1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Generic associative array implementation.
4 * See Documentation/core-api/assoc_array.rst for information.
6 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
7 * Written by David Howells (dhowells@redhat.com)
10 #include <linux/rcupdate.h>
11 #include <linux/slab.h>
12 #include <linux/err.h>
13 #include <linux/assoc_array_priv.h>
16 * Iterate over an associative array. The caller must hold the RCU read lock
19 static int assoc_array_subtree_iterate(const struct assoc_array_ptr
*root
,
20 const struct assoc_array_ptr
*stop
,
21 int (*iterator
)(const void *leaf
,
25 const struct assoc_array_shortcut
*shortcut
;
26 const struct assoc_array_node
*node
;
27 const struct assoc_array_ptr
*cursor
, *ptr
, *parent
;
28 unsigned long has_meta
;
34 if (assoc_array_ptr_is_shortcut(cursor
)) {
35 /* Descend through a shortcut */
36 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
37 cursor
= READ_ONCE(shortcut
->next_node
); /* Address dependency. */
40 node
= assoc_array_ptr_to_node(cursor
);
43 /* We perform two passes of each node.
45 * The first pass does all the leaves in this node. This means we
46 * don't miss any leaves if the node is split up by insertion whilst
47 * we're iterating over the branches rooted here (we may, however, see
51 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
52 ptr
= READ_ONCE(node
->slots
[slot
]); /* Address dependency. */
53 has_meta
|= (unsigned long)ptr
;
54 if (ptr
&& assoc_array_ptr_is_leaf(ptr
)) {
55 /* We need a barrier between the read of the pointer,
56 * which is supplied by the above READ_ONCE().
58 /* Invoke the callback */
59 ret
= iterator(assoc_array_ptr_to_leaf(ptr
),
66 /* The second pass attends to all the metadata pointers. If we follow
67 * one of these we may find that we don't come back here, but rather go
68 * back to a replacement node with the leaves in a different layout.
70 * We are guaranteed to make progress, however, as the slot number for
71 * a particular portion of the key space cannot change - and we
72 * continue at the back pointer + 1.
74 if (!(has_meta
& ASSOC_ARRAY_PTR_META_TYPE
))
79 node
= assoc_array_ptr_to_node(cursor
);
80 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
81 ptr
= READ_ONCE(node
->slots
[slot
]); /* Address dependency. */
82 if (assoc_array_ptr_is_meta(ptr
)) {
89 /* Move up to the parent (may need to skip back over a shortcut) */
90 parent
= READ_ONCE(node
->back_pointer
); /* Address dependency. */
91 slot
= node
->parent_slot
;
95 if (assoc_array_ptr_is_shortcut(parent
)) {
96 shortcut
= assoc_array_ptr_to_shortcut(parent
);
98 parent
= READ_ONCE(shortcut
->back_pointer
); /* Address dependency. */
99 slot
= shortcut
->parent_slot
;
104 /* Ascend to next slot in parent node */
111 * assoc_array_iterate - Pass all objects in the array to a callback
112 * @array: The array to iterate over.
113 * @iterator: The callback function.
114 * @iterator_data: Private data for the callback function.
116 * Iterate over all the objects in an associative array. Each one will be
117 * presented to the iterator function.
119 * If the array is being modified concurrently with the iteration then it is
120 * possible that some objects in the array will be passed to the iterator
121 * callback more than once - though every object should be passed at least
122 * once. If this is undesirable then the caller must lock against modification
123 * for the duration of this function.
125 * The function will return 0 if no objects were in the array or else it will
126 * return the result of the last iterator function called. Iteration stops
127 * immediately if any call to the iteration function results in a non-zero
130 * The caller should hold the RCU read lock or better if concurrent
131 * modification is possible.
133 int assoc_array_iterate(const struct assoc_array
*array
,
134 int (*iterator
)(const void *object
,
135 void *iterator_data
),
138 struct assoc_array_ptr
*root
= READ_ONCE(array
->root
); /* Address dependency. */
142 return assoc_array_subtree_iterate(root
, NULL
, iterator
, iterator_data
);
145 enum assoc_array_walk_status
{
146 assoc_array_walk_tree_empty
,
147 assoc_array_walk_found_terminal_node
,
148 assoc_array_walk_found_wrong_shortcut
,
151 struct assoc_array_walk_result
{
153 struct assoc_array_node
*node
; /* Node in which leaf might be found */
158 struct assoc_array_shortcut
*shortcut
;
161 unsigned long sc_segments
;
162 unsigned long dissimilarity
;
167 * Navigate through the internal tree looking for the closest node to the key.
169 static enum assoc_array_walk_status
170 assoc_array_walk(const struct assoc_array
*array
,
171 const struct assoc_array_ops
*ops
,
172 const void *index_key
,
173 struct assoc_array_walk_result
*result
)
175 struct assoc_array_shortcut
*shortcut
;
176 struct assoc_array_node
*node
;
177 struct assoc_array_ptr
*cursor
, *ptr
;
178 unsigned long sc_segments
, dissimilarity
;
179 unsigned long segments
;
180 int level
, sc_level
, next_sc_level
;
183 pr_devel("-->%s()\n", __func__
);
185 cursor
= READ_ONCE(array
->root
); /* Address dependency. */
187 return assoc_array_walk_tree_empty
;
191 /* Use segments from the key for the new leaf to navigate through the
192 * internal tree, skipping through nodes and shortcuts that are on
193 * route to the destination. Eventually we'll come to a slot that is
194 * either empty or contains a leaf at which point we've found a node in
195 * which the leaf we're looking for might be found or into which it
196 * should be inserted.
199 segments
= ops
->get_key_chunk(index_key
, level
);
200 pr_devel("segments[%d]: %lx\n", level
, segments
);
202 if (assoc_array_ptr_is_shortcut(cursor
))
203 goto follow_shortcut
;
206 node
= assoc_array_ptr_to_node(cursor
);
207 slot
= segments
>> (level
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
208 slot
&= ASSOC_ARRAY_FAN_MASK
;
209 ptr
= READ_ONCE(node
->slots
[slot
]); /* Address dependency. */
211 pr_devel("consider slot %x [ix=%d type=%lu]\n",
212 slot
, level
, (unsigned long)ptr
& 3);
214 if (!assoc_array_ptr_is_meta(ptr
)) {
215 /* The node doesn't have a node/shortcut pointer in the slot
216 * corresponding to the index key that we have to follow.
218 result
->terminal_node
.node
= node
;
219 result
->terminal_node
.level
= level
;
220 result
->terminal_node
.slot
= slot
;
221 pr_devel("<--%s() = terminal_node\n", __func__
);
222 return assoc_array_walk_found_terminal_node
;
225 if (assoc_array_ptr_is_node(ptr
)) {
226 /* There is a pointer to a node in the slot corresponding to
227 * this index key segment, so we need to follow it.
230 level
+= ASSOC_ARRAY_LEVEL_STEP
;
231 if ((level
& ASSOC_ARRAY_KEY_CHUNK_MASK
) != 0)
236 /* There is a shortcut in the slot corresponding to the index key
237 * segment. We follow the shortcut if its partial index key matches
238 * this leaf's. Otherwise we need to split the shortcut.
