1 // SPDX-License-Identifier: GPL-2.0+
3 * User-space Probes (UProbes)
5 * Copyright (C) IBM Corporation, 2008-2012
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h> /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h> /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>
22 #include <linux/swap.h> /* folio_free_swap */
23 #include <linux/ptrace.h> /* user_enable_single_step */
24 #include <linux/kdebug.h> /* notifier mechanism */
25 #include <linux/percpu-rwsem.h>
26 #include <linux/task_work.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/khugepaged.h>
30 #include <linux/uprobes.h>
32 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
35 static struct rb_root uprobes_tree
= RB_ROOT
;
37 * allows us to skip the uprobe_mmap if there are no uprobe events active
38 * at this time. Probably a fine grained per inode count is better?
40 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
42 static DEFINE_RWLOCK(uprobes_treelock
); /* serialize rbtree access */
43 static seqcount_rwlock_t uprobes_seqcount
= SEQCNT_RWLOCK_ZERO(uprobes_seqcount
, &uprobes_treelock
);
45 DEFINE_STATIC_SRCU(uprobes_srcu
);
47 #define UPROBES_HASH_SZ 13
48 /* serialize uprobe->pending_list */
49 static struct mutex uprobes_mmap_mutex
[UPROBES_HASH_SZ
];
50 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
52 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem
);
54 /* Have a copy of original instruction */
55 #define UPROBE_COPY_INSN 0
58 struct rb_node rb_node
; /* node in the rb tree */
60 struct rw_semaphore register_rwsem
;
61 struct rw_semaphore consumer_rwsem
;
62 struct list_head pending_list
;
63 struct list_head consumers
;
64 struct inode
*inode
; /* Also hold a ref to inode */
67 loff_t ref_ctr_offset
;
71 * The generic code assumes that it has two members of unknown type
72 * owned by the arch-specific code:
74 * insn - copy_insn() saves the original instruction here for
75 * arch_uprobe_analyze_insn().
77 * ixol - potentially modified instruction to execute out of
78 * line, copied to xol_area by xol_get_insn_slot().
80 struct arch_uprobe arch
;
83 struct delayed_uprobe
{
84 struct list_head list
;
85 struct uprobe
*uprobe
;
89 static DEFINE_MUTEX(delayed_uprobe_lock
);
90 static LIST_HEAD(delayed_uprobe_list
);
93 * Execute out of line area: anonymous executable mapping installed
94 * by the probed task to execute the copy of the original instruction
95 * mangled by set_swbp().
97 * On a breakpoint hit, thread contests for a slot. It frees the
98 * slot after singlestep. Currently a fixed number of slots are
102 wait_queue_head_t wq
; /* if all slots are busy */
103 atomic_t slot_count
; /* number of in-use slots */
104 unsigned long *bitmap
; /* 0 = free slot */
108 * We keep the vma's vm_start rather than a pointer to the vma
109 * itself. The probed process or a naughty kernel module could make
110 * the vma go away, and we must handle that reasonably gracefully.
112 unsigned long vaddr
; /* Page(s) of instruction slots */
115 static void uprobe_warn(struct task_struct
*t
, const char *msg
)
117 pr_warn("uprobe: %s:%d failed to %s\n", current
->comm
, current
->pid
, msg
);
121 * valid_vma: Verify if the specified vma is an executable vma
122 * Relax restrictions while unregistering: vm_flags might have
123 * changed after breakpoint was inserted.
124 * - is_register: indicates if we are in register context.
125 * - Return 1 if the specified virtual address is in an
128 static bool valid_vma(struct vm_area_struct
*vma
, bool is_register
)
130 vm_flags_t flags
= VM_HUGETLB
| VM_MAYEXEC
| VM_MAYSHARE
;
135 return vma
->vm_file
&& (vma
->vm_flags
& flags
) == VM_MAYEXEC
;
138 static unsigned long offset_to_vaddr(struct vm_area_struct
*vma
, loff_t offset
)
140 return vma
->vm_start
+ offset
- ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
143 static loff_t
vaddr_to_offset(struct vm_area_struct
*vma
, unsigned long vaddr
)
145 return ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
) + (vaddr
- vma
->vm_start
);
149 * __replace_page - replace page in vma by new page.
150 * based on replace_page in mm/ksm.c
152 * @vma: vma that holds the pte pointing to page
153 * @addr: address the old @page is mapped at
154 * @old_page: the page we are replacing by new_page
155 * @new_page: the modified page we replace page by
157 * If @new_page is NULL, only unmap @old_page.
159 * Returns 0 on success, negative error code otherwise.
161 static int __replace_page(struct vm_area_struct
*vma
, unsigned long addr
,
162 struct page
*old_page
, struct page
*new_page
)
164 struct folio
*old_folio
= page_folio(old_page
);
165 struct folio
*new_folio
;
166 struct mm_struct
*mm
= vma
->vm_mm
;
167 DEFINE_FOLIO_VMA_WALK(pvmw
, old_folio
, vma
, addr
, 0);
169 struct mmu_notifier_range range
;
171 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, mm
, addr
,
175 new_folio
= page_folio(new_page
);
176 err
= mem_cgroup_charge(new_folio
, vma
->vm_mm
, GFP_KERNEL
);
181 /* For folio_free_swap() below */
182 folio_lock(old_folio
);
184 mmu_notifier_invalidate_range_start(&range
);
186 if (!page_vma_mapped_walk(&pvmw
))
188 VM_BUG_ON_PAGE(addr
!= pvmw
.address
, old_page
);
191 folio_get(new_folio
);
192 folio_add_new_anon_rmap(new_folio
, vma
, addr
, RMAP_EXCLUSIVE
);
193 folio_add_lru_vma(new_folio
, vma
);
195 /* no new page, just dec_mm_counter for old_page */
196 dec_mm_counter(mm
, MM_ANONPAGES
);
198 if (!folio_test_anon(old_folio
)) {
199 dec_mm_counter(mm
, mm_counter_file(old_folio
));
200 inc_mm_counter(mm
, MM_ANONPAGES
);
203 flush_cache_page(vma
, addr
, pte_pfn(ptep_get(pvmw
.pte
)));
204 ptep_clear_flush(vma
, addr
, pvmw
.pte
);
206 set_pte_at(mm
, addr
, pvmw
.pte
,
207 mk_pte(new_page
, vma
->vm_page_prot
));
209 folio_remove_rmap_pte(old_folio
, old_page
, vma
);
210 if (!folio_mapped(old_folio
))
211 folio_free_swap(old_folio
);
212 page_vma_mapped_walk_done(&pvmw
);
213 folio_put(old_folio
);
217 mmu_notifier_invalidate_range_end(&range
);
218 folio_unlock(old_folio
);
223 * is_swbp_insn - check if instruction is breakpoint instruction.
224 * @insn: instruction to be checked.
225 * Default implementation of is_swbp_insn
226 * Returns true if @insn is a breakpoint instruction.
228 bool __weak
is_swbp_insn(uprobe_opcode_t
*insn
)
230 return *insn
== UPROBE_SWBP_INSN
;
234 * is_trap_insn - check if instruction is breakpoint instruction.
235 * @insn: instruction to be checked.
236 * Default implementation of is_trap_insn
237 * Returns true if @insn is a breakpoint instruction.
239 * This function is needed for the case where an architecture has multiple
240 * trap instructions (like powerpc).
242 bool __weak
is_trap_insn(uprobe_opcode_t
*insn
)
244 return is_swbp_insn(insn
);
247 static void copy_from_page(struct page
*page
, unsigned long vaddr
, void *dst
, int len
)
249 void *kaddr
= kmap_atomic(page
);
250 memcpy(dst
, kaddr
+ (vaddr
& ~PAGE_MASK
), len
);
251 kunmap_atomic(kaddr
);
254 static void copy_to_page(struct page
*page
, unsigned long vaddr
, const void *src
, int len
)
256 void *kaddr
= kmap_atomic(page
);
257 memcpy(kaddr
+ (vaddr
& ~PAGE_MASK
), src
, len
);
258 kunmap_atomic(kaddr
);
261 static int verify_opcode(struct page
*page
, unsigned long vaddr
, uprobe_opcode_t
*new_opcode
)
263 uprobe_opcode_t old_opcode
;
267 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
268 * We do not check if it is any other 'trap variant' which could
269 * be conditional trap instruction such as the one powerpc supports.
