2 #include "sched-pelt.h"
4 int __update_load_avg_blocked_se(u64 now
, struct sched_entity
*se
);
5 int __update_load_avg_se(u64 now
, struct cfs_rq
*cfs_rq
, struct sched_entity
*se
);
6 int __update_load_avg_cfs_rq(u64 now
, struct cfs_rq
*cfs_rq
);
7 int update_rt_rq_load_avg(u64 now
, struct rq
*rq
, int running
);
8 int update_dl_rq_load_avg(u64 now
, struct rq
*rq
, int running
);
9 bool update_other_load_avgs(struct rq
*rq
);
11 #ifdef CONFIG_SCHED_HW_PRESSURE
12 int update_hw_load_avg(u64 now
, struct rq
*rq
, u64 capacity
);
14 static inline u64
hw_load_avg(struct rq
*rq
)
16 return READ_ONCE(rq
->avg_hw
.load_avg
);
20 update_hw_load_avg(u64 now
, struct rq
*rq
, u64 capacity
)
25 static inline u64
hw_load_avg(struct rq
*rq
)
31 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
32 int update_irq_load_avg(struct rq
*rq
, u64 running
);
35 update_irq_load_avg(struct rq
*rq
, u64 running
)
41 #define PELT_MIN_DIVIDER (LOAD_AVG_MAX - 1024)
43 static inline u32
get_pelt_divider(struct sched_avg
*avg
)
45 return PELT_MIN_DIVIDER
+ avg
->period_contrib
;
48 static inline void cfs_se_util_change(struct sched_avg
*avg
)
50 unsigned int enqueued
;
52 if (!sched_feat(UTIL_EST
))
55 /* Avoid store if the flag has been already reset */
56 enqueued
= avg
->util_est
;
57 if (!(enqueued
& UTIL_AVG_UNCHANGED
))
60 /* Reset flag to report util_avg has been updated */
61 enqueued
&= ~UTIL_AVG_UNCHANGED
;
62 WRITE_ONCE(avg
->util_est
, enqueued
);
65 static inline u64
rq_clock_pelt(struct rq
*rq
)
67 lockdep_assert_rq_held(rq
);
68 assert_clock_updated(rq
);
70 return rq
->clock_pelt
- rq
->lost_idle_time
;
73 /* The rq is idle, we can sync to clock_task */
74 static inline void _update_idle_rq_clock_pelt(struct rq
*rq
)
76 rq
->clock_pelt
= rq_clock_task(rq
);
78 u64_u32_store(rq
->clock_idle
, rq_clock(rq
));
79 /* Paired with smp_rmb in migrate_se_pelt_lag() */
81 u64_u32_store(rq
->clock_pelt_idle
, rq_clock_pelt(rq
));
85 * The clock_pelt scales the time to reflect the effective amount of
86 * computation done during the running delta time but then sync back to
87 * clock_task when rq is idle.
90 * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
91 * @ max capacity ------******---------------******---------------
92 * @ half capacity ------************---------************---------
93 * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16
96 static inline void update_rq_clock_pelt(struct rq
*rq
, s64 delta
)
98 if (unlikely(is_idle_task(rq
->curr
))) {
99 _update_idle_rq_clock_pelt(rq
);
104 * When a rq runs at a lower compute capacity, it will need
105 * more time to do the same amount of work than at max
106 * capacity. In order to be invariant, we scale the delta to
107 * reflect how much work has been really done.
108 * Running longer results in stealing idle time that will
109 * disturb the load signal compared to max capacity. This
110 * stolen idle time will be automatically reflected when the
111 * rq will be idle and the clock will be synced with
116 * Scale the elapsed time to reflect the real amount of
119 delta
= cap_scale(delta
, arch_scale_cpu_capacity(cpu_of(rq
)));
120 delta
= cap_scale(delta
, arch_scale_freq_capacity(cpu_of(rq
)));
122 rq
->clock_pelt
+= delta
;
126 * When rq becomes idle, we have to check if it has lost idle time
127 * because it was fully busy. A rq is fully used when the /Sum util_sum
128 * is greater or equal to:
129 * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
130 * For optimization and computing rounding purpose, we don't take into account
131 * the position in the current window (period_contrib) and we use the higher
132 * bound of util_sum to decide.
134 static inline void update_idle_rq_clock_pelt(struct rq
*rq
)
136 u32 divider
= ((LOAD_AVG_MAX
- 1024) << SCHED_CAPACITY_SHIFT
) - LOAD_AVG_MAX
;
137 u32 util_sum
= rq
->cfs
.avg
.util_sum
;
138 util_sum
+= rq
->avg_rt
.util_sum
;
139 util_sum
+= rq
->avg_dl
.util_sum
;
142 * Reflecting stolen time makes sense only if the idle
143 * phase would be present at max capacity. As soon as the
144 * utilization of a rq has reached the maximum value, it is
145 * considered as an always running rq without idle time to
146 * steal. This potential idle time is considered as lost in
147 * this case. We keep track of this lost idle time compare to
150 if (util_sum
>= divider
)
151 rq
->lost_idle_time
+= rq_clock_task(rq
) - rq
->clock_pelt
;
153 _update_idle_rq_clock_pelt(rq
);
156 #ifdef CONFIG_CFS_BANDWIDTH
157 static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq
*cfs_rq
)
161 if (unlikely(cfs_rq
->throttle_count
))
164 throttled
= cfs_rq
->throttled_clock_pelt_time
;
166 u64_u32_store(cfs_rq
->throttled_pelt_idle
, throttled
);
169 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
170 static inline u64
cfs_rq_clock_pelt(struct cfs_rq
*cfs_rq
)
172 if (unlikely(cfs_rq
->throttle_count
))
173 return cfs_rq
->throttled_clock_pelt
- cfs_rq
->throttled_clock_pelt_time
;
175 return rq_clock_pelt(rq_of(cfs_rq
)) - cfs_rq
->throttled_clock_pelt_time
;
178 static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq
*cfs_rq
) { }
179 static inline u64
cfs_rq_clock_pelt(struct cfs_rq
*cfs_rq
)
181 return rq_clock_pelt(rq_of(cfs_rq
));
188 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
194 update_rt_rq_load_avg(u64 now
, struct rq
*rq
, int running
)
200 update_dl_rq_load_avg(u64 now
, struct rq
*rq
, int running
)
206 update_hw_load_avg(u64 now
, struct rq
*rq
, u64 capacity
)
211 static inline u64
hw_load_avg(struct rq
*rq
)
217 update_irq_load_avg(struct rq
*rq
, u64 running
)
222 static inline u64
rq_clock_pelt(struct rq
*rq
)
224 return rq_clock_task(rq
);
228 update_rq_clock_pelt(struct rq
*rq
, s64 delta
) { }
231 update_idle_rq_clock_pelt(struct rq
*rq
) { }
233 static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq
*cfs_rq
) { }