242 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
243 pr_devel("shortcut to %d\n", shortcut
->skip_to_level
);
244 sc_level
= level
+ ASSOC_ARRAY_LEVEL_STEP
;
245 BUG_ON(sc_level
> shortcut
->skip_to_level
);
248 /* Check the leaf against the shortcut's index key a word at a
249 * time, trimming the final word (the shortcut stores the index
250 * key completely from the root to the shortcut's target).
252 if ((sc_level
& ASSOC_ARRAY_KEY_CHUNK_MASK
) == 0)
253 segments
= ops
->get_key_chunk(index_key
, sc_level
);
255 sc_segments
= shortcut
->index_key
[sc_level
>> ASSOC_ARRAY_KEY_CHUNK_SHIFT
];
256 dissimilarity
= segments
^ sc_segments
;
258 if (round_up(sc_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
) > shortcut
->skip_to_level
) {
259 /* Trim segments that are beyond the shortcut */
260 int shift
= shortcut
->skip_to_level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
261 dissimilarity
&= ~(ULONG_MAX
<< shift
);
262 next_sc_level
= shortcut
->skip_to_level
;
264 next_sc_level
= sc_level
+ ASSOC_ARRAY_KEY_CHUNK_SIZE
;
265 next_sc_level
= round_down(next_sc_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
268 if (dissimilarity
!= 0) {
269 /* This shortcut points elsewhere */
270 result
->wrong_shortcut
.shortcut
= shortcut
;
271 result
->wrong_shortcut
.level
= level
;
272 result
->wrong_shortcut
.sc_level
= sc_level
;
273 result
->wrong_shortcut
.sc_segments
= sc_segments
;
274 result
->wrong_shortcut
.dissimilarity
= dissimilarity
;
275 return assoc_array_walk_found_wrong_shortcut
;
278 sc_level
= next_sc_level
;
279 } while (sc_level
< shortcut
->skip_to_level
);
281 /* The shortcut matches the leaf's index to this point. */
282 cursor
= READ_ONCE(shortcut
->next_node
); /* Address dependency. */
283 if (((level
^ sc_level
) & ~ASSOC_ARRAY_KEY_CHUNK_MASK
) != 0) {
293 * assoc_array_find - Find an object by index key
294 * @array: The associative array to search.
295 * @ops: The operations to use.
296 * @index_key: The key to the object.
298 * Find an object in an associative array by walking through the internal tree
299 * to the node that should contain the object and then searching the leaves
300 * there. NULL is returned if the requested object was not found in the array.
302 * The caller must hold the RCU read lock or better.
304 void *assoc_array_find(const struct assoc_array
*array
,
305 const struct assoc_array_ops
*ops
,
306 const void *index_key
)
308 struct assoc_array_walk_result result
;
309 const struct assoc_array_node
*node
;
310 const struct assoc_array_ptr
*ptr
;
314 if (assoc_array_walk(array
, ops
, index_key
, &result
) !=
315 assoc_array_walk_found_terminal_node
)
318 node
= result
.terminal_node
.node
;
320 /* If the target key is available to us, it's has to be pointed to by
323 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
324 ptr
= READ_ONCE(node
->slots
[slot
]); /* Address dependency. */
325 if (ptr
&& assoc_array_ptr_is_leaf(ptr
)) {
326 /* We need a barrier between the read of the pointer
327 * and dereferencing the pointer - but only if we are
328 * actually going to dereference it.
330 leaf
= assoc_array_ptr_to_leaf(ptr
);
331 if (ops
->compare_object(leaf
, index_key
))
340 * Destructively iterate over an associative array. The caller must prevent
341 * other simultaneous accesses.
343 static void assoc_array_destroy_subtree(struct assoc_array_ptr
*root
,
344 const struct assoc_array_ops
*ops
)
346 struct assoc_array_shortcut
*shortcut
;
347 struct assoc_array_node
*node
;
348 struct assoc_array_ptr
*cursor
, *parent
= NULL
;
351 pr_devel("-->%s()\n", __func__
);
360 if (assoc_array_ptr_is_shortcut(cursor
)) {
361 /* Descend through a shortcut */
362 pr_devel("[%d] shortcut\n", slot
);
363 BUG_ON(!assoc_array_ptr_is_shortcut(cursor
));
364 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
365 BUG_ON(shortcut
->back_pointer
!= parent
);
366 BUG_ON(slot
!= -1 && shortcut
->parent_slot
!= slot
);
368 cursor
= shortcut
->next_node
;
370 BUG_ON(!assoc_array_ptr_is_node(cursor
));
373 pr_devel("[%d] node\n", slot
);
374 node
= assoc_array_ptr_to_node(cursor
);
375 BUG_ON(node
->back_pointer
!= parent
);
376 BUG_ON(slot
!= -1 && node
->parent_slot
!= slot
);
380 pr_devel("Node %p [back=%p]\n", node
, node
->back_pointer
);
381 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
382 struct assoc_array_ptr
*ptr
= node
->slots
[slot
];
385 if (assoc_array_ptr_is_meta(ptr
)) {
392 pr_devel("[%d] free leaf\n", slot
);
393 ops
->free_object(assoc_array_ptr_to_leaf(ptr
));
397 parent
= node
->back_pointer
;
398 slot
= node
->parent_slot
;
399 pr_devel("free node\n");
404 /* Move back up to the parent (may need to free a shortcut on
406 if (assoc_array_ptr_is_shortcut(parent
)) {
407 shortcut
= assoc_array_ptr_to_shortcut(parent
);
408 BUG_ON(shortcut
->next_node
!= cursor
);
410 parent
= shortcut
->back_pointer
;
411 slot
= shortcut
->parent_slot
;
412 pr_devel("free shortcut\n");
417 BUG_ON(!assoc_array_ptr_is_node(parent
));
420 /* Ascend to next slot in parent node */
421 pr_devel("ascend to %p[%d]\n", parent
, slot
);
423 node
= assoc_array_ptr_to_node(cursor
);
429 * assoc_array_destroy - Destroy an associative array
430 * @array: The array to destroy.
431 * @ops: The operations to use.
433 * Discard all metadata and free all objects in an associative array. The
434 * array will be empty and ready to use again upon completion. This function
437 * The caller must prevent all other accesses whilst this takes place as no
438 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
439 * accesses to continue. On the other hand, no memory allocation is required.
441 void assoc_array_destroy(struct assoc_array
*array
,
442 const struct assoc_array_ops
*ops
)
444 assoc_array_destroy_subtree(array
->root
, ops
);
449 * Handle insertion into an empty tree.
451 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit
*edit
)
453 struct assoc_array_node
*new_n0
;
455 pr_devel("-->%s()\n", __func__
);
457 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
461 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
462 edit
->leaf_p
= &new_n0
->slots
[0];
463 edit
->adjust_count_on
= new_n0
;
464 edit
->set
[0].ptr
= &edit
->array
->root
;
465 edit
->set
[0].to
= assoc_array_node_to_ptr(new_n0
);
467 pr_devel("<--%s() = ok [no root]\n", __func__
);
472 * Handle insertion into a terminal node.