271 * The logic is that we do not care if the underlying instruction
272 * is a trap variant; uprobes always wins over any other (gdb)
275 copy_from_page(page
, vaddr
, &old_opcode
, UPROBE_SWBP_INSN_SIZE
);
276 is_swbp
= is_swbp_insn(&old_opcode
);
278 if (is_swbp_insn(new_opcode
)) {
279 if (is_swbp
) /* register: already installed? */
282 if (!is_swbp
) /* unregister: was it changed by us? */
289 static struct delayed_uprobe
*
290 delayed_uprobe_check(struct uprobe
*uprobe
, struct mm_struct
*mm
)
292 struct delayed_uprobe
*du
;
294 list_for_each_entry(du
, &delayed_uprobe_list
, list
)
295 if (du
->uprobe
== uprobe
&& du
->mm
== mm
)
300 static int delayed_uprobe_add(struct uprobe
*uprobe
, struct mm_struct
*mm
)
302 struct delayed_uprobe
*du
;
304 if (delayed_uprobe_check(uprobe
, mm
))
307 du
= kzalloc(sizeof(*du
), GFP_KERNEL
);
313 list_add(&du
->list
, &delayed_uprobe_list
);
317 static void delayed_uprobe_delete(struct delayed_uprobe
*du
)
325 static void delayed_uprobe_remove(struct uprobe
*uprobe
, struct mm_struct
*mm
)
327 struct list_head
*pos
, *q
;
328 struct delayed_uprobe
*du
;
333 list_for_each_safe(pos
, q
, &delayed_uprobe_list
) {
334 du
= list_entry(pos
, struct delayed_uprobe
, list
);
336 if (uprobe
&& du
->uprobe
!= uprobe
)
338 if (mm
&& du
->mm
!= mm
)
341 delayed_uprobe_delete(du
);
345 static bool valid_ref_ctr_vma(struct uprobe
*uprobe
,
346 struct vm_area_struct
*vma
)
348 unsigned long vaddr
= offset_to_vaddr(vma
, uprobe
->ref_ctr_offset
);
350 return uprobe
->ref_ctr_offset
&&
352 file_inode(vma
->vm_file
) == uprobe
->inode
&&
353 (vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) == VM_WRITE
&&
354 vma
->vm_start
<= vaddr
&&
358 static struct vm_area_struct
*
359 find_ref_ctr_vma(struct uprobe
*uprobe
, struct mm_struct
*mm
)
361 VMA_ITERATOR(vmi
, mm
, 0);
362 struct vm_area_struct
*tmp
;
364 for_each_vma(vmi
, tmp
)
365 if (valid_ref_ctr_vma(uprobe
, tmp
))
372 __update_ref_ctr(struct mm_struct
*mm
, unsigned long vaddr
, short d
)
382 ret
= get_user_pages_remote(mm
, vaddr
, 1,
383 FOLL_WRITE
, &page
, NULL
);
384 if (unlikely(ret
<= 0)) {
386 * We are asking for 1 page. If get_user_pages_remote() fails,
387 * it may return 0, in that case we have to return error.
389 return ret
== 0 ? -EBUSY
: ret
;
392 kaddr
= kmap_atomic(page
);
393 ptr
= kaddr
+ (vaddr
& ~PAGE_MASK
);
395 if (unlikely(*ptr
+ d
< 0)) {
396 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
397 "curr val: %d, delta: %d\n", vaddr
, *ptr
, d
);
405 kunmap_atomic(kaddr
);
410 static void update_ref_ctr_warn(struct uprobe
*uprobe
,
411 struct mm_struct
*mm
, short d
)
413 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
414 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
415 d
> 0 ? "increment" : "decrement", uprobe
->inode
->i_ino
,
416 (unsigned long long) uprobe
->offset
,
417 (unsigned long long) uprobe
->ref_ctr_offset
, mm
);
420 static int update_ref_ctr(struct uprobe
*uprobe
, struct mm_struct
*mm
,
423 struct vm_area_struct
*rc_vma
;
424 unsigned long rc_vaddr
;
427 rc_vma
= find_ref_ctr_vma(uprobe
, mm
);
430 rc_vaddr
= offset_to_vaddr(rc_vma
, uprobe
->ref_ctr_offset
);
431 ret
= __update_ref_ctr(mm
, rc_vaddr
, d
);
433 update_ref_ctr_warn(uprobe
, mm
, d
);
439 mutex_lock(&delayed_uprobe_lock
);
441 ret
= delayed_uprobe_add(uprobe
, mm
);
443 delayed_uprobe_remove(uprobe
, mm
);
444 mutex_unlock(&delayed_uprobe_lock
);
451 * Expect the breakpoint instruction to be the smallest size instruction for
452 * the architecture. If an arch has variable length instruction and the
453 * breakpoint instruction is not of the smallest length instruction
454 * supported by that architecture then we need to modify is_trap_at_addr and
455 * uprobe_write_opcode accordingly. This would never be a problem for archs
456 * that have fixed length instructions.
458 * uprobe_write_opcode - write the opcode at a given virtual address.
459 * @auprobe: arch specific probepoint information.
460 * @mm: the probed process address space.
461 * @vaddr: the virtual address to store the opcode.
462 * @opcode: opcode to be written at @vaddr.
464 * Called with mm->mmap_lock held for read or write.
465 * Return 0 (success) or a negative errno.
467 int uprobe_write_opcode(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
,
468 unsigned long vaddr
, uprobe_opcode_t opcode
)
470 struct uprobe
*uprobe
;
471 struct page
*old_page
, *new_page
;
472 struct vm_area_struct
*vma
;
473 int ret
, is_register
, ref_ctr_updated
= 0;
474 bool orig_page_huge
= false;
475 unsigned int gup_flags
= FOLL_FORCE
;
477 is_register
= is_swbp_insn(&opcode
);
478 uprobe
= container_of(auprobe
, struct uprobe
, arch
);
482 gup_flags
|= FOLL_SPLIT_PMD
;
483 /* Read the page with vaddr into memory */
484 old_page
= get_user_page_vma_remote(mm
, vaddr
, gup_flags
, &vma
);
485 if (IS_ERR(old_page
))
486 return PTR_ERR(old_page
);
488 ret
= verify_opcode(old_page
, vaddr
, &opcode
);
492 if (WARN(!is_register
&& PageCompound(old_page
),
493 "uprobe unregister should never work on compound page\n")) {
498 /* We are going to replace instruction, update ref_ctr. */
499 if (!ref_ctr_updated
&& uprobe
->ref_ctr_offset
) {
500 ret
= update_ref_ctr(uprobe
, mm
, is_register
? 1 : -1);
508 if (!is_register
&& !PageAnon(old_page
))
511 ret
= anon_vma_prepare(vma
);
516 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vaddr
);
520 __SetPageUptodate(new_page
);
521 copy_highpage(new_page
, old_page
);
522 copy_to_page(new_page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
525 struct page
*orig_page
;
528 VM_BUG_ON_PAGE(!PageAnon(old_page
), old_page
);
530 index
= vaddr_to_offset(vma
, vaddr
& PAGE_MASK
) >> PAGE_SHIFT
;
531 orig_page
= find_get_page(vma
->vm_file
->f_inode
->i_mapping
,
535 if (PageUptodate(orig_page
) &&
536 pages_identical(new_page
, orig_page
)) {
537 /* let go new_page */
541 if (PageCompound(orig_page
))
542 orig_page_huge
= true;
548 ret
= __replace_page(vma
, vaddr
& PAGE_MASK
, old_page
, new_page
);
554 if (unlikely(ret
== -EAGAIN
))
557 /* Revert back reference counter if instruction update failed. */
558 if (ret
&& is_register
&& ref_ctr_updated
)
559 update_ref_ctr(uprobe
, mm
, -1);
561 /* try collapse pmd for compound page */
562 if (!ret
&& orig_page_huge
)
563 collapse_pte_mapped_thp(mm
, vaddr
, false);
569 * set_swbp - store breakpoint at a given address.
570 * @auprobe: arch specific probepoint information.
571 * @mm: the probed process address space.
572 * @vaddr: the virtual address to insert the opcode.
574 * For mm @mm, store the breakpoint instruction at @vaddr.
575 * Return 0 (success) or a negative errno.
577 int __weak
set_swbp(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
579 return uprobe_write_opcode(auprobe
, mm
, vaddr
, UPROBE_SWBP_INSN
);
583 * set_orig_insn - Restore the original instruction.
584 * @mm: the probed process address space.
585 * @auprobe: arch specific probepoint information.
586 * @vaddr: the virtual address to insert the opcode.
588 * For mm @mm, restore the original opcode (opcode) at @vaddr.
589 * Return 0 (success) or a negative errno.
592 set_orig_insn(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
594 return uprobe_write_opcode(auprobe
, mm
, vaddr
,
595 *(uprobe_opcode_t
*)&auprobe
->insn
);
598 /* uprobe should have guaranteed positive refcount */
599 static struct uprobe
*get_uprobe(struct uprobe
*uprobe
)
601 refcount_inc(&uprobe
->ref
);
606 * uprobe should have guaranteed lifetime, which can be either of:
607 * - caller already has refcount taken (and wants an extra one);
608 * - uprobe is RCU protected and won't be freed until after grace period;
609 * - we are holding uprobes_treelock (for read or write, doesn't matter).
