drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / fs / fs-writeback.c
blobd8bec3c1bb1fa78c287482130956612647a0d27a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
5 * Copyright (C) 2002, Linus Torvalds.
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
35 * 4MB minimal write chunk size
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
40 * Passed into wb_writeback(), essentially a subset of writeback_control
42 struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70 static inline struct inode *wb_inode(struct list_head *head)
72 return list_entry(head, struct inode, i_io_list);
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
94 return true;
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
122 assert_spin_locked(&wb->list_lock);
123 assert_spin_locked(&inode->i_lock);
124 WARN_ON_ONCE(inode->i_state & I_FREEING);
126 list_move(&inode->i_io_list, head);
128 /* dirty_time doesn't count as dirty_io until expiration */
129 if (head != &wb->b_dirty_time)
130 return wb_io_lists_populated(wb);
132 wb_io_lists_depopulated(wb);
133 return false;
136 static void wb_wakeup(struct bdi_writeback *wb)
138 spin_lock_irq(&wb->work_lock);
139 if (test_bit(WB_registered, &wb->state))
140 mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 spin_unlock_irq(&wb->work_lock);
145 * This function is used when the first inode for this wb is marked dirty. It
146 * wakes-up the corresponding bdi thread which should then take care of the
147 * periodic background write-out of dirty inodes. Since the write-out would
148 * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149 * set up a timer which wakes the bdi thread up later.
151 * Note, we wouldn't bother setting up the timer, but this function is on the
152 * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153 * by delaying the wake-up.
155 * We have to be careful not to postpone flush work if it is scheduled for
156 * earlier. Thus we use queue_delayed_work().
158 static void wb_wakeup_delayed(struct bdi_writeback *wb)
160 unsigned long timeout;
162 timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163 spin_lock_irq(&wb->work_lock);
164 if (test_bit(WB_registered, &wb->state))
165 queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166 spin_unlock_irq(&wb->work_lock);
169 static void finish_writeback_work(struct wb_writeback_work *work)
171 struct wb_completion *done = work->done;
173 if (work->auto_free)
174 kfree(work);
175 if (done) {
176 wait_queue_head_t *waitq = done->waitq;
178 /* @done can't be accessed after the following dec */
179 if (atomic_dec_and_test(&done->cnt))
180 wake_up_all(waitq);
184 static void wb_queue_work(struct bdi_writeback *wb,
185 struct wb_writeback_work *work)
187 trace_writeback_queue(wb, work);
189 if (work->done)
190 atomic_inc(&work->done->cnt);
192 spin_lock_irq(&wb->work_lock);
194 if (test_bit(WB_registered, &wb->state)) {
195 list_add_tail(&work->list, &wb->work_list);
196 mod_delayed_work(bdi_wq, &wb->dwork, 0);
197 } else
198 finish_writeback_work(work);
200 spin_unlock_irq(&wb->work_lock);
204 * wb_wait_for_completion - wait for completion of bdi_writeback_works
205 * @done: target wb_completion
207 * Wait for one or more work items issued to @bdi with their ->done field
208 * set to @done, which should have been initialized with
209 * DEFINE_WB_COMPLETION(). This function returns after all such work items
210 * are completed. Work items which are waited upon aren't freed
211 * automatically on completion.
213 void wb_wait_for_completion(struct wb_completion *done)
215 atomic_dec(&done->cnt); /* put down the initial count */
216 wait_event(*done->waitq, !atomic_read(&done->cnt));
219 #ifdef CONFIG_CGROUP_WRITEBACK
222 * Parameters for foreign inode detection, see wbc_detach_inode() to see
223 * how they're used.
225 * These paramters are inherently heuristical as the detection target
226 * itself is fuzzy. All we want to do is detaching an inode from the
227 * current owner if it's being written to by some other cgroups too much.
229 * The current cgroup writeback is built on the assumption that multiple
230 * cgroups writing to the same inode concurrently is very rare and a mode
231 * of operation which isn't well supported. As such, the goal is not
232 * taking too long when a different cgroup takes over an inode while
233 * avoiding too aggressive flip-flops from occasional foreign writes.
235 * We record, very roughly, 2s worth of IO time history and if more than
236 * half of that is foreign, trigger the switch. The recording is quantized
237 * to 16 slots. To avoid tiny writes from swinging the decision too much,
238 * writes smaller than 1/8 of avg size are ignored.
240 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
241 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
242 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
243 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
245 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
246 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
247 /* each slot's duration is 2s / 16 */
248 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
249 /* if foreign slots >= 8, switch */
250 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
251 /* one round can affect upto 5 slots */
252 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
255 * Maximum inodes per isw. A specific value has been chosen to make
256 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
258 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
259 / sizeof(struct inode *))
261 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
262 static struct workqueue_struct *isw_wq;
264 void __inode_attach_wb(struct inode *inode, struct folio *folio)
266 struct backing_dev_info *bdi = inode_to_bdi(inode);
267 struct bdi_writeback *wb = NULL;
269 if (inode_cgwb_enabled(inode)) {
270 struct cgroup_subsys_state *memcg_css;
272 if (folio) {
273 memcg_css = mem_cgroup_css_from_folio(folio);
274 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
275 } else {
276 /* must pin memcg_css, see wb_get_create() */
277 memcg_css = task_get_css(current, memory_cgrp_id);
278 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
279 css_put(memcg_css);
283 if (!wb)
284 wb = &bdi->wb;
287 * There may be multiple instances of this function racing to
288 * update the same inode. Use cmpxchg() to tell the winner.
290 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
291 wb_put(wb);
293 EXPORT_SYMBOL_GPL(__inode_attach_wb);
296 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
297 * @inode: inode of interest with i_lock held
298 * @wb: target bdi_writeback
300 * Remove the inode from wb's io lists and if necessarily put onto b_attached
301 * list. Only inodes attached to cgwb's are kept on this list.
303 static void inode_cgwb_move_to_attached(struct inode *inode,
304 struct bdi_writeback *wb)
306 assert_spin_locked(&wb->list_lock);
307 assert_spin_locked(&inode->i_lock);
308 WARN_ON_ONCE(inode->i_state & I_FREEING);
310 inode->i_state &= ~I_SYNC_QUEUED;
311 if (wb != &wb->bdi->wb)
312 list_move(&inode->i_io_list, &wb->b_attached);
313 else
314 list_del_init(&inode->i_io_list);
315 wb_io_lists_depopulated(wb);
319 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
320 * @inode: inode of interest with i_lock held
322 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
323 * held on entry and is released on return. The returned wb is guaranteed
324 * to stay @inode's associated wb until its list_lock is released.
326 static struct bdi_writeback *
327 locked_inode_to_wb_and_lock_list(struct inode *inode)
328 __releases(&inode->i_lock)
329 __acquires(&wb->list_lock)
331 while (true) {
332 struct bdi_writeback *wb = inode_to_wb(inode);
335 * inode_to_wb() association is protected by both
336 * @inode->i_lock and @wb->list_lock but list_lock nests
337 * outside i_lock. Drop i_lock and verify that the
338 * association hasn't changed after acquiring list_lock.
340 wb_get(wb);
341 spin_unlock(&inode->i_lock);
342 spin_lock(&wb->list_lock);
344 /* i_wb may have changed inbetween, can't use inode_to_wb() */
345 if (likely(wb == inode->i_wb)) {
346 wb_put(wb); /* @inode already has ref */
347 return wb;
350 spin_unlock(&wb->list_lock);
351 wb_put(wb);
352 cpu_relax();
353 spin_lock(&inode->i_lock);
358 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
359 * @inode: inode of interest
361 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
362 * on entry.
364 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
365 __acquires(&wb->list_lock)
367 spin_lock(&inode->i_lock);
368 return locked_inode_to_wb_and_lock_list(inode);
371 struct inode_switch_wbs_context {
372 struct rcu_work work;
375 * Multiple inodes can be switched at once. The switching procedure
376 * consists of two parts, separated by a RCU grace period. To make
377 * sure that the second part is executed for each inode gone through
378 * the first part, all inode pointers are placed into a NULL-terminated
379 * array embedded into struct inode_switch_wbs_context. Otherwise
380 * an inode could be left in a non-consistent state.
382 struct bdi_writeback *new_wb;
383 struct inode *inodes[];
386 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
388 down_write(&bdi->wb_switch_rwsem);
391 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
393 up_write(&bdi->wb_switch_rwsem);
396 static bool inode_do_switch_wbs(struct inode *inode,
397 struct bdi_writeback *old_wb,
398 struct bdi_writeback *new_wb)
400 struct address_space *mapping = inode->i_mapping;
401 XA_STATE(xas, &mapping->i_pages, 0);
402 struct folio *folio;
403 bool switched = false;
405 spin_lock(&inode->i_lock);
406 xa_lock_irq(&mapping->i_pages);
409 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
410 * path owns the inode and we shouldn't modify ->i_io_list.
412 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
413 goto skip_switch;
415 trace_inode_switch_wbs(inode, old_wb, new_wb);
418 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
419 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
420 * folios actually under writeback.
422 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
423 if (folio_test_dirty(folio)) {
424 long nr = folio_nr_pages(folio);
425 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
426 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
430 xas_set(&xas, 0);
431 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
432 long nr = folio_nr_pages(folio);
433 WARN_ON_ONCE(!folio_test_writeback(folio));
434 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
435 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
438 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
439 atomic_dec(&old_wb->writeback_inodes);
440 atomic_inc(&new_wb->writeback_inodes);
443 wb_get(new_wb);
446 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
447 * the specific list @inode was on is ignored and the @inode is put on
448 * ->b_dirty which is always correct including from ->b_dirty_time.