474 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit
*edit
,
475 const struct assoc_array_ops
*ops
,
476 const void *index_key
,
477 struct assoc_array_walk_result
*result
)
479 struct assoc_array_shortcut
*shortcut
, *new_s0
;
480 struct assoc_array_node
*node
, *new_n0
, *new_n1
, *side
;
481 struct assoc_array_ptr
*ptr
;
482 unsigned long dissimilarity
, base_seg
, blank
;
486 int slot
, next_slot
, free_slot
, i
, j
;
488 node
= result
->terminal_node
.node
;
489 level
= result
->terminal_node
.level
;
490 edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] = result
->terminal_node
.slot
;
492 pr_devel("-->%s()\n", __func__
);
494 /* We arrived at a node which doesn't have an onward node or shortcut
495 * pointer that we have to follow. This means that (a) the leaf we
496 * want must go here (either by insertion or replacement) or (b) we
497 * need to split this node and insert in one of the fragments.
501 /* Firstly, we have to check the leaves in this node to see if there's
502 * a matching one we should replace in place.
504 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
505 ptr
= node
->slots
[i
];
510 if (assoc_array_ptr_is_leaf(ptr
) &&
511 ops
->compare_object(assoc_array_ptr_to_leaf(ptr
),
513 pr_devel("replace in slot %d\n", i
);
514 edit
->leaf_p
= &node
->slots
[i
];
515 edit
->dead_leaf
= node
->slots
[i
];
516 pr_devel("<--%s() = ok [replace]\n", __func__
);
521 /* If there is a free slot in this node then we can just insert the
524 if (free_slot
>= 0) {
525 pr_devel("insert in free slot %d\n", free_slot
);
526 edit
->leaf_p
= &node
->slots
[free_slot
];
527 edit
->adjust_count_on
= node
;
528 pr_devel("<--%s() = ok [insert]\n", __func__
);
532 /* The node has no spare slots - so we're either going to have to split
533 * it or insert another node before it.
535 * Whatever, we're going to need at least two new nodes - so allocate
536 * those now. We may also need a new shortcut, but we deal with that
539 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
542 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
543 new_n1
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
546 edit
->new_meta
[1] = assoc_array_node_to_ptr(new_n1
);
548 /* We need to find out how similar the leaves are. */
549 pr_devel("no spare slots\n");
551 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
552 ptr
= node
->slots
[i
];
553 if (assoc_array_ptr_is_meta(ptr
)) {
554 edit
->segment_cache
[i
] = 0xff;
558 base_seg
= ops
->get_object_key_chunk(
559 assoc_array_ptr_to_leaf(ptr
), level
);
560 base_seg
>>= level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
561 edit
->segment_cache
[i
] = base_seg
& ASSOC_ARRAY_FAN_MASK
;
565 pr_devel("have meta\n");
569 /* The node contains only leaves */
571 base_seg
= edit
->segment_cache
[0];
572 for (i
= 1; i
< ASSOC_ARRAY_FAN_OUT
; i
++)
573 dissimilarity
|= edit
->segment_cache
[i
] ^ base_seg
;
575 pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity
);
577 if ((dissimilarity
& ASSOC_ARRAY_FAN_MASK
) == 0) {
578 /* The old leaves all cluster in the same slot. We will need
579 * to insert a shortcut if the new node wants to cluster with them.
581 if ((edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] ^ base_seg
) == 0)
582 goto all_leaves_cluster_together
;
584 /* Otherwise all the old leaves cluster in the same slot, but
585 * the new leaf wants to go into a different slot - so we
586 * create a new node (n0) to hold the new leaf and a pointer to
587 * a new node (n1) holding all the old leaves.
589 * This can be done by falling through to the node splitting
592 pr_devel("present leaves cluster but not new leaf\n");
596 pr_devel("split node\n");
598 /* We need to split the current node. The node must contain anything
599 * from a single leaf (in the one leaf case, this leaf will cluster
600 * with the new leaf) and the rest meta-pointers, to all leaves, some
601 * of which may cluster.
603 * It won't contain the case in which all the current leaves plus the
604 * new leaves want to cluster in the same slot.
606 * We need to expel at least two leaves out of a set consisting of the
607 * leaves in the node and the new leaf. The current meta pointers can
608 * just be copied as they shouldn't cluster with any of the leaves.
610 * We need a new node (n0) to replace the current one and a new node to
611 * take the expelled nodes (n1).
613 edit
->set
[0].to
= assoc_array_node_to_ptr(new_n0
);
614 new_n0
->back_pointer
= node
->back_pointer
;
615 new_n0
->parent_slot
= node
->parent_slot
;
616 new_n1
->back_pointer
= assoc_array_node_to_ptr(new_n0
);
617 new_n1
->parent_slot
= -1; /* Need to calculate this */
620 pr_devel("do_split_node\n");
622 new_n0
->nr_leaves_on_branch
= node
->nr_leaves_on_branch
;
623 new_n1
->nr_leaves_on_branch
= 0;
625 /* Begin by finding two matching leaves. There have to be at least two
626 * that match - even if there are meta pointers - because any leaf that
627 * would match a slot with a meta pointer in it must be somewhere
628 * behind that meta pointer and cannot be here. Further, given N
629 * remaining leaf slots, we now have N+1 leaves to go in them.
631 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
632 slot
= edit
->segment_cache
[i
];
634 for (j
= i
+ 1; j
< ASSOC_ARRAY_FAN_OUT
+ 1; j
++)
635 if (edit
->segment_cache
[j
] == slot
)
636 goto found_slot_for_multiple_occupancy
;
638 found_slot_for_multiple_occupancy
:
639 pr_devel("same slot: %x %x [%02x]\n", i
, j
, slot
);
640 BUG_ON(i
>= ASSOC_ARRAY_FAN_OUT
);
641 BUG_ON(j
>= ASSOC_ARRAY_FAN_OUT
+ 1);
642 BUG_ON(slot
>= ASSOC_ARRAY_FAN_OUT
);
644 new_n1
->parent_slot
= slot
;
646 /* Metadata pointers cannot change slot */
647 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++)
648 if (assoc_array_ptr_is_meta(node
->slots
[i
]))
649 new_n0
->slots
[i
] = node
->slots
[i
];
651 new_n0
->slots
[i
] = NULL
;
652 BUG_ON(new_n0
->slots
[slot
] != NULL
);
653 new_n0
->slots
[slot
] = assoc_array_node_to_ptr(new_n1
);
655 /* Filter the leaf pointers between the new nodes */
658 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
659 if (assoc_array_ptr_is_meta(node
->slots
[i
]))
661 if (edit
->segment_cache
[i
] == slot
) {
662 new_n1
->slots
[next_slot
++] = node
->slots
[i
];
663 new_n1
->nr_leaves_on_branch
++;
667 } while (new_n0
->slots
[free_slot
] != NULL
);
668 new_n0
->slots
[free_slot
] = node
->slots
[i
];
672 pr_devel("filtered: f=%x n=%x\n", free_slot
, next_slot
);
674 if (edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] != slot
) {
677 } while (new_n0
->slots
[free_slot
] != NULL
);
678 edit
->leaf_p
= &new_n0
->slots
[free_slot
];
679 edit
->adjust_count_on
= new_n0
;
681 edit
->leaf_p
= &new_n1
->slots
[next_slot
++];
682 edit
->adjust_count_on
= new_n1
;
685 BUG_ON(next_slot
<= 1);
687 edit
->set_backpointers_to
= assoc_array_node_to_ptr(new_n0
);
688 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
689 if (edit
->segment_cache
[i
] == 0xff) {
690 ptr
= node
->slots
[i
];
691 BUG_ON(assoc_array_ptr_is_leaf(ptr
));
692 if (assoc_array_ptr_is_node(ptr
)) {
693 side
= assoc_array_ptr_to_node(ptr
);
694 edit
->set_backpointers
[i
] = &side
->back_pointer
;
696 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
697 edit
->set_backpointers
[i
] = &shortcut
->back_pointer
;
702 ptr
= node
->back_pointer
;
704 edit
->set
[0].ptr
= &edit
->array
->root
;
705 else if (assoc_array_ptr_is_node(ptr
))
706 edit
->set
[0].ptr
= &assoc_array_ptr_to_node(ptr
)->slots
[node
->parent_slot
];
708 edit
->set
[0].ptr
= &assoc_array_ptr_to_shortcut(ptr
)->next_node
;
709 edit
->excised_meta
[0] = assoc_array_node_to_ptr(node
);
710 pr_devel("<--%s() = ok [split node]\n", __func__
);
713 all_leaves_cluster_together
:
714 /* All the leaves, new and old, want to cluster together in this node
715 * in the same slot, so we have to replace this node with a shortcut to
716 * skip over the identical parts of the key and then place a pair of
717 * nodes, one inside the other, at the end of the shortcut and
718 * distribute the keys between them.
