1 // SPDX-License-Identifier: 0BSD
6 * Authors: Lasse Collin <lasse.collin@tukaani.org>
7 * Igor Pavlov <https://7-zip.org/>
10 #include "xz_private.h"
14 * Range decoder initialization eats the first five bytes of each LZMA chunk.
16 #define RC_INIT_BYTES 5
19 * Minimum number of usable input buffer to safely decode one LZMA symbol.
20 * The worst case is that we decode 22 bits using probabilities and 26
21 * direct bits. This may decode at maximum of 20 bytes of input. However,
22 * lzma_main() does an extra normalization before returning, thus we
23 * need to put 21 here.
25 #define LZMA_IN_REQUIRED 21
28 * Dictionary (history buffer)
30 * These are always true:
31 * start <= pos <= full <= end
34 * In multi-call mode, also these are true:
39 * Most of these variables are size_t to support single-call mode,
40 * in which the dictionary variables address the actual output
44 /* Beginning of the history buffer */
47 /* Old position in buf (before decoding more data) */
54 * How full dictionary is. This is used to detect corrupt input that
55 * would read beyond the beginning of the uncompressed stream.
59 /* Write limit; we don't write to buf[limit] or later bytes. */
63 * End of the dictionary buffer. In multi-call mode, this is
64 * the same as the dictionary size. In single-call mode, this
65 * indicates the size of the output buffer.
70 * Size of the dictionary as specified in Block Header. This is used
71 * together with "full" to detect corrupt input that would make us
72 * read beyond the beginning of the uncompressed stream.
77 * Maximum allowed dictionary size in multi-call mode.
78 * This is ignored in single-call mode.
83 * Amount of memory currently allocated for the dictionary.
84 * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
85 * size_max is always the same as the allocated size.)
99 * Number of initializing bytes remaining to be read
102 uint32_t init_bytes_left
;
105 * Buffer from which we read our input. It can be either
106 * temp.buf or the caller-provided input buffer.
113 /* Probabilities for a length decoder. */
114 struct lzma_len_dec
{
115 /* Probability of match length being at least 10 */
118 /* Probability of match length being at least 18 */
121 /* Probabilities for match lengths 2-9 */
122 uint16_t low
[POS_STATES_MAX
][LEN_LOW_SYMBOLS
];
124 /* Probabilities for match lengths 10-17 */
125 uint16_t mid
[POS_STATES_MAX
][LEN_MID_SYMBOLS
];
127 /* Probabilities for match lengths 18-273 */
128 uint16_t high
[LEN_HIGH_SYMBOLS
];
132 /* Distances of latest four matches */
138 /* Types of the most recently seen LZMA symbols */
139 enum lzma_state state
;
142 * Length of a match. This is updated so that dict_repeat can
143 * be called again to finish repeating the whole match.
148 * LZMA properties or related bit masks (number of literal
149 * context bits, a mask derived from the number of literal
150 * position bits, and a mask derived from the number
154 uint32_t literal_pos_mask
; /* (1 << lp) - 1 */
155 uint32_t pos_mask
; /* (1 << pb) - 1 */
157 /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
158 uint16_t is_match
[STATES
][POS_STATES_MAX
];
160 /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
161 uint16_t is_rep
[STATES
];
164 * If 0, distance of a repeated match is rep0.
165 * Otherwise check is_rep1.
167 uint16_t is_rep0
[STATES
];
170 * If 0, distance of a repeated match is rep1.
171 * Otherwise check is_rep2.
173 uint16_t is_rep1
[STATES
];
175 /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
176 uint16_t is_rep2
[STATES
];
179 * If 1, the repeated match has length of one byte. Otherwise
180 * the length is decoded from rep_len_decoder.
182 uint16_t is_rep0_long
[STATES
][POS_STATES_MAX
];
185 * Probability tree for the highest two bits of the match
186 * distance. There is a separate probability tree for match
187 * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
189 uint16_t dist_slot
[DIST_STATES
][DIST_SLOTS
];
192 * Probility trees for additional bits for match distance
193 * when the distance is in the range [4, 127].
195 uint16_t dist_special
[FULL_DISTANCES
- DIST_MODEL_END
];
198 * Probability tree for the lowest four bits of a match
199 * distance that is equal to or greater than 128.