449 * The transfer preserves @inode->dirtied_when ordering. If the @inode
450 * was clean, it means it was on the b_attached list, so move it onto
451 * the b_attached list of @new_wb.
453 if (!list_empty(&inode->i_io_list)) {
454 inode->i_wb = new_wb;
456 if (inode->i_state & I_DIRTY_ALL) {
457 struct inode *pos;
459 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
460 if (time_after_eq(inode->dirtied_when,
461 pos->dirtied_when))
462 break;
463 inode_io_list_move_locked(inode, new_wb,
464 pos->i_io_list.prev);
465 } else {
466 inode_cgwb_move_to_attached(inode, new_wb);
468 } else {
469 inode->i_wb = new_wb;
472 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
473 inode->i_wb_frn_winner = 0;
474 inode->i_wb_frn_avg_time = 0;
475 inode->i_wb_frn_history = 0;
476 switched = true;
477 skip_switch:
479 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
480 * ensures that the new wb is visible if they see !I_WB_SWITCH.
482 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
484 xa_unlock_irq(&mapping->i_pages);
485 spin_unlock(&inode->i_lock);
487 return switched;
490 static void inode_switch_wbs_work_fn(struct work_struct *work)
492 struct inode_switch_wbs_context *isw =
493 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
494 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
495 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
496 struct bdi_writeback *new_wb = isw->new_wb;
497 unsigned long nr_switched = 0;
498 struct inode **inodep;
501 * If @inode switches cgwb membership while sync_inodes_sb() is
502 * being issued, sync_inodes_sb() might miss it. Synchronize.
504 down_read(&bdi->wb_switch_rwsem);
507 * By the time control reaches here, RCU grace period has passed
508 * since I_WB_SWITCH assertion and all wb stat update transactions
509 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
510 * synchronizing against the i_pages lock.
512 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
513 * gives us exclusion against all wb related operations on @inode
514 * including IO list manipulations and stat updates.
516 if (old_wb < new_wb) {
517 spin_lock(&old_wb->list_lock);
518 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
519 } else {
520 spin_lock(&new_wb->list_lock);
521 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
524 for (inodep = isw->inodes; *inodep; inodep++) {
525 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
526 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
527 nr_switched++;
530 spin_unlock(&new_wb->list_lock);
531 spin_unlock(&old_wb->list_lock);
533 up_read(&bdi->wb_switch_rwsem);
535 if (nr_switched) {
536 wb_wakeup(new_wb);
537 wb_put_many(old_wb, nr_switched);
540 for (inodep = isw->inodes; *inodep; inodep++)
541 iput(*inodep);
542 wb_put(new_wb);
543 kfree(isw);
544 atomic_dec(&isw_nr_in_flight);
547 static bool inode_prepare_wbs_switch(struct inode *inode,
548 struct bdi_writeback *new_wb)
551 * Paired with smp_mb() in cgroup_writeback_umount().
552 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
553 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
554 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
556 smp_mb();
558 if (IS_DAX(inode))
559 return false;
561 /* while holding I_WB_SWITCH, no one else can update the association */
562 spin_lock(&inode->i_lock);
563 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
564 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
565 inode_to_wb(inode) == new_wb) {
566 spin_unlock(&inode->i_lock);
567 return false;
569 inode->i_state |= I_WB_SWITCH;
570 __iget(inode);
571 spin_unlock(&inode->i_lock);
573 return true;
577 * inode_switch_wbs - change the wb association of an inode
578 * @inode: target inode
579 * @new_wb_id: ID of the new wb
581 * Switch @inode's wb association to the wb identified by @new_wb_id. The
582 * switching is performed asynchronously and may fail silently.
584 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
586 struct backing_dev_info *bdi = inode_to_bdi(inode);
587 struct cgroup_subsys_state *memcg_css;
588 struct inode_switch_wbs_context *isw;
590 /* noop if seems to be already in progress */
591 if (inode->i_state & I_WB_SWITCH)
592 return;
594 /* avoid queueing a new switch if too many are already in flight */
595 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
596 return;
598 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
599 if (!isw)
600 return;
602 atomic_inc(&isw_nr_in_flight);
604 /* find and pin the new wb */
605 rcu_read_lock();
606 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
607 if (memcg_css && !css_tryget(memcg_css))
608 memcg_css = NULL;
609 rcu_read_unlock();
610 if (!memcg_css)
611 goto out_free;
613 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
614 css_put(memcg_css);
615 if (!isw->new_wb)
616 goto out_free;
618 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
619 goto out_free;
621 isw->inodes[0] = inode;
624 * In addition to synchronizing among switchers, I_WB_SWITCH tells
625 * the RCU protected stat update paths to grab the i_page
626 * lock so that stat transfer can synchronize against them.
627 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
629 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
630 queue_rcu_work(isw_wq, &isw->work);
631 return;
633 out_free:
634 atomic_dec(&isw_nr_in_flight);
635 if (isw->new_wb)
636 wb_put(isw->new_wb);
637 kfree(isw);
640 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
641 struct list_head *list, int *nr)
643 struct inode *inode;
645 list_for_each_entry(inode, list, i_io_list) {
646 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
647 continue;
649 isw->inodes[*nr] = inode;
650 (*nr)++;
652 if (*nr >= WB_MAX_INODES_PER_ISW - 1)
653 return true;
655 return false;
659 * cleanup_offline_cgwb - detach associated inodes
660 * @wb: target wb
662 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
663 * to eventually release the dying @wb. Returns %true if not all inodes were
664 * switched and the function has to be restarted.
666 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
668 struct cgroup_subsys_state *memcg_css;
669 struct inode_switch_wbs_context *isw;
670 int nr;
671 bool restart = false;
673 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
674 GFP_KERNEL);
675 if (!isw)
676 return restart;
678 atomic_inc(&isw_nr_in_flight);
680 for (memcg_css = wb->memcg_css->parent; memcg_css;
681 memcg_css = memcg_css->parent) {
682 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
683 if (isw->new_wb)
684 break;
686 if (unlikely(!isw->new_wb))
687 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
689 nr = 0;
690 spin_lock(&wb->list_lock);
692 * In addition to the inodes that have completed writeback, also switch
693 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
694 * inodes won't be written back for a long time when lazytime is
695 * enabled, and thus pinning the dying cgwbs. It won't break the
696 * bandwidth restrictions, as writeback of inode metadata is not
697 * accounted for.
699 restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
700 if (!restart)
701 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
702 spin_unlock(&wb->list_lock);
704 /* no attached inodes? bail out */
705 if (nr == 0) {
706 atomic_dec(&isw_nr_in_flight);
707 wb_put(isw->new_wb);
708 kfree(isw);
709 return restart;
713 * In addition to synchronizing among switchers, I_WB_SWITCH tells
714 * the RCU protected stat update paths to grab the i_page
715 * lock so that stat transfer can synchronize against them.
716 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
718 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
719 queue_rcu_work(isw_wq, &isw->work);
721 return restart;
725 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
726 * @wbc: writeback_control of interest
727 * @inode: target inode
729 * @inode is locked and about to be written back under the control of @wbc.
730 * Record @inode's writeback context into @wbc and unlock the i_lock. On
731 * writeback completion, wbc_detach_inode() should be called. This is used
732 * to track the cgroup writeback context.
734 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
735 struct inode *inode)
737 if (!inode_cgwb_enabled(inode)) {
738 spin_unlock(&inode->i_lock);
739 return;
742 wbc->wb = inode_to_wb(inode);
743 wbc->inode = inode;
745 wbc->wb_id = wbc->wb->memcg_css->id;
746 wbc->wb_lcand_id = inode->i_wb_frn_winner;
747 wbc->wb_tcand_id = 0;
748 wbc->wb_bytes = 0;
749 wbc->wb_lcand_bytes = 0;
750 wbc->wb_tcand_bytes = 0;
752 wb_get(wbc->wb);
753 spin_unlock(&inode->i_lock);
756 * A dying wb indicates that either the blkcg associated with the
757 * memcg changed or the associated memcg is dying. In the first
758 * case, a replacement wb should already be available and we should
759 * refresh the wb immediately. In the second case, trying to
760 * refresh will keep failing.
762 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
763 inode_switch_wbs(inode, wbc->wb_id);
765 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
768 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
769 * @wbc: writeback_control of the just finished writeback
771 * To be called after a writeback attempt of an inode finishes and undoes
772 * wbc_attach_and_unlock_inode(). Can be called under any context.
774 * As concurrent write sharing of an inode is expected to be very rare and
775 * memcg only tracks page ownership on first-use basis severely confining
776 * the usefulness of such sharing, cgroup writeback tracks ownership
777 * per-inode. While the support for concurrent write sharing of an inode
778 * is deemed unnecessary, an inode being written to by different cgroups at
779 * different points in time is a lot more common, and, more importantly,
780 * charging only by first-use can too readily lead to grossly incorrect
781 * behaviors (single foreign page can lead to gigabytes of writeback to be
782 * incorrectly attributed).
784 * To resolve this issue, cgroup writeback detects the majority dirtier of
785 * an inode and transfers the ownership to it. To avoid unnecessary
786 * oscillation, the detection mechanism keeps track of history and gives
787 * out the switch verdict only if the foreign usage pattern is stable over
788 * a certain amount of time and/or writeback attempts.
790 * On each writeback attempt, @wbc tries to detect the majority writer
791 * using Boyer-Moore majority vote algorithm. In addition to the byte
792 * count from the majority voting, it also counts the bytes written for the
793 * current wb and the last round's winner wb (max of last round's current
794 * wb, the winner from two rounds ago, and the last round's majority
795 * candidate). Keeping track of the historical winner helps the algorithm
796 * to semi-reliably detect the most active writer even when it's not the
797 * absolute majority.