611 static struct uprobe
*try_get_uprobe(struct uprobe
*uprobe
)
613 if (refcount_inc_not_zero(&uprobe
->ref
))
618 static inline bool uprobe_is_active(struct uprobe
*uprobe
)
620 return !RB_EMPTY_NODE(&uprobe
->rb_node
);
623 static void uprobe_free_rcu(struct rcu_head
*rcu
)
625 struct uprobe
*uprobe
= container_of(rcu
, struct uprobe
, rcu
);
630 static void put_uprobe(struct uprobe
*uprobe
)
632 if (!refcount_dec_and_test(&uprobe
->ref
))
635 write_lock(&uprobes_treelock
);
637 if (uprobe_is_active(uprobe
)) {
638 write_seqcount_begin(&uprobes_seqcount
);
639 rb_erase(&uprobe
->rb_node
, &uprobes_tree
);
640 write_seqcount_end(&uprobes_seqcount
);
643 write_unlock(&uprobes_treelock
);
646 * If application munmap(exec_vma) before uprobe_unregister()
647 * gets called, we don't get a chance to remove uprobe from
648 * delayed_uprobe_list from remove_breakpoint(). Do it here.
650 mutex_lock(&delayed_uprobe_lock
);
651 delayed_uprobe_remove(uprobe
, NULL
);
652 mutex_unlock(&delayed_uprobe_lock
);
654 call_srcu(&uprobes_srcu
, &uprobe
->rcu
, uprobe_free_rcu
);
657 static __always_inline
658 int uprobe_cmp(const struct inode
*l_inode
, const loff_t l_offset
,
659 const struct uprobe
*r
)
661 if (l_inode
< r
->inode
)
664 if (l_inode
> r
->inode
)
667 if (l_offset
< r
->offset
)
670 if (l_offset
> r
->offset
)
676 #define __node_2_uprobe(node) \
677 rb_entry((node), struct uprobe, rb_node)
679 struct __uprobe_key
{
684 static inline int __uprobe_cmp_key(const void *key
, const struct rb_node
*b
)
686 const struct __uprobe_key
*a
= key
;
687 return uprobe_cmp(a
->inode
, a
->offset
, __node_2_uprobe(b
));
690 static inline int __uprobe_cmp(struct rb_node
*a
, const struct rb_node
*b
)
692 struct uprobe
*u
= __node_2_uprobe(a
);
693 return uprobe_cmp(u
->inode
, u
->offset
, __node_2_uprobe(b
));
697 * Assumes being inside RCU protected region.
698 * No refcount is taken on returned uprobe.
700 static struct uprobe
*find_uprobe_rcu(struct inode
*inode
, loff_t offset
)
702 struct __uprobe_key key
= {
706 struct rb_node
*node
;
709 lockdep_assert(srcu_read_lock_held(&uprobes_srcu
));
712 seq
= read_seqcount_begin(&uprobes_seqcount
);
713 node
= rb_find_rcu(&key
, &uprobes_tree
, __uprobe_cmp_key
);
715 * Lockless RB-tree lookups can result only in false negatives.
716 * If the element is found, it is correct and can be returned
717 * under RCU protection. If we find nothing, we need to
718 * validate that seqcount didn't change. If it did, we have to
719 * try again as we might have missed the element (false
720 * negative). If seqcount is unchanged, search truly failed.
723 return __node_2_uprobe(node
);
724 } while (read_seqcount_retry(&uprobes_seqcount
, seq
));
730 * Attempt to insert a new uprobe into uprobes_tree.
732 * If uprobe already exists (for given inode+offset), we just increment
733 * refcount of previously existing uprobe.
735 * If not, a provided new instance of uprobe is inserted into the tree (with
736 * assumed initial refcount == 1).
738 * In any case, we return a uprobe instance that ends up being in uprobes_tree.
739 * Caller has to clean up new uprobe instance, if it ended up not being
740 * inserted into the tree.
742 * We assume that uprobes_treelock is held for writing.
744 static struct uprobe
*__insert_uprobe(struct uprobe
*uprobe
)
746 struct rb_node
*node
;
748 node
= rb_find_add_rcu(&uprobe
->rb_node
, &uprobes_tree
, __uprobe_cmp
);
750 struct uprobe
*u
= __node_2_uprobe(node
);
752 if (!try_get_uprobe(u
)) {
753 rb_erase(node
, &uprobes_tree
);
754 RB_CLEAR_NODE(&u
->rb_node
);
765 * Acquire uprobes_treelock and insert uprobe into uprobes_tree
766 * (or reuse existing one, see __insert_uprobe() comments above).
768 static struct uprobe
*insert_uprobe(struct uprobe
*uprobe
)
772 write_lock(&uprobes_treelock
);
773 write_seqcount_begin(&uprobes_seqcount
);
774 u
= __insert_uprobe(uprobe
);
775 write_seqcount_end(&uprobes_seqcount
);
776 write_unlock(&uprobes_treelock
);
782 ref_ctr_mismatch_warn(struct uprobe
*cur_uprobe
, struct uprobe
*uprobe
)
784 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
785 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
786 uprobe
->inode
->i_ino
, (unsigned long long) uprobe
->offset
,
787 (unsigned long long) cur_uprobe
->ref_ctr_offset
,
788 (unsigned long long) uprobe
->ref_ctr_offset
);
791 static struct uprobe
*alloc_uprobe(struct inode
*inode
, loff_t offset
,
792 loff_t ref_ctr_offset
)
794 struct uprobe
*uprobe
, *cur_uprobe
;
796 uprobe
= kzalloc(sizeof(struct uprobe
), GFP_KERNEL
);
798 return ERR_PTR(-ENOMEM
);
800 uprobe
->inode
= inode
;
801 uprobe
->offset
= offset
;
802 uprobe
->ref_ctr_offset
= ref_ctr_offset
;
803 INIT_LIST_HEAD(&uprobe
->consumers
);
804 init_rwsem(&uprobe
->register_rwsem
);
805 init_rwsem(&uprobe
->consumer_rwsem
);
806 RB_CLEAR_NODE(&uprobe
->rb_node
);
807 refcount_set(&uprobe
->ref
, 1);
809 /* add to uprobes_tree, sorted on inode:offset */
810 cur_uprobe
= insert_uprobe(uprobe
);
811 /* a uprobe exists for this inode:offset combination */
812 if (cur_uprobe
!= uprobe
) {
813 if (cur_uprobe
->ref_ctr_offset
!= uprobe
->ref_ctr_offset
) {
814 ref_ctr_mismatch_warn(cur_uprobe
, uprobe
);
815 put_uprobe(cur_uprobe
);
817 return ERR_PTR(-EINVAL
);
826 static void consumer_add(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
828 down_write(&uprobe
->consumer_rwsem
);
829 list_add_rcu(&uc
->cons_node
, &uprobe
->consumers
);
830 up_write(&uprobe
->consumer_rwsem
);
834 * For uprobe @uprobe, delete the consumer @uc.
835 * Should never be called with consumer that's not part of @uprobe->consumers.
837 static void consumer_del(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
839 down_write(&uprobe
->consumer_rwsem
);
840 list_del_rcu(&uc
->cons_node
);
841 up_write(&uprobe
->consumer_rwsem
);
844 static int __copy_insn(struct address_space
*mapping
, struct file
*filp
,
845 void *insn
, int nbytes
, loff_t offset
)
849 * Ensure that the page that has the original instruction is populated
850 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
851 * see uprobe_register().