720 * Firstly we need to work out where the leaves start diverging as a
721 * bit position into their keys so that we know how big the shortcut
724 * We only need to make a single pass of N of the N+1 leaves because if
725 * any keys differ between themselves at bit X then at least one of
726 * them must also differ with the base key at bit X or before.
728 pr_devel("all leaves cluster together\n");
730 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
731 int x
= ops
->diff_objects(assoc_array_ptr_to_leaf(node
->slots
[i
]),
738 BUG_ON(diff
== INT_MAX
);
739 BUG_ON(diff
< level
+ ASSOC_ARRAY_LEVEL_STEP
);
741 keylen
= round_up(diff
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
742 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
744 new_s0
= kzalloc(struct_size(new_s0
, index_key
, keylen
), GFP_KERNEL
);
747 edit
->new_meta
[2] = assoc_array_shortcut_to_ptr(new_s0
);
749 edit
->set
[0].to
= assoc_array_shortcut_to_ptr(new_s0
);
750 new_s0
->back_pointer
= node
->back_pointer
;
751 new_s0
->parent_slot
= node
->parent_slot
;
752 new_s0
->next_node
= assoc_array_node_to_ptr(new_n0
);
753 new_n0
->back_pointer
= assoc_array_shortcut_to_ptr(new_s0
);
754 new_n0
->parent_slot
= 0;
755 new_n1
->back_pointer
= assoc_array_node_to_ptr(new_n0
);
756 new_n1
->parent_slot
= -1; /* Need to calculate this */
758 new_s0
->skip_to_level
= level
= diff
& ~ASSOC_ARRAY_LEVEL_STEP_MASK
;
759 pr_devel("skip_to_level = %d [diff %d]\n", level
, diff
);
762 for (i
= 0; i
< keylen
; i
++)
763 new_s0
->index_key
[i
] =
764 ops
->get_key_chunk(index_key
, i
* ASSOC_ARRAY_KEY_CHUNK_SIZE
);
766 if (level
& ASSOC_ARRAY_KEY_CHUNK_MASK
) {
767 blank
= ULONG_MAX
<< (level
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
768 pr_devel("blank off [%zu] %d: %lx\n", keylen
- 1, level
, blank
);
769 new_s0
->index_key
[keylen
- 1] &= ~blank
;
772 /* This now reduces to a node splitting exercise for which we'll need
773 * to regenerate the disparity table.
775 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
776 ptr
= node
->slots
[i
];
777 base_seg
= ops
->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr
),
779 base_seg
>>= level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
780 edit
->segment_cache
[i
] = base_seg
& ASSOC_ARRAY_FAN_MASK
;
783 base_seg
= ops
->get_key_chunk(index_key
, level
);
784 base_seg
>>= level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
785 edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] = base_seg
& ASSOC_ARRAY_FAN_MASK
;
790 * Handle insertion into the middle of a shortcut.
792 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit
*edit
,
793 const struct assoc_array_ops
*ops
,
794 struct assoc_array_walk_result
*result
)
796 struct assoc_array_shortcut
*shortcut
, *new_s0
, *new_s1
;
797 struct assoc_array_node
*node
, *new_n0
, *side
;
798 unsigned long sc_segments
, dissimilarity
, blank
;
800 int level
, sc_level
, diff
;
803 shortcut
= result
->wrong_shortcut
.shortcut
;
804 level
= result
->wrong_shortcut
.level
;
805 sc_level
= result
->wrong_shortcut
.sc_level
;
806 sc_segments
= result
->wrong_shortcut
.sc_segments
;
807 dissimilarity
= result
->wrong_shortcut
.dissimilarity
;
809 pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
810 __func__
, level
, dissimilarity
, sc_level
);
812 /* We need to split a shortcut and insert a node between the two
813 * pieces. Zero-length pieces will be dispensed with entirely.
815 * First of all, we need to find out in which level the first
818 diff
= __ffs(dissimilarity
);
819 diff
&= ~ASSOC_ARRAY_LEVEL_STEP_MASK
;
820 diff
+= sc_level
& ~ASSOC_ARRAY_KEY_CHUNK_MASK
;
821 pr_devel("diff=%d\n", diff
);
823 if (!shortcut
->back_pointer
) {
824 edit
->set
[0].ptr
= &edit
->array
->root
;
825 } else if (assoc_array_ptr_is_node(shortcut
->back_pointer
)) {
826 node
= assoc_array_ptr_to_node(shortcut
->back_pointer
);
827 edit
->set
[0].ptr
= &node
->slots
[shortcut
->parent_slot
];
832 edit
->excised_meta
[0] = assoc_array_shortcut_to_ptr(shortcut
);
834 /* Create a new node now since we're going to need it anyway */
835 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
838 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
839 edit
->adjust_count_on
= new_n0
;
841 /* Insert a new shortcut before the new node if this segment isn't of
842 * zero length - otherwise we just connect the new node directly to the
845 level
+= ASSOC_ARRAY_LEVEL_STEP
;
847 pr_devel("pre-shortcut %d...%d\n", level
, diff
);
848 keylen
= round_up(diff
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
849 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
851 new_s0
= kzalloc(struct_size(new_s0
, index_key
, keylen
),
855 edit
->new_meta
[1] = assoc_array_shortcut_to_ptr(new_s0
);
856 edit
->set
[0].to
= assoc_array_shortcut_to_ptr(new_s0
);
857 new_s0
->back_pointer
= shortcut
->back_pointer
;
858 new_s0
->parent_slot
= shortcut
->parent_slot
;
859 new_s0
->next_node
= assoc_array_node_to_ptr(new_n0
);
860 new_s0
->skip_to_level
= diff
;
862 new_n0
->back_pointer
= assoc_array_shortcut_to_ptr(new_s0
);
863 new_n0
->parent_slot
= 0;
865 memcpy(new_s0
->index_key
, shortcut
->index_key
,
866 flex_array_size(new_s0
, index_key
, keylen
));
868 blank
= ULONG_MAX
<< (diff
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
869 pr_devel("blank off [%zu] %d: %lx\n", keylen
- 1, diff
, blank
);
870 new_s0
->index_key
[keylen
- 1] &= ~blank
;
872 pr_devel("no pre-shortcut\n");
873 edit
->set
[0].to
= assoc_array_node_to_ptr(new_n0
);
874 new_n0
->back_pointer
= shortcut
->back_pointer
;
875 new_n0
->parent_slot
= shortcut
->parent_slot
;
878 side
= assoc_array_ptr_to_node(shortcut
->next_node
);
879 new_n0
->nr_leaves_on_branch
= side
->nr_leaves_on_branch
;
881 /* We need to know which slot in the new node is going to take a
884 sc_slot
= sc_segments
>> (diff
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
885 sc_slot
&= ASSOC_ARRAY_FAN_MASK
;
887 pr_devel("new slot %lx >> %d -> %d\n",
888 sc_segments
, diff
& ASSOC_ARRAY_KEY_CHUNK_MASK
, sc_slot
);
890 /* Determine whether we need to follow the new node with a replacement
891 * for the current shortcut. We could in theory reuse the current
892 * shortcut if its parent slot number doesn't change - but that's a
893 * 1-in-16 chance so not worth expending the code upon.