799 * Once the winner of the round is determined, whether the winner is
800 * foreign or not and how much IO time the round consumed is recorded in
801 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
802 * over a certain threshold, the switch verdict is given.
804 void wbc_detach_inode(struct writeback_control *wbc)
806 struct bdi_writeback *wb = wbc->wb;
807 struct inode *inode = wbc->inode;
808 unsigned long avg_time, max_bytes, max_time;
809 u16 history;
810 int max_id;
812 if (!wb)
813 return;
815 history = inode->i_wb_frn_history;
816 avg_time = inode->i_wb_frn_avg_time;
818 /* pick the winner of this round */
819 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
820 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
821 max_id = wbc->wb_id;
822 max_bytes = wbc->wb_bytes;
823 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
824 max_id = wbc->wb_lcand_id;
825 max_bytes = wbc->wb_lcand_bytes;
826 } else {
827 max_id = wbc->wb_tcand_id;
828 max_bytes = wbc->wb_tcand_bytes;
832 * Calculate the amount of IO time the winner consumed and fold it
833 * into the running average kept per inode. If the consumed IO
834 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
835 * deciding whether to switch or not. This is to prevent one-off
836 * small dirtiers from skewing the verdict.
838 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
839 wb->avg_write_bandwidth);
840 if (avg_time)
841 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
842 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
843 else
844 avg_time = max_time; /* immediate catch up on first run */
846 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
847 int slots;
850 * The switch verdict is reached if foreign wb's consume
851 * more than a certain proportion of IO time in a
852 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
853 * history mask where each bit represents one sixteenth of
854 * the period. Determine the number of slots to shift into
855 * history from @max_time.
857 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
858 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
859 history <<= slots;
860 if (wbc->wb_id != max_id)
861 history |= (1U << slots) - 1;
863 if (history)
864 trace_inode_foreign_history(inode, wbc, history);
867 * Switch if the current wb isn't the consistent winner.
868 * If there are multiple closely competing dirtiers, the
869 * inode may switch across them repeatedly over time, which
870 * is okay. The main goal is avoiding keeping an inode on
871 * the wrong wb for an extended period of time.
873 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
874 inode_switch_wbs(inode, max_id);
878 * Multiple instances of this function may race to update the
879 * following fields but we don't mind occassional inaccuracies.
881 inode->i_wb_frn_winner = max_id;
882 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
883 inode->i_wb_frn_history = history;
885 wb_put(wbc->wb);
886 wbc->wb = NULL;
888 EXPORT_SYMBOL_GPL(wbc_detach_inode);
891 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
892 * @wbc: writeback_control of the writeback in progress
893 * @page: page being written out
894 * @bytes: number of bytes being written out
896 * @bytes from @page are about to written out during the writeback
897 * controlled by @wbc. Keep the book for foreign inode detection. See
898 * wbc_detach_inode().
900 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
901 size_t bytes)
903 struct folio *folio;
904 struct cgroup_subsys_state *css;
905 int id;
908 * pageout() path doesn't attach @wbc to the inode being written
909 * out. This is intentional as we don't want the function to block
910 * behind a slow cgroup. Ultimately, we want pageout() to kick off
911 * regular writeback instead of writing things out itself.
913 if (!wbc->wb || wbc->no_cgroup_owner)
914 return;
916 folio = page_folio(page);
917 css = mem_cgroup_css_from_folio(folio);
918 /* dead cgroups shouldn't contribute to inode ownership arbitration */
919 if (!(css->flags & CSS_ONLINE))
920 return;
922 id = css->id;
924 if (id == wbc->wb_id) {
925 wbc->wb_bytes += bytes;
926 return;
929 if (id == wbc->wb_lcand_id)
930 wbc->wb_lcand_bytes += bytes;
932 /* Boyer-Moore majority vote algorithm */
933 if (!wbc->wb_tcand_bytes)
934 wbc->wb_tcand_id = id;
935 if (id == wbc->wb_tcand_id)
936 wbc->wb_tcand_bytes += bytes;
937 else
938 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
940 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
943 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
944 * @wb: target bdi_writeback to split @nr_pages to
945 * @nr_pages: number of pages to write for the whole bdi
947 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
948 * relation to the total write bandwidth of all wb's w/ dirty inodes on
949 * @wb->bdi.
951 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
953 unsigned long this_bw = wb->avg_write_bandwidth;
954 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
956 if (nr_pages == LONG_MAX)
957 return LONG_MAX;
960 * This may be called on clean wb's and proportional distribution
961 * may not make sense, just use the original @nr_pages in those
962 * cases. In general, we wanna err on the side of writing more.
964 if (!tot_bw || this_bw >= tot_bw)
965 return nr_pages;
966 else
967 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
971 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
972 * @bdi: target backing_dev_info
973 * @base_work: wb_writeback_work to issue
974 * @skip_if_busy: skip wb's which already have writeback in progress
976 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
977 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
978 * distributed to the busy wbs according to each wb's proportion in the
979 * total active write bandwidth of @bdi.
981 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
982 struct wb_writeback_work *base_work,
983 bool skip_if_busy)
985 struct bdi_writeback *last_wb = NULL;
986 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
987 struct bdi_writeback, bdi_node);
989 might_sleep();
990 restart:
991 rcu_read_lock();
992 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
993 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
994 struct wb_writeback_work fallback_work;
995 struct wb_writeback_work *work;
996 long nr_pages;
998 if (last_wb) {
999 wb_put(last_wb);
1000 last_wb = NULL;
1003 /* SYNC_ALL writes out I_DIRTY_TIME too */
1004 if (!wb_has_dirty_io(wb) &&
1005 (base_work->sync_mode == WB_SYNC_NONE ||
1006 list_empty(&wb->b_dirty_time)))
1007 continue;
1008 if (skip_if_busy && writeback_in_progress(wb))
1009 continue;
1011 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1013 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1014 if (work) {
1015 *work = *base_work;
1016 work->nr_pages = nr_pages;
1017 work->auto_free = 1;
1018 wb_queue_work(wb, work);
1019 continue;
1023 * If wb_tryget fails, the wb has been shutdown, skip it.
1025 * Pin @wb so that it stays on @bdi->wb_list. This allows
1026 * continuing iteration from @wb after dropping and
1027 * regrabbing rcu read lock.
1029 if (!wb_tryget(wb))
1030 continue;
1032 /* alloc failed, execute synchronously using on-stack fallback */
1033 work = &fallback_work;
1034 *work = *base_work;
1035 work->nr_pages = nr_pages;
1036 work->auto_free = 0;
1037 work->done = &fallback_work_done;
1039 wb_queue_work(wb, work);
1040 last_wb = wb;
1042 rcu_read_unlock();
1043 wb_wait_for_completion(&fallback_work_done);
1044 goto restart;
1046 rcu_read_unlock();
1048 if (last_wb)
1049 wb_put(last_wb);
1053 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1054 * @bdi_id: target bdi id
1055 * @memcg_id: target memcg css id
1056 * @reason: reason why some writeback work initiated
1057 * @done: target wb_completion
1059 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1060 * with the specified parameters.
1062 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1063 enum wb_reason reason, struct wb_completion *done)
1065 struct backing_dev_info *bdi;
1066 struct cgroup_subsys_state *memcg_css;
1067 struct bdi_writeback *wb;
1068 struct wb_writeback_work *work;
1069 unsigned long dirty;
1070 int ret;
1072 /* lookup bdi and memcg */
1073 bdi = bdi_get_by_id(bdi_id);
1074 if (!bdi)
1075 return -ENOENT;
1077 rcu_read_lock();
1078 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1079 if (memcg_css && !css_tryget(memcg_css))
1080 memcg_css = NULL;
1081 rcu_read_unlock();
1082 if (!memcg_css) {
1083 ret = -ENOENT;
1084 goto out_bdi_put;
1088 * And find the associated wb. If the wb isn't there already
1089 * there's nothing to flush, don't create one.
1091 wb = wb_get_lookup(bdi, memcg_css);
1092 if (!wb) {
1093 ret = -ENOENT;
1094 goto out_css_put;
1098 * The caller is attempting to write out most of
1099 * the currently dirty pages. Let's take the current dirty page
1100 * count and inflate it by 25% which should be large enough to
1101 * flush out most dirty pages while avoiding getting livelocked by
1102 * concurrent dirtiers.
1104 * BTW the memcg stats are flushed periodically and this is best-effort
1105 * estimation, so some potential error is ok.
1107 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1108 dirty = dirty * 10 / 8;
1110 /* issue the writeback work */
1111 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1112 if (work) {
1113 work->nr_pages = dirty;
1114 work->sync_mode = WB_SYNC_NONE;
1115 work->range_cyclic = 1;
1116 work->reason = reason;
1117 work->done = done;
1118 work->auto_free = 1;
1119 wb_queue_work(wb, work);
1120 ret = 0;
1121 } else {
1122 ret = -ENOMEM;
1125 wb_put(wb);
1126 out_css_put:
1127 css_put(memcg_css);
1128 out_bdi_put:
1129 bdi_put(bdi);
1130 return ret;
1134 * cgroup_writeback_umount - flush inode wb switches for umount
1135 * @sb: target super_block
1137 * This function is called when a super_block is about to be destroyed and
1138 * flushes in-flight inode wb switches. An inode wb switch goes through
1139 * RCU and then workqueue, so the two need to be flushed in order to ensure
1140 * that all previously scheduled switches are finished. As wb switches are
1141 * rare occurrences and synchronize_rcu() can take a while, perform
1142 * flushing iff wb switches are in flight.
1144 void cgroup_writeback_umount(struct super_block *sb)
1147 if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
1148 return;
1151 * SB_ACTIVE should be reliably cleared before checking
1152 * isw_nr_in_flight, see generic_shutdown_super().
