drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / arch / x86 / xen / time.c
blob96521b1874acfc39995f3b9a138783341097be27
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Xen time implementation.
5 * This is implemented in terms of a clocksource driver which uses
6 * the hypervisor clock as a nanosecond timebase, and a clockevent
7 * driver which uses the hypervisor's timer mechanism.
9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
11 #include <linux/kernel.h>
12 #include <linux/interrupt.h>
13 #include <linux/clocksource.h>
14 #include <linux/clockchips.h>
15 #include <linux/gfp.h>
16 #include <linux/slab.h>
17 #include <linux/pvclock_gtod.h>
18 #include <linux/timekeeper_internal.h>
20 #include <asm/pvclock.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 #include <asm/xen/cpuid.h>
25 #include <xen/events.h>
26 #include <xen/features.h>
27 #include <xen/interface/xen.h>
28 #include <xen/interface/vcpu.h>
30 #include "xen-ops.h"
32 /* Minimum amount of time until next clock event fires */
33 #define TIMER_SLOP 1
35 static u64 xen_sched_clock_offset __read_mostly;
37 /* Get the TSC speed from Xen */
38 static unsigned long xen_tsc_khz(void)
40 struct pvclock_vcpu_time_info *info =
41 &HYPERVISOR_shared_info->vcpu_info[0].time;
43 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
44 return pvclock_tsc_khz(info);
47 static u64 xen_clocksource_read(void)
49 struct pvclock_vcpu_time_info *src;
50 u64 ret;
52 preempt_disable_notrace();
53 src = &__this_cpu_read(xen_vcpu)->time;
54 ret = pvclock_clocksource_read(src);
55 preempt_enable_notrace();
56 return ret;
59 static u64 xen_clocksource_get_cycles(struct clocksource *cs)
61 return xen_clocksource_read();
64 static noinstr u64 xen_sched_clock(void)
66 struct pvclock_vcpu_time_info *src;
67 u64 ret;
69 src = &__this_cpu_read(xen_vcpu)->time;
70 ret = pvclock_clocksource_read_nowd(src);
71 ret -= xen_sched_clock_offset;
73 return ret;
76 static void xen_read_wallclock(struct timespec64 *ts)
78 struct shared_info *s = HYPERVISOR_shared_info;
79 struct pvclock_wall_clock *wall_clock = &(s->wc);
80 struct pvclock_vcpu_time_info *vcpu_time;
82 vcpu_time = &get_cpu_var(xen_vcpu)->time;
83 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
84 put_cpu_var(xen_vcpu);
87 static void xen_get_wallclock(struct timespec64 *now)
89 xen_read_wallclock(now);
92 static int xen_set_wallclock(const struct timespec64 *now)
94 return -ENODEV;
97 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
98 unsigned long was_set, void *priv)
100 /* Protected by the calling core code serialization */
101 static struct timespec64 next_sync;
103 struct xen_platform_op op;
104 struct timespec64 now;
105 struct timekeeper *tk = priv;
106 static bool settime64_supported = true;
107 int ret;
109 now.tv_sec = tk->xtime_sec;
110 now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
113 * We only take the expensive HV call when the clock was set
114 * or when the 11 minutes RTC synchronization time elapsed.
116 if (!was_set && timespec64_compare(&now, &next_sync) < 0)
117 return NOTIFY_OK;
119 again:
120 if (settime64_supported) {
121 op.cmd = XENPF_settime64;
122 op.u.settime64.mbz = 0;
123 op.u.settime64.secs = now.tv_sec;
124 op.u.settime64.nsecs = now.tv_nsec;
125 op.u.settime64.system_time = xen_clocksource_read();
126 } else {
127 op.cmd = XENPF_settime32;
128 op.u.settime32.secs = now.tv_sec;
129 op.u.settime32.nsecs = now.tv_nsec;
130 op.u.settime32.system_time = xen_clocksource_read();
133 ret = HYPERVISOR_platform_op(&op);
135 if (ret == -ENOSYS && settime64_supported) {
136 settime64_supported = false;
137 goto again;
139 if (ret < 0)
140 return NOTIFY_BAD;
143 * Move the next drift compensation time 11 minutes
144 * ahead. That's emulating the sync_cmos_clock() update for
145 * the hardware RTC.