201 uint16_t dist_align
[ALIGN_SIZE
];
203 /* Length of a normal match */
204 struct lzma_len_dec match_len_dec
;
206 /* Length of a repeated match */
207 struct lzma_len_dec rep_len_dec
;
209 /* Probabilities of literals */
210 uint16_t literal
[LITERAL_CODERS_MAX
][LITERAL_CODER_SIZE
];
214 /* Position in xz_dec_lzma2_run(). */
227 /* Next position after decoding the compressed size of the chunk. */
228 enum lzma2_seq next_sequence
;
230 /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
231 uint32_t uncompressed
;
234 * Compressed size of LZMA chunk or compressed/uncompressed
235 * size of uncompressed chunk (64 KiB at maximum)
240 * True if dictionary reset is needed. This is false before
241 * the first chunk (LZMA or uncompressed).
243 bool need_dict_reset
;
246 * True if new LZMA properties are needed. This is false
247 * before the first LZMA chunk.
251 #ifdef XZ_DEC_MICROLZMA
252 bool pedantic_microlzma
;
256 struct xz_dec_lzma2
{
258 * The order below is important on x86 to reduce code size and
259 * it shouldn't hurt on other platforms. Everything up to and
260 * including lzma.pos_mask are in the first 128 bytes on x86-32,
261 * which allows using smaller instructions to access those
262 * variables. On x86-64, fewer variables fit into the first 128
263 * bytes, but this is still the best order without sacrificing
264 * the readability by splitting the structures.
267 struct dictionary dict
;
268 struct lzma2_dec lzma2
;
269 struct lzma_dec lzma
;
272 * Temporary buffer which holds small number of input bytes between
273 * decoder calls. See lzma2_lzma() for details.
277 uint8_t buf
[3 * LZMA_IN_REQUIRED
];
286 * Reset the dictionary state. When in single-call mode, set up the beginning
287 * of the dictionary to point to the actual output buffer.
289 static void dict_reset(struct dictionary
*dict
, struct xz_buf
*b
)
291 if (DEC_IS_SINGLE(dict
->mode
)) {
292 dict
->buf
= b
->out
+ b
->out_pos
;
293 dict
->end
= b
->out_size
- b
->out_pos
;
302 /* Set dictionary write limit */
303 static void dict_limit(struct dictionary
*dict
, size_t out_max
)
305 if (dict
->end
- dict
->pos
<= out_max
)
306 dict
->limit
= dict
->end
;
308 dict
->limit
= dict
->pos
+ out_max
;
311 /* Return true if at least one byte can be written into the dictionary. */
312 static inline bool dict_has_space(const struct dictionary
*dict
)
314 return dict
->pos
< dict
->limit
;
318 * Get a byte from the dictionary at the given distance. The distance is
319 * assumed to valid, or as a special case, zero when the dictionary is
320 * still empty. This special case is needed for single-call decoding to
321 * avoid writing a '\0' to the end of the destination buffer.
323 static inline uint32_t dict_get(const struct dictionary
*dict
, uint32_t dist
)
325 size_t offset
= dict
->pos
- dist
- 1;
327 if (dist
>= dict
->pos
)
330 return dict
->full
> 0 ? dict
->buf
[offset
] : 0;
334 * Put one byte into the dictionary. It is assumed that there is space for it.
336 static inline void dict_put(struct dictionary
*dict
, uint8_t byte
)
338 dict
->buf
[dict
->pos
++] = byte
;
340 if (dict
->full
< dict
->pos
)
341 dict
->full
= dict
->pos
;
345 * Repeat given number of bytes from the given distance. If the distance is
346 * invalid, false is returned. On success, true is returned and *len is
347 * updated to indicate how many bytes were left to be repeated.