1154 smp_mb();
1156 if (atomic_read(&isw_nr_in_flight)) {
1158 * Use rcu_barrier() to wait for all pending callbacks to
1159 * ensure that all in-flight wb switches are in the workqueue.
1161 rcu_barrier();
1162 flush_workqueue(isw_wq);
1166 static int __init cgroup_writeback_init(void)
1168 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1169 if (!isw_wq)
1170 return -ENOMEM;
1171 return 0;
1173 fs_initcall(cgroup_writeback_init);
1175 #else /* CONFIG_CGROUP_WRITEBACK */
1177 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1178 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1180 static void inode_cgwb_move_to_attached(struct inode *inode,
1181 struct bdi_writeback *wb)
1183 assert_spin_locked(&wb->list_lock);
1184 assert_spin_locked(&inode->i_lock);
1185 WARN_ON_ONCE(inode->i_state & I_FREEING);
1187 inode->i_state &= ~I_SYNC_QUEUED;
1188 list_del_init(&inode->i_io_list);
1189 wb_io_lists_depopulated(wb);
1192 static struct bdi_writeback *
1193 locked_inode_to_wb_and_lock_list(struct inode *inode)
1194 __releases(&inode->i_lock)
1195 __acquires(&wb->list_lock)
1197 struct bdi_writeback *wb = inode_to_wb(inode);
1199 spin_unlock(&inode->i_lock);
1200 spin_lock(&wb->list_lock);
1201 return wb;
1204 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1205 __acquires(&wb->list_lock)
1207 struct bdi_writeback *wb = inode_to_wb(inode);
1209 spin_lock(&wb->list_lock);
1210 return wb;
1213 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1215 return nr_pages;
1218 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1219 struct wb_writeback_work *base_work,
1220 bool skip_if_busy)
1222 might_sleep();
1224 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1225 base_work->auto_free = 0;
1226 wb_queue_work(&bdi->wb, base_work);
1230 #endif /* CONFIG_CGROUP_WRITEBACK */
1233 * Add in the number of potentially dirty inodes, because each inode
1234 * write can dirty pagecache in the underlying blockdev.
1236 static unsigned long get_nr_dirty_pages(void)
1238 return global_node_page_state(NR_FILE_DIRTY) +
1239 get_nr_dirty_inodes();
1242 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1244 if (!wb_has_dirty_io(wb))
1245 return;
1248 * All callers of this function want to start writeback of all
1249 * dirty pages. Places like vmscan can call this at a very
1250 * high frequency, causing pointless allocations of tons of
1251 * work items and keeping the flusher threads busy retrieving
1252 * that work. Ensure that we only allow one of them pending and
1253 * inflight at the time.
1255 if (test_bit(WB_start_all, &wb->state) ||
1256 test_and_set_bit(WB_start_all, &wb->state))
1257 return;
1259 wb->start_all_reason = reason;
1260 wb_wakeup(wb);
1264 * wb_start_background_writeback - start background writeback
1265 * @wb: bdi_writback to write from
1267 * Description:
1268 * This makes sure WB_SYNC_NONE background writeback happens. When
1269 * this function returns, it is only guaranteed that for given wb
1270 * some IO is happening if we are over background dirty threshold.
1271 * Caller need not hold sb s_umount semaphore.
1273 void wb_start_background_writeback(struct bdi_writeback *wb)
1276 * We just wake up the flusher thread. It will perform background
1277 * writeback as soon as there is no other work to do.
1279 trace_writeback_wake_background(wb);
1280 wb_wakeup(wb);
1284 * Remove the inode from the writeback list it is on.
1286 void inode_io_list_del(struct inode *inode)
1288 struct bdi_writeback *wb;
1290 wb = inode_to_wb_and_lock_list(inode);
1291 spin_lock(&inode->i_lock);
1293 inode->i_state &= ~I_SYNC_QUEUED;
1294 list_del_init(&inode->i_io_list);
1295 wb_io_lists_depopulated(wb);
1297 spin_unlock(&inode->i_lock);
1298 spin_unlock(&wb->list_lock);
1300 EXPORT_SYMBOL(inode_io_list_del);
1303 * mark an inode as under writeback on the sb
1305 void sb_mark_inode_writeback(struct inode *inode)
1307 struct super_block *sb = inode->i_sb;
1308 unsigned long flags;
1310 if (list_empty(&inode->i_wb_list)) {
1311 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1312 if (list_empty(&inode->i_wb_list)) {
1313 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1314 trace_sb_mark_inode_writeback(inode);
1316 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1321 * clear an inode as under writeback on the sb
1323 void sb_clear_inode_writeback(struct inode *inode)
1325 struct super_block *sb = inode->i_sb;
1326 unsigned long flags;
1328 if (!list_empty(&inode->i_wb_list)) {
1329 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1330 if (!list_empty(&inode->i_wb_list)) {
1331 list_del_init(&inode->i_wb_list);
1332 trace_sb_clear_inode_writeback(inode);
1334 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1339 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1340 * furthest end of its superblock's dirty-inode list.
1342 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1343 * already the most-recently-dirtied inode on the b_dirty list. If that is
1344 * the case then the inode must have been redirtied while it was being written
1345 * out and we don't reset its dirtied_when.
1347 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1349 assert_spin_locked(&inode->i_lock);
1351 inode->i_state &= ~I_SYNC_QUEUED;
1353 * When the inode is being freed just don't bother with dirty list
1354 * tracking. Flush worker will ignore this inode anyway and it will
1355 * trigger assertions in inode_io_list_move_locked().
1357 if (inode->i_state & I_FREEING) {
1358 list_del_init(&inode->i_io_list);
1359 wb_io_lists_depopulated(wb);
1360 return;
1362 if (!list_empty(&wb->b_dirty)) {
1363 struct inode *tail;
1365 tail = wb_inode(wb->b_dirty.next);
1366 if (time_before(inode->dirtied_when, tail->dirtied_when))
1367 inode->dirtied_when = jiffies;
1369 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1372 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1374 spin_lock(&inode->i_lock);
1375 redirty_tail_locked(inode, wb);
1376 spin_unlock(&inode->i_lock);
1380 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1382 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1384 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1387 static void inode_sync_complete(struct inode *inode)
1389 assert_spin_locked(&inode->i_lock);
1391 inode->i_state &= ~I_SYNC;
1392 /* If inode is clean an unused, put it into LRU now... */
1393 inode_add_lru(inode);
1394 /* Called with inode->i_lock which ensures memory ordering. */
1395 inode_wake_up_bit(inode, __I_SYNC);
1398 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1400 bool ret = time_after(inode->dirtied_when, t);
1401 #ifndef CONFIG_64BIT
1403 * For inodes being constantly redirtied, dirtied_when can get stuck.
1404 * It _appears_ to be in the future, but is actually in distant past.
1405 * This test is necessary to prevent such wrapped-around relative times
1406 * from permanently stopping the whole bdi writeback.
1408 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1409 #endif
1410 return ret;
1414 * Move expired (dirtied before dirtied_before) dirty inodes from
1415 * @delaying_queue to @dispatch_queue.
1417 static int move_expired_inodes(struct list_head *delaying_queue,
1418 struct list_head *dispatch_queue,
1419 unsigned long dirtied_before)
1421 LIST_HEAD(tmp);
1422 struct list_head *pos, *node;
1423 struct super_block *sb = NULL;
1424 struct inode *inode;
1425 int do_sb_sort = 0;
1426 int moved = 0;
1428 while (!list_empty(delaying_queue)) {
1429 inode = wb_inode(delaying_queue->prev);
1430 if (inode_dirtied_after(inode, dirtied_before))
1431 break;
1432 spin_lock(&inode->i_lock);
1433 list_move(&inode->i_io_list, &tmp);
1434 moved++;
1435 inode->i_state |= I_SYNC_QUEUED;
1436 spin_unlock(&inode->i_lock);
1437 if (sb_is_blkdev_sb(inode->i_sb))
1438 continue;
1439 if (sb && sb != inode->i_sb)
1440 do_sb_sort = 1;
1441 sb = inode->i_sb;
1444 /* just one sb in list, splice to dispatch_queue and we're done */
1445 if (!do_sb_sort) {
1446 list_splice(&tmp, dispatch_queue);
1447 goto out;
1451 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1452 * we don't take inode->i_lock here because it is just a pointless overhead.
1453 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1454 * fully under our control.
1456 while (!list_empty(&tmp)) {
1457 sb = wb_inode(tmp.prev)->i_sb;
1458 list_for_each_prev_safe(pos, node, &tmp) {
1459 inode = wb_inode(pos);
1460 if (inode->i_sb == sb)
1461 list_move(&inode->i_io_list, dispatch_queue);
1464 out:
1465 return moved;
1469 * Queue all expired dirty inodes for io, eldest first.
1470 * Before
1471 * newly dirtied b_dirty b_io b_more_io
1472 * =============> gf edc BA
1473 * After
1474 * newly dirtied b_dirty b_io b_more_io
1475 * =============> g fBAedc
1477 * +--> dequeue for IO
1479 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1480 unsigned long dirtied_before)
1482 int moved;
1483 unsigned long time_expire_jif = dirtied_before;
1485 assert_spin_locked(&wb->list_lock);
1486 list_splice_init(&wb->b_more_io, &wb->b_io);
1487 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1488 if (!work->for_sync)
1489 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1490 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1491 time_expire_jif);
1492 if (moved)
1493 wb_io_lists_populated(wb);
1494 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1497 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1499 int ret;
1501 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1502 trace_writeback_write_inode_start(inode, wbc);
1503 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1504 trace_writeback_write_inode(inode, wbc);
1505 return ret;
1507 return 0;
1511 * Wait for writeback on an inode to complete. Called with i_lock held.
