1 // SPDX-License-Identifier: GPL-2.0-only
5 * Encryption hooks for higher-level filesystem operations.
8 #include "fscrypt_private.h"
11 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
12 * @inode: the inode being opened
13 * @filp: the struct file being set up
15 * Currently, an encrypted regular file can only be opened if its encryption key
16 * is available; access to the raw encrypted contents is not supported.
17 * Therefore, we first set up the inode's encryption key (if not already done)
18 * and return an error if it's unavailable.
20 * We also verify that if the parent directory (from the path via which the file
21 * is being opened) is encrypted, then the inode being opened uses the same
22 * encryption policy. This is needed as part of the enforcement that all files
23 * in an encrypted directory tree use the same encryption policy, as a
24 * protection against certain types of offline attacks. Note that this check is
25 * needed even when opening an *unencrypted* file, since it's forbidden to have
26 * an unencrypted file in an encrypted directory.
28 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
30 int fscrypt_file_open(struct inode
*inode
, struct file
*filp
)
33 struct dentry
*dentry
, *dentry_parent
;
34 struct inode
*inode_parent
;
36 err
= fscrypt_require_key(inode
);
40 dentry
= file_dentry(filp
);
43 * Getting a reference to the parent dentry is needed for the actual
44 * encryption policy comparison, but it's expensive on multi-core
45 * systems. Since this function runs on unencrypted files too, start
46 * with a lightweight RCU-mode check for the parent directory being
47 * unencrypted (in which case it's fine for the child to be either
48 * unencrypted, or encrypted with any policy). Only continue on to the
49 * full policy check if the parent directory is actually encrypted.
52 dentry_parent
= READ_ONCE(dentry
->d_parent
);
53 inode_parent
= d_inode_rcu(dentry_parent
);
54 if (inode_parent
!= NULL
&& !IS_ENCRYPTED(inode_parent
)) {
60 dentry_parent
= dget_parent(dentry
);
61 if (!fscrypt_has_permitted_context(d_inode(dentry_parent
), inode
)) {
63 "Inconsistent encryption context (parent directory: %lu)",
64 d_inode(dentry_parent
)->i_ino
);
70 EXPORT_SYMBOL_GPL(fscrypt_file_open
);
72 int __fscrypt_prepare_link(struct inode
*inode
, struct inode
*dir
,
73 struct dentry
*dentry
)
75 if (fscrypt_is_nokey_name(dentry
))
78 * We don't need to separately check that the directory inode's key is
79 * available, as it's implied by the dentry not being a no-key name.
82 if (!fscrypt_has_permitted_context(dir
, inode
))
87 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link
);
89 int __fscrypt_prepare_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
90 struct inode
*new_dir
, struct dentry
*new_dentry
,
93 if (fscrypt_is_nokey_name(old_dentry
) ||
94 fscrypt_is_nokey_name(new_dentry
))
97 * We don't need to separately check that the directory inodes' keys are
98 * available, as it's implied by the dentries not being no-key names.
101 if (old_dir
!= new_dir
) {
102 if (IS_ENCRYPTED(new_dir
) &&
103 !fscrypt_has_permitted_context(new_dir
,
104 d_inode(old_dentry
)))
107 if ((flags
& RENAME_EXCHANGE
) &&
108 IS_ENCRYPTED(old_dir
) &&
109 !fscrypt_has_permitted_context(old_dir
,
110 d_inode(new_dentry
)))
115 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename
);
117 int __fscrypt_prepare_lookup(struct inode
*dir
, struct dentry
*dentry
,
118 struct fscrypt_name
*fname
)
120 int err
= fscrypt_setup_filename(dir
, &dentry
->d_name
, 1, fname
);
122 if (err
&& err
!= -ENOENT
)
125 fscrypt_prepare_dentry(dentry
, fname
->is_nokey_name
);
129 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup
);
132 * fscrypt_prepare_lookup_partial() - prepare lookup without filename setup
133 * @dir: the encrypted directory being searched
134 * @dentry: the dentry being looked up in @dir
136 * This function should be used by the ->lookup and ->atomic_open methods of
137 * filesystems that handle filename encryption and no-key name encoding
138 * themselves and thus can't use fscrypt_prepare_lookup(). Like
139 * fscrypt_prepare_lookup(), this will try to set up the directory's encryption
140 * key and will set DCACHE_NOKEY_NAME on the dentry if the key is unavailable.
141 * However, this function doesn't set up a struct fscrypt_name for the filename.
143 * Return: 0 on success; -errno on error. Note that the encryption key being
144 * unavailable is not considered an error. It is also not an error if
145 * the encryption policy is unsupported by this kernel; that is treated
146 * like the key being unavailable, so that files can still be deleted.