853 if (mapping
->a_ops
->read_folio
)
854 page
= read_mapping_page(mapping
, offset
>> PAGE_SHIFT
, filp
);
856 page
= shmem_read_mapping_page(mapping
, offset
>> PAGE_SHIFT
);
858 return PTR_ERR(page
);
860 copy_from_page(page
, offset
, insn
, nbytes
);
866 static int copy_insn(struct uprobe
*uprobe
, struct file
*filp
)
868 struct address_space
*mapping
= uprobe
->inode
->i_mapping
;
869 loff_t offs
= uprobe
->offset
;
870 void *insn
= &uprobe
->arch
.insn
;
871 int size
= sizeof(uprobe
->arch
.insn
);
874 /* Copy only available bytes, -EIO if nothing was read */
876 if (offs
>= i_size_read(uprobe
->inode
))
879 len
= min_t(int, size
, PAGE_SIZE
- (offs
& ~PAGE_MASK
));
880 err
= __copy_insn(mapping
, filp
, insn
, len
, offs
);
892 static int prepare_uprobe(struct uprobe
*uprobe
, struct file
*file
,
893 struct mm_struct
*mm
, unsigned long vaddr
)
897 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
900 /* TODO: move this into _register, until then we abuse this sem. */
901 down_write(&uprobe
->consumer_rwsem
);
902 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
905 ret
= copy_insn(uprobe
, file
);
910 if (is_trap_insn((uprobe_opcode_t
*)&uprobe
->arch
.insn
))
913 ret
= arch_uprobe_analyze_insn(&uprobe
->arch
, mm
, vaddr
);
917 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
918 set_bit(UPROBE_COPY_INSN
, &uprobe
->flags
);
921 up_write(&uprobe
->consumer_rwsem
);
926 static inline bool consumer_filter(struct uprobe_consumer
*uc
, struct mm_struct
*mm
)
928 return !uc
->filter
|| uc
->filter(uc
, mm
);
931 static bool filter_chain(struct uprobe
*uprobe
, struct mm_struct
*mm
)
933 struct uprobe_consumer
*uc
;
936 down_read(&uprobe
->consumer_rwsem
);
937 list_for_each_entry_srcu(uc
, &uprobe
->consumers
, cons_node
,
938 srcu_read_lock_held(&uprobes_srcu
)) {
939 ret
= consumer_filter(uc
, mm
);
943 up_read(&uprobe
->consumer_rwsem
);
949 install_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
,
950 struct vm_area_struct
*vma
, unsigned long vaddr
)
955 ret
= prepare_uprobe(uprobe
, vma
->vm_file
, mm
, vaddr
);
960 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
961 * the task can hit this breakpoint right after __replace_page().
963 first_uprobe
= !test_bit(MMF_HAS_UPROBES
, &mm
->flags
);
965 set_bit(MMF_HAS_UPROBES
, &mm
->flags
);
967 ret
= set_swbp(&uprobe
->arch
, mm
, vaddr
);
969 clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
970 else if (first_uprobe
)
971 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
977 remove_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
979 set_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
980 return set_orig_insn(&uprobe
->arch
, mm
, vaddr
);
984 struct map_info
*next
;
985 struct mm_struct
*mm
;
989 static inline struct map_info
*free_map_info(struct map_info
*info
)
991 struct map_info
*next
= info
->next
;
996 static struct map_info
*
997 build_map_info(struct address_space
*mapping
, loff_t offset
, bool is_register
)
999 unsigned long pgoff
= offset
>> PAGE_SHIFT
;
1000 struct vm_area_struct
*vma
;
1001 struct map_info
*curr
= NULL
;
1002 struct map_info
*prev
= NULL
;
1003 struct map_info
*info
;
1007 i_mmap_lock_read(mapping
);
1008 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1009 if (!valid_vma(vma
, is_register
))
1012 if (!prev
&& !more
) {
1014 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1015 * reclaim. This is optimistic, no harm done if it fails.
1017 prev
= kmalloc(sizeof(struct map_info
),
1018 GFP_NOWAIT
| __GFP_NOMEMALLOC
| __GFP_NOWARN
);
1027 if (!mmget_not_zero(vma
->vm_mm
))
1035 info
->mm
= vma
->vm_mm
;
1036 info
->vaddr
= offset_to_vaddr(vma
, offset
);
1038 i_mmap_unlock_read(mapping
);
1050 info
= kmalloc(sizeof(struct map_info
), GFP_KERNEL
);
1052 curr
= ERR_PTR(-ENOMEM
);
1062 prev
= free_map_info(prev
);
1067 register_for_each_vma(struct uprobe
*uprobe
, struct uprobe_consumer
*new)
1069 bool is_register
= !!new;
1070 struct map_info
*info
;
1073 percpu_down_write(&dup_mmap_sem
);
1074 info
= build_map_info(uprobe
->inode
->i_mapping
,
1075 uprobe
->offset
, is_register
);
1077 err
= PTR_ERR(info
);
1082 struct mm_struct
*mm
= info
->mm
;
1083 struct vm_area_struct
*vma
;
1085 if (err
&& is_register
)
1088 * We take mmap_lock for writing to avoid the race with
1089 * find_active_uprobe_rcu() which takes mmap_lock for reading.
1090 * Thus this install_breakpoint() can not make
1091 * is_trap_at_addr() true right after find_uprobe_rcu()
1092 * returns NULL in find_active_uprobe_rcu().
1094 mmap_write_lock(mm
);
1095 vma
= find_vma(mm
, info
->vaddr
);
1096 if (!vma
|| !valid_vma(vma
, is_register
) ||
1097 file_inode(vma
->vm_file
) != uprobe
->inode
)
1100 if (vma
->vm_start
> info
->vaddr
||
1101 vaddr_to_offset(vma
, info
->vaddr
) != uprobe
->offset
)
1105 /* consult only the "caller", new consumer. */
1106 if (consumer_filter(new, mm
))
1107 err
= install_breakpoint(uprobe
, mm
, vma
, info
->vaddr
);
1108 } else if (test_bit(MMF_HAS_UPROBES
, &mm
->flags
)) {
1109 if (!filter_chain(uprobe
, mm
))
1110 err
|= remove_breakpoint(uprobe
, mm
, info
->vaddr
);
1114 mmap_write_unlock(mm
);
1117 info
= free_map_info(info
);
1120 percpu_up_write(&dup_mmap_sem
);
1125 * uprobe_unregister_nosync - unregister an already registered probe.
1126 * @uprobe: uprobe to remove
1127 * @uc: identify which probe if multiple probes are colocated.
1129 void uprobe_unregister_nosync(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
1133 down_write(&uprobe
->register_rwsem
);
1134 consumer_del(uprobe
, uc
);
1135 err
= register_for_each_vma(uprobe
, NULL
);
1136 up_write(&uprobe
->register_rwsem
);
1138 /* TODO : cant unregister? schedule a worker thread */
1139 if (unlikely(err
)) {
1140 uprobe_warn(current
, "unregister, leaking uprobe");
1146 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync
);
1148 void uprobe_unregister_sync(void)
1151 * Now that handler_chain() and handle_uretprobe_chain() iterate over
1152 * uprobe->consumers list under RCU protection without holding
1153 * uprobe->register_rwsem, we need to wait for RCU grace period to
1154 * make sure that we can't call into just unregistered
1155 * uprobe_consumer's callbacks anymore. If we don't do that, fast and
1156 * unlucky enough caller can free consumer's memory and cause
1157 * handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1159 synchronize_srcu(&uprobes_srcu
);
1161 EXPORT_SYMBOL_GPL(uprobe_unregister_sync
);
1164 * uprobe_register - register a probe
1165 * @inode: the file in which the probe has to be placed.
1166 * @offset: offset from the start of the file.
1167 * @ref_ctr_offset: offset of SDT marker / reference counter
1168 * @uc: information on howto handle the probe..
1170 * Apart from the access refcount, uprobe_register() takes a creation
1171 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1172 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1173 * tuple). Creation refcount stops uprobe_unregister from freeing the
1174 * @uprobe even before the register operation is complete. Creation
1175 * refcount is released when the last @uc for the @uprobe
1176 * unregisters. Caller of uprobe_register() is required to keep @inode
1177 * (and the containing mount) referenced.
1179 * Return: pointer to the new uprobe on success or an ERR_PTR on failure.
1181 struct uprobe
*uprobe_register(struct inode
*inode
,
1182 loff_t offset
, loff_t ref_ctr_offset
,
1183 struct uprobe_consumer
*uc
)
1185 struct uprobe
*uprobe
;
1188 /* Uprobe must have at least one set consumer */
1189 if (!uc
->handler
&& !uc
->ret_handler
)
1190 return ERR_PTR(-EINVAL
);
1192 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1193 if (!inode
->i_mapping
->a_ops
->read_folio
&&
1194 !shmem_mapping(inode
->i_mapping
))
1195 return ERR_PTR(-EIO
);
1196 /* Racy, just to catch the obvious mistakes */
1197 if (offset
> i_size_read(inode
))
1198 return ERR_PTR(-EINVAL
);
1201 * This ensures that copy_from_page(), copy_to_page() and
1202 * __update_ref_ctr() can't cross page boundary.
1204 if (!IS_ALIGNED(offset
, UPROBE_SWBP_INSN_SIZE
))
1205 return ERR_PTR(-EINVAL
);
1206 if (!IS_ALIGNED(ref_ctr_offset
, sizeof(short)))
1207 return ERR_PTR(-EINVAL
);
1209 uprobe
= alloc_uprobe(inode
, offset
, ref_ctr_offset
);
1213 down_write(&uprobe
->register_rwsem
);
1214 consumer_add(uprobe
, uc
);
1215 ret
= register_for_each_vma(uprobe
, uc
);
1216 up_write(&uprobe
->register_rwsem
);
1219 uprobe_unregister_nosync(uprobe
, uc
);
1221 * Registration might have partially succeeded, so we can have
1222 * this consumer being called right at this time. We need to
1223 * sync here. It's ok, it's unlikely slow path.