1512 * Caller must make sure inode cannot go away when we drop i_lock.
1514 void inode_wait_for_writeback(struct inode *inode)
1516 struct wait_bit_queue_entry wqe;
1517 struct wait_queue_head *wq_head;
1519 assert_spin_locked(&inode->i_lock);
1521 if (!(inode->i_state & I_SYNC))
1522 return;
1524 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1525 for (;;) {
1526 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1527 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1528 if (!(inode->i_state & I_SYNC))
1529 break;
1530 spin_unlock(&inode->i_lock);
1531 schedule();
1532 spin_lock(&inode->i_lock);
1534 finish_wait(wq_head, &wqe.wq_entry);
1538 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1539 * held and drops it. It is aimed for callers not holding any inode reference
1540 * so once i_lock is dropped, inode can go away.
1542 static void inode_sleep_on_writeback(struct inode *inode)
1543 __releases(inode->i_lock)
1545 struct wait_bit_queue_entry wqe;
1546 struct wait_queue_head *wq_head;
1547 bool sleep;
1549 assert_spin_locked(&inode->i_lock);
1551 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1552 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1553 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1554 sleep = !!(inode->i_state & I_SYNC);
1555 spin_unlock(&inode->i_lock);
1556 if (sleep)
1557 schedule();
1558 finish_wait(wq_head, &wqe.wq_entry);
1562 * Find proper writeback list for the inode depending on its current state and
1563 * possibly also change of its state while we were doing writeback. Here we
1564 * handle things such as livelock prevention or fairness of writeback among
1565 * inodes. This function can be called only by flusher thread - noone else
1566 * processes all inodes in writeback lists and requeueing inodes behind flusher
1567 * thread's back can have unexpected consequences.
1569 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1570 struct writeback_control *wbc,
1571 unsigned long dirtied_before)
1573 if (inode->i_state & I_FREEING)
1574 return;
1577 * Sync livelock prevention. Each inode is tagged and synced in one
1578 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1579 * the dirty time to prevent enqueue and sync it again.
1581 if ((inode->i_state & I_DIRTY) &&
1582 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1583 inode->dirtied_when = jiffies;
1585 if (wbc->pages_skipped) {
1587 * Writeback is not making progress due to locked buffers.
1588 * Skip this inode for now. Although having skipped pages
1589 * is odd for clean inodes, it can happen for some
1590 * filesystems so handle that gracefully.
1592 if (inode->i_state & I_DIRTY_ALL)
1593 redirty_tail_locked(inode, wb);
1594 else
1595 inode_cgwb_move_to_attached(inode, wb);
1596 return;
1599 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1601 * We didn't write back all the pages. nfs_writepages()
1602 * sometimes bales out without doing anything.
1604 if (wbc->nr_to_write <= 0 &&
1605 !inode_dirtied_after(inode, dirtied_before)) {
1606 /* Slice used up. Queue for next turn. */
1607 requeue_io(inode, wb);
1608 } else {
1610 * Writeback blocked by something other than
1611 * congestion. Delay the inode for some time to
1612 * avoid spinning on the CPU (100% iowait)
1613 * retrying writeback of the dirty page/inode
1614 * that cannot be performed immediately.
1616 redirty_tail_locked(inode, wb);
1618 } else if (inode->i_state & I_DIRTY) {
1620 * Filesystems can dirty the inode during writeback operations,
1621 * such as delayed allocation during submission or metadata
1622 * updates after data IO completion.
1624 redirty_tail_locked(inode, wb);
1625 } else if (inode->i_state & I_DIRTY_TIME) {
1626 inode->dirtied_when = jiffies;
1627 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1628 inode->i_state &= ~I_SYNC_QUEUED;
1629 } else {
1630 /* The inode is clean. Remove from writeback lists. */
1631 inode_cgwb_move_to_attached(inode, wb);
1636 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1637 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1639 * This doesn't remove the inode from the writeback list it is on, except
1640 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1641 * expiration. The caller is otherwise responsible for writeback list handling.
1643 * The caller is also responsible for setting the I_SYNC flag beforehand and
1644 * calling inode_sync_complete() to clear it afterwards.
1646 static int
1647 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1649 struct address_space *mapping = inode->i_mapping;
1650 long nr_to_write = wbc->nr_to_write;
1651 unsigned dirty;
1652 int ret;
1654 WARN_ON(!(inode->i_state & I_SYNC));
1656 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1658 ret = do_writepages(mapping, wbc);
1661 * Make sure to wait on the data before writing out the metadata.
1662 * This is important for filesystems that modify metadata on data
1663 * I/O completion. We don't do it for sync(2) writeback because it has a
1664 * separate, external IO completion path and ->sync_fs for guaranteeing
1665 * inode metadata is written back correctly.
1667 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1668 int err = filemap_fdatawait(mapping);
1669 if (ret == 0)
1670 ret = err;
1674 * If the inode has dirty timestamps and we need to write them, call
1675 * mark_inode_dirty_sync() to notify the filesystem about it and to
1676 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1678 if ((inode->i_state & I_DIRTY_TIME) &&
1679 (wbc->sync_mode == WB_SYNC_ALL ||
1680 time_after(jiffies, inode->dirtied_time_when +
1681 dirtytime_expire_interval * HZ))) {
1682 trace_writeback_lazytime(inode);
1683 mark_inode_dirty_sync(inode);
1687 * Get and clear the dirty flags from i_state. This needs to be done
1688 * after calling writepages because some filesystems may redirty the
1689 * inode during writepages due to delalloc. It also needs to be done
1690 * after handling timestamp expiration, as that may dirty the inode too.
1692 spin_lock(&inode->i_lock);
1693 dirty = inode->i_state & I_DIRTY;
1694 inode->i_state &= ~dirty;
1697 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1698 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1699 * either they see the I_DIRTY bits cleared or we see the dirtied
1700 * inode.
1702 * I_DIRTY_PAGES is always cleared together above even if @mapping
1703 * still has dirty pages. The flag is reinstated after smp_mb() if
1704 * necessary. This guarantees that either __mark_inode_dirty()
1705 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1707 smp_mb();
1709 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1710 inode->i_state |= I_DIRTY_PAGES;
1711 else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1712 if (!(inode->i_state & I_DIRTY_PAGES)) {
1713 inode->i_state &= ~I_PINNING_NETFS_WB;
1714 wbc->unpinned_netfs_wb = true;
1715 dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1719 spin_unlock(&inode->i_lock);
1721 /* Don't write the inode if only I_DIRTY_PAGES was set */
1722 if (dirty & ~I_DIRTY_PAGES) {
1723 int err = write_inode(inode, wbc);
1724 if (ret == 0)
1725 ret = err;
1727 wbc->unpinned_netfs_wb = false;
1728 trace_writeback_single_inode(inode, wbc, nr_to_write);
1729 return ret;
1733 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1734 * the regular batched writeback done by the flusher threads in
1735 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1736 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1738 * To prevent the inode from going away, either the caller must have a reference
1739 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1741 static int writeback_single_inode(struct inode *inode,
1742 struct writeback_control *wbc)
1744 struct bdi_writeback *wb;
1745 int ret = 0;
1747 spin_lock(&inode->i_lock);
1748 if (!atomic_read(&inode->i_count))
1749 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1750 else
1751 WARN_ON(inode->i_state & I_WILL_FREE);
1753 if (inode->i_state & I_SYNC) {
1755 * Writeback is already running on the inode. For WB_SYNC_NONE,
1756 * that's enough and we can just return. For WB_SYNC_ALL, we
1757 * must wait for the existing writeback to complete, then do
1758 * writeback again if there's anything left.
1760 if (wbc->sync_mode != WB_SYNC_ALL)
1761 goto out;
1762 inode_wait_for_writeback(inode);
1764 WARN_ON(inode->i_state & I_SYNC);
1766 * If the inode is already fully clean, then there's nothing to do.
1768 * For data-integrity syncs we also need to check whether any pages are
1769 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1770 * there are any such pages, we'll need to wait for them.
1772 if (!(inode->i_state & I_DIRTY_ALL) &&
1773 (wbc->sync_mode != WB_SYNC_ALL ||
1774 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1775 goto out;
1776 inode->i_state |= I_SYNC;
1777 wbc_attach_and_unlock_inode(wbc, inode);
1779 ret = __writeback_single_inode(inode, wbc);
1781 wbc_detach_inode(wbc);
1783 wb = inode_to_wb_and_lock_list(inode);
1784 spin_lock(&inode->i_lock);
1786 * If the inode is freeing, its i_io_list shoudn't be updated
1787 * as it can be finally deleted at this moment.
1789 if (!(inode->i_state & I_FREEING)) {
1791 * If the inode is now fully clean, then it can be safely
1792 * removed from its writeback list (if any). Otherwise the
1793 * flusher threads are responsible for the writeback lists.
1795 if (!(inode->i_state & I_DIRTY_ALL))
1796 inode_cgwb_move_to_attached(inode, wb);
1797 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1798 if ((inode->i_state & I_DIRTY))
1799 redirty_tail_locked(inode, wb);
1800 else if (inode->i_state & I_DIRTY_TIME) {
1801 inode->dirtied_when = jiffies;
1802 inode_io_list_move_locked(inode,
1804 &wb->b_dirty_time);
1809 spin_unlock(&wb->list_lock);
1810 inode_sync_complete(inode);
1811 out:
1812 spin_unlock(&inode->i_lock);
1813 return ret;
1816 static long writeback_chunk_size(struct bdi_writeback *wb,
1817 struct wb_writeback_work *work)
1819 long pages;
1822 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1823 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1824 * here avoids calling into writeback_inodes_wb() more than once.