148 int fscrypt_prepare_lookup_partial(struct inode
*dir
, struct dentry
*dentry
)
150 int err
= fscrypt_get_encryption_info(dir
, true);
151 bool is_nokey_name
= (!err
&& !fscrypt_has_encryption_key(dir
));
153 fscrypt_prepare_dentry(dentry
, is_nokey_name
);
157 EXPORT_SYMBOL_GPL(fscrypt_prepare_lookup_partial
);
159 int __fscrypt_prepare_readdir(struct inode
*dir
)
161 return fscrypt_get_encryption_info(dir
, true);
163 EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir
);
165 int __fscrypt_prepare_setattr(struct dentry
*dentry
, struct iattr
*attr
)
167 if (attr
->ia_valid
& ATTR_SIZE
)
168 return fscrypt_require_key(d_inode(dentry
));
171 EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr
);
174 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
175 * @inode: the inode on which flags are being changed
176 * @oldflags: the old flags
177 * @flags: the new flags
179 * The caller should be holding i_rwsem for write.
181 * Return: 0 on success; -errno if the flags change isn't allowed or if
182 * another error occurs.
184 int fscrypt_prepare_setflags(struct inode
*inode
,
185 unsigned int oldflags
, unsigned int flags
)
187 struct fscrypt_inode_info
*ci
;
188 struct fscrypt_master_key
*mk
;
192 * When the CASEFOLD flag is set on an encrypted directory, we must
193 * derive the secret key needed for the dirhash. This is only possible
194 * if the directory uses a v2 encryption policy.
196 if (IS_ENCRYPTED(inode
) && (flags
& ~oldflags
& FS_CASEFOLD_FL
)) {
197 err
= fscrypt_require_key(inode
);
200 ci
= inode
->i_crypt_info
;
201 if (ci
->ci_policy
.version
!= FSCRYPT_POLICY_V2
)
203 mk
= ci
->ci_master_key
;
204 down_read(&mk
->mk_sem
);
206 err
= fscrypt_derive_dirhash_key(ci
, mk
);
209 up_read(&mk
->mk_sem
);
216 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
217 * @dir: directory in which the symlink is being created
218 * @target: plaintext symlink target
219 * @len: length of @target excluding null terminator
220 * @max_len: space the filesystem has available to store the symlink target
221 * @disk_link: (out) the on-disk symlink target being prepared
223 * This function computes the size the symlink target will require on-disk,
224 * stores it in @disk_link->len, and validates it against @max_len. An
225 * encrypted symlink may be longer than the original.
227 * Additionally, @disk_link->name is set to @target if the symlink will be
228 * unencrypted, but left NULL if the symlink will be encrypted. For encrypted
229 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
230 * on-disk target later. (The reason for the two-step process is that some
231 * filesystems need to know the size of the symlink target before creating the
232 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
234 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
235 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
236 * occurred while setting up the encryption key.
238 int fscrypt_prepare_symlink(struct inode
*dir
, const char *target
,
239 unsigned int len
, unsigned int max_len
,
240 struct fscrypt_str
*disk_link
)
242 const union fscrypt_policy
*policy
;
245 * To calculate the size of the encrypted symlink target we need to know
246 * the amount of NUL padding, which is determined by the flags set in
247 * the encryption policy which will be inherited from the directory.
249 policy
= fscrypt_policy_to_inherit(dir
);
250 if (policy
== NULL
) {
252 disk_link
->name
= (unsigned char *)target
;
253 disk_link
->len
= len
+ 1;
254 if (disk_link
->len
> max_len
)
255 return -ENAMETOOLONG
;
259 return PTR_ERR(policy
);
262 * Calculate the size of the encrypted symlink and verify it won't
263 * exceed max_len. Note that for historical reasons, encrypted symlink
264 * targets are prefixed with the ciphertext length, despite this
265 * actually being redundant with i_size. This decreases by 2 bytes the
266 * longest symlink target we can accept.
268 * We could recover 1 byte by not counting a null terminator, but
269 * counting it (even though it is meaningless for ciphertext) is simpler
270 * for now since filesystems will assume it is there and subtract it.
272 if (!__fscrypt_fname_encrypted_size(policy
, len
,
273 max_len
- sizeof(struct fscrypt_symlink_data
) - 1,
275 return -ENAMETOOLONG
;
276 disk_link
->len
+= sizeof(struct fscrypt_symlink_data
) + 1;
278 disk_link
->name
= NULL
;
281 EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink
);
283 int __fscrypt_encrypt_symlink(struct inode
*inode
, const char *target
,
284 unsigned int len
, struct fscrypt_str
*disk_link
)
287 struct qstr iname
= QSTR_INIT(target
, len
);
288 struct fscrypt_symlink_data
*sd
;
289 unsigned int ciphertext_len
;
292 * fscrypt_prepare_new_inode() should have already set up the new
293 * symlink inode's encryption key. We don't wait until now to do it,
294 * since we may be in a filesystem transaction now.
296 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode
)))
299 if (disk_link
->name
) {
300 /* filesystem-provided buffer */
301 sd
= (struct fscrypt_symlink_data
*)disk_link
->name
;
303 sd
= kmalloc(disk_link
->len
, GFP_NOFS
);
307 ciphertext_len
= disk_link
->len
- sizeof(*sd
) - 1;
308 sd
->len
= cpu_to_le16(ciphertext_len
);
310 err
= fscrypt_fname_encrypt(inode
, &iname
, sd
->encrypted_path
,
316 * Null-terminating the ciphertext doesn't make sense, but we still
317 * count the null terminator in the length, so we might as well
318 * initialize it just in case the filesystem writes it out.