1225 uprobe_unregister_sync();
1226 return ERR_PTR(ret
);
1231 EXPORT_SYMBOL_GPL(uprobe_register
);
1234 * uprobe_apply - add or remove the breakpoints according to @uc->filter
1235 * @uprobe: uprobe which "owns" the breakpoint
1236 * @uc: consumer which wants to add more or remove some breakpoints
1237 * @add: add or remove the breakpoints
1238 * Return: 0 on success or negative error code.
1240 int uprobe_apply(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
, bool add
)
1242 struct uprobe_consumer
*con
;
1243 int ret
= -ENOENT
, srcu_idx
;
1245 down_write(&uprobe
->register_rwsem
);
1247 srcu_idx
= srcu_read_lock(&uprobes_srcu
);
1248 list_for_each_entry_srcu(con
, &uprobe
->consumers
, cons_node
,
1249 srcu_read_lock_held(&uprobes_srcu
)) {
1251 ret
= register_for_each_vma(uprobe
, add
? uc
: NULL
);
1255 srcu_read_unlock(&uprobes_srcu
, srcu_idx
);
1257 up_write(&uprobe
->register_rwsem
);
1262 static int unapply_uprobe(struct uprobe
*uprobe
, struct mm_struct
*mm
)
1264 VMA_ITERATOR(vmi
, mm
, 0);
1265 struct vm_area_struct
*vma
;
1269 for_each_vma(vmi
, vma
) {
1270 unsigned long vaddr
;
1273 if (!valid_vma(vma
, false) ||
1274 file_inode(vma
->vm_file
) != uprobe
->inode
)
1277 offset
= (loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
;
1278 if (uprobe
->offset
< offset
||
1279 uprobe
->offset
>= offset
+ vma
->vm_end
- vma
->vm_start
)
1282 vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
1283 err
|= remove_breakpoint(uprobe
, mm
, vaddr
);
1285 mmap_read_unlock(mm
);
1290 static struct rb_node
*
1291 find_node_in_range(struct inode
*inode
, loff_t min
, loff_t max
)
1293 struct rb_node
*n
= uprobes_tree
.rb_node
;
1296 struct uprobe
*u
= rb_entry(n
, struct uprobe
, rb_node
);
1298 if (inode
< u
->inode
) {
1300 } else if (inode
> u
->inode
) {
1303 if (max
< u
->offset
)
1305 else if (min
> u
->offset
)
1316 * For a given range in vma, build a list of probes that need to be inserted.
1318 static void build_probe_list(struct inode
*inode
,
1319 struct vm_area_struct
*vma
,
1320 unsigned long start
, unsigned long end
,
1321 struct list_head
*head
)
1324 struct rb_node
*n
, *t
;
1327 INIT_LIST_HEAD(head
);
1328 min
= vaddr_to_offset(vma
, start
);
1329 max
= min
+ (end
- start
) - 1;
1331 read_lock(&uprobes_treelock
);
1332 n
= find_node_in_range(inode
, min
, max
);
1334 for (t
= n
; t
; t
= rb_prev(t
)) {
1335 u
= rb_entry(t
, struct uprobe
, rb_node
);
1336 if (u
->inode
!= inode
|| u
->offset
< min
)
1338 /* if uprobe went away, it's safe to ignore it */
1339 if (try_get_uprobe(u
))
1340 list_add(&u
->pending_list
, head
);
1342 for (t
= n
; (t
= rb_next(t
)); ) {
1343 u
= rb_entry(t
, struct uprobe
, rb_node
);
1344 if (u
->inode
!= inode
|| u
->offset
> max
)
1346 /* if uprobe went away, it's safe to ignore it */
1347 if (try_get_uprobe(u
))
1348 list_add(&u
->pending_list
, head
);
1351 read_unlock(&uprobes_treelock
);
1354 /* @vma contains reference counter, not the probed instruction. */
1355 static int delayed_ref_ctr_inc(struct vm_area_struct
*vma
)
1357 struct list_head
*pos
, *q
;
1358 struct delayed_uprobe
*du
;
1359 unsigned long vaddr
;
1360 int ret
= 0, err
= 0;
1362 mutex_lock(&delayed_uprobe_lock
);
1363 list_for_each_safe(pos
, q
, &delayed_uprobe_list
) {
1364 du
= list_entry(pos
, struct delayed_uprobe
, list
);
1366 if (du
->mm
!= vma
->vm_mm
||
1367 !valid_ref_ctr_vma(du
->uprobe
, vma
))
1370 vaddr
= offset_to_vaddr(vma
, du
->uprobe
->ref_ctr_offset
);
1371 ret
= __update_ref_ctr(vma
->vm_mm
, vaddr
, 1);
1373 update_ref_ctr_warn(du
->uprobe
, vma
->vm_mm
, 1);
1377 delayed_uprobe_delete(du
);
1379 mutex_unlock(&delayed_uprobe_lock
);
1384 * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1386 * Currently we ignore all errors and always return 0, the callers
1387 * can't handle the failure anyway.
1389 int uprobe_mmap(struct vm_area_struct
*vma
)
1391 struct list_head tmp_list
;
1392 struct uprobe
*uprobe
, *u
;
1393 struct inode
*inode
;
1395 if (no_uprobe_events())
1399 (vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) == VM_WRITE
&&
1400 test_bit(MMF_HAS_UPROBES
, &vma
->vm_mm
->flags
))
1401 delayed_ref_ctr_inc(vma
);
1403 if (!valid_vma(vma
, true))
1406 inode
= file_inode(vma
->vm_file
);
1410 mutex_lock(uprobes_mmap_hash(inode
));
1411 build_probe_list(inode
, vma
, vma
->vm_start
, vma
->vm_end
, &tmp_list
);
1413 * We can race with uprobe_unregister(), this uprobe can be already
1414 * removed. But in this case filter_chain() must return false, all
1415 * consumers have gone away.
1417 list_for_each_entry_safe(uprobe
, u
, &tmp_list
, pending_list
) {
1418 if (!fatal_signal_pending(current
) &&
1419 filter_chain(uprobe
, vma
->vm_mm
)) {
1420 unsigned long vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
1421 install_breakpoint(uprobe
, vma
->vm_mm
, vma
, vaddr
);
1425 mutex_unlock(uprobes_mmap_hash(inode
));
1431 vma_has_uprobes(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1434 struct inode
*inode
;
1437 inode
= file_inode(vma
->vm_file
);
1439 min
= vaddr_to_offset(vma
, start
);
1440 max
= min
+ (end
- start
) - 1;
1442 read_lock(&uprobes_treelock
);
1443 n
= find_node_in_range(inode
, min
, max
);
1444 read_unlock(&uprobes_treelock
);
1450 * Called in context of a munmap of a vma.
1452 void uprobe_munmap(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1454 if (no_uprobe_events() || !valid_vma(vma
, false))
1457 if (!atomic_read(&vma
->vm_mm
->mm_users
)) /* called by mmput() ? */
1460 if (!test_bit(MMF_HAS_UPROBES
, &vma
->vm_mm
->flags
) ||
1461 test_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
))
1464 if (vma_has_uprobes(vma
, start
, end
))
1465 set_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
);
1468 static vm_fault_t
xol_fault(const struct vm_special_mapping
*sm
,
1469 struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1471 struct xol_area
*area
= vma
->vm_mm
->uprobes_state
.xol_area
;
1473 vmf
->page
= area
->page
;
1474 get_page(vmf
->page
);
1478 static const struct vm_special_mapping xol_mapping
= {
1479 .name
= "[uprobes]",
1483 /* Slot allocation for XOL */
1484 static int xol_add_vma(struct mm_struct
*mm
, struct xol_area
*area
)
1486 struct vm_area_struct
*vma
;
1489 if (mmap_write_lock_killable(mm
))
1492 if (mm
->uprobes_state
.xol_area
) {
1498 /* Try to map as high as possible, this is only a hint. */
1499 area
->vaddr
= get_unmapped_area(NULL
, TASK_SIZE
- PAGE_SIZE
,
1501 if (IS_ERR_VALUE(area
->vaddr
)) {
1507 vma
= _install_special_mapping(mm
, area
->vaddr
, PAGE_SIZE
,
1508 VM_EXEC
|VM_MAYEXEC
|VM_DONTCOPY
|VM_IO
,
1516 /* pairs with get_xol_area() */
1517 smp_store_release(&mm
->uprobes_state
.xol_area
, area
); /* ^^^ */
1519 mmap_write_unlock(mm
);
1524 void * __weak
arch_uprobe_trampoline(unsigned long *psize
)
1526 static uprobe_opcode_t insn
= UPROBE_SWBP_INSN
;
1528 *psize
= UPROBE_SWBP_INSN_SIZE
;
1532 static struct xol_area
*__create_xol_area(unsigned long vaddr
)
1534 struct mm_struct
*mm
= current
->mm
;
1535 unsigned long insns_size
;
1536 struct xol_area
*area
;
1539 area
= kzalloc(sizeof(*area
), GFP_KERNEL
);
1540 if (unlikely(!area
))
1543 area
->bitmap
= kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE
), sizeof(long),
1548 area
->page
= alloc_page(GFP_HIGHUSER
);
1552 area
->vaddr
= vaddr
;
1553 init_waitqueue_head(&area
->wq
);
1554 /* Reserve the 1st slot for get_trampoline_vaddr() */
1555 set_bit(0, area
->bitmap
);
1556 atomic_set(&area
->slot_count
, 1);
1557 insns
= arch_uprobe_trampoline(&insns_size
);
1558 arch_uprobe_copy_ixol(area
->page
, 0, insns
, insns_size
);
1560 if (!xol_add_vma(mm
, area
))
1563 __free_page(area
->page
);
1565 kfree(area
->bitmap
);
1573 * get_xol_area - Allocate process's xol_area if necessary.