1826 * The intended call sequence for WB_SYNC_ALL writeback is:
1828 * wb_writeback()
1829 * writeback_sb_inodes() <== called only once
1830 * write_cache_pages() <== called once for each inode
1831 * (quickly) tag currently dirty pages
1832 * (maybe slowly) sync all tagged pages
1834 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1835 pages = LONG_MAX;
1836 else {
1837 pages = min(wb->avg_write_bandwidth / 2,
1838 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1839 pages = min(pages, work->nr_pages);
1840 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1841 MIN_WRITEBACK_PAGES);
1844 return pages;
1848 * Write a portion of b_io inodes which belong to @sb.
1850 * Return the number of pages and/or inodes written.
1852 * NOTE! This is called with wb->list_lock held, and will
1853 * unlock and relock that for each inode it ends up doing
1854 * IO for.
1856 static long writeback_sb_inodes(struct super_block *sb,
1857 struct bdi_writeback *wb,
1858 struct wb_writeback_work *work)
1860 struct writeback_control wbc = {
1861 .sync_mode = work->sync_mode,
1862 .tagged_writepages = work->tagged_writepages,
1863 .for_kupdate = work->for_kupdate,
1864 .for_background = work->for_background,
1865 .for_sync = work->for_sync,
1866 .range_cyclic = work->range_cyclic,
1867 .range_start = 0,
1868 .range_end = LLONG_MAX,
1870 unsigned long start_time = jiffies;
1871 long write_chunk;
1872 long total_wrote = 0; /* count both pages and inodes */
1873 unsigned long dirtied_before = jiffies;
1875 if (work->for_kupdate)
1876 dirtied_before = jiffies -
1877 msecs_to_jiffies(dirty_expire_interval * 10);
1879 while (!list_empty(&wb->b_io)) {
1880 struct inode *inode = wb_inode(wb->b_io.prev);
1881 struct bdi_writeback *tmp_wb;
1882 long wrote;
1884 if (inode->i_sb != sb) {
1885 if (work->sb) {
1887 * We only want to write back data for this
1888 * superblock, move all inodes not belonging
1889 * to it back onto the dirty list.
1891 redirty_tail(inode, wb);
1892 continue;
1896 * The inode belongs to a different superblock.
1897 * Bounce back to the caller to unpin this and
1898 * pin the next superblock.
1900 break;
1904 * Don't bother with new inodes or inodes being freed, first
1905 * kind does not need periodic writeout yet, and for the latter
1906 * kind writeout is handled by the freer.
1908 spin_lock(&inode->i_lock);
1909 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1910 redirty_tail_locked(inode, wb);
1911 spin_unlock(&inode->i_lock);
1912 continue;
1914 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1916 * If this inode is locked for writeback and we are not
1917 * doing writeback-for-data-integrity, move it to
1918 * b_more_io so that writeback can proceed with the
1919 * other inodes on s_io.
1921 * We'll have another go at writing back this inode
1922 * when we completed a full scan of b_io.
1924 requeue_io(inode, wb);
1925 spin_unlock(&inode->i_lock);
1926 trace_writeback_sb_inodes_requeue(inode);
1927 continue;
1929 spin_unlock(&wb->list_lock);
1932 * We already requeued the inode if it had I_SYNC set and we
1933 * are doing WB_SYNC_NONE writeback. So this catches only the
1934 * WB_SYNC_ALL case.
1936 if (inode->i_state & I_SYNC) {
1937 /* Wait for I_SYNC. This function drops i_lock... */
1938 inode_sleep_on_writeback(inode);
1939 /* Inode may be gone, start again */
1940 spin_lock(&wb->list_lock);
1941 continue;
1943 inode->i_state |= I_SYNC;
1944 wbc_attach_and_unlock_inode(&wbc, inode);
1946 write_chunk = writeback_chunk_size(wb, work);
1947 wbc.nr_to_write = write_chunk;
1948 wbc.pages_skipped = 0;
1951 * We use I_SYNC to pin the inode in memory. While it is set
1952 * evict_inode() will wait so the inode cannot be freed.
1954 __writeback_single_inode(inode, &wbc);
1956 wbc_detach_inode(&wbc);
1957 work->nr_pages -= write_chunk - wbc.nr_to_write;
1958 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1959 wrote = wrote < 0 ? 0 : wrote;
1960 total_wrote += wrote;
1962 if (need_resched()) {
1964 * We're trying to balance between building up a nice
1965 * long list of IOs to improve our merge rate, and
1966 * getting those IOs out quickly for anyone throttling
1967 * in balance_dirty_pages(). cond_resched() doesn't
1968 * unplug, so get our IOs out the door before we
1969 * give up the CPU.
1971 blk_flush_plug(current->plug, false);
1972 cond_resched();
1976 * Requeue @inode if still dirty. Be careful as @inode may
1977 * have been switched to another wb in the meantime.
1979 tmp_wb = inode_to_wb_and_lock_list(inode);
1980 spin_lock(&inode->i_lock);
1981 if (!(inode->i_state & I_DIRTY_ALL))
1982 total_wrote++;
1983 requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
1984 inode_sync_complete(inode);
1985 spin_unlock(&inode->i_lock);
1987 if (unlikely(tmp_wb != wb)) {
1988 spin_unlock(&tmp_wb->list_lock);
1989 spin_lock(&wb->list_lock);
1993 * bail out to wb_writeback() often enough to check
1994 * background threshold and other termination conditions.
1996 if (total_wrote) {
1997 if (time_is_before_jiffies(start_time + HZ / 10UL))
1998 break;
1999 if (work->nr_pages <= 0)
2000 break;
2003 return total_wrote;
2006 static long __writeback_inodes_wb(struct bdi_writeback *wb,
2007 struct wb_writeback_work *work)
2009 unsigned long start_time = jiffies;
2010 long wrote = 0;
2012 while (!list_empty(&wb->b_io)) {
2013 struct inode *inode = wb_inode(wb->b_io.prev);
2014 struct super_block *sb = inode->i_sb;
2016 if (!super_trylock_shared(sb)) {
2018 * super_trylock_shared() may fail consistently due to
2019 * s_umount being grabbed by someone else. Don't use
2020 * requeue_io() to avoid busy retrying the inode/sb.
2022 redirty_tail(inode, wb);
2023 continue;
2025 wrote += writeback_sb_inodes(sb, wb, work);
2026 up_read(&sb->s_umount);
2028 /* refer to the same tests at the end of writeback_sb_inodes */
2029 if (wrote) {
2030 if (time_is_before_jiffies(start_time + HZ / 10UL))
2031 break;
2032 if (work->nr_pages <= 0)
2033 break;
2036 /* Leave any unwritten inodes on b_io */
2037 return wrote;
2040 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2041 enum wb_reason reason)
2043 struct wb_writeback_work work = {
2044 .nr_pages = nr_pages,
2045 .sync_mode = WB_SYNC_NONE,
2046 .range_cyclic = 1,
2047 .reason = reason,
2049 struct blk_plug plug;
2051 blk_start_plug(&plug);
2052 spin_lock(&wb->list_lock);
2053 if (list_empty(&wb->b_io))
2054 queue_io(wb, &work, jiffies);
2055 __writeback_inodes_wb(wb, &work);
2056 spin_unlock(&wb->list_lock);
2057 blk_finish_plug(&plug);
2059 return nr_pages - work.nr_pages;
2063 * Explicit flushing or periodic writeback of "old" data.
2065 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2066 * dirtying-time in the inode's address_space. So this periodic writeback code
2067 * just walks the superblock inode list, writing back any inodes which are
2068 * older than a specific point in time.
2070 * Try to run once per dirty_writeback_interval. But if a writeback event
2071 * takes longer than a dirty_writeback_interval interval, then leave a
2072 * one-second gap.
2074 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2075 * all dirty pages if they are all attached to "old" mappings.
2077 static long wb_writeback(struct bdi_writeback *wb,
2078 struct wb_writeback_work *work)
2080 long nr_pages = work->nr_pages;
2081 unsigned long dirtied_before = jiffies;
2082 struct inode *inode;
2083 long progress;
2084 struct blk_plug plug;
2085 bool queued = false;
2087 blk_start_plug(&plug);
2088 for (;;) {
2090 * Stop writeback when nr_pages has been consumed
2092 if (work->nr_pages <= 0)
2093 break;
2096 * Background writeout and kupdate-style writeback may
2097 * run forever. Stop them if there is other work to do
2098 * so that e.g. sync can proceed. They'll be restarted
2099 * after the other works are all done.
2101 if ((work->for_background || work->for_kupdate) &&
2102 !list_empty(&wb->work_list))
2103 break;
2106 * For background writeout, stop when we are below the
2107 * background dirty threshold
2109 if (work->for_background && !wb_over_bg_thresh(wb))
2110 break;
2113 spin_lock(&wb->list_lock);
2115 trace_writeback_start(wb, work);
2116 if (list_empty(&wb->b_io)) {
2118 * Kupdate and background works are special and we want
2119 * to include all inodes that need writing. Livelock
2120 * avoidance is handled by these works yielding to any
2121 * other work so we are safe.
2123 if (work->for_kupdate) {
2124 dirtied_before = jiffies -
2125 msecs_to_jiffies(dirty_expire_interval *
2126 10);
2127 } else if (work->for_background)
2128 dirtied_before = jiffies;
2130 queue_io(wb, work, dirtied_before);
2131 queued = true;
2133 if (work->sb)
2134 progress = writeback_sb_inodes(work->sb, wb, work);
2135 else
2136 progress = __writeback_inodes_wb(wb, work);
2137 trace_writeback_written(wb, work);
2140 * Did we write something? Try for more
2142 * Dirty inodes are moved to b_io for writeback in batches.
2143 * The completion of the current batch does not necessarily
2144 * mean the overall work is done. So we keep looping as long
2145 * as made some progress on cleaning pages or inodes.