895 level
= diff
+ ASSOC_ARRAY_LEVEL_STEP
;
896 if (level
< shortcut
->skip_to_level
) {
897 pr_devel("post-shortcut %d...%d\n", level
, shortcut
->skip_to_level
);
898 keylen
= round_up(shortcut
->skip_to_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
899 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
901 new_s1
= kzalloc(struct_size(new_s1
, index_key
, keylen
),
905 edit
->new_meta
[2] = assoc_array_shortcut_to_ptr(new_s1
);
907 new_s1
->back_pointer
= assoc_array_node_to_ptr(new_n0
);
908 new_s1
->parent_slot
= sc_slot
;
909 new_s1
->next_node
= shortcut
->next_node
;
910 new_s1
->skip_to_level
= shortcut
->skip_to_level
;
912 new_n0
->slots
[sc_slot
] = assoc_array_shortcut_to_ptr(new_s1
);
914 memcpy(new_s1
->index_key
, shortcut
->index_key
,
915 flex_array_size(new_s1
, index_key
, keylen
));
917 edit
->set
[1].ptr
= &side
->back_pointer
;
918 edit
->set
[1].to
= assoc_array_shortcut_to_ptr(new_s1
);
920 pr_devel("no post-shortcut\n");
922 /* We don't have to replace the pointed-to node as long as we
923 * use memory barriers to make sure the parent slot number is
924 * changed before the back pointer (the parent slot number is
925 * irrelevant to the old parent shortcut).
927 new_n0
->slots
[sc_slot
] = shortcut
->next_node
;
928 edit
->set_parent_slot
[0].p
= &side
->parent_slot
;
929 edit
->set_parent_slot
[0].to
= sc_slot
;
930 edit
->set
[1].ptr
= &side
->back_pointer
;
931 edit
->set
[1].to
= assoc_array_node_to_ptr(new_n0
);
934 /* Install the new leaf in a spare slot in the new node. */
936 edit
->leaf_p
= &new_n0
->slots
[1];
938 edit
->leaf_p
= &new_n0
->slots
[0];
940 pr_devel("<--%s() = ok [split shortcut]\n", __func__
);
945 * assoc_array_insert - Script insertion of an object into an associative array
946 * @array: The array to insert into.
947 * @ops: The operations to use.
948 * @index_key: The key to insert at.
949 * @object: The object to insert.
951 * Precalculate and preallocate a script for the insertion or replacement of an
952 * object in an associative array. This results in an edit script that can
953 * either be applied or cancelled.
955 * The function returns a pointer to an edit script or -ENOMEM.
957 * The caller should lock against other modifications and must continue to hold
958 * the lock until assoc_array_apply_edit() has been called.
960 * Accesses to the tree may take place concurrently with this function,
961 * provided they hold the RCU read lock.
963 struct assoc_array_edit
*assoc_array_insert(struct assoc_array
*array
,
964 const struct assoc_array_ops
*ops
,
965 const void *index_key
,
968 struct assoc_array_walk_result result
;
969 struct assoc_array_edit
*edit
;
971 pr_devel("-->%s()\n", __func__
);
973 /* The leaf pointer we're given must not have the bottom bit set as we
974 * use those for type-marking the pointer. NULL pointers are also not
975 * allowed as they indicate an empty slot but we have to allow them
976 * here as they can be updated later.
978 BUG_ON(assoc_array_ptr_is_meta(object
));
980 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
982 return ERR_PTR(-ENOMEM
);
985 edit
->leaf
= assoc_array_leaf_to_ptr(object
);
986 edit
->adjust_count_by
= 1;
988 switch (assoc_array_walk(array
, ops
, index_key
, &result
)) {
989 case assoc_array_walk_tree_empty
:
990 /* Allocate a root node if there isn't one yet */
991 if (!assoc_array_insert_in_empty_tree(edit
))
995 case assoc_array_walk_found_terminal_node
:
996 /* We found a node that doesn't have a node/shortcut pointer in
997 * the slot corresponding to the index key that we have to
1000 if (!assoc_array_insert_into_terminal_node(edit
, ops
, index_key
,
1005 case assoc_array_walk_found_wrong_shortcut
:
1006 /* We found a shortcut that didn't match our key in a slot we
1009 if (!assoc_array_insert_mid_shortcut(edit
, ops
, &result
))
1015 /* Clean up after an out of memory error */
1016 pr_devel("enomem\n");
1017 assoc_array_cancel_edit(edit
);
1018 return ERR_PTR(-ENOMEM
);
1022 * assoc_array_insert_set_object - Set the new object pointer in an edit script
1023 * @edit: The edit script to modify.
1024 * @object: The object pointer to set.
1026 * Change the object to be inserted in an edit script. The object pointed to
1027 * by the old object is not freed. This must be done prior to applying the
1030 void assoc_array_insert_set_object(struct assoc_array_edit
*edit
, void *object
)
1033 edit
->leaf
= assoc_array_leaf_to_ptr(object
);
1036 struct assoc_array_delete_collapse_context
{
1037 struct assoc_array_node
*node
;
1038 const void *skip_leaf
;
1043 * Subtree collapse to node iterator.
1045 static int assoc_array_delete_collapse_iterator(const void *leaf
,
1046 void *iterator_data
)
1048 struct assoc_array_delete_collapse_context
*collapse
= iterator_data
;
1050 if (leaf
== collapse
->skip_leaf
)
1053 BUG_ON(collapse
->slot
>= ASSOC_ARRAY_FAN_OUT
);
1055 collapse
->node
->slots
[collapse
->slot
++] = assoc_array_leaf_to_ptr(leaf
);
1060 * assoc_array_delete - Script deletion of an object from an associative array
1061 * @array: The array to search.
1062 * @ops: The operations to use.
1063 * @index_key: The key to the object.
1065 * Precalculate and preallocate a script for the deletion of an object from an
1066 * associative array. This results in an edit script that can either be
1067 * applied or cancelled.
1069 * The function returns a pointer to an edit script if the object was found,
1070 * NULL if the object was not found or -ENOMEM.
