1 // SPDX-License-Identifier: GPL-2.0
3 * Performance events ring-buffer code:
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
11 #include <linux/perf_event.h>
12 #include <linux/vmalloc.h>
13 #include <linux/slab.h>
14 #include <linux/circ_buf.h>
15 #include <linux/poll.h>
16 #include <linux/nospec.h>
20 static void perf_output_wakeup(struct perf_output_handle
*handle
)
22 atomic_set(&handle
->rb
->poll
, EPOLLIN
);
24 handle
->event
->pending_wakeup
= 1;
26 if (*perf_event_fasync(handle
->event
) && !handle
->event
->pending_kill
)
27 handle
->event
->pending_kill
= POLL_IN
;
29 irq_work_queue(&handle
->event
->pending_irq
);
33 * We need to ensure a later event_id doesn't publish a head when a former
34 * event isn't done writing. However since we need to deal with NMIs we
35 * cannot fully serialize things.
37 * We only publish the head (and generate a wakeup) when the outer-most
40 static void perf_output_get_handle(struct perf_output_handle
*handle
)
42 struct perf_buffer
*rb
= handle
->rb
;
47 * Avoid an explicit LOAD/STORE such that architectures with memops
50 (*(volatile unsigned int *)&rb
->nest
)++;
51 handle
->wakeup
= local_read(&rb
->wakeup
);
54 static void perf_output_put_handle(struct perf_output_handle
*handle
)
56 struct perf_buffer
*rb
= handle
->rb
;
61 * If this isn't the outermost nesting, we don't have to update
62 * @rb->user_page->data_head.
64 nest
= READ_ONCE(rb
->nest
);
66 WRITE_ONCE(rb
->nest
, nest
- 1);
72 * In order to avoid publishing a head value that goes backwards,
73 * we must ensure the load of @rb->head happens after we've
74 * incremented @rb->nest.
76 * Otherwise we can observe a @rb->head value before one published
77 * by an IRQ/NMI happening between the load and the increment.
80 head
= local_read(&rb
->head
);
83 * IRQ/NMI can happen here and advance @rb->head, causing our
84 * load above to be stale.
88 * Since the mmap() consumer (userspace) can run on a different CPU:
92 * if (LOAD ->data_tail) { LOAD ->data_head
94 * STORE $data LOAD $data
95 * smp_wmb() (B) smp_mb() (D)
96 * STORE ->data_head STORE ->data_tail
99 * Where A pairs with D, and B pairs with C.
101 * In our case (A) is a control dependency that separates the load of
102 * the ->data_tail and the stores of $data. In case ->data_tail
103 * indicates there is no room in the buffer to store $data we do not.
105 * D needs to be a full barrier since it separates the data READ
106 * from the tail WRITE.
108 * For B a WMB is sufficient since it separates two WRITEs, and for C
109 * an RMB is sufficient since it separates two READs.
111 * See perf_output_begin().
113 smp_wmb(); /* B, matches C */
114 WRITE_ONCE(rb
->user_page
->data_head
, head
);
117 * We must publish the head before decrementing the nest count,
118 * otherwise an IRQ/NMI can publish a more recent head value and our
119 * write will (temporarily) publish a stale value.
122 WRITE_ONCE(rb
->nest
, 0);
125 * Ensure we decrement @rb->nest before we validate the @rb->head.
126 * Otherwise we cannot be sure we caught the 'last' nested update.
129 if (unlikely(head
!= local_read(&rb
->head
))) {
130 WRITE_ONCE(rb
->nest
, 1);
134 if (handle
->wakeup
!= local_read(&rb
->wakeup
))
135 perf_output_wakeup(handle
);
141 static __always_inline
bool
142 ring_buffer_has_space(unsigned long head
, unsigned long tail
,
143 unsigned long data_size
, unsigned int size
,
147 return CIRC_SPACE(head
, tail
, data_size
) >= size
;
149 return CIRC_SPACE(tail
, head
, data_size
) >= size
;
152 static __always_inline
int
153 __perf_output_begin(struct perf_output_handle
*handle
,
154 struct perf_sample_data
*data
,
155 struct perf_event
*event
, unsigned int size
,
158 struct perf_buffer
*rb
;
159 unsigned long tail
, offset
, head
;
160 int have_lost
, page_shift
;
162 struct perf_event_header header
;
169 * For inherited events we send all the output towards the parent.