2147 if (progress || !queued) {
2148 spin_unlock(&wb->list_lock);
2149 continue;
2153 * No more inodes for IO, bail
2155 if (list_empty(&wb->b_more_io)) {
2156 spin_unlock(&wb->list_lock);
2157 break;
2161 * Nothing written. Wait for some inode to
2162 * become available for writeback. Otherwise
2163 * we'll just busyloop.
2165 trace_writeback_wait(wb, work);
2166 inode = wb_inode(wb->b_more_io.prev);
2167 spin_lock(&inode->i_lock);
2168 spin_unlock(&wb->list_lock);
2169 /* This function drops i_lock... */
2170 inode_sleep_on_writeback(inode);
2172 blk_finish_plug(&plug);
2174 return nr_pages - work->nr_pages;
2178 * Return the next wb_writeback_work struct that hasn't been processed yet.
2180 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2182 struct wb_writeback_work *work = NULL;
2184 spin_lock_irq(&wb->work_lock);
2185 if (!list_empty(&wb->work_list)) {
2186 work = list_entry(wb->work_list.next,
2187 struct wb_writeback_work, list);
2188 list_del_init(&work->list);
2190 spin_unlock_irq(&wb->work_lock);
2191 return work;
2194 static long wb_check_background_flush(struct bdi_writeback *wb)
2196 if (wb_over_bg_thresh(wb)) {
2198 struct wb_writeback_work work = {
2199 .nr_pages = LONG_MAX,
2200 .sync_mode = WB_SYNC_NONE,
2201 .for_background = 1,
2202 .range_cyclic = 1,
2203 .reason = WB_REASON_BACKGROUND,
2206 return wb_writeback(wb, &work);
2209 return 0;
2212 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2214 unsigned long expired;
2215 long nr_pages;
2218 * When set to zero, disable periodic writeback
2220 if (!dirty_writeback_interval)
2221 return 0;
2223 expired = wb->last_old_flush +
2224 msecs_to_jiffies(dirty_writeback_interval * 10);
2225 if (time_before(jiffies, expired))
2226 return 0;
2228 wb->last_old_flush = jiffies;
2229 nr_pages = get_nr_dirty_pages();
2231 if (nr_pages) {
2232 struct wb_writeback_work work = {
2233 .nr_pages = nr_pages,
2234 .sync_mode = WB_SYNC_NONE,
2235 .for_kupdate = 1,
2236 .range_cyclic = 1,
2237 .reason = WB_REASON_PERIODIC,
2240 return wb_writeback(wb, &work);
2243 return 0;
2246 static long wb_check_start_all(struct bdi_writeback *wb)
2248 long nr_pages;
2250 if (!test_bit(WB_start_all, &wb->state))
2251 return 0;
2253 nr_pages = get_nr_dirty_pages();
2254 if (nr_pages) {
2255 struct wb_writeback_work work = {
2256 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2257 .sync_mode = WB_SYNC_NONE,
2258 .range_cyclic = 1,
2259 .reason = wb->start_all_reason,
2262 nr_pages = wb_writeback(wb, &work);
2265 clear_bit(WB_start_all, &wb->state);
2266 return nr_pages;
2271 * Retrieve work items and do the writeback they describe
2273 static long wb_do_writeback(struct bdi_writeback *wb)
2275 struct wb_writeback_work *work;
2276 long wrote = 0;
2278 set_bit(WB_writeback_running, &wb->state);
2279 while ((work = get_next_work_item(wb)) != NULL) {
2280 trace_writeback_exec(wb, work);
2281 wrote += wb_writeback(wb, work);
2282 finish_writeback_work(work);
2286 * Check for a flush-everything request
2288 wrote += wb_check_start_all(wb);
2291 * Check for periodic writeback, kupdated() style
2293 wrote += wb_check_old_data_flush(wb);
2294 wrote += wb_check_background_flush(wb);
2295 clear_bit(WB_writeback_running, &wb->state);
2297 return wrote;
2301 * Handle writeback of dirty data for the device backed by this bdi. Also
2302 * reschedules periodically and does kupdated style flushing.
2304 void wb_workfn(struct work_struct *work)
2306 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2307 struct bdi_writeback, dwork);
2308 long pages_written;
2310 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2312 if (likely(!current_is_workqueue_rescuer() ||
2313 !test_bit(WB_registered, &wb->state))) {
2315 * The normal path. Keep writing back @wb until its
2316 * work_list is empty. Note that this path is also taken
2317 * if @wb is shutting down even when we're running off the
2318 * rescuer as work_list needs to be drained.
2320 do {
2321 pages_written = wb_do_writeback(wb);
2322 trace_writeback_pages_written(pages_written);
2323 } while (!list_empty(&wb->work_list));
2324 } else {
2326 * bdi_wq can't get enough workers and we're running off
2327 * the emergency worker. Don't hog it. Hopefully, 1024 is
2328 * enough for efficient IO.
2330 pages_written = writeback_inodes_wb(wb, 1024,
2331 WB_REASON_FORKER_THREAD);
2332 trace_writeback_pages_written(pages_written);
2335 if (!list_empty(&wb->work_list))
2336 wb_wakeup(wb);
2337 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2338 wb_wakeup_delayed(wb);
2342 * Start writeback of all dirty pages on this bdi.
2344 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2345 enum wb_reason reason)
2347 struct bdi_writeback *wb;
2349 if (!bdi_has_dirty_io(bdi))
2350 return;
2352 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2353 wb_start_writeback(wb, reason);
2356 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2357 enum wb_reason reason)
2359 rcu_read_lock();
2360 __wakeup_flusher_threads_bdi(bdi, reason);
2361 rcu_read_unlock();
2365 * Wakeup the flusher threads to start writeback of all currently dirty pages
2367 void wakeup_flusher_threads(enum wb_reason reason)
2369 struct backing_dev_info *bdi;
2372 * If we are expecting writeback progress we must submit plugged IO.
2374 blk_flush_plug(current->plug, true);
2376 rcu_read_lock();
2377 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2378 __wakeup_flusher_threads_bdi(bdi, reason);
2379 rcu_read_unlock();
2383 * Wake up bdi's periodically to make sure dirtytime inodes gets
2384 * written back periodically. We deliberately do *not* check the
2385 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2386 * kernel to be constantly waking up once there are any dirtytime
2387 * inodes on the system. So instead we define a separate delayed work
2388 * function which gets called much more rarely. (By default, only
2389 * once every 12 hours.)
2391 * If there is any other write activity going on in the file system,
2392 * this function won't be necessary. But if the only thing that has
2393 * happened on the file system is a dirtytime inode caused by an atime
2394 * update, we need this infrastructure below to make sure that inode
2395 * eventually gets pushed out to disk.
2397 static void wakeup_dirtytime_writeback(struct work_struct *w);
2398 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2400 static void wakeup_dirtytime_writeback(struct work_struct *w)
2402 struct backing_dev_info *bdi;
2404 rcu_read_lock();
2405 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2406 struct bdi_writeback *wb;
2408 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2409 if (!list_empty(&wb->b_dirty_time))
2410 wb_wakeup(wb);
2412 rcu_read_unlock();
2413 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2416 static int __init start_dirtytime_writeback(void)
2418 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2419 return 0;
2421 __initcall(start_dirtytime_writeback);
2423 int dirtytime_interval_handler(const struct ctl_table *table, int write,
2424 void *buffer, size_t *lenp, loff_t *ppos)
2426 int ret;
2428 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2429 if (ret == 0 && write)
2430 mod_delayed_work(system_wq, &dirtytime_work, 0);
2431 return ret;
2435 * __mark_inode_dirty - internal function to mark an inode dirty
2437 * @inode: inode to mark
2438 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2439 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2440 * with I_DIRTY_PAGES.
2442 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2443 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2445 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2446 * instead of calling this directly.
2448 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2449 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2450 * even if they are later hashed, as they will have been marked dirty already.
2452 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2454 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2455 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2456 * the kernel-internal blockdev inode represents the dirtying time of the
2457 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2458 * page->mapping->host, so the page-dirtying time is recorded in the internal
2459 * blockdev inode.
2461 void __mark_inode_dirty(struct inode *inode, int flags)
2463 struct super_block *sb = inode->i_sb;
2464 int dirtytime = 0;
2465 struct bdi_writeback *wb = NULL;
2467 trace_writeback_mark_inode_dirty(inode, flags);
2469 if (flags & I_DIRTY_INODE) {
2471 * Inode timestamp update will piggback on this dirtying.
2472 * We tell ->dirty_inode callback that timestamps need to
2473 * be updated by setting I_DIRTY_TIME in flags.
2475 if (inode->i_state & I_DIRTY_TIME) {
2476 spin_lock(&inode->i_lock);
2477 if (inode->i_state & I_DIRTY_TIME) {
2478 inode->i_state &= ~I_DIRTY_TIME;
2479 flags |= I_DIRTY_TIME;
2481 spin_unlock(&inode->i_lock);
2485 * Notify the filesystem about the inode being dirtied, so that
2486 * (if needed) it can update on-disk fields and journal the
2487 * inode. This is only needed when the inode itself is being
2488 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2489 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2491 trace_writeback_dirty_inode_start(inode, flags);
2492 if (sb->s_op->dirty_inode)
2493 sb->s_op->dirty_inode(inode,
2494 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2495 trace_writeback_dirty_inode(inode, flags);
2497 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2498 flags &= ~I_DIRTY_TIME;
2499 } else {
2501 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2502 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2503 * in one call to __mark_inode_dirty().)
2505 dirtytime = flags & I_DIRTY_TIME;
2506 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2510 * Paired with smp_mb() in __writeback_single_inode() for the
2511 * following lockless i_state test. See there for details.
