n_frames
));
1910 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
1915 * Setup the page tables for addressing the new p2m list.
1916 * We have asked the hypervisor to map the p2m list at the user address
1917 * PUD_SIZE. It may have done so, or it may have used a kernel space
1918 * address depending on the Xen version.
1919 * To avoid any possible virtual address collision, just use
1920 * 2 * PUD_SIZE for the new area.
1922 pud_phys
= new_area
;
1923 pmd_phys
= pud_phys
+ PFN_PHYS(n_pud
);
1924 pt_phys
= pmd_phys
+ PFN_PHYS(n_pmd
);
1925 p2m_pfn
= PFN_DOWN(pt_phys
) + n_pt
;
1927 pgd
= __va(read_cr3_pa());
1928 new_p2m
= (unsigned long *)(2 * PGDIR_SIZE
);
1929 for (idx_pud
= 0; idx_pud
< n_pud
; idx_pud
++) {
1930 pud
= early_memremap(pud_phys
, PAGE_SIZE
);
1932 for (idx_pmd
= 0; idx_pmd
< min(n_pmd
, PTRS_PER_PUD
);
1934 pmd
= early_memremap(pmd_phys
, PAGE_SIZE
);
1936 for (idx_pt
= 0; idx_pt
< min(n_pt
, PTRS_PER_PMD
);
1938 pt
= early_memremap(pt_phys
, PAGE_SIZE
);
1941 idx_pte
< min(n_pte
, PTRS_PER_PTE
);
1943 pt
[idx_pte
] = pfn_pte(p2m_pfn
,
1947 n_pte
-= PTRS_PER_PTE
;
1948 early_memunmap(pt
, PAGE_SIZE
);
1949 make_lowmem_page_readonly(__va(pt_phys
));
1950 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
,
1952 pmd
[idx_pt
] = __pmd(_PAGE_TABLE
| pt_phys
);
1953 pt_phys
+= PAGE_SIZE
;
1955 n_pt
-= PTRS_PER_PMD
;
1956 early_memunmap(pmd
, PAGE_SIZE
);
1957 make_lowmem_page_readonly(__va(pmd_phys
));
1958 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE
,
1959 PFN_DOWN(pmd_phys
));
1960 pud
[idx_pmd
] = __pud(_PAGE_TABLE
| pmd_phys
);
1961 pmd_phys
+= PAGE_SIZE
;
1963 n_pmd
-= PTRS_PER_PUD
;
1964 early_memunmap(pud
, PAGE_SIZE
);
1965 make_lowmem_page_readonly(__va(pud_phys
));
1966 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(pud_phys
));
1967 set_pgd(pgd
+ 2 + idx_pud
, __pgd(_PAGE_TABLE
| pud_phys
));
1968 pud_phys
+= PAGE_SIZE
;
1971 /* Now copy the old p2m info to the new area. */
1972 memcpy(new_p2m
, xen_p2m_addr
, size
);
1973 xen_p2m_addr
= new_p2m
;
1975 /* Release the old p2m list and set new list info. */
1976 p2m_pfn
= PFN_DOWN(xen_early_virt_to_phys(xen_start_info
->mfn_list
));
1978 p2m_pfn_end
= p2m_pfn
+ PFN_DOWN(size
);
1980 if (xen_start_info
->mfn_list
< __START_KERNEL_map
) {
1981 pfn
= xen_start_info
->first_p2m_pfn
;
1982 pfn_end
= xen_start_info
->first_p2m_pfn
+
1983 xen_start_info
->nr_p2m_frames
;
1984 set_pgd(pgd
+ 1, __pgd(0));
1987 pfn_end
= p2m_pfn_end
;
1990 memblock_phys_free(PFN_PHYS(pfn
), PAGE_SIZE
* (pfn_end
- pfn
));
1991 while (pfn
< pfn_end
) {
1992 if (pfn
== p2m_pfn
) {
1996 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
2000 xen_start_info
->mfn_list
= (unsigned long)xen_p2m_addr
;
2001 xen_start_info
->first_p2m_pfn
= PFN_DOWN(new_area
);
2002 xen_start_info
->nr_p2m_frames
= n_frames
;
2005 void __init
xen_reserve_special_pages(void)
2009 memblock_reserve(__pa(xen_start_info
), PAGE_SIZE
);
2010 if (xen_start_info