147 next_sync = now;
148 next_sync.tv_sec += 11 * 60;
150 return NOTIFY_OK;
153 static struct notifier_block xen_pvclock_gtod_notifier = {
154 .notifier_call = xen_pvclock_gtod_notify,
157 static int xen_cs_enable(struct clocksource *cs)
159 vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
160 return 0;
163 static struct clocksource xen_clocksource __read_mostly = {
164 .name = "xen",
165 .rating = 400,
166 .read = xen_clocksource_get_cycles,
167 .mask = CLOCKSOURCE_MASK(64),
168 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
169 .enable = xen_cs_enable,
173 Xen clockevent implementation
175 Xen has two clockevent implementations:
177 The old timer_op one works with all released versions of Xen prior
178 to version 3.0.4. This version of the hypervisor provides a
179 single-shot timer with nanosecond resolution. However, sharing the
180 same event channel is a 100Hz tick which is delivered while the
181 vcpu is running. We don't care about or use this tick, but it will
182 cause the core time code to think the timer fired too soon, and
183 will end up resetting it each time. It could be filtered, but
184 doing so has complications when the ktime clocksource is not yet
185 the xen clocksource (ie, at boot time).
187 The new vcpu_op-based timer interface allows the tick timer period
188 to be changed or turned off. The tick timer is not useful as a
189 periodic timer because events are only delivered to running vcpus.
190 The one-shot timer can report when a timeout is in the past, so
191 set_next_event is capable of returning -ETIME when appropriate.
192 This interface is used when available.
197 Get a hypervisor absolute time. In theory we could maintain an
198 offset between the kernel's time and the hypervisor's time, and
199 apply that to a kernel's absolute timeout. Unfortunately the
200 hypervisor and kernel times can drift even if the kernel is using
201 the Xen clocksource, because ntp can warp the kernel's clocksource.
203 static s64 get_abs_timeout(unsigned long delta)
205 return xen_clocksource_read() + delta;
208 static int xen_timerop_shutdown(struct clock_event_device *evt)
210 /* cancel timeout */
211 HYPERVISOR_set_timer_op(0);
213 return 0;
216 static int xen_timerop_set_next_event(unsigned long delta,
217 struct clock_event_device *evt)
219 WARN_ON(!clockevent_state_oneshot(evt));
221 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
222 BUG();
224 /* We may have missed the deadline, but there's no real way of
225 knowing for sure. If the event was in the past, then we'll
226 get an immediate interrupt. */
228 return 0;
231 static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
232 .name = "xen",
233 .features = CLOCK_EVT_FEAT_ONESHOT,
235 .max_delta_ns = 0xffffffff,
236 .max_delta_ticks = 0xffffffff,
237 .min_delta_ns = TIMER_SLOP,
238 .min_delta_ticks = TIMER_SLOP,
240 .mult = 1,
241 .shift = 0,
242 .rating = 500,
244 .set_state_shutdown = xen_timerop_shutdown,
245 .set_next_event = xen_timerop_set_next_event,
248 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
250 int cpu = smp_processor_id();
252 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
253 NULL) ||
254 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
255 NULL))
256 BUG();
258 return 0;
261 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
263 int cpu = smp_processor_id();
265 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
266 NULL))
267 BUG();
269 return 0;
272 static int xen_vcpuop_set_next_event(unsigned long delta,
273 struct clock_event_device *evt)
275 int cpu = smp_processor_id();
276 struct vcpu_set_singleshot_timer single;
277 int ret;
279 WARN_ON(!clockevent_state_oneshot(evt));
281 single.timeout_abs_ns = get_abs_timeout(delta);
282 /* Get an event anyway, even if the timeout is already expired */
283 single.flags = 0;
285 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
286 &single);
287 BUG_ON(ret != 0);
289 return ret;
292 static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
293 .name = "xen",
294 .features = CLOCK_EVT_FEAT_ONESHOT,
296 .max_delta_ns = 0xffffffff,
297 .max_delta_ticks = 0xffffffff,
298 .min_delta_ns = TIMER_SLOP,
299 .min_delta_ticks = TIMER_SLOP,
301 .mult = 1,
302 .shift = 0,
303 .rating = 500,
305 .set_state_shutdown = xen_vcpuop_shutdown,
306 .set_state_oneshot = xen_vcpuop_set_oneshot,
307 .set_next_event = xen_vcpuop_set_next_event,
310 static const struct clock_event_device *xen_clockevent =
311 &xen_timerop_clockevent;
313 struct xen_clock_event_device {
314 struct clock_event_device evt;
315 char name[16];
317 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
319 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
321 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