172 event
= event
->parent
;
174 rb
= rcu_dereference(event
->rb
);
178 if (unlikely(rb
->paused
)) {
180 local_inc(&rb
->lost
);
181 atomic64_inc(&event
->lost_samples
);
187 handle
->event
= event
;
189 have_lost
= local_read(&rb
->lost
);
190 if (unlikely(have_lost
)) {
191 size
+= sizeof(lost_event
);
192 if (event
->attr
.sample_id_all
)
193 size
+= event
->id_header_size
;
196 perf_output_get_handle(handle
);
198 offset
= local_read(&rb
->head
);
201 tail
= READ_ONCE(rb
->user_page
->data_tail
);
202 if (!rb
->overwrite
) {
203 if (unlikely(!ring_buffer_has_space(head
, tail
,
210 * The above forms a control dependency barrier separating the
211 * @tail load above from the data stores below. Since the @tail
212 * load is required to compute the branch to fail below.
214 * A, matches D; the full memory barrier userspace SHOULD issue
215 * after reading the data and before storing the new tail
218 * See perf_output_put_handle().
225 } while (!local_try_cmpxchg(&rb
->head
, &offset
, head
));
233 * We rely on the implied barrier() by local_cmpxchg() to ensure
234 * none of the data stores below can be lifted up by the compiler.
237 if (unlikely(head
- local_read(&rb
->wakeup
) > rb
->watermark
))
238 local_add(rb
->watermark
, &rb
->wakeup
);
240 page_shift
= PAGE_SHIFT
+ page_order(rb
);
242 handle
->page
= (offset
>> page_shift
) & (rb
->nr_pages
- 1);
243 offset
&= (1UL << page_shift
) - 1;
244 handle
->addr
= rb
->data_pages
[handle
->page
] + offset
;
245 handle
->size
= (1UL << page_shift
) - offset
;
247 if (unlikely(have_lost
)) {
248 lost_event
.header
.size
= sizeof(lost_event
);
249 lost_event
.header
.type
= PERF_RECORD_LOST
;
250 lost_event
.header
.misc
= 0;
251 lost_event
.id
= event
->id
;
252 lost_event
.lost
= local_xchg(&rb
->lost
, 0);
254 /* XXX mostly redundant; @data is already fully initializes */
255 perf_event_header__init_id(&lost_event
.header
, data
, event
);
256 perf_output_put(handle
, lost_event
);
257 perf_event__output_id_sample(event
, handle
, data
);
263 local_inc(&rb
->lost
);
264 atomic64_inc(&event
->lost_samples
);
265 perf_output_put_handle(handle
);
272 int perf_output_begin_forward(struct perf_output_handle
*handle
,
273 struct perf_sample_data
*data
,
274 struct perf_event
*event
, unsigned int size
)
276 return __perf_output_begin(handle
, data
, event
, size
, false);
279 int perf_output_begin_backward(struct perf_output_handle
*handle
,
280 struct perf_sample_data
*data
,
281 struct perf_event
*event
, unsigned int size
)
283 return __perf_output_begin(handle
, data
, event
, size
, true);
286 int perf_output_begin(struct perf_output_handle
*handle
,
287 struct perf_sample_data
*data
,
288 struct perf_event
*event
, unsigned int size
)
291 return __perf_output_begin(handle
, data
, event
, size
,
292 unlikely(is_write_backward(event
)));
295 unsigned int perf_output_copy(struct perf_output_handle
*handle
,
296 const void *buf
, unsigned int len
)
298 return __output_copy(handle
, buf
, len
);
301 unsigned int perf_output_skip(struct perf_output_handle
*handle
,
304 return __output_skip(handle
, NULL
, len
);
307 void perf_output_end(struct perf_output_handle
*handle
)
309 perf_output_put_handle(handle
);
314 ring_buffer_init(struct perf_buffer
*rb
, long watermark
, int flags
)
316 long max_size
= perf_data_size(rb
);
319 rb
->watermark
= min(max_size
, watermark
);
322 rb
->watermark
= max_size
/ 2;
324 if (flags
& RING_BUFFER_WRITABLE
)
329 refcount_set(&rb
->refcount
, 1);
331 INIT_LIST_HEAD(&rb
->event_list
);
332 spin_lock_init(&rb
->event_lock
);
335 * perf_output_begin() only checks rb->paused, therefore
336 * rb->paused must be true if we have no pages for output.