->store_mfn
) {
2011 paddr
= PFN_PHYS(mfn_to_pfn(xen_start_info
->store_mfn
));
2012 memblock_reserve(paddr
, PAGE_SIZE
);
2014 if (!xen_initial_domain()) {
2015 paddr
= PFN_PHYS(mfn_to_pfn(xen_start_info
->console
.domU
.mfn
));
2016 memblock_reserve(paddr
, PAGE_SIZE
);
2020 void __init
xen_pt_check_e820(void)
2022 xen_chk_is_e820_usable(xen_pt_base
, xen_pt_size
, "page table");
2025 static unsigned char dummy_mapping
[PAGE_SIZE
] __page_aligned_bss
;
2027 static void xen_set_fixmap(unsigned idx
, phys_addr_t phys
, pgprot_t prot
)
2030 unsigned long vaddr
;
2032 phys
>>= PAGE_SHIFT
;
2035 case FIX_BTMAP_END
... FIX_BTMAP_BEGIN
:
2036 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2039 /* All local page mappings */
2040 pte
= pfn_pte(phys
, prot
);
2043 #ifdef CONFIG_X86_LOCAL_APIC
2044 case FIX_APIC_BASE
: /* maps dummy local APIC */
2045 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2049 #ifdef CONFIG_X86_IO_APIC
2050 case FIX_IO_APIC_BASE_0
... FIX_IO_APIC_BASE_END
:
2052 * We just don't map the IO APIC - all access is via
2053 * hypercalls. Keep the address in the pte for reference.
2055 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2059 case FIX_PARAVIRT_BOOTMAP
:
2060 /* This is an MFN, but it isn't an IO mapping from the
2062 pte
= mfn_pte(phys
, prot
);
2066 /* By default, set_fixmap is used for hardware mappings */
2067 pte
= mfn_pte(phys
, prot
);
2071 vaddr
= __fix_to_virt(idx
);
2072 if (HYPERVISOR_update_va_mapping(vaddr
, pte
, UVMF_INVLPG
))
2075 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2076 /* Replicate changes to map the vsyscall page into the user
2077 pagetable vsyscall mapping. */
2078 if (idx
== VSYSCALL_PAGE
)
2079 set_pte_vaddr_pud(level3_user_vsyscall
, vaddr
, pte
);
2083 static void xen_enter_lazy_mmu(void)
2085 enter_lazy(XEN_LAZY_MMU
);
2088 static void xen_flush_lazy_mmu(void)
2092 if (xen_get_lazy_mode() == XEN_LAZY_MMU
) {
2093 arch_leave_lazy_mmu_mode();
2094 arch_enter_lazy_mmu_mode();
2100 static void __init
xen_post_allocator_init(void)
2102 pv_ops
.mmu
.set_pte
= xen_set_pte
;
2103 pv_ops
.mmu
.set_pmd
= xen_set_pmd
;
2104 pv_ops
.mmu
.set_pud
= xen_set_pud
;
2105 pv_ops
.mmu
.set_p4d
= xen_set_p4d
;
2107 /* This will work as long as patching hasn't happened yet
2108 (which it hasn't) */
2109 pv_ops
.mmu
.alloc_pte
= xen_alloc_pte
;
2110 pv_ops
.mmu
.alloc_pmd
= xen_alloc_pmd
;
2111 pv_ops
.mmu
.release_pte
= xen_release_pte
;
2112 pv_ops
.mmu
.release_pmd
= xen_release_pmd
;
2113 pv_ops
.mmu
.alloc_pud
= xen_alloc_pud
;
2114 pv_ops
.mmu
.release_pud
= xen_release_pud
;
2115 pv_ops
.mmu
.make_pte
= PV_CALLEE_SAVE(xen_make_pte
);
2117 pv_ops
.mmu
.write_cr3
= &xen_write_cr3
;
2120 static void xen_leave_lazy_mmu(void)
2124 leave_lazy(XEN_LAZY_MMU
);
2128 static const typeof(pv_ops
) xen_mmu_ops __initconst
= {
2130 .read_cr2
= __PV_IS_CALLEE_SAVE(xen_read_cr2
),
2131 .write_cr2
= xen_write_cr2
,
2133 .read_cr3
= xen_read_cr3
,
2134 .write_cr3