322 irqreturn_t ret;
324 ret = IRQ_NONE;
325 if (evt->event_handler) {
326 evt->event_handler(evt);
327 ret = IRQ_HANDLED;
330 return ret;
333 void xen_teardown_timer(int cpu)
335 struct clock_event_device *evt;
336 evt = &per_cpu(xen_clock_events, cpu).evt;
338 if (evt->irq >= 0) {
339 unbind_from_irqhandler(evt->irq, NULL);
340 evt->irq = -1;
344 void xen_setup_timer(int cpu)
346 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
347 struct clock_event_device *evt = &xevt->evt;
348 int irq;
350 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
351 if (evt->irq >= 0)
352 xen_teardown_timer(cpu);
354 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
356 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
358 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
359 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
360 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
361 xevt->name, NULL);
362 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
364 memcpy(evt, xen_clockevent, sizeof(*evt));
366 evt->cpumask = cpumask_of(cpu);
367 evt->irq = irq;
371 void xen_setup_cpu_clockevents(void)
373 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
376 void xen_timer_resume(void)
378 int cpu;
380 if (xen_clockevent != &xen_vcpuop_clockevent)
381 return;
383 for_each_online_cpu(cpu) {
384 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
385 xen_vcpu_nr(cpu), NULL))
386 BUG();
390 static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
391 static u64 xen_clock_value_saved;
393 void xen_save_time_memory_area(void)
395 struct vcpu_register_time_memory_area t;
396 int ret;
398 xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
400 if (!xen_clock)
401 return;
403 t.addr.v = NULL;
405 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
406 if (ret != 0)
407 pr_notice("Cannot save secondary vcpu_time_info (err %d)",
408 ret);
409 else
410 clear_page(xen_clock);
413 void xen_restore_time_memory_area(void)
415 struct vcpu_register_time_memory_area t;
416 int ret;
418 if (!xen_clock)
419 goto out;
421 t.addr.v = &xen_clock->pvti;
423 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
426 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
427 * register the secondary time info with Xen or if we migrated to a
428 * host without the necessary flags. On both of these cases what
429 * happens is either process seeing a zeroed out pvti or seeing no
430 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
431 * if 0, it discards the data in pvti and fallbacks to a system
432 * call for a reliable timestamp.
434 if (ret != 0)
435 pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
436 ret);
438 out:
439 /* Need pvclock_resume() before using xen_clocksource_read(). */
440 pvclock_resume();
441 xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
444 static void xen_setup_vsyscall_time_info(void)
446 struct vcpu_register_time_memory_area t;
447 struct pvclock_vsyscall_time_info *ti;
448 int ret;
450 ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
451 if (!ti)
452 return;
454 t.addr.v = &ti->pvti;
456 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
457 if (ret) {
458 pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
459 free_page((unsigned long)ti);
460 return;
464 * If primary time info had this bit set, secondary should too since
465 * it's the same data on both just different memory regions. But we
466 * still check it in case hypervisor is buggy.
468 if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
469 t.addr.v = NULL;
470 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
471 0, &t);
472 if (!ret)
473 free_page((unsigned long)ti);
475 pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
476 return;
479 xen_clock = ti;
480 pvclock_set_pvti_cpu0_va(xen_clock);
482 xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
486 * Check if it is possible to safely use the tsc as a clocksource. This is
487 * only true if the hypervisor notifies the guest that its tsc is invariant,
488 * the tsc is stable, and the tsc instruction will never be emulated.
490 static int __init xen_tsc_safe_clocksource(void)
492 u32 eax, ebx, ecx, edx;
494 if (!(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)))
495 return 0;
497 if (!(boot_cpu_has(X86_FEATURE_NONSTOP_TSC)))
498 return 0;
500 if (check_tsc_unstable())
501 return 0;
503 /* Leaf 4, sub-leaf 0 (0x40000x03) */
504 cpuid_count(xen_cpuid_base() + 3, 0, &eax, &ebx, &ecx, &edx);
506 return ebx == XEN_CPUID_TSC_MODE_NEVER_EMULATE;
509 static void __init xen_time_init(void)
511 struct pvclock_vcpu_time_info *pvti;
512 int cpu = smp_processor_id();
513 struct timespec64 tp;
516 * As Dom0 is never moved, no penalty on using TSC there.