349 static bool dict_repeat(struct dictionary
*dict
, uint32_t *len
, uint32_t dist
)
354 if (dist
>= dict
->full
|| dist
>= dict
->size
)
357 left
= min_t(size_t, dict
->limit
- dict
->pos
, *len
);
360 back
= dict
->pos
- dist
- 1;
361 if (dist
>= dict
->pos
)
365 dict
->buf
[dict
->pos
++] = dict
->buf
[back
++];
366 if (back
== dict
->end
)
368 } while (--left
> 0);
370 if (dict
->full
< dict
->pos
)
371 dict
->full
= dict
->pos
;
376 /* Copy uncompressed data as is from input to dictionary and output buffers. */
377 static void dict_uncompressed(struct dictionary
*dict
, struct xz_buf
*b
,
382 while (*left
> 0 && b
->in_pos
< b
->in_size
383 && b
->out_pos
< b
->out_size
) {
384 copy_size
= min(b
->in_size
- b
->in_pos
,
385 b
->out_size
- b
->out_pos
);
386 if (copy_size
> dict
->end
- dict
->pos
)
387 copy_size
= dict
->end
- dict
->pos
;
388 if (copy_size
> *left
)
394 * If doing in-place decompression in single-call mode and the
395 * uncompressed size of the file is larger than the caller
396 * thought (i.e. it is invalid input!), the buffers below may
397 * overlap and cause undefined behavior with memcpy().
398 * With valid inputs memcpy() would be fine here.
400 memmove(dict
->buf
+ dict
->pos
, b
->in
+ b
->in_pos
, copy_size
);
401 dict
->pos
+= copy_size
;
403 if (dict
->full
< dict
->pos
)
404 dict
->full
= dict
->pos
;
406 if (DEC_IS_MULTI(dict
->mode
)) {
407 if (dict
->pos
== dict
->end
)
411 * Like above but for multi-call mode: use memmove()
412 * to avoid undefined behavior with invalid input.
414 memmove(b
->out
+ b
->out_pos
, b
->in
+ b
->in_pos
,
418 dict
->start
= dict
->pos
;
420 b
->out_pos
+= copy_size
;
421 b
->in_pos
+= copy_size
;
425 #ifdef XZ_DEC_MICROLZMA
426 # define DICT_FLUSH_SUPPORTS_SKIPPING true
428 # define DICT_FLUSH_SUPPORTS_SKIPPING false
432 * Flush pending data from dictionary to b->out. It is assumed that there is
433 * enough space in b->out. This is guaranteed because caller uses dict_limit()
434 * before decoding data into the dictionary.
436 static uint32_t dict_flush(struct dictionary
*dict
, struct xz_buf
*b
)
438 size_t copy_size
= dict
->pos
- dict
->start
;
440 if (DEC_IS_MULTI(dict
->mode
)) {
441 if (dict
->pos
== dict
->end
)
445 * These buffers cannot overlap even if doing in-place
446 * decompression because in multi-call mode dict->buf
447 * has been allocated by us in this file; it's not
448 * provided by the caller like in single-call mode.
450 * With MicroLZMA, b->out can be NULL to skip bytes that
451 * the caller doesn't need. This cannot be done with XZ
452 * because it would break BCJ filters.
454 if (!DICT_FLUSH_SUPPORTS_SKIPPING
|| b
->out
!= NULL
)
455 memcpy(b
->out
+ b
->out_pos
, dict
->buf
+ dict
->start
,
459 dict
->start
= dict
->pos
;
460 b
->out_pos
+= copy_size
;
468 /* Reset the range decoder. */
469 static void rc_reset(struct rc_dec
*rc
)
471 rc
->range
= (uint32_t)-1;
473 rc
->init_bytes_left
= RC_INIT_BYTES
;
477 * Read the first five initial bytes into rc->code if they haven't been
478 * read already. (Yes, the first byte gets completely ignored.)
480 static bool rc_read_init(struct rc_dec
*rc
, struct xz_buf
*b
)
482 while (rc
->init_bytes_left
> 0) {
483 if (b
->in_pos
== b
->in_size
)
486 rc
->code
= (rc
->code
<< 8) + b
->in
[b
->in_pos
++];
487 --rc
->init_bytes_left
;
493 /* Return true if there may not be enough input for the next decoding loop. */
494 static inline bool rc_limit_exceeded(const struct rc_dec
*rc
)
496 return rc
->in_pos
> rc
->in_limit
;
500 * Return true if it is possible (from point of view of range decoder) that
501 * we have reached the end of the LZMA chunk.
503 static inline bool rc_is_finished(const struct rc_dec
*rc
)
505 return rc
->code
== 0;
508 /* Read the next input byte if needed. */
509 static __always_inline
void rc_normalize(struct rc_dec
*rc
)
511 if (rc
->range
< RC_TOP_VALUE
) {
512 rc
->range
<<= RC_SHIFT_BITS
;
513 rc
->code
= (rc
->code
<< RC_SHIFT_BITS
) + rc
->in
[rc
->in_pos
++];
518 * Decode one bit. In some versions, this function has been split in three
519 * functions so that the compiler is supposed to be able to more easily avoid
520 * an extra branch. In this particular version of the LZMA decoder, this
521 * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
522 * on x86). Using a non-split version results in nicer looking code too.