= xen_write_cr3_init
,
2136 .flush_tlb_user
= xen_flush_tlb
,
2137 .flush_tlb_kernel
= xen_flush_tlb
,
2138 .flush_tlb_one_user
= xen_flush_tlb_one_user
,
2139 .flush_tlb_multi
= xen_flush_tlb_multi
,
2140 .tlb_remove_table
= tlb_remove_table
,
2142 .pgd_alloc
= xen_pgd_alloc
,
2143 .pgd_free
= xen_pgd_free
,
2145 .alloc_pte
= xen_alloc_pte_init
,
2146 .release_pte
= xen_release_pte_init
,
2147 .alloc_pmd
= xen_alloc_pmd_init
,
2148 .release_pmd
= xen_release_pmd_init
,
2150 .set_pte
= xen_set_pte_init
,
2151 .set_pmd
= xen_set_pmd_hyper
,
2153 .ptep_modify_prot_start
= xen_ptep_modify_prot_start
,
2154 .ptep_modify_prot_commit
= xen_ptep_modify_prot_commit
,
2156 .pte_val
= PV_CALLEE_SAVE(xen_pte_val
),
2157 .pgd_val
= PV_CALLEE_SAVE(xen_pgd_val
),
2159 .make_pte
= PV_CALLEE_SAVE(xen_make_pte_init
),
2160 .make_pgd
= PV_CALLEE_SAVE(xen_make_pgd
),
2162 .set_pud
= xen_set_pud_hyper
,
2164 .make_pmd
= PV_CALLEE_SAVE(xen_make_pmd
),
2165 .pmd_val
= PV_CALLEE_SAVE(xen_pmd_val
),
2167 .pud_val
= PV_CALLEE_SAVE(xen_pud_val
),
2168 .make_pud
= PV_CALLEE_SAVE(xen_make_pud
),
2169 .set_p4d
= xen_set_p4d_hyper
,
2171 .alloc_pud
= xen_alloc_pmd_init
,
2172 .release_pud
= xen_release_pmd_init
,
2174 #if CONFIG_PGTABLE_LEVELS >= 5
2175 .p4d_val
= PV_CALLEE_SAVE(xen_p4d_val
),
2176 .make_p4d
= PV_CALLEE_SAVE(xen_make_p4d
),
2179 .enter_mmap
= xen_enter_mmap
,
2180 .exit_mmap
= xen_exit_mmap
,
2183 .enter
= xen_enter_lazy_mmu
,
2184 .leave
= xen_leave_lazy_mmu
,
2185 .flush
= xen_flush_lazy_mmu
,
2188 .set_fixmap
= xen_set_fixmap
,
2192 void __init
xen_init_mmu_ops(void)
2194 x86_init
.paging
.pagetable_init
= xen_pagetable_init
;
2195 x86_init
.hyper
.init_after_bootmem
= xen_after_bootmem
;
2197 pv_ops
.mmu
= xen_mmu_ops
.mmu
;
2199 memset(dummy_mapping
, 0xff, PAGE_SIZE
);
2202 /* Protected by xen_reservation_lock. */
2203 #define MAX_CONTIG_ORDER 9 /* 2MB */
2204 static unsigned long discontig_frames
[1<<MAX_CONTIG_ORDER
];
2206 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2207 static void xen_zap_pfn_range(unsigned long vaddr
, unsigned int order
,
2208 unsigned long *in_frames
,
2209 unsigned long *out_frames
)
2212 struct multicall_space mcs
;
2215 for (i
= 0; i
< (1UL<<order
); i
++, vaddr
+= PAGE_SIZE
) {
2216 mcs
= __xen_mc_entry(0);
2219 in_frames
[i
] = virt_to_mfn((void *)vaddr
);
2221 MULTI_update_va_mapping(mcs
.mc
, vaddr
, VOID_PTE
, 0);
2222 __set_phys_to_machine(virt_to_pfn((void *)vaddr
), INVALID_P2M_ENTRY
);
2225 out_frames
[i
] = virt_to_pfn((void *)vaddr
);
2231 * Update the pfn-to-mfn mappings for a virtual address range, either to
2232 * point to an array of mfns, or contiguously from a single starting
2235 static void xen_remap_exchanged_ptes(unsigned long vaddr
, int order
,
2236 unsigned long *mfns
,
2237 unsigned long first_mfn
)
2244 limit
= 1u << order
;
2245 for (i
= 0; i
< limit
; i
++, vaddr
+= PAGE_SIZE
) {
2246 struct multicall_space mcs
;
2249 mcs
= __xen_mc_entry(0);
2253 mfn