1574 * This area will be used for storing instructions for execution out of line.
1576 * Returns the allocated area or NULL.
1578 static struct xol_area
*get_xol_area(void)
1580 struct mm_struct
*mm
= current
->mm
;
1581 struct xol_area
*area
;
1583 if (!mm
->uprobes_state
.xol_area
)
1584 __create_xol_area(0);
1586 /* Pairs with xol_add_vma() smp_store_release() */
1587 area
= READ_ONCE(mm
->uprobes_state
.xol_area
); /* ^^^ */
1592 * uprobe_clear_state - Free the area allocated for slots.
1594 void uprobe_clear_state(struct mm_struct
*mm
)
1596 struct xol_area
*area
= mm
->uprobes_state
.xol_area
;
1598 mutex_lock(&delayed_uprobe_lock
);
1599 delayed_uprobe_remove(NULL
, mm
);
1600 mutex_unlock(&delayed_uprobe_lock
);
1605 put_page(area
->page
);
1606 kfree(area
->bitmap
);
1610 void uprobe_start_dup_mmap(void)
1612 percpu_down_read(&dup_mmap_sem
);
1615 void uprobe_end_dup_mmap(void)
1617 percpu_up_read(&dup_mmap_sem
);
1620 void uprobe_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*newmm
)
1622 if (test_bit(MMF_HAS_UPROBES
, &oldmm
->flags
)) {
1623 set_bit(MMF_HAS_UPROBES
, &newmm
->flags
);
1624 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1625 set_bit(MMF_RECALC_UPROBES
, &newmm
->flags
);
1630 * - search for a free slot.
1632 static unsigned long xol_take_insn_slot(struct xol_area
*area
)
1634 unsigned long slot_addr
;
1638 slot_nr
= find_first_zero_bit(area
->bitmap
, UINSNS_PER_PAGE
);
1639 if (slot_nr
< UINSNS_PER_PAGE
) {
1640 if (!test_and_set_bit(slot_nr
, area
->bitmap
))
1643 slot_nr
= UINSNS_PER_PAGE
;
1646 wait_event(area
->wq
, (atomic_read(&area
->slot_count
) < UINSNS_PER_PAGE
));
1647 } while (slot_nr
>= UINSNS_PER_PAGE
);
1649 slot_addr
= area
->vaddr
+ (slot_nr
* UPROBE_XOL_SLOT_BYTES
);
1650 atomic_inc(&area
->slot_count
);
1656 * xol_get_insn_slot - allocate a slot for xol.
1657 * Returns the allocated slot address or 0.
1659 static unsigned long xol_get_insn_slot(struct uprobe
*uprobe
)
1661 struct xol_area
*area
;
1662 unsigned long xol_vaddr
;
1664 area
= get_xol_area();
1668 xol_vaddr
= xol_take_insn_slot(area
);
1669 if (unlikely(!xol_vaddr
))
1672 arch_uprobe_copy_ixol(area
->page
, xol_vaddr
,
1673 &uprobe
->arch
.ixol
, sizeof(uprobe
->arch
.ixol
));
1679 * xol_free_insn_slot - If slot was earlier allocated by
1680 * @xol_get_insn_slot(), make the slot available for
1681 * subsequent requests.
1683 static void xol_free_insn_slot(struct task_struct
*tsk
)
1685 struct xol_area
*area
;
1686 unsigned long vma_end
;
1687 unsigned long slot_addr
;
1689 if (!tsk
->mm
|| !tsk
->mm
->uprobes_state
.xol_area
|| !tsk
->utask
)
1692 slot_addr
= tsk
->utask
->xol_vaddr
;
1693 if (unlikely(!slot_addr
))
1696 area
= tsk
->mm
->uprobes_state
.xol_area
;
1697 vma_end
= area
->vaddr
+ PAGE_SIZE
;
1698 if (area
->vaddr
<= slot_addr
&& slot_addr
< vma_end
) {
1699 unsigned long offset
;
1702 offset
= slot_addr
- area
->vaddr
;
1703 slot_nr
= offset
/ UPROBE_XOL_SLOT_BYTES
;
1704 if (slot_nr
>= UINSNS_PER_PAGE
)
1707 clear_bit(slot_nr
, area
->bitmap
);
1708 atomic_dec(&area
->slot_count
);
1709 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1710 if (waitqueue_active(&area
->wq
))
1713 tsk
->utask
->xol_vaddr
= 0;
1717 void __weak
arch_uprobe_copy_ixol(struct page
*page
, unsigned long vaddr
,
1718 void *src
, unsigned long len
)
1720 /* Initialize the slot */
1721 copy_to_page(page
, vaddr
, src
, len
);
1724 * We probably need flush_icache_user_page() but it needs vma.
1725 * This should work on most of architectures by default. If
1726 * architecture needs to do something different it can define
1727 * its own version of the function.
1729 flush_dcache_page(page
);
1733 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1734 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1736 * Return the address of the breakpoint instruction.
1738 unsigned long __weak
uprobe_get_swbp_addr(struct pt_regs
*regs
)
1740 return instruction_pointer(regs
) - UPROBE_SWBP_INSN_SIZE
;
1743 unsigned long uprobe_get_trap_addr(struct pt_regs
*regs
)
1745 struct uprobe_task
*utask
= current
->utask
;
1747 if (unlikely(utask
&& utask
->active_uprobe
))
1748 return utask
->vaddr
;
1750 return instruction_pointer(regs
);
1753 static struct return_instance
*free_ret_instance(struct return_instance
*ri
)
1755 struct return_instance
*next
= ri
->next
;
1756 put_uprobe(ri
->uprobe
);
1762 * Called with no locks held.
1763 * Called in context of an exiting or an exec-ing thread.
1765 void uprobe_free_utask(struct task_struct
*t
)
1767 struct uprobe_task
*utask
= t
->utask
;
1768 struct return_instance
*ri
;
1773 if (utask
->active_uprobe
)
1774 put_uprobe(utask
->active_uprobe
);
1776 ri
= utask
->return_instances
;
1778 ri
= free_ret_instance(ri
);
1780 xol_free_insn_slot(t
);
1786 * Allocate a uprobe_task object for the task if necessary.
1787 * Called when the thread hits a breakpoint.
1790 * - pointer to new uprobe_task on success
1793 static struct uprobe_task
*get_utask(void)
1795 if (!current
->utask
)
1796 current
->utask
= kzalloc(sizeof(struct uprobe_task
), GFP_KERNEL
);
1797 return current
->utask
;
1800 static int dup_utask(struct task_struct
*t
, struct uprobe_task
*o_utask
)
1802 struct uprobe_task
*n_utask
;
1803 struct return_instance
**p
, *o
, *n
;
1805 n_utask
= kzalloc(sizeof(struct uprobe_task
), GFP_KERNEL
);
1810 p
= &n_utask
->return_instances
;
1811 for (o
= o_utask
->return_instances
; o
; o
= o
->next
) {
1812 n
= kmalloc(sizeof(struct return_instance
), GFP_KERNEL
);
1818 * uprobe's refcnt has to be positive at this point, kept by
1819 * utask->return_instances items; return_instances can't be
1820 * removed right now, as task is blocked due to duping; so
1821 * get_uprobe() is safe to use here.
1823 get_uprobe(n
->uprobe
);
1834 static void dup_xol_work(struct callback_head
*work
)
1836 if (current
->flags
& PF_EXITING
)
1839 if (!__create_xol_area(current
->utask
->dup_xol_addr
) &&
1840 !fatal_signal_pending(current
))
1841 uprobe_warn(current
, "dup xol area");
1845 * Called in context of a new clone/fork from copy_process.