341 mutex_init(&rb
->aux_mutex
);
344 void perf_aux_output_flag(struct perf_output_handle
*handle
, u64 flags
)
347 * OVERWRITE is determined by perf_aux_output_end() and can't
348 * be passed in directly.
350 if (WARN_ON_ONCE(flags
& PERF_AUX_FLAG_OVERWRITE
))
353 handle
->aux_flags
|= flags
;
355 EXPORT_SYMBOL_GPL(perf_aux_output_flag
);
358 * This is called before hardware starts writing to the AUX area to
359 * obtain an output handle and make sure there's room in the buffer.
360 * When the capture completes, call perf_aux_output_end() to commit
361 * the recorded data to the buffer.
363 * The ordering is similar to that of perf_output_{begin,end}, with
364 * the exception of (B), which should be taken care of by the pmu
365 * driver, since ordering rules will differ depending on hardware.
367 * Call this from pmu::start(); see the comment in perf_aux_output_end()
368 * about its use in pmu callbacks. Both can also be called from the PMI
371 void *perf_aux_output_begin(struct perf_output_handle
*handle
,
372 struct perf_event
*event
)
374 struct perf_event
*output_event
= event
;
375 unsigned long aux_head
, aux_tail
;
376 struct perf_buffer
*rb
;
379 if (output_event
->parent
)
380 output_event
= output_event
->parent
;
383 * Since this will typically be open across pmu::add/pmu::del, we
384 * grab ring_buffer's refcount instead of holding rcu read lock
385 * to make sure it doesn't disappear under us.
387 rb
= ring_buffer_get(output_event
);
395 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
396 * about to get freed, so we leave immediately.
398 * Checking rb::aux_mmap_count and rb::refcount has to be done in
399 * the same order, see perf_mmap_close. Otherwise we end up freeing
400 * aux pages in this path, which is a bug, because in_atomic().
402 if (!atomic_read(&rb
->aux_mmap_count
))
405 if (!refcount_inc_not_zero(&rb
->aux_refcount
))
408 nest
= READ_ONCE(rb
->aux_nest
);
410 * Nesting is not supported for AUX area, make sure nested
411 * writers are caught early
413 if (WARN_ON_ONCE(nest
))
416 WRITE_ONCE(rb
->aux_nest
, nest
+ 1);
418 aux_head
= rb
->aux_head
;
421 handle
->event
= event
;
422 handle
->head
= aux_head
;
424 handle
->aux_flags
= 0;
427 * In overwrite mode, AUX data stores do not depend on aux_tail,
428 * therefore (A) control dependency barrier does not exist. The
429 * (B) <-> (C) ordering is still observed by the pmu driver.
431 if (!rb
->aux_overwrite
) {
432 aux_tail
= READ_ONCE(rb
->user_page
->aux_tail
);
433 handle
->wakeup
= rb
->aux_wakeup
+ rb
->aux_watermark
;
434 if (aux_head
- aux_tail
< perf_aux_size(rb
))
435 handle
->size
= CIRC_SPACE(aux_head
, aux_tail
, perf_aux_size(rb
));
438 * handle->size computation depends on aux_tail load; this forms a
439 * control dependency barrier separating aux_tail load from aux data
440 * store that will be enabled on successful return
442 if (!handle
->size
) { /* A, matches D */
443 event
->pending_disable
= smp_processor_id();
444 perf_output_wakeup(handle
);
445 WRITE_ONCE(rb
->aux_nest
, 0);
450 return handle
->rb
->aux_priv
;
458 handle
->event
= NULL
;
462 EXPORT_SYMBOL_GPL(perf_aux_output_begin
);
464 static __always_inline
bool rb_need_aux_wakeup(struct perf_buffer
*rb
)
466 if (rb
->aux_overwrite
)
469 if (rb
->aux_head
- rb
->aux_wakeup
>= rb
->aux_watermark
) {
470 rb
->aux_wakeup
= rounddown(rb
->aux_head
, rb
->aux_watermark
);
478 * Commit the data written by hardware into the ring buffer by adjusting
479 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
480 * pmu driver's responsibility to observe ordering rules of the hardware,
481 * so that all the data is externally visible before this is called.
483 * Note: this has to be called from pmu::stop() callback, as the assumption
484 * of the AUX buffer management code is that after pmu::stop(), the AUX
485 * transaction must be stopped and therefore drop the AUX reference count.