= first_mfn
+ i
;
2255 if (i
< (limit
- 1))
2259 flags
= UVMF_INVLPG
| UVMF_ALL
;
2261 flags
= UVMF_TLB_FLUSH
| UVMF_ALL
;
2264 MULTI_update_va_mapping(mcs
.mc
, vaddr
,
2265 mfn_pte(mfn
, PAGE_KERNEL
), flags
);
2267 set_phys_to_machine(virt_to_pfn((void *)vaddr
), mfn
);
2274 * Perform the hypercall to exchange a region of our pfns to point to
2275 * memory with the required contiguous alignment. Takes the pfns as
2276 * input, and populates mfns as output.
2278 * Returns a success code indicating whether the hypervisor was able to
2279 * satisfy the request or not.
2281 static int xen_exchange_memory(unsigned long extents_in
, unsigned int order_in
,
2282 unsigned long *pfns_in
,
2283 unsigned long extents_out
,
2284 unsigned int order_out
,
2285 unsigned long *mfns_out
,
2286 unsigned int address_bits
)
2291 struct xen_memory_exchange exchange
= {
2293 .nr_extents
= extents_in
,
2294 .extent_order
= order_in
,
2295 .extent_start
= pfns_in
,
2299 .nr_extents
= extents_out
,
2300 .extent_order
= order_out
,
2301 .extent_start
= mfns_out
,
2302 .address_bits
= address_bits
,
2307 BUG_ON(extents_in
<< order_in
!= extents_out
<< order_out
);
2309 rc
= HYPERVISOR_memory_op(XENMEM_exchange
, &exchange
);
2310 success
= (exchange
.nr_exchanged
== extents_in
);
2312 BUG_ON(!success
&& ((exchange
.nr_exchanged
!= 0) || (rc
== 0)));
2313 BUG_ON(success
&& (rc
!= 0));
2318 int xen_create_contiguous_region(phys_addr_t pstart
, unsigned int order
,
2319 unsigned int address_bits
,
2320 dma_addr_t
*dma_handle
)
2322 unsigned long *in_frames
= discontig_frames
, out_frame
;
2323 unsigned long flags
;
2325 unsigned long vstart
= (unsigned long)phys_to_virt(pstart
);
2327 if (unlikely(order
> MAX_CONTIG_ORDER
))
2330 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2332 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2334 /* 1. Zap current PTEs, remembering MFNs. */
2335 xen_zap_pfn_range(vstart
, order
, in_frames
, NULL
);
2337 /* 2. Get a new contiguous memory extent. */
2338 out_frame
= virt_to_pfn((void *)vstart
);
2339 success
= xen_exchange_memory(1UL << order
, 0, in_frames
,
2340 1, order
, &out_frame
,
2343 /* 3. Map the new extent in place of old pages. */
2345 xen_remap_exchanged_ptes(vstart
, order
, NULL
, out_frame
);
2347 xen_remap_exchanged_ptes(vstart
, order
, in_frames
, 0);
2349 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2351 *dma_handle
= virt_to_machine(vstart
).maddr
;
2352 return success
? 0 : -ENOMEM
;
2355 void xen_destroy_contiguous_region(phys_addr_t pstart
, unsigned int order
)
2357 unsigned long *out_frames
= discontig_frames
, in_frame
;
2358 unsigned long flags
;
2360 unsigned long vstart
;
2362 if (unlikely(order
> MAX_CONTIG_ORDER
))
2365 vstart
= (unsigned long)phys_to_virt(pstart
);
2366 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2368 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2370 /* 1. Find start MFN of contiguous extent. */
2371 in_frame