524 * NOTE: This must return an int. Do not make it return a bool or the speed
525 * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
526 * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
528 static __always_inline
int rc_bit(struct rc_dec
*rc
, uint16_t *prob
)
534 bound
= (rc
->range
>> RC_BIT_MODEL_TOTAL_BITS
) * *prob
;
535 if (rc
->code
< bound
) {
537 *prob
+= (RC_BIT_MODEL_TOTAL
- *prob
) >> RC_MOVE_BITS
;
542 *prob
-= *prob
>> RC_MOVE_BITS
;
549 /* Decode a bittree starting from the most significant bit. */
550 static __always_inline
uint32_t rc_bittree(struct rc_dec
*rc
,
551 uint16_t *probs
, uint32_t limit
)
556 if (rc_bit(rc
, &probs
[symbol
]))
557 symbol
= (symbol
<< 1) + 1;
560 } while (symbol
< limit
);
565 /* Decode a bittree starting from the least significant bit. */
566 static __always_inline
void rc_bittree_reverse(struct rc_dec
*rc
,
568 uint32_t *dest
, uint32_t limit
)
574 if (rc_bit(rc
, &probs
[symbol
])) {
575 symbol
= (symbol
<< 1) + 1;
580 } while (++i
< limit
);
583 /* Decode direct bits (fixed fifty-fifty probability) */
584 static inline void rc_direct(struct rc_dec
*rc
, uint32_t *dest
, uint32_t limit
)
591 rc
->code
-= rc
->range
;
592 mask
= (uint32_t)0 - (rc
->code
>> 31);
593 rc
->code
+= rc
->range
& mask
;
594 *dest
= (*dest
<< 1) + (mask
+ 1);
595 } while (--limit
> 0);
602 /* Get pointer to literal coder probability array. */
603 static uint16_t *lzma_literal_probs(struct xz_dec_lzma2
*s
)
605 uint32_t prev_byte
= dict_get(&s
->dict
, 0);
606 uint32_t low
= prev_byte
>> (8 - s
->lzma
.lc
);
607 uint32_t high
= (s
->dict
.pos
& s
->lzma
.literal_pos_mask
) << s
->lzma
.lc
;
608 return s
->lzma
.literal
[low
+ high
];
611 /* Decode a literal (one 8-bit byte) */
612 static void lzma_literal(struct xz_dec_lzma2
*s
)
621 probs
= lzma_literal_probs(s
);
623 if (lzma_state_is_literal(s
->lzma
.state
)) {
624 symbol
= rc_bittree(&s
->rc
, probs
, 0x100);
627 match_byte
= dict_get(&s
->dict
, s
->lzma
.rep0
) << 1;
631 match_bit
= match_byte
& offset
;
633 i
= offset
+ match_bit
+ symbol
;
635 if (rc_bit(&s
->rc
, &probs
[i
])) {
636 symbol
= (symbol
<< 1) + 1;
640 offset
&= ~match_bit
;
642 } while (symbol
< 0x100);
645 dict_put(&s
->dict
, (uint8_t)symbol
);
646 lzma_state_literal(&s
->lzma
.state
);
649 /* Decode the length of the match into s->lzma.len. */
650 static void lzma_len(struct xz_dec_lzma2
*s
, struct lzma_len_dec
*l
,
656 if (!rc_bit(&s
->rc
, &l
->choice
)) {
657 probs
= l
->low
[pos_state
];
658 limit
= LEN_LOW_SYMBOLS
;
659 s
->lzma
.len
= MATCH_LEN_MIN
;
661 if (!rc_bit(&s
->rc
, &l
->choice2
)) {
662 probs
= l
->mid
[pos_state
];
663 limit
= LEN_MID_SYMBOLS
;
664 s
->lzma
.len
= MATCH_LEN_MIN
+ LEN_LOW_SYMBOLS
;
667 limit
= LEN_HIGH_SYMBOLS
;
668 s
->lzma
.len
= MATCH_LEN_MIN
+ LEN_LOW_SYMBOLS
673 s
->lzma
.len