487 void perf_aux_output_end(struct perf_output_handle
*handle
, unsigned long size
)
489 bool wakeup
= !!(handle
->aux_flags
& PERF_AUX_FLAG_TRUNCATED
);
490 struct perf_buffer
*rb
= handle
->rb
;
491 unsigned long aux_head
;
493 /* in overwrite mode, driver provides aux_head via handle */
494 if (rb
->aux_overwrite
) {
495 handle
->aux_flags
|= PERF_AUX_FLAG_OVERWRITE
;
497 aux_head
= handle
->head
;
498 rb
->aux_head
= aux_head
;
500 handle
->aux_flags
&= ~PERF_AUX_FLAG_OVERWRITE
;
502 aux_head
= rb
->aux_head
;
503 rb
->aux_head
+= size
;
507 * Only send RECORD_AUX if we have something useful to communicate
509 * Note: the OVERWRITE records by themselves are not considered
510 * useful, as they don't communicate any *new* information,
511 * aside from the short-lived offset, that becomes history at
512 * the next event sched-in and therefore isn't useful.
513 * The userspace that needs to copy out AUX data in overwrite
514 * mode should know to use user_page::aux_head for the actual
515 * offset. So, from now on we don't output AUX records that
516 * have *only* OVERWRITE flag set.
518 if (size
|| (handle
->aux_flags
& ~(u64
)PERF_AUX_FLAG_OVERWRITE
))
519 perf_event_aux_event(handle
->event
, aux_head
, size
,
522 WRITE_ONCE(rb
->user_page
->aux_head
, rb
->aux_head
);
523 if (rb_need_aux_wakeup(rb
))
527 if (handle
->aux_flags
& PERF_AUX_FLAG_TRUNCATED
)
528 handle
->event
->pending_disable
= smp_processor_id();
529 perf_output_wakeup(handle
);
532 handle
->event
= NULL
;
534 WRITE_ONCE(rb
->aux_nest
, 0);
539 EXPORT_SYMBOL_GPL(perf_aux_output_end
);
542 * Skip over a given number of bytes in the AUX buffer, due to, for example,
543 * hardware's alignment constraints.
545 int perf_aux_output_skip(struct perf_output_handle
*handle
, unsigned long size
)
547 struct perf_buffer
*rb
= handle
->rb
;
549 if (size
> handle
->size
)
552 rb
->aux_head
+= size
;
554 WRITE_ONCE(rb
->user_page
->aux_head
, rb
->aux_head
);
555 if (rb_need_aux_wakeup(rb
)) {
556 perf_output_wakeup(handle
);
557 handle
->wakeup
= rb
->aux_wakeup
+ rb
->aux_watermark
;
560 handle
->head
= rb
->aux_head
;
561 handle
->size
-= size
;
565 EXPORT_SYMBOL_GPL(perf_aux_output_skip
);
567 void *perf_get_aux(struct perf_output_handle
*handle
)
569 /* this is only valid between perf_aux_output_begin and *_end */
573 return handle
->rb
->aux_priv
;
575 EXPORT_SYMBOL_GPL(perf_get_aux
);
578 * Copy out AUX data from an AUX handle.
580 long perf_output_copy_aux(struct perf_output_handle
*aux_handle
,
581 struct perf_output_handle
*handle
,
582 unsigned long from
, unsigned long to
)
584 struct perf_buffer
*rb
= aux_handle
->rb
;
585 unsigned long tocopy
, remainder
, len
= 0;
588 from
&= (rb
->aux_nr_pages
<< PAGE_SHIFT
) - 1;
589 to
&= (rb
->aux_nr_pages
<< PAGE_SHIFT
) - 1;
592 tocopy
= PAGE_SIZE
- offset_in_page(from
);
594 tocopy
= min(tocopy
, to
- from
);
598 addr
= rb
->aux_pages
[from
>> PAGE_SHIFT
];
599 addr
+= offset_in_page(from
);
601 remainder
= perf_output_copy(handle
, addr
, tocopy
);
607 from
&= (rb
->aux_nr_pages
<< PAGE_SHIFT
) - 1;
608 } while (to
!= from
);
613 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
615 static struct page
*rb_alloc_aux_page(int node
, int order
)
619 if (order
> MAX_PAGE_ORDER
)
620 order
= MAX_PAGE_ORDER
;
623 page
= alloc_pages_node(node
, PERF_AUX_GFP
, order
);
624 } while (!page
&& order
--);
628 * Communicate the allocation size to the driver:
629 * if we managed to secure a high-order allocation,
630 * set its first page's private to this order;
631 * !PagePrivate(page) means it's just a normal page.