518 * If it is possible for the guest to determine that the tsc is a safe
519 * clocksource, then set xen_clocksource rating below that of the tsc
520 * so that the system prefers tsc instead.
522 if (xen_initial_domain())
523 xen_clocksource.rating = 275;
524 else if (xen_tsc_safe_clocksource())
525 xen_clocksource.rating = 299;
527 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
529 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
530 NULL) == 0) {
531 /* Successfully turned off 100Hz tick, so we have the
532 vcpuop-based timer interface */
533 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
534 xen_clockevent = &xen_vcpuop_clockevent;
537 /* Set initial system time with full resolution */
538 xen_read_wallclock(&tp);
539 do_settimeofday64(&tp);
541 setup_force_cpu_cap(X86_FEATURE_TSC);
544 * We check ahead on the primary time info if this
545 * bit is supported hence speeding up Xen clocksource.
547 pvti = &__this_cpu_read(xen_vcpu)->time;
548 if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
549 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
550 xen_setup_vsyscall_time_info();
553 xen_setup_runstate_info(cpu);
554 xen_setup_timer(cpu);
555 xen_setup_cpu_clockevents();
557 xen_time_setup_guest();
559 if (xen_initial_domain())
560 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
563 static void __init xen_init_time_common(void)
565 xen_sched_clock_offset = xen_clocksource_read();
566 static_call_update(pv_steal_clock, xen_steal_clock);
567 paravirt_set_sched_clock(xen_sched_clock);
569 x86_platform.calibrate_tsc = xen_tsc_khz;
570 x86_platform.get_wallclock = xen_get_wallclock;
573 void __init xen_init_time_ops(void)
575 xen_init_time_common();
577 x86_init.timers.timer_init = xen_time_init;
578 x86_init.timers.setup_percpu_clockev = x86_init_noop;
579 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
581 /* Dom0 uses the native method to set the hardware RTC. */
582 if (!xen_initial_domain())
583 x86_platform.set_wallclock = xen_set_wallclock;
586 #ifdef CONFIG_XEN_PVHVM
587 static void xen_hvm_setup_cpu_clockevents(void)
589 int cpu = smp_processor_id();
590 xen_setup_runstate_info(cpu);
592 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
593 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
594 * early bootup and also during CPU hotplug events).
596 xen_setup_cpu_clockevents();
599 void __init xen_hvm_init_time_ops(void)
601 static bool hvm_time_initialized;
603 if (hvm_time_initialized)
604 return;
607 * vector callback is needed otherwise we cannot receive interrupts
608 * on cpu > 0 and at this point we don't know how many cpus are
609 * available.
611 if (!xen_have_vector_callback)
612 return;
614 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
615 pr_info_once("Xen doesn't support pvclock on HVM, disable pv timer");
616 return;
620 * Only MAX_VIRT_CPUS 'vcpu_info' are embedded inside 'shared_info'.
621 * The __this_cpu_read(xen_vcpu) is still NULL when Xen HVM guest
622 * boots on vcpu >= MAX_VIRT_CPUS (e.g., kexec), To access
623 * __this_cpu_read(xen_vcpu) via xen_clocksource_read() will panic.
625 * The xen_hvm_init_time_ops() should be called again later after
626 * __this_cpu_read(xen_vcpu) is available.
628 if (!__this_cpu_read(xen_vcpu)) {
629 pr_info("Delay xen_init_time_common() as kernel is running on vcpu=%d\n",
630 xen_vcpu_nr(0));
631 return;
634 xen_init_time_common();
636 x86_init.timers.setup_percpu_clockev = xen_time_init;
637 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
639 x86_platform.set_wallclock = xen_set_wallclock;
641 hvm_time_initialized = true;
643 #endif
645 /* Kernel parameter to specify Xen timer slop */
646 static int __init parse_xen_timer_slop(char *ptr)
648 unsigned long slop = memparse(ptr, NULL);
650 xen_timerop_clockevent.min_delta_ns = slop;
651 xen_timerop_clockevent.min_delta_ticks = slop;
652 xen_vcpuop_clockevent.min_delta_ns = slop;
653 xen_vcpuop_clockevent.min_delta_ticks = slop;
655 return 0;
657 early_param("xen_timer_slop", parse_xen_timer_slop);