2513 smp_mb();
2515 if ((inode->i_state & flags) == flags)
2516 return;
2518 spin_lock(&inode->i_lock);
2519 if ((inode->i_state & flags) != flags) {
2520 const int was_dirty = inode->i_state & I_DIRTY;
2522 inode_attach_wb(inode, NULL);
2524 inode->i_state |= flags;
2527 * Grab inode's wb early because it requires dropping i_lock and we
2528 * need to make sure following checks happen atomically with dirty
2529 * list handling so that we don't move inodes under flush worker's
2530 * hands.
2532 if (!was_dirty) {
2533 wb = locked_inode_to_wb_and_lock_list(inode);
2534 spin_lock(&inode->i_lock);
2538 * If the inode is queued for writeback by flush worker, just
2539 * update its dirty state. Once the flush worker is done with
2540 * the inode it will place it on the appropriate superblock
2541 * list, based upon its state.
2543 if (inode->i_state & I_SYNC_QUEUED)
2544 goto out_unlock;
2547 * Only add valid (hashed) inodes to the superblock's
2548 * dirty list. Add blockdev inodes as well.
2550 if (!S_ISBLK(inode->i_mode)) {
2551 if (inode_unhashed(inode))
2552 goto out_unlock;
2554 if (inode->i_state & I_FREEING)
2555 goto out_unlock;
2558 * If the inode was already on b_dirty/b_io/b_more_io, don't
2559 * reposition it (that would break b_dirty time-ordering).
2561 if (!was_dirty) {
2562 struct list_head *dirty_list;
2563 bool wakeup_bdi = false;
2565 inode->dirtied_when = jiffies;
2566 if (dirtytime)
2567 inode->dirtied_time_when = jiffies;
2569 if (inode->i_state & I_DIRTY)
2570 dirty_list = &wb->b_dirty;
2571 else
2572 dirty_list = &wb->b_dirty_time;
2574 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2575 dirty_list);
2577 spin_unlock(&wb->list_lock);
2578 spin_unlock(&inode->i_lock);
2579 trace_writeback_dirty_inode_enqueue(inode);
2582 * If this is the first dirty inode for this bdi,
2583 * we have to wake-up the corresponding bdi thread
2584 * to make sure background write-back happens
2585 * later.
2587 if (wakeup_bdi &&
2588 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2589 wb_wakeup_delayed(wb);
2590 return;
2593 out_unlock:
2594 if (wb)
2595 spin_unlock(&wb->list_lock);
2596 spin_unlock(&inode->i_lock);
2598 EXPORT_SYMBOL(__mark_inode_dirty);
2601 * The @s_sync_lock is used to serialise concurrent sync operations
2602 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2603 * Concurrent callers will block on the s_sync_lock rather than doing contending
2604 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2605 * has been issued up to the time this function is enter is guaranteed to be
2606 * completed by the time we have gained the lock and waited for all IO that is
2607 * in progress regardless of the order callers are granted the lock.
2609 static void wait_sb_inodes(struct super_block *sb)
2611 LIST_HEAD(sync_list);
2614 * We need to be protected against the filesystem going from
2615 * r/o to r/w or vice versa.
2617 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2619 mutex_lock(&sb->s_sync_lock);
2622 * Splice the writeback list onto a temporary list to avoid waiting on
2623 * inodes that have started writeback after this point.
2625 * Use rcu_read_lock() to keep the inodes around until we have a
2626 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2627 * the local list because inodes can be dropped from either by writeback
2628 * completion.
2630 rcu_read_lock();
2631 spin_lock_irq(&sb->s_inode_wblist_lock);
2632 list_splice_init(&sb->s_inodes_wb, &sync_list);
2635 * Data integrity sync. Must wait for all pages under writeback, because
2636 * there may have been pages dirtied before our sync call, but which had
2637 * writeout started before we write it out. In which case, the inode
2638 * may not be on the dirty list, but we still have to wait for that
2639 * writeout.
2641 while (!list_empty(&sync_list)) {
2642 struct inode *inode = list_first_entry(&sync_list, struct inode,
2643 i_wb_list);
2644 struct address_space *mapping = inode->i_mapping;
2647 * Move each inode back to the wb list before we drop the lock
2648 * to preserve consistency between i_wb_list and the mapping
2649 * writeback tag. Writeback completion is responsible to remove
2650 * the inode from either list once the writeback tag is cleared.
2652 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2655 * The mapping can appear untagged while still on-list since we
2656 * do not have the mapping lock. Skip it here, wb completion
2657 * will remove it.
2659 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2660 continue;
2662 spin_unlock_irq(&sb->s_inode_wblist_lock);
2664 spin_lock(&inode->i_lock);
2665 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2666 spin_unlock(&inode->i_lock);
2668 spin_lock_irq(&sb->s_inode_wblist_lock);
2669 continue;
2671 __iget(inode);
2672 spin_unlock(&inode->i_lock);
2673 rcu_read_unlock();
2676 * We keep the error status of individual mapping so that
2677 * applications can catch the writeback error using fsync(2).
2678 * See filemap_fdatawait_keep_errors() for details.
2680 filemap_fdatawait_keep_errors(mapping);
2682 cond_resched();
2684 iput(inode);
2686 rcu_read_lock();
2687 spin_lock_irq(&sb->s_inode_wblist_lock);
2689 spin_unlock_irq(&sb->s_inode_wblist_lock);
2690 rcu_read_unlock();
2691 mutex_unlock(&sb->s_sync_lock);
2694 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2695 enum wb_reason reason, bool skip_if_busy)
2697 struct backing_dev_info *bdi = sb->s_bdi;
2698 DEFINE_WB_COMPLETION(done, bdi);
2699 struct wb_writeback_work work = {
2700 .sb = sb,
2701 .sync_mode = WB_SYNC_NONE,
2702 .tagged_writepages = 1,
2703 .done = &done,
2704 .nr_pages = nr,
2705 .reason = reason,
2708 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2709 return;
2710 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2712 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2713 wb_wait_for_completion(&done);
2717 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2718 * @sb: the superblock
2719 * @nr: the number of pages to write
2720 * @reason: reason why some writeback work initiated
2722 * Start writeback on some inodes on this super_block. No guarantees are made
2723 * on how many (if any) will be written, and this function does not wait
2724 * for IO completion of submitted IO.
2726 void writeback_inodes_sb_nr(struct super_block *sb,
2727 unsigned long nr,
2728 enum wb_reason reason)
2730 __writeback_inodes_sb_nr(sb, nr, reason, false);
2732 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2735 * writeback_inodes_sb - writeback dirty inodes from given super_block
2736 * @sb: the superblock
2737 * @reason: reason why some writeback work was initiated
2739 * Start writeback on some inodes on this super_block. No guarantees are made
2740 * on how many (if any) will be written, and this function does not wait
2741 * for IO completion of submitted IO.
2743 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2745 writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2747 EXPORT_SYMBOL(writeback_inodes_sb);
2750 * try_to_writeback_inodes_sb - try to start writeback if none underway
2751 * @sb: the superblock
2752 * @reason: reason why some writeback work was initiated
2754 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2756 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2758 if (!down_read_trylock(&sb->s_umount))
2759 return;
2761 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2762 up_read(&sb->s_umount);
2764 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2767 * sync_inodes_sb - sync sb inode pages
2768 * @sb: the superblock
2770 * This function writes and waits on any dirty inode belonging to this
2771 * super_block.
2773 void sync_inodes_sb(struct super_block *sb)
2775 struct backing_dev_info *bdi = sb->s_bdi;
2776 DEFINE_WB_COMPLETION(done, bdi);
2777 struct wb_writeback_work work = {
2778 .sb = sb,
2779 .sync_mode = WB_SYNC_ALL,
2780 .nr_pages = LONG_MAX,
2781 .range_cyclic = 0,
2782 .done = &done,
2783 .reason = WB_REASON_SYNC,
2784 .for_sync = 1,
2788 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2789 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2790 * bdi_has_dirty() need to be written out too.
2792 if (bdi == &noop_backing_dev_info)
2793 return;
2794 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2796 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2797 bdi_down_write_wb_switch_rwsem(bdi);
2798 bdi_split_work_to_wbs(bdi, &work, false);
2799 wb_wait_for_completion(&done);
2800 bdi_up_write_wb_switch_rwsem(bdi);
2802 wait_sb_inodes(sb);
2804 EXPORT_SYMBOL(sync_inodes_sb);
2807 * write_inode_now - write an inode to disk
2808 * @inode: inode to write to disk
2809 * @sync: whether the write should be synchronous or not
2811 * This function commits an inode to disk immediately if it is dirty. This is
2812 * primarily needed by knfsd.
2814 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2816 int write_inode_now(struct inode *inode, int sync)
2818 struct writeback_control wbc = {
2819 .nr_to_write = LONG_MAX,
2820 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2821 .range_start = 0,
2822 .range_end = LLONG_MAX,
2825 if (!mapping_can_writeback(inode->i_mapping))
2826 wbc.nr_to_write = 0;
2828 might_sleep();
2829 return writeback_single_inode(inode, &wbc);
2831 EXPORT_SYMBOL(write_inode_now);
2834 * sync_inode_metadata - write an inode to disk
2835 * @inode: the inode to sync
2836 * @wait: wait for I/O to complete.
2838 * Write an inode to disk and adjust its dirty state after completion.
2840 * Note: only writes the actual inode, no associated data or other metadata.
2842 int sync_inode_metadata(struct inode *inode, int wait)
2844 struct writeback_control wbc = {
2845 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2846 .nr_to_write = 0, /* metadata-only */
2849 return writeback_single_inode(inode, &wbc);
2851 EXPORT_SYMBOL(sync_inode_metadata);