633 split_page(page
, order
);
634 SetPagePrivate(page
);
635 set_page_private(page
, order
);
641 static void rb_free_aux_page(struct perf_buffer
*rb
, int idx
)
643 struct page
*page
= virt_to_page(rb
->aux_pages
[idx
]);
645 ClearPagePrivate(page
);
646 page
->mapping
= NULL
;
650 static void __rb_free_aux(struct perf_buffer
*rb
)
655 * Should never happen, the last reference should be dropped from
656 * perf_mmap_close() path, which first stops aux transactions (which
657 * in turn are the atomic holders of aux_refcount) and then does the
658 * last rb_free_aux().
660 WARN_ON_ONCE(in_atomic());
663 rb
->free_aux(rb
->aux_priv
);
668 if (rb
->aux_nr_pages
) {
669 for (pg
= 0; pg
< rb
->aux_nr_pages
; pg
++)
670 rb_free_aux_page(rb
, pg
);
672 kfree(rb
->aux_pages
);
673 rb
->aux_nr_pages
= 0;
677 int rb_alloc_aux(struct perf_buffer
*rb
, struct perf_event
*event
,
678 pgoff_t pgoff
, int nr_pages
, long watermark
, int flags
)
680 bool overwrite
= !(flags
& RING_BUFFER_WRITABLE
);
681 int node
= (event
->cpu
== -1) ? -1 : cpu_to_node(event
->cpu
);
682 int ret
= -ENOMEM
, max_order
;
692 * Watermark defaults to half the buffer, and so does the
693 * max_order, to aid PMU drivers in double buffering.
696 watermark
= min_t(unsigned long,
698 (unsigned long)nr_pages
<< (PAGE_SHIFT
- 1));
701 * Use aux_watermark as the basis for chunking to
702 * help PMU drivers honor the watermark.
704 max_order
= get_order(watermark
);
707 * We need to start with the max_order that fits in nr_pages,
708 * not the other way around, hence ilog2() and not get_order.
710 max_order
= ilog2(nr_pages
);
715 * kcalloc_node() is unable to allocate buffer if the size is larger
716 * than: PAGE_SIZE << MAX_PAGE_ORDER; directly bail out in this case.
718 if (get_order((unsigned long)nr_pages
* sizeof(void *)) > MAX_PAGE_ORDER
)
720 rb
->aux_pages
= kcalloc_node(nr_pages
, sizeof(void *), GFP_KERNEL
,
725 rb
->free_aux
= event
->pmu
->free_aux
;
726 for (rb
->aux_nr_pages
= 0; rb
->aux_nr_pages
< nr_pages
;) {
730 order
= min(max_order
, ilog2(nr_pages
- rb
->aux_nr_pages
));
731 page
= rb_alloc_aux_page(node
, order
);
735 for (last
= rb
->aux_nr_pages
+ (1 << page_private(page
));
736 last
> rb
->aux_nr_pages
; rb
->aux_nr_pages
++)
737 rb
->aux_pages
[rb
->aux_nr_pages
] = page_address(page
++);
741 * In overwrite mode, PMUs that don't support SG may not handle more
742 * than one contiguous allocation, since they rely on PMI to do double
743 * buffering. In this case, the entire buffer has to be one contiguous
746 if ((event
->pmu
->capabilities
& PERF_PMU_CAP_AUX_NO_SG
) &&
748 struct page
*page
= virt_to_page(rb
->aux_pages
[0]);
750 if (page_private(page
) != max_order
)
754 rb
->aux_priv
= event
->pmu
->setup_aux(event
, rb
->aux_pages
, nr_pages
,
762 * aux_pages (and pmu driver's private data, aux_priv) will be
763 * referenced in both producer's and consumer's contexts, thus
764 * we keep a refcount here to make sure either of the two can
765 * reference them safely.