1847 void uprobe_copy_process(struct task_struct
*t
, unsigned long flags
)
1849 struct uprobe_task
*utask
= current
->utask
;
1850 struct mm_struct
*mm
= current
->mm
;
1851 struct xol_area
*area
;
1855 if (!utask
|| !utask
->return_instances
)
1858 if (mm
== t
->mm
&& !(flags
& CLONE_VFORK
))
1861 if (dup_utask(t
, utask
))
1862 return uprobe_warn(t
, "dup ret instances");
1864 /* The task can fork() after dup_xol_work() fails */
1865 area
= mm
->uprobes_state
.xol_area
;
1867 return uprobe_warn(t
, "dup xol area");
1872 t
->utask
->dup_xol_addr
= area
->vaddr
;
1873 init_task_work(&t
->utask
->dup_xol_work
, dup_xol_work
);
1874 task_work_add(t
, &t
->utask
->dup_xol_work
, TWA_RESUME
);
1878 * Current area->vaddr notion assume the trampoline address is always
1879 * equal area->vaddr.
1881 * Returns -1 in case the xol_area is not allocated.
1883 unsigned long uprobe_get_trampoline_vaddr(void)
1885 struct xol_area
*area
;
1886 unsigned long trampoline_vaddr
= -1;
1888 /* Pairs with xol_add_vma() smp_store_release() */
1889 area
= READ_ONCE(current
->mm
->uprobes_state
.xol_area
); /* ^^^ */
1891 trampoline_vaddr
= area
->vaddr
;
1893 return trampoline_vaddr
;
1896 static void cleanup_return_instances(struct uprobe_task
*utask
, bool chained
,
1897 struct pt_regs
*regs
)
1899 struct return_instance
*ri
= utask
->return_instances
;
1900 enum rp_check ctx
= chained
? RP_CHECK_CHAIN_CALL
: RP_CHECK_CALL
;
1902 while (ri
&& !arch_uretprobe_is_alive(ri
, ctx
, regs
)) {
1903 ri
= free_ret_instance(ri
);
1906 utask
->return_instances
= ri
;
1909 static void prepare_uretprobe(struct uprobe
*uprobe
, struct pt_regs
*regs
)
1911 struct return_instance
*ri
;
1912 struct uprobe_task
*utask
;
1913 unsigned long orig_ret_vaddr
, trampoline_vaddr
;
1916 if (!get_xol_area())
1919 utask
= get_utask();
1923 if (utask
->depth
>= MAX_URETPROBE_DEPTH
) {
1924 printk_ratelimited(KERN_INFO
"uprobe: omit uretprobe due to"
1925 " nestedness limit pid/tgid=%d/%d\n",
1926 current
->pid
, current
->tgid
);
1930 /* we need to bump refcount to store uprobe in utask */
1931 if (!try_get_uprobe(uprobe
))
1934 ri
= kmalloc(sizeof(struct return_instance
), GFP_KERNEL
);
1938 trampoline_vaddr
= uprobe_get_trampoline_vaddr();
1939 orig_ret_vaddr
= arch_uretprobe_hijack_return_addr(trampoline_vaddr
, regs
);
1940 if (orig_ret_vaddr
== -1)
1943 /* drop the entries invalidated by longjmp() */
1944 chained
= (orig_ret_vaddr
== trampoline_vaddr
);
1945 cleanup_return_instances(utask
, chained
, regs
);
1948 * We don't want to keep trampoline address in stack, rather keep the
1949 * original return address of first caller thru all the consequent
1950 * instances. This also makes breakpoint unwrapping easier.
1953 if (!utask
->return_instances
) {
1955 * This situation is not possible. Likely we have an
1956 * attack from user-space.
1958 uprobe_warn(current
, "handle tail call");
1961 orig_ret_vaddr
= utask
->return_instances
->orig_ret_vaddr
;
1963 ri
->uprobe
= uprobe
;
1964 ri
->func
= instruction_pointer(regs
);
1965 ri
->stack
= user_stack_pointer(regs
);
1966 ri
->orig_ret_vaddr
= orig_ret_vaddr
;
1967 ri
->chained
= chained
;
1970 ri
->next
= utask
->return_instances
;
1971 utask
->return_instances
= ri
;
1979 /* Prepare to single-step probed instruction out of line. */
1981 pre_ssout(struct uprobe
*uprobe
, struct pt_regs
*regs
, unsigned long bp_vaddr
)
1983 struct uprobe_task
*utask
;
1984 unsigned long xol_vaddr
;
1987 utask
= get_utask();
1991 if (!try_get_uprobe(uprobe
))
1994 xol_vaddr
= xol_get_insn_slot(uprobe
);
2000 utask
->xol_vaddr
= xol_vaddr
;
2001 utask
->vaddr
= bp_vaddr
;
2003 err
= arch_uprobe_pre_xol(&uprobe
->arch
, regs
);
2004 if (unlikely(err
)) {
2005 xol_free_insn_slot(current
);
2009 utask
->active_uprobe
= uprobe
;
2010 utask
->state
= UTASK_SSTEP
;
2018 * If we are singlestepping, then ensure this thread is not connected to
2019 * non-fatal signals until completion of singlestep. When xol insn itself
2020 * triggers the signal, restart the original insn even if the task is
2021 * already SIGKILL'ed (since coredump should report the correct ip). This
2022 * is even more important if the task has a handler for SIGSEGV/etc, The
2023 * _same_ instruction should be repeated again after return from the signal
2024 * handler, and SSTEP can never finish in this case.
2026 bool uprobe_deny_signal(void)
2028 struct task_struct
*t
= current
;
2029 struct uprobe_task
*utask
= t
->utask
;
2031 if (likely(!utask
|| !utask
->active_uprobe
))
2034 WARN_ON_ONCE(utask
->state
!= UTASK_SSTEP
);
2036 if (task_sigpending(t
)) {
2037 spin_lock_irq(&t
->sighand
->siglock
);
2038 clear_tsk_thread_flag(t
, TIF_SIGPENDING
);
2039 spin_unlock_irq(&t
->sighand
->siglock
);
2041 if (__fatal_signal_pending(t
) || arch_uprobe_xol_was_trapped(t
)) {
2042 utask
->state
= UTASK_SSTEP_TRAPPED
;
2043 set_tsk_thread_flag(t
, TIF_UPROBE
);
2050 static void mmf_recalc_uprobes(struct mm_struct
*mm
)
2052 VMA_ITERATOR(vmi
, mm
, 0);
2053 struct vm_area_struct
*vma
;
2055 for_each_vma(vmi
, vma
) {
2056 if (!valid_vma(vma
, false))
2059 * This is not strictly accurate, we can race with
2060 * uprobe_unregister() and see the already removed
2061 * uprobe if delete_uprobe() was not yet called.
2062 * Or this uprobe can be filtered out.