1072 * The caller should lock against other modifications and must continue to hold
1073 * the lock until assoc_array_apply_edit() has been called.
1075 * Accesses to the tree may take place concurrently with this function,
1076 * provided they hold the RCU read lock.
1078 struct assoc_array_edit
*assoc_array_delete(struct assoc_array
*array
,
1079 const struct assoc_array_ops
*ops
,
1080 const void *index_key
)
1082 struct assoc_array_delete_collapse_context collapse
;
1083 struct assoc_array_walk_result result
;
1084 struct assoc_array_node
*node
, *new_n0
;
1085 struct assoc_array_edit
*edit
;
1086 struct assoc_array_ptr
*ptr
;
1090 pr_devel("-->%s()\n", __func__
);
1092 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
1094 return ERR_PTR(-ENOMEM
);
1095 edit
->array
= array
;
1097 edit
->adjust_count_by
= -1;
1099 switch (assoc_array_walk(array
, ops
, index_key
, &result
)) {
1100 case assoc_array_walk_found_terminal_node
:
1101 /* We found a node that should contain the leaf we've been
1102 * asked to remove - *if* it's in the tree.
1104 pr_devel("terminal_node\n");
1105 node
= result
.terminal_node
.node
;
1107 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1108 ptr
= node
->slots
[slot
];
1110 assoc_array_ptr_is_leaf(ptr
) &&
1111 ops
->compare_object(assoc_array_ptr_to_leaf(ptr
),
1116 case assoc_array_walk_tree_empty
:
1117 case assoc_array_walk_found_wrong_shortcut
:
1119 assoc_array_cancel_edit(edit
);
1120 pr_devel("not found\n");
1125 BUG_ON(array
->nr_leaves_on_tree
<= 0);
1127 /* In the simplest form of deletion we just clear the slot and release
1128 * the leaf after a suitable interval.
1130 edit
->dead_leaf
= node
->slots
[slot
];
1131 edit
->set
[0].ptr
= &node
->slots
[slot
];
1132 edit
->set
[0].to
= NULL
;
1133 edit
->adjust_count_on
= node
;
1135 /* If that concludes erasure of the last leaf, then delete the entire
1138 if (array
->nr_leaves_on_tree
== 1) {
1139 edit
->set
[1].ptr
= &array
->root
;
1140 edit
->set
[1].to
= NULL
;
1141 edit
->adjust_count_on
= NULL
;
1142 edit
->excised_subtree
= array
->root
;
1143 pr_devel("all gone\n");
1147 /* However, we'd also like to clear up some metadata blocks if we
1150 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1151 * leaves in it, then attempt to collapse it - and attempt to
1152 * recursively collapse up the tree.
1154 * We could also try and collapse in partially filled subtrees to take
1155 * up space in this node.
1157 if (node
->nr_leaves_on_branch
<= ASSOC_ARRAY_FAN_OUT
+ 1) {
1158 struct assoc_array_node
*parent
, *grandparent
;
1159 struct assoc_array_ptr
*ptr
;
1161 /* First of all, we need to know if this node has metadata so
1162 * that we don't try collapsing if all the leaves are already
1166 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
1167 ptr
= node
->slots
[i
];
1168 if (assoc_array_ptr_is_meta(ptr
)) {
1174 pr_devel("leaves: %ld [m=%d]\n",
1175 node
->nr_leaves_on_branch
- 1, has_meta
);
1177 /* Look further up the tree to see if we can collapse this node
1178 * into a more proximal node too.
1182 pr_devel("collapse subtree: %ld\n", parent
->nr_leaves_on_branch
);
1184 ptr
= parent
->back_pointer
;
1187 if (assoc_array_ptr_is_shortcut(ptr
)) {
1188 struct assoc_array_shortcut
*s
= assoc_array_ptr_to_shortcut(ptr
);
1189 ptr
= s
->back_pointer
;
1194 grandparent
= assoc_array_ptr_to_node(ptr
);
1195 if (grandparent
->nr_leaves_on_branch
<= ASSOC_ARRAY_FAN_OUT
+ 1) {
1196 parent
= grandparent
;
1201 /* There's no point collapsing if the original node has no meta
1202 * pointers to discard and if we didn't merge into one of that
1205 if (has_meta
|| parent
!= node
) {
1208 /* Create a new node to collapse into */
1209 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
1212 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
1214 new_n0
->back_pointer
= node
->back_pointer
;
1215 new_n0
->parent_slot
= node
->parent_slot
;
1216 new_n0
->nr_leaves_on_branch
= node
->nr_leaves_on_branch
;
1217 edit
->adjust_count_on
= new_n0
;
1219 collapse
.node
= new_n0
;
1220 collapse
.skip_leaf
= assoc_array_ptr_to_leaf(edit
->dead_leaf
);
1222 assoc_array_subtree_iterate(assoc_array_node_to_ptr(node
),
1224 assoc_array_delete_collapse_iterator
,
1226 pr_devel("collapsed %d,%lu\n", collapse
.slot
, new_n0
->nr_leaves_on_branch
);
1227 BUG_ON(collapse
.slot
!= new_n0
->nr_leaves_on_branch
- 1);
1229 if (!node
->back_pointer
) {
1230 edit
->set
[1].ptr
= &array
->root
;
1231 } else if (assoc_array_ptr_is_leaf(node
->back_pointer
)) {
1233 } else if (assoc_array_ptr_is_node(node
->back_pointer
)) {
1234 struct assoc_array_node
*p
=
1235 assoc_array_ptr_to_node(node
->back_pointer
);
1236 edit
->set
[1].ptr
= &p
->slots
[node
->parent_slot
];
1237 } else if (assoc_array_ptr_is_shortcut(node
->back_pointer
)) {
1238 struct assoc_array_shortcut
*s
=
1239 assoc_array_ptr_to_shortcut(node
->back_pointer
);
1240 edit
->set
[1].ptr
= &s
->next_node
;
1242 edit
->set
[1].to
= assoc_array_node_to_ptr(new_n0
);
1243 edit
->excised_subtree
= assoc_array_node_to_ptr(node
);
1250 /* Clean up after an out of memory error */
1251 pr_devel("enomem\n");
1252 assoc_array_cancel_edit(edit
);
1253 return ERR_PTR(-ENOMEM
);
1257 * assoc_array_clear - Script deletion of all objects from an associative array
1258 * @array: The array to clear.
1259 * @ops: The operations to use.
1261 * Precalculate and preallocate a script for the deletion of all the objects
1262 * from an associative array. This results in an edit script that can either
1263 * be applied or cancelled.
1265 * The function returns a pointer to an edit script if there are objects to be
1266 * deleted, NULL if there are no objects in the array or -ENOMEM.
1268 * The caller should lock against other modifications and must continue to hold
1269 * the lock until assoc_array_apply_edit() has been called.
1271 * Accesses to the tree may take place concurrently with this function,
1272 * provided they hold the RCU read lock.