767 refcount_set(&rb
->aux_refcount
, 1);
769 rb
->aux_overwrite
= overwrite
;
770 rb
->aux_watermark
= watermark
;
774 rb
->aux_pgoff
= pgoff
;
781 void rb_free_aux(struct perf_buffer
*rb
)
783 if (refcount_dec_and_test(&rb
->aux_refcount
))
787 #ifndef CONFIG_PERF_USE_VMALLOC
790 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
794 __perf_mmap_to_page(struct perf_buffer
*rb
, unsigned long pgoff
)
796 if (pgoff
> rb
->nr_pages
)
800 return virt_to_page(rb
->user_page
);
802 return virt_to_page(rb
->data_pages
[pgoff
- 1]);
805 static void *perf_mmap_alloc_page(int cpu
)
810 node
= (cpu
== -1) ? cpu
: cpu_to_node(cpu
);
811 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
815 return page_address(page
);
818 static void perf_mmap_free_page(void *addr
)
820 struct page
*page
= virt_to_page(addr
);
822 page
->mapping
= NULL
;
826 struct perf_buffer
*rb_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
828 struct perf_buffer
*rb
;
832 size
= sizeof(struct perf_buffer
);
833 size
+= nr_pages
* sizeof(void *);
835 if (order_base_2(size
) > PAGE_SHIFT
+MAX_PAGE_ORDER
)
838 node
= (cpu
== -1) ? cpu
: cpu_to_node(cpu
);
839 rb
= kzalloc_node(size
, GFP_KERNEL
, node
);
843 rb
->user_page
= perf_mmap_alloc_page(cpu
);
847 for (i
= 0; i
< nr_pages
; i
++) {
848 rb
->data_pages
[i
] = perf_mmap_alloc_page(cpu
);
849 if (!rb
->data_pages
[i
])
850 goto fail_data_pages
;
853 rb
->nr_pages
= nr_pages
;
855 ring_buffer_init(rb
, watermark
, flags
);
860 for (i
--; i
>= 0; i
--)
861 perf_mmap_free_page(rb
->data_pages
[i
]);
863 perf_mmap_free_page(rb
->user_page
);
872 void rb_free(struct perf_buffer
*rb
)
876 perf_mmap_free_page(rb
->user_page
);
877 for (i
= 0; i
< rb
->nr_pages
; i
++)
878 perf_mmap_free_page(rb
->data_pages
[i
]);
884 __perf_mmap_to_page(struct perf_buffer
*rb
, unsigned long pgoff
)
886 /* The '>' counts in the user page. */
887 if (pgoff
> data_page_nr(rb
))
890 return vmalloc_to_page((void *)rb
->user_page
+ pgoff
* PAGE_SIZE
);
893 static void perf_mmap_unmark_page(void *addr
)
895 struct page
*page
= vmalloc_to_page(addr
);
897 page
->mapping
= NULL
;
900 static void rb_free_work(struct work_struct
*work
)
902 struct perf_buffer
*rb
;
906 rb
= container_of(work
, struct perf_buffer
, work
);
907 nr
= data_page_nr(rb
);
909 base
= rb
->user_page
;
910 /* The '<=' counts in the user page. */
911 for (i
= 0; i
<= nr
; i
++)
912 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
918 void rb_free(struct perf_buffer
*rb
)
920 schedule_work(&rb
->work
);
923 struct perf_buffer
*rb_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
925 struct perf_buffer
*rb
;
930 size
= sizeof(struct perf_buffer
);
931 size
+= sizeof(void *);
933 node
= (cpu
== -1) ? cpu
: cpu_to_node(cpu
);
934 rb
= kzalloc_node(size
, GFP_KERNEL
, node
);
938 INIT_WORK(&rb
->work
, rb_free_work
);
940 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
944 rb
->user_page
= all_buf
;
945 rb
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
948 rb
->page_order
= ilog2(nr_pages
);
951 ring_buffer_init(rb
, watermark
, flags
);
965 perf_mmap_to_page(struct perf_buffer
*rb
, unsigned long pgoff
)
967 if (rb
->aux_nr_pages
) {
968 /* above AUX space */
969 if (pgoff
> rb
->aux_pgoff
+ rb
->aux_nr_pages
)
973 if (pgoff
>= rb
->aux_pgoff
) {
974 int aux_pgoff
= array_index_nospec(pgoff
- rb
->aux_pgoff
, rb
->aux_nr_pages
);
975 return virt_to_page(rb
->aux_pages
[aux_pgoff
]);
979 return __perf_mmap_to_page(rb
, pgoff
);