= virt_to_mfn((void *)vstart
);
2373 /* 2. Zap current PTEs. */
2374 xen_zap_pfn_range(vstart
, order
, NULL
, out_frames
);
2376 /* 3. Do the exchange for non-contiguous MFNs. */
2377 success
= xen_exchange_memory(1, order
, &in_frame
, 1UL << order
,
2380 /* 4. Map new pages in place of old pages. */
2382 xen_remap_exchanged_ptes(vstart
, order
, out_frames
, 0);
2384 xen_remap_exchanged_ptes(vstart
, order
, NULL
, in_frame
);
2386 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2389 static noinline
void xen_flush_tlb_all(void)
2391 struct mmuext_op
*op
;
2392 struct multicall_space mcs
;
2396 mcs
= xen_mc_entry(sizeof(*op
));
2399 op
->cmd
= MMUEXT_TLB_FLUSH_ALL
;
2400 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
2402 xen_mc_issue(XEN_LAZY_MMU
);
2407 #define REMAP_BATCH_SIZE 16
2414 struct mmu_update
*mmu_update
;
2417 static int remap_area_pfn_pte_fn(pte_t
*ptep
, unsigned long addr
, void *data
)
2419 struct remap_data
*rmd
= data
;
2420 pte_t pte
= pte_mkspecial(mfn_pte(*rmd
->pfn
, rmd
->prot
));
2423 * If we have a contiguous range, just update the pfn itself,
2424 * else update pointer to be "next pfn".
2426 if (rmd
->contiguous
)
2431 rmd
->mmu_update
->ptr
= virt_to_machine(ptep
).maddr
;
2432 rmd
->mmu_update
->ptr
|= rmd
->no_translate
?
2433 MMU_PT_UPDATE_NO_TRANSLATE
:
2434 MMU_NORMAL_PT_UPDATE
;
2435 rmd
->mmu_update
->val
= pte_val_ma(pte
);
2441 int xen_remap_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2442 xen_pfn_t
*pfn
, int nr
, int *err_ptr
, pgprot_t prot
,
2443 unsigned int domid
, bool no_translate
)
2446 struct remap_data rmd
;
2447 struct mmu_update mmu_update
[REMAP_BATCH_SIZE
];
2448 unsigned long range
;
2451 BUG_ON(!((vma
->vm_flags
& (VM_PFNMAP
| VM_IO
)) == (VM_PFNMAP
| VM_IO
)));
2456 * We use the err_ptr to indicate if there we are doing a contiguous
2457 * mapping or a discontiguous mapping.
2459 rmd
.contiguous
= !err_ptr
;
2460 rmd
.no_translate
= no_translate
;
2465 int batch
= min(REMAP_BATCH_SIZE
, nr
);
2466 int batch_left
= batch
;
2468 range
= (unsigned long)batch
<< PAGE_SHIFT
;
2470 rmd
.mmu_update
= mmu_update
;
2471 err
= apply_to_page_range(vma
->vm_mm
, addr
, range
,
2472 remap_area_pfn_pte_fn
, &rmd
);
2477 * We record the error for each page that gives an error, but
2478 * continue mapping until the whole set is done
2483 err
= HYPERVISOR_mmu_update(&mmu_update
[index
],
2484 batch_left
, &done
, domid
);
2487 * @err_ptr may be the same buffer as @gfn, so
2488 * only clear it after each chunk of @gfn is
2492 for (i
= index
; i
< index
+ done
; i
++)
2499 done
++; /* Skip failed frame. */
2504 } while (batch_left
);
2514 xen_flush_tlb_all();
2516 return err
< 0 ? err
: mapped
;
2518 EXPORT_SYMBOL_GPL(xen_remap_pfn
);
2520 #ifdef CONFIG_VMCORE_INFO
2521 phys_addr_t
paddr_vmcoreinfo_note(void)
2523 if (xen_pv_domain())
2524 return virt_to_machine(vmcoreinfo_note
).maddr
;
2526 return __pa(vmcoreinfo_note
);
2528 #endif /* CONFIG_KEXEC_CORE */