1274 struct assoc_array_edit
*assoc_array_clear(struct assoc_array
*array
,
1275 const struct assoc_array_ops
*ops
)
1277 struct assoc_array_edit
*edit
;
1279 pr_devel("-->%s()\n", __func__
);
1284 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
1286 return ERR_PTR(-ENOMEM
);
1287 edit
->array
= array
;
1289 edit
->set
[1].ptr
= &array
->root
;
1290 edit
->set
[1].to
= NULL
;
1291 edit
->excised_subtree
= array
->root
;
1292 edit
->ops_for_excised_subtree
= ops
;
1293 pr_devel("all gone\n");
1298 * Handle the deferred destruction after an applied edit.
1300 static void assoc_array_rcu_cleanup(struct rcu_head
*head
)
1302 struct assoc_array_edit
*edit
=
1303 container_of(head
, struct assoc_array_edit
, rcu
);
1306 pr_devel("-->%s()\n", __func__
);
1308 if (edit
->dead_leaf
)
1309 edit
->ops
->free_object(assoc_array_ptr_to_leaf(edit
->dead_leaf
));
1310 for (i
= 0; i
< ARRAY_SIZE(edit
->excised_meta
); i
++)
1311 if (edit
->excised_meta
[i
])
1312 kfree(assoc_array_ptr_to_node(edit
->excised_meta
[i
]));
1314 if (edit
->excised_subtree
) {
1315 BUG_ON(assoc_array_ptr_is_leaf(edit
->excised_subtree
));
1316 if (assoc_array_ptr_is_node(edit
->excised_subtree
)) {
1317 struct assoc_array_node
*n
=
1318 assoc_array_ptr_to_node(edit
->excised_subtree
);
1319 n
->back_pointer
= NULL
;
1321 struct assoc_array_shortcut
*s
=
1322 assoc_array_ptr_to_shortcut(edit
->excised_subtree
);
1323 s
->back_pointer
= NULL
;
1325 assoc_array_destroy_subtree(edit
->excised_subtree
,
1326 edit
->ops_for_excised_subtree
);
1333 * assoc_array_apply_edit - Apply an edit script to an associative array
1334 * @edit: The script to apply.
1336 * Apply an edit script to an associative array to effect an insertion,
1337 * deletion or clearance. As the edit script includes preallocated memory,
1338 * this is guaranteed not to fail.
1340 * The edit script, dead objects and dead metadata will be scheduled for
1341 * destruction after an RCU grace period to permit those doing read-only
1342 * accesses on the array to continue to do so under the RCU read lock whilst
1343 * the edit is taking place.
1345 void assoc_array_apply_edit(struct assoc_array_edit
*edit
)
1347 struct assoc_array_shortcut
*shortcut
;
1348 struct assoc_array_node
*node
;
1349 struct assoc_array_ptr
*ptr
;
1352 pr_devel("-->%s()\n", __func__
);
1356 *edit
->leaf_p
= edit
->leaf
;
1359 for (i
= 0; i
< ARRAY_SIZE(edit
->set_parent_slot
); i
++)
1360 if (edit
->set_parent_slot
[i
].p
)
1361 *edit
->set_parent_slot
[i
].p
= edit
->set_parent_slot
[i
].to
;
1364 for (i
= 0; i
< ARRAY_SIZE(edit
->set_backpointers
); i
++)
1365 if (edit
->set_backpointers
[i
])
1366 *edit
->set_backpointers
[i
] = edit
->set_backpointers_to
;
1369 for (i
= 0; i
< ARRAY_SIZE(edit
->set
); i
++)
1370 if (edit
->set
[i
].ptr
)
1371 *edit
->set
[i
].ptr
= edit
->set
[i
].to
;
1373 if (edit
->array
->root
== NULL
) {
1374 edit
->array
->nr_leaves_on_tree
= 0;
1375 } else if (edit
->adjust_count_on
) {
1376 node
= edit
->adjust_count_on
;
1378 node
->nr_leaves_on_branch
+= edit
->adjust_count_by
;
1380 ptr
= node
->back_pointer
;
1383 if (assoc_array_ptr_is_shortcut(ptr
)) {
1384 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
1385 ptr
= shortcut
->back_pointer
;
1389 BUG_ON(!assoc_array_ptr_is_node(ptr
));
1390 node
= assoc_array_ptr_to_node(ptr
);
1393 edit
->array
->nr_leaves_on_tree
+= edit
->adjust_count_by
;
1396 call_rcu(&edit
->rcu
, assoc_array_rcu_cleanup
);
1400 * assoc_array_cancel_edit - Discard an edit script.
1401 * @edit: The script to discard.
1403 * Free an edit script and all the preallocated data it holds without making
1404 * any changes to the associative array it was intended for.
1406 * NOTE! In the case of an insertion script, this does _not_ release the leaf
1407 * that was to be inserted. That is left to the caller.
1409 void assoc_array_cancel_edit(struct assoc_array_edit
*edit
)
1411 struct assoc_array_ptr
*ptr
;
1414 pr_devel("-->%s()\n", __func__
);
1416 /* Clean up after an out of memory error */
1417 for (i
= 0; i
< ARRAY_SIZE(edit
->new_meta
); i
++) {
1418 ptr
= edit
->new_meta
[i
];
1420 if (assoc_array_ptr_is_node(ptr
))
1421 kfree(assoc_array_ptr_to_node(ptr
));
1423 kfree(assoc_array_ptr_to_shortcut(ptr
));
1430 * assoc_array_gc - Garbage collect an associative array.
1431 * @array: The array to clean.
1432 * @ops: The operations to use.
1433 * @iterator: A callback function to pass judgement on each object.
1434 * @iterator_data: Private data for the callback function.
1436 * Collect garbage from an associative array and pack down the internal tree to
1439 * The iterator function is asked to pass judgement upon each object in the
1440 * array. If it returns false, the object is discard and if it returns true,
1441 * the object is kept. If it returns true, it must increment the object's
1442 * usage count (or whatever it needs to do to retain it) before returning.
1444 * This function returns 0 if successful or -ENOMEM if out of memory. In the
1445 * latter case, the array is not changed.
1447 * The caller should lock against other modifications and must continue to hold
1448 * the lock until assoc_array_apply_edit() has been called.
1450 * Accesses to the tree may take place concurrently with this function,
1451 * provided they hold the RCU read lock.
1453 int assoc_array_gc(struct assoc_array
*array
,
1454 const struct assoc_array_ops
*ops
,
1455 bool (*iterator
)(void *object
, void *iterator_data
),
1456 void *iterator_data
)
1458 struct assoc_array_shortcut
*shortcut
, *new_s
;
1459 struct assoc_array_node
*node
, *new_n
;
1460 struct assoc_array_edit
*edit
;
1461 struct assoc_array_ptr
*cursor
, *ptr
;
1462 struct assoc_array_ptr
*new_root
, *new_parent
, **new_ptr_pp
;
1463 unsigned long nr_leaves_on_tree
;
1465 int keylen
, slot
, nr_free
, next_slot
, i
;
1467 pr_devel("-->%s()\n", __func__
);
1472 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
1475 edit
->array
= array
;
1477 edit
->ops_for_excised_subtree
= ops
;
1478 edit
->set
[0].ptr
= &array
->root
;
1479 edit
->excised_subtree
= array
->root
;
1481 new_root
= new_parent
= NULL
;
1482 new_ptr_pp
= &new_root
;
1483 cursor
= array
->root
;
1486 /* If this point is a shortcut, then we need to duplicate it and
1487 * advance the target cursor.