+= rc_bittree(&s
->rc
, probs
, limit
) - limit
;
676 /* Decode a match. The distance will be stored in s->lzma.rep0. */
677 static void lzma_match(struct xz_dec_lzma2
*s
, uint32_t pos_state
)
683 lzma_state_match(&s
->lzma
.state
);
685 s
->lzma
.rep3
= s
->lzma
.rep2
;
686 s
->lzma
.rep2
= s
->lzma
.rep1
;
687 s
->lzma
.rep1
= s
->lzma
.rep0
;
689 lzma_len(s
, &s
->lzma
.match_len_dec
, pos_state
);
691 probs
= s
->lzma
.dist_slot
[lzma_get_dist_state(s
->lzma
.len
)];
692 dist_slot
= rc_bittree(&s
->rc
, probs
, DIST_SLOTS
) - DIST_SLOTS
;
694 if (dist_slot
< DIST_MODEL_START
) {
695 s
->lzma
.rep0
= dist_slot
;
697 limit
= (dist_slot
>> 1) - 1;
698 s
->lzma
.rep0
= 2 + (dist_slot
& 1);
700 if (dist_slot
< DIST_MODEL_END
) {
701 s
->lzma
.rep0
<<= limit
;
702 probs
= s
->lzma
.dist_special
+ s
->lzma
.rep0
704 rc_bittree_reverse(&s
->rc
, probs
,
705 &s
->lzma
.rep0
, limit
);
707 rc_direct(&s
->rc
, &s
->lzma
.rep0
, limit
- ALIGN_BITS
);
708 s
->lzma
.rep0
<<= ALIGN_BITS
;
709 rc_bittree_reverse(&s
->rc
, s
->lzma
.dist_align
,
710 &s
->lzma
.rep0
, ALIGN_BITS
);
716 * Decode a repeated match. The distance is one of the four most recently
717 * seen matches. The distance will be stored in s->lzma.rep0.
719 static void lzma_rep_match(struct xz_dec_lzma2
*s
, uint32_t pos_state
)
723 if (!rc_bit(&s
->rc
, &s
->lzma
.is_rep0
[s
->lzma
.state
])) {
724 if (!rc_bit(&s
->rc
, &s
->lzma
.is_rep0_long
[
725 s
->lzma
.state
][pos_state
])) {
726 lzma_state_short_rep(&s
->lzma
.state
);
731 if (!rc_bit(&s
->rc
, &s
->lzma
.is_rep1
[s
->lzma
.state
])) {
734 if (!rc_bit(&s
->rc
, &s
->lzma
.is_rep2
[s
->lzma
.state
])) {
738 s
->lzma
.rep3
= s
->lzma
.rep2
;
741 s
->lzma
.rep2
= s
->lzma
.rep1
;
744 s
->lzma
.rep1
= s
->lzma
.rep0
;
748 lzma_state_long_rep(&s
->lzma
.state
);
749 lzma_len(s
, &s
->lzma
.rep_len_dec
, pos_state
);
752 /* LZMA decoder core */
753 static bool lzma_main(struct xz_dec_lzma2
*s
)
758 * If the dictionary was reached during the previous call, try to
759 * finish the possibly pending repeat in the dictionary.
761 if (dict_has_space(&s
->dict
) && s
->lzma
.len
> 0)
762 dict_repeat(&s
->dict
, &s
->lzma
.len
, s
->lzma
.rep0
);
765 * Decode more LZMA symbols. One iteration may consume up to
766 * LZMA_IN_REQUIRED - 1 bytes.
768 while (dict_has_space(&s
->dict
) && !rc_limit_exceeded(&s
->rc
)) {
769 pos_state
= s
->dict
.pos
& s
->lzma
.pos_mask
;
771 if (!rc_bit(&s
->rc
, &s
->lzma
.is_match
[
772 s
->lzma
.state
][pos_state
])) {
775 if (rc_bit(&s
->rc
, &s
->lzma
.is_rep
[s
->lzma
.state
]))
776 lzma_rep_match(s
, pos_state
);
778 lzma_match(s
, pos_state
);
780 if (!dict_repeat(&s
->dict
, &s
->lzma
.len
, s
->lzma
.rep0
))
786 * Having the range decoder always normalized when we are outside
787 * this function makes it easier to correctly handle end of the chunk.