2064 if (vma_has_uprobes(vma
, vma
->vm_start
, vma
->vm_end
))
2068 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
2071 static int is_trap_at_addr(struct mm_struct
*mm
, unsigned long vaddr
)
2074 uprobe_opcode_t opcode
;
2077 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr
, UPROBE_SWBP_INSN_SIZE
)))
2080 pagefault_disable();
2081 result
= __get_user(opcode
, (uprobe_opcode_t __user
*)vaddr
);
2084 if (likely(result
== 0))
2087 result
= get_user_pages(vaddr
, 1, FOLL_FORCE
, &page
);
2091 copy_from_page(page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
2094 /* This needs to return true for any variant of the trap insn */
2095 return is_trap_insn(&opcode
);
2098 /* assumes being inside RCU protected region */
2099 static struct uprobe
*find_active_uprobe_rcu(unsigned long bp_vaddr
, int *is_swbp
)
2101 struct mm_struct
*mm
= current
->mm
;
2102 struct uprobe
*uprobe
= NULL
;
2103 struct vm_area_struct
*vma
;
2106 vma
= vma_lookup(mm
, bp_vaddr
);
2108 if (valid_vma(vma
, false)) {
2109 struct inode
*inode
= file_inode(vma
->vm_file
);
2110 loff_t offset
= vaddr_to_offset(vma
, bp_vaddr
);
2112 uprobe
= find_uprobe_rcu(inode
, offset
);
2116 *is_swbp
= is_trap_at_addr(mm
, bp_vaddr
);
2121 if (!uprobe
&& test_and_clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
))
2122 mmf_recalc_uprobes(mm
);
2123 mmap_read_unlock(mm
);
2128 static void handler_chain(struct uprobe
*uprobe
, struct pt_regs
*regs
)
2130 struct uprobe_consumer
*uc
;
2131 int remove
= UPROBE_HANDLER_REMOVE
;
2132 bool need_prep
= false; /* prepare return uprobe, when needed */
2133 bool has_consumers
= false;
2135 current
->utask
->auprobe
= &uprobe
->arch
;
2137 list_for_each_entry_srcu(uc
, &uprobe
->consumers
, cons_node
,
2138 srcu_read_lock_held(&uprobes_srcu
)) {
2142 rc
= uc
->handler(uc
, regs
);
2143 WARN(rc
& ~UPROBE_HANDLER_MASK
,
2144 "bad rc=0x%x from %ps()\n", rc
, uc
->handler
);
2147 if (uc
->ret_handler
)
2151 has_consumers
= true;
2153 current
->utask
->auprobe
= NULL
;
2155 if (need_prep
&& !remove
)
2156 prepare_uretprobe(uprobe
, regs
); /* put bp at return */
2158 if (remove
&& has_consumers
) {
2159 down_read(&uprobe
->register_rwsem
);
2161 /* re-check that removal is still required, this time under lock */
2162 if (!filter_chain(uprobe
, current
->mm
)) {
2163 WARN_ON(!uprobe_is_active(uprobe
));
2164 unapply_uprobe(uprobe
, current
->mm
);
2167 up_read(&uprobe
->register_rwsem
);
2172 handle_uretprobe_chain(struct return_instance
*ri
, struct pt_regs
*regs
)
2174 struct uprobe
*uprobe
= ri
->uprobe
;
2175 struct uprobe_consumer
*uc
;
2178 srcu_idx
= srcu_read_lock(&uprobes_srcu
);
2179 list_for_each_entry_srcu(uc
, &uprobe
->consumers
, cons_node
,
2180 srcu_read_lock_held(&uprobes_srcu
)) {
2181 if (uc
->ret_handler
)
2182 uc
->ret_handler(uc
, ri
->func
, regs
);
2184 srcu_read_unlock(&uprobes_srcu
, srcu_idx
);
2187 static struct return_instance
*find_next_ret_chain(struct return_instance
*ri
)
2192 chained
= ri
->chained
;
2193 ri
= ri
->next
; /* can't be NULL if chained */
2199 void uprobe_handle_trampoline(struct pt_regs
*regs
)
2201 struct uprobe_task
*utask
;
2202 struct return_instance
*ri
, *next
;
2205 utask
= current
->utask
;
2209 ri
= utask
->return_instances
;
2215 * We should throw out the frames invalidated by longjmp().
2216 * If this chain is valid, then the next one should be alive
2217 * or NULL; the latter case means that nobody but ri->func
2218 * could hit this trampoline on return. TODO: sigaltstack().
2220 next
= find_next_ret_chain(ri
);
2221 valid
= !next
|| arch_uretprobe_is_alive(next
, RP_CHECK_RET
, regs
);
2223 instruction_pointer_set(regs
, ri
->orig_ret_vaddr
);
2225 /* pop current instance from the stack of pending return instances,
2226 * as it's not pending anymore: we just fixed up original
2227 * instruction pointer in regs and are about to call handlers;
2228 * this allows fixup_uretprobe_trampoline_entries() to properly fix up
2229 * captured stack traces from uretprobe handlers, in which pending
2230 * trampoline addresses on the stack are replaced with correct
2231 * original return addresses
2233 utask
->return_instances
= ri
->next
;
2235 handle_uretprobe_chain(ri
, regs
);
2236 ri
= free_ret_instance(ri
);
2238 } while (ri
!= next
);
2241 utask
->return_instances
= ri
;
2245 uprobe_warn(current
, "handle uretprobe, sending SIGILL.");
2250 bool __weak
arch_uprobe_ignore(struct arch_uprobe
*aup
, struct pt_regs
*regs
)
2255 bool __weak
arch_uretprobe_is_alive(struct return_instance
*ret
, enum rp_check ctx
,
2256 struct pt_regs
*regs
)
2262 * Run handler and ask thread to singlestep.
2263 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2265 static void handle_swbp(struct pt_regs
*regs
)
2267 struct uprobe
*uprobe
;
2268 unsigned long bp_vaddr
;
2269 int is_swbp
, srcu_idx
;
2271 bp_vaddr
= uprobe_get_swbp_addr(regs
);
2272 if (bp_vaddr
== uprobe_get_trampoline_vaddr())
2273 return uprobe_handle_trampoline(regs
);
2275 srcu_idx
= srcu_read_lock(&uprobes_srcu
);
2277 uprobe
= find_active_uprobe_rcu(bp_vaddr
, &is_swbp
);
2280 /* No matching uprobe; signal SIGTRAP. */
2284 * Either we raced with uprobe_unregister() or we can't
2285 * access this memory. The latter is only possible if
2286 * another thread plays with our ->mm. In both cases
2287 * we can simply restart. If this vma was unmapped we
2288 * can pretend this insn was not executed yet and get
2289 * the (correct) SIGSEGV after restart.
2291 instruction_pointer_set(regs
, bp_vaddr
);
2296 /* change it in advance for ->handler() and restart */
2297 instruction_pointer_set(regs
, bp_vaddr
);
2300 * TODO: move copy_insn/etc into _register and remove this hack.
2301 * After we hit the bp, _unregister + _register can install the
2302 * new and not-yet-analyzed uprobe at the same address, restart.
2304 if (unlikely(!test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
)))
2308 * Pairs with the smp_wmb() in prepare_uprobe().
2310 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2311 * we must also see the stores to &uprobe->arch performed by the
2312 * prepare_uprobe() call.
2316 /* Tracing handlers use ->utask to communicate with fetch methods */
2320 if (arch_uprobe_ignore(&uprobe
->arch
, regs
))
2323 handler_chain(uprobe
, regs
);
2325 if (arch_uprobe_skip_sstep(&uprobe
->arch
, regs
))
2328 if (pre_ssout(uprobe
, regs
, bp_vaddr
))
2332 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2333 srcu_read_unlock(&uprobes_srcu
, srcu_idx
);
2337 * Perform required fix-ups and disable singlestep.
2338 * Allow pending signals to take effect.
2340 static void handle_singlestep(struct uprobe_task
*utask
, struct pt_regs
*regs
)
2342 struct uprobe
*uprobe
;
2345 uprobe
= utask
->active_uprobe
;
2346 if (utask
->state
== UTASK_SSTEP_ACK
)
2347 err
= arch_uprobe_post_xol(&uprobe
->arch
, regs
);
2348 else if (utask
->state
== UTASK_SSTEP_TRAPPED
)
2349 arch_uprobe_abort_xol(&uprobe
->arch
, regs
);
2354 utask
->active_uprobe
= NULL
;
2355 utask
->state
= UTASK_RUNNING
;
2356 xol_free_insn_slot(current
);
2358 spin_lock_irq(¤t
->sighand
->siglock
);
2359 recalc_sigpending(); /* see uprobe_deny_signal() */
2360 spin_unlock_irq(¤t
->sighand
->siglock
);
2362 if (unlikely(err
)) {
2363 uprobe_warn(current
, "execute the probed insn, sending SIGILL.");
2369 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2370 * allows the thread to return from interrupt. After that handle_swbp()
2371 * sets utask->active_uprobe.
2373 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2374 * and allows the thread to return from interrupt.
2376 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2377 * uprobe_notify_resume().
2379 void uprobe_notify_resume(struct pt_regs
*regs
)
2381 struct uprobe_task
*utask
;
2383 clear_thread_flag(TIF_UPROBE
);
2385 utask
= current
->utask
;
2386 if (utask
&& utask
->active_uprobe
)
2387 handle_singlestep(utask
, regs
);
2393 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2394 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2396 int uprobe_pre_sstep_notifier(struct pt_regs
*regs
)
2401 if (!test_bit(MMF_HAS_UPROBES
, ¤t
->mm
->flags
) &&
2402 (!current
->utask
|| !current
->utask
->return_instances
))
2405 set_thread_flag(TIF_UPROBE
);
2410 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2411 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2413 int uprobe_post_sstep_notifier(struct pt_regs
*regs
)
2415 struct uprobe_task
*utask
= current
->utask
;
2417 if (!current
->mm
|| !utask
|| !utask
->active_uprobe
)
2418 /* task is currently not uprobed */
2421 utask
->state
= UTASK_SSTEP_ACK
;
2422 set_thread_flag(TIF_UPROBE
);
2426 static struct notifier_block uprobe_exception_nb
= {
2427 .notifier_call
= arch_uprobe_exception_notify
,
2428 .priority
= INT_MAX
-1, /* notified after kprobes, kgdb */
2431 void __init
uprobes_init(void)
2435 for (i
= 0; i
< UPROBES_HASH_SZ
; i
++)
2436 mutex_init(&uprobes_mmap_mutex
[i
]);
2438 BUG_ON(register_die_notifier(&uprobe_exception_nb
));