1489 if (assoc_array_ptr_is_shortcut(cursor
)) {
1490 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
1491 keylen
= round_up(shortcut
->skip_to_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
1492 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
1493 new_s
= kmalloc(struct_size(new_s
, index_key
, keylen
),
1497 pr_devel("dup shortcut %p -> %p\n", shortcut
, new_s
);
1498 memcpy(new_s
, shortcut
, struct_size(new_s
, index_key
, keylen
));
1499 new_s
->back_pointer
= new_parent
;
1500 new_s
->parent_slot
= shortcut
->parent_slot
;
1501 *new_ptr_pp
= new_parent
= assoc_array_shortcut_to_ptr(new_s
);
1502 new_ptr_pp
= &new_s
->next_node
;
1503 cursor
= shortcut
->next_node
;
1506 /* Duplicate the node at this position */
1507 node
= assoc_array_ptr_to_node(cursor
);
1508 new_n
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
1511 pr_devel("dup node %p -> %p\n", node
, new_n
);
1512 new_n
->back_pointer
= new_parent
;
1513 new_n
->parent_slot
= node
->parent_slot
;
1514 *new_ptr_pp
= new_parent
= assoc_array_node_to_ptr(new_n
);
1519 /* Filter across any leaves and gc any subtrees */
1520 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1521 ptr
= node
->slots
[slot
];
1525 if (assoc_array_ptr_is_leaf(ptr
)) {
1526 if (iterator(assoc_array_ptr_to_leaf(ptr
),
1528 /* The iterator will have done any reference
1529 * counting on the object for us.
1531 new_n
->slots
[slot
] = ptr
;
1535 new_ptr_pp
= &new_n
->slots
[slot
];
1541 pr_devel("-- compress node %p --\n", new_n
);
1543 /* Count up the number of empty slots in this node and work out the
1544 * subtree leaf count.
1546 new_n
->nr_leaves_on_branch
= 0;
1548 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1549 ptr
= new_n
->slots
[slot
];
1552 else if (assoc_array_ptr_is_leaf(ptr
))
1553 new_n
->nr_leaves_on_branch
++;
1555 pr_devel("free=%d, leaves=%lu\n", nr_free
, new_n
->nr_leaves_on_branch
);
1557 /* See what we can fold in */
1560 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1561 struct assoc_array_shortcut
*s
;
1562 struct assoc_array_node
*child
;
1564 ptr
= new_n
->slots
[slot
];
1565 if (!ptr
|| assoc_array_ptr_is_leaf(ptr
))
1569 if (assoc_array_ptr_is_shortcut(ptr
)) {
1570 s
= assoc_array_ptr_to_shortcut(ptr
);
1574 child
= assoc_array_ptr_to_node(ptr
);
1575 new_n
->nr_leaves_on_branch
+= child
->nr_leaves_on_branch
;
1577 if (child
->nr_leaves_on_branch
<= nr_free
+ 1) {
1578 /* Fold the child node into this one */
1579 pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1580 slot
, child
->nr_leaves_on_branch
, nr_free
+ 1,
1583 /* We would already have reaped an intervening shortcut
1584 * on the way back up the tree.
1588 new_n
->slots
[slot
] = NULL
;
1590 if (slot
< next_slot
)
1592 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
1593 struct assoc_array_ptr
*p
= child
->slots
[i
];
1596 BUG_ON(assoc_array_ptr_is_meta(p
));
1597 while (new_n
->slots
[next_slot
])
1599 BUG_ON(next_slot
>= ASSOC_ARRAY_FAN_OUT
);
1600 new_n
->slots
[next_slot
++] = p
;
1605 pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1606 slot
, child
->nr_leaves_on_branch
, nr_free
+ 1,
1612 if (retained
&& new_n
->nr_leaves_on_branch
<= ASSOC_ARRAY_FAN_OUT
) {
1613 pr_devel("internal nodes remain despite enough space, retrying\n");
1614 goto retry_compress
;
1616 pr_devel("after: %lu\n", new_n
->nr_leaves_on_branch
);
1618 nr_leaves_on_tree
= new_n
->nr_leaves_on_branch
;
1620 /* Excise this node if it is singly occupied by a shortcut */
1621 if (nr_free
== ASSOC_ARRAY_FAN_OUT
- 1) {
1622 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++)
1623 if ((ptr
= new_n
->slots
[slot
]))
1626 if (assoc_array_ptr_is_meta(ptr
) &&
1627 assoc_array_ptr_is_shortcut(ptr
)) {
1628 pr_devel("excise node %p with 1 shortcut\n", new_n
);
1629 new_s
= assoc_array_ptr_to_shortcut(ptr
);
1630 new_parent
= new_n
->back_pointer
;
1631 slot
= new_n
->parent_slot
;
1634 new_s
->back_pointer
= NULL
;
1635 new_s
->parent_slot
= 0;
1640 if (assoc_array_ptr_is_shortcut(new_parent
)) {
1641 /* We can discard any preceding shortcut also */
1642 struct assoc_array_shortcut
*s
=
1643 assoc_array_ptr_to_shortcut(new_parent
);
1645 pr_devel("excise preceding shortcut\n");
1647 new_parent
= new_s
->back_pointer
= s
->back_pointer
;
1648 slot
= new_s
->parent_slot
= s
->parent_slot
;
1651 new_s
->back_pointer
= NULL
;
1652 new_s
->parent_slot
= 0;
1658 new_s
->back_pointer
= new_parent
;
1659 new_s
->parent_slot
= slot
;
1660 new_n
= assoc_array_ptr_to_node(new_parent
);
1661 new_n
->slots
[slot
] = ptr
;
1662 goto ascend_old_tree
;
1666 /* Excise any shortcuts we might encounter that point to nodes that
1667 * only contain leaves.
1669 ptr
= new_n
->back_pointer
;
1673 if (assoc_array_ptr_is_shortcut(ptr
)) {
1674 new_s
= assoc_array_ptr_to_shortcut(ptr
);
1675 new_parent
= new_s
->back_pointer
;
1676 slot
= new_s
->parent_slot
;
1678 if (new_n
->nr_leaves_on_branch
<= ASSOC_ARRAY_FAN_OUT
) {
1679 struct assoc_array_node
*n
;
1681 pr_devel("excise shortcut\n");
1682 new_n
->back_pointer
= new_parent
;
1683 new_n
->parent_slot
= slot
;
1686 new_root
= assoc_array_node_to_ptr(new_n
);
1690 n
= assoc_array_ptr_to_node(new_parent
);
1691 n
->slots
[slot
] = assoc_array_node_to_ptr(new_n
);
1696 new_n
= assoc_array_ptr_to_node(new_parent
);
1699 ptr
= node
->back_pointer
;
1700 if (assoc_array_ptr_is_shortcut(ptr
)) {
1701 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
1702 slot
= shortcut
->parent_slot
;
1703 cursor
= shortcut
->back_pointer
;
1707 slot
= node
->parent_slot
;
1711 node
= assoc_array_ptr_to_node(cursor
);
1716 edit
->set
[0].to
= new_root
;
1717 assoc_array_apply_edit(edit
);
1718 array
->nr_leaves_on_tree
= nr_leaves_on_tree
;
1722 pr_devel("enomem\n");
1723 assoc_array_destroy_subtree(new_root
, edit
->ops
);