789 rc_normalize(&s
->rc
);
795 * Reset the LZMA decoder and range decoder state. Dictionary is not reset
796 * here, because LZMA state may be reset without resetting the dictionary.
798 static void lzma_reset(struct xz_dec_lzma2
*s
)
803 s
->lzma
.state
= STATE_LIT_LIT
;
811 * All probabilities are initialized to the same value. This hack
812 * makes the code smaller by avoiding a separate loop for each
815 * This could be optimized so that only that part of literal
816 * probabilities that are actually required. In the common case
817 * we would write 12 KiB less.
819 probs
= s
->lzma
.is_match
[0];
820 for (i
= 0; i
< PROBS_TOTAL
; ++i
)
821 probs
[i
] = RC_BIT_MODEL_TOTAL
/ 2;
827 * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
828 * from the decoded lp and pb values. On success, the LZMA decoder state is
829 * reset and true is returned.
831 static bool lzma_props(struct xz_dec_lzma2
*s
, uint8_t props
)
833 if (props
> (4 * 5 + 4) * 9 + 8)
836 s
->lzma
.pos_mask
= 0;
837 while (props
>= 9 * 5) {
842 s
->lzma
.pos_mask
= (1 << s
->lzma
.pos_mask
) - 1;
844 s
->lzma
.literal_pos_mask
= 0;
847 ++s
->lzma
.literal_pos_mask
;
852 if (s
->lzma
.lc
+ s
->lzma
.literal_pos_mask
> 4)
855 s
->lzma
.literal_pos_mask
= (1 << s
->lzma
.literal_pos_mask
) - 1;
867 * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
868 * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
869 * wrapper function takes care of making the LZMA decoder's assumption safe.
871 * As long as there is plenty of input left to be decoded in the current LZMA
872 * chunk, we decode directly from the caller-supplied input buffer until
873 * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
874 * s->temp.buf, which (hopefully) gets filled on the next call to this
875 * function. We decode a few bytes from the temporary buffer so that we can
876 * continue decoding from the caller-supplied input buffer again.
878 static bool lzma2_lzma(struct xz_dec_lzma2
*s
, struct xz_buf
*b
)
883 in_avail
= b
->in_size
- b
->in_pos
;
884 if (s
->temp
.size
> 0 || s
->lzma2
.compressed
== 0) {
885 tmp
= 2 * LZMA_IN_REQUIRED
- s
->temp
.size
;
886 if (tmp
> s
->lzma2
.compressed
- s
->temp
.size
)
887 tmp
= s
->lzma2
.compressed
- s
->temp
.size
;
891 memcpy(s
->temp
.buf
+ s
->temp
.size
, b
->in
+ b
->in_pos
, tmp
);
893 if (s
->temp
.size
+ tmp
== s
->lzma2
.compressed
) {
894 memzero(s
->temp
.buf
+ s
->temp
.size
+ tmp
,
896 - s
->temp
.size
- tmp
);
897 s
->rc
.in_limit
= s
->temp
.size
+ tmp
;
898 } else if (s
->temp
.size
+ tmp
< LZMA_IN_REQUIRED
) {
903 s
->rc
.in_limit
= s
->temp
.size
+ tmp
- LZMA_IN_REQUIRED
;
906 s
->rc
.in
= s
->temp
.buf
;
909 if (!lzma_main(s
) || s
->rc
.in_pos
> s
->temp
.size
+ tmp
)
912 s
->lzma2
.compressed
-= s
->rc
.in_pos
;
914 if (s
->rc
.in_pos
< s
->temp
.size
) {
915 s
->temp
.size
-= s
->rc
.in_pos
;
916 memmove(s
->temp
.buf
, s
->temp
.buf
+ s
->rc
.in_pos
,
921 b
->in_pos
+= s
->rc
.in_pos
- s
->temp
.size
;
925 in_avail
= b
->in_size
- b
->in_pos
;
926 if (in_avail
>= LZMA_IN_REQUIRED
) {
928 s
->rc
.in_pos
= b
->in_pos
;
930 if (in_avail
>= s
->lzma2
.compressed
+ LZMA_IN_REQUIRED
)
931 s
->rc
.in_limit
= b
->in_pos
+ s
->lzma2
.compressed
;
933 s
->rc
.in_limit
= b
->in_size
- LZMA_IN_REQUIRED
;
938 in_avail
= s
->rc
.in_pos
- b
->in_pos
;
939 if (in_avail
> s
->lzma2
.compressed
)
942 s
->lzma2
.compressed
-= in_avail
;
943 b
->in_pos
= s
->rc
.in_pos
;
946 in_avail
= b
->in_size
- b
->in_pos
;
947 if (in_avail
< LZMA_IN_REQUIRED
) {
948 if (in_avail
> s
->lzma2
.compressed
)
949 in_avail
= s
->lzma2
.compressed
;
951 memcpy(s
->temp
.buf
, b
->in
+ b
->in_pos
, in_avail
);
952 s
->temp
.size
= in_avail
;
953 b
->in_pos
+= in_avail
;
960 * Take care of the LZMA2 control layer, and forward the job of actual LZMA
961 * decoding or copying of uncompressed chunks to other functions.