320 sd
->encrypted_path
[ciphertext_len
] = '\0';
322 /* Cache the plaintext symlink target for later use by get_link() */
324 inode
->i_link
= kmemdup(target
, len
+ 1, GFP_NOFS
);
328 if (!disk_link
->name
)
329 disk_link
->name
= (unsigned char *)sd
;
333 if (!disk_link
->name
)
337 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink
);
340 * fscrypt_get_symlink() - get the target of an encrypted symlink
341 * @inode: the symlink inode
342 * @caddr: the on-disk contents of the symlink
343 * @max_size: size of @caddr buffer
344 * @done: if successful, will be set up to free the returned target if needed
346 * If the symlink's encryption key is available, we decrypt its target.
347 * Otherwise, we encode its target for presentation.
349 * This may sleep, so the filesystem must have dropped out of RCU mode already.
351 * Return: the presentable symlink target or an ERR_PTR()
353 const char *fscrypt_get_symlink(struct inode
*inode
, const void *caddr
,
354 unsigned int max_size
,
355 struct delayed_call
*done
)
357 const struct fscrypt_symlink_data
*sd
;
358 struct fscrypt_str cstr
, pstr
;
362 /* This is for encrypted symlinks only */
363 if (WARN_ON_ONCE(!IS_ENCRYPTED(inode
)))
364 return ERR_PTR(-EINVAL
);
366 /* If the decrypted target is already cached, just return it. */
367 pstr
.name
= READ_ONCE(inode
->i_link
);
372 * Try to set up the symlink's encryption key, but we can continue
373 * regardless of whether the key is available or not.
375 err
= fscrypt_get_encryption_info(inode
, false);
378 has_key
= fscrypt_has_encryption_key(inode
);
381 * For historical reasons, encrypted symlink targets are prefixed with
382 * the ciphertext length, even though this is redundant with i_size.
385 if (max_size
< sizeof(*sd
) + 1)
386 return ERR_PTR(-EUCLEAN
);
388 cstr
.name
= (unsigned char *)sd
->encrypted_path
;
389 cstr
.len
= le16_to_cpu(sd
->len
);
392 return ERR_PTR(-EUCLEAN
);
394 if (cstr
.len
+ sizeof(*sd
) > max_size
)
395 return ERR_PTR(-EUCLEAN
);
397 err
= fscrypt_fname_alloc_buffer(cstr
.len
, &pstr
);
401 err
= fscrypt_fname_disk_to_usr(inode
, 0, 0, &cstr
, &pstr
);
406 if (pstr
.name
[0] == '\0')
409 pstr
.name
[pstr
.len
] = '\0';
412 * Cache decrypted symlink targets in i_link for later use. Don't cache
413 * symlink targets encoded without the key, since those become outdated
414 * once the key is added. This pairs with the READ_ONCE() above and in
415 * the VFS path lookup code.
418 cmpxchg_release(&inode
->i_link
, NULL
, pstr
.name
) != NULL
)
419 set_delayed_call(done
, kfree_link
, pstr
.name
);
427 EXPORT_SYMBOL_GPL(fscrypt_get_symlink
);
430 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
431 * @path: the path for the encrypted symlink being queried
432 * @stat: the struct being filled with the symlink's attributes
434 * Override st_size of encrypted symlinks to be the length of the decrypted
435 * symlink target (or the no-key encoded symlink target, if the key is
436 * unavailable) rather than the length of the encrypted symlink target. This is
437 * necessary for st_size to match the symlink target that userspace actually
438 * sees. POSIX requires this, and some userspace programs depend on it.
440 * This requires reading the symlink target from disk if needed, setting up the
441 * inode's encryption key if possible, and then decrypting or encoding the
442 * symlink target. This makes lstat() more heavyweight than is normally the
443 * case. However, decrypted symlink targets will be cached in ->i_link, so
444 * usually the symlink won't have to be read and decrypted again later if/when
445 * it is actually followed, readlink() is called, or lstat() is called again.
447 * Return: 0 on success, -errno on failure
449 int fscrypt_symlink_getattr(const struct path
*path
, struct kstat
*stat
)
451 struct dentry
*dentry
= path
->dentry
;
452 struct inode
*inode
= d_inode(dentry
);
454 DEFINE_DELAYED_CALL(done
);
457 * To get the symlink target that userspace will see (whether it's the
458 * decrypted target or the no-key encoded target), we can just get it in
459 * the same way the VFS does during path resolution and readlink().
461 link
= READ_ONCE(inode
->i_link
);
463 link
= inode
->i_op
->get_link(dentry
, inode
, &done
);
465 return PTR_ERR(link
);
467 stat
->size
= strlen(link
);
468 do_delayed_call(&done
);
471 EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr
);