963 enum xz_ret
xz_dec_lzma2_run(struct xz_dec_lzma2
*s
, struct xz_buf
*b
)
967 while (b
->in_pos
< b
->in_size
|| s
->lzma2
.sequence
== SEQ_LZMA_RUN
) {
968 switch (s
->lzma2
.sequence
) {
975 * 0x01 Dictionary reset followed by
976 * an uncompressed chunk
977 * 0x02 Uncompressed chunk (no dictionary reset)
979 * Highest three bits (s->control & 0xE0):
980 * 0xE0 Dictionary reset, new properties and state
981 * reset, followed by LZMA compressed chunk
982 * 0xC0 New properties and state reset, followed
983 * by LZMA compressed chunk (no dictionary
985 * 0xA0 State reset using old properties,
986 * followed by LZMA compressed chunk (no
988 * 0x80 LZMA chunk (no dictionary or state reset)
990 * For LZMA compressed chunks, the lowest five bits
991 * (s->control & 1F) are the highest bits of the
992 * uncompressed size (bits 16-20).
994 * A new LZMA2 stream must begin with a dictionary
995 * reset. The first LZMA chunk must set new
996 * properties and reset the LZMA state.
998 * Values that don't match anything described above
999 * are invalid and we return XZ_DATA_ERROR.
1001 tmp
= b
->in
[b
->in_pos
++];
1004 return XZ_STREAM_END
;
1006 if (tmp
>= 0xE0 || tmp
== 0x01) {
1007 s
->lzma2
.need_props
= true;
1008 s
->lzma2
.need_dict_reset
= false;
1009 dict_reset(&s
->dict
, b
);
1010 } else if (s
->lzma2
.need_dict_reset
) {
1011 return XZ_DATA_ERROR
;
1015 s
->lzma2
.uncompressed
= (tmp
& 0x1F) << 16;
1016 s
->lzma2
.sequence
= SEQ_UNCOMPRESSED_1
;
1020 * When there are new properties,
1021 * state reset is done at
1024 s
->lzma2
.need_props
= false;
1025 s
->lzma2
.next_sequence
1028 } else if (s
->lzma2
.need_props
) {
1029 return XZ_DATA_ERROR
;
1032 s
->lzma2
.next_sequence
1039 return XZ_DATA_ERROR
;
1041 s
->lzma2
.sequence
= SEQ_COMPRESSED_0
;
1042 s
->lzma2
.next_sequence
= SEQ_COPY
;
1047 case SEQ_UNCOMPRESSED_1
:
1048 s
->lzma2
.uncompressed
1049 += (uint32_t)b
->in
[b
->in_pos
++] << 8;
1050 s
->lzma2
.sequence
= SEQ_UNCOMPRESSED_2
;
1053 case SEQ_UNCOMPRESSED_2
:
1054 s
->lzma2
.uncompressed
1055 += (uint32_t)b
->in
[b
->in_pos
++] + 1;
1056 s
->lzma2
.sequence
= SEQ_COMPRESSED_0
;
1059 case SEQ_COMPRESSED_0
:
1061 = (uint32_t)b
->in
[b
->in_pos
++] << 8;
1062 s
->lzma2
.sequence
= SEQ_COMPRESSED_1
;
1065 case SEQ_COMPRESSED_1
:
1067 += (uint32_t)b
->in
[b
->in_pos
++] + 1;
1068 s
->lzma2
.sequence
= s
->lzma2
.next_sequence
;
1071 case SEQ_PROPERTIES
:
1072 if (!lzma_props(s
, b
->in
[b
->in_pos
++]))
1073 return XZ_DATA_ERROR
;
1075 s
->lzma2
.sequence
= SEQ_LZMA_PREPARE
;
1079 case SEQ_LZMA_PREPARE
:
1080 if (s
->lzma2
.compressed
< RC_INIT_BYTES
)
1081 return XZ_DATA_ERROR
;
1083 if (!rc_read_init(&s
->rc
, b
))
1086 s
->lzma2
.compressed
-= RC_INIT_BYTES
;
1087 s
->lzma2
.sequence
= SEQ_LZMA_RUN
;
1093 * Set dictionary limit to indicate how much we want
1094 * to be encoded at maximum. Decode new data into the
1095 * dictionary. Flush the new data from dictionary to
1096 * b->out. Check if we finished decoding this chunk.
1097 * In case the dictionary got full but we didn't fill
1098 * the output buffer yet, we may run this loop
1099 * multiple times without changing s->lzma2.sequence.
1101 dict_limit(&s
->dict
, min_t(size_t,
1102 b
->out_size
- b
->out_pos
,
1103 s
->lzma2
.uncompressed
));
1104 if (!lzma2_lzma(s
, b
))
1105 return XZ_DATA_ERROR
;
1107 s
->lzma2
.uncompressed
-= dict_flush(&s
->dict
, b
);
1109 if (s
->lzma2
.uncompressed
== 0) {
1110 if (s
->lzma2
.compressed
> 0 || s
->lzma
.len
> 0
1111 || !rc_is_finished(&s
->rc
))
1112 return XZ_DATA_ERROR
;
1115 s
->lzma2
.sequence
= SEQ_CONTROL
;
1117 } else if (b
->out_pos
== b
->out_size
1118 || (b
->in_pos
== b
->in_size
1120 < s
->lzma2
.compressed
)) {
1127 dict_uncompressed(&s
->dict
, b
, &s
->lzma2
.compressed
);
1128 if (s
->lzma2
.compressed
> 0)
1131 s
->lzma2
.sequence
= SEQ_CONTROL
;
1139 struct xz_dec_lzma2
*xz_dec_lzma2_create(enum xz_mode mode
, uint32_t dict_max
)
1141 struct xz_dec_lzma2
*s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1145 s
->dict
.mode
= mode
;
1146 s
->dict
.size_max
= dict_max
;
1148 if (DEC_IS_PREALLOC(mode
)) {
1149 s
->dict
.buf
= vmalloc(dict_max
);
1150 if (s
->dict
.buf
== NULL
) {
1154 } else if (DEC_IS_DYNALLOC(mode
)) {
1156 s
->dict
.allocated
= 0;
1162 enum xz_ret
xz_dec_lzma2_reset(struct xz_dec_lzma2
*s
, uint8_t props
)
1164 /* This limits dictionary size to 3 GiB to keep parsing simpler. */
1166 return XZ_OPTIONS_ERROR
;
1168 s
->dict
.size
= 2 + (props
& 1);
1169 s
->dict
.size
<<= (props
>> 1) + 11;
1171 if (DEC_IS_MULTI(s
->dict
.mode
)) {
1172 if (s
->dict
.size
> s
->dict
.size_max
)
1173 return XZ_MEMLIMIT_ERROR
;
1175 s
->dict
.end
= s
->dict
.size
;
1177 if (DEC_IS_DYNALLOC(s
->dict
.mode
)) {
1178 if (s
->dict
.allocated
< s
->dict
.size
) {
1179 s
->dict
.allocated
= s
->dict
.size
;
1181 s
->dict
.buf
= vmalloc(s
->dict
.size
);
1182 if (s
->dict
.buf
== NULL
) {
1183 s
->dict
.allocated
= 0;
1184 return XZ_MEM_ERROR
;
1190 s
->lzma2
.sequence
= SEQ_CONTROL
;
1191 s
->lzma2
.need_dict_reset
= true;
1198 void xz_dec_lzma2_end(struct xz_dec_lzma2
*s
)
1200 if (DEC_IS_MULTI(s
->dict
.mode
))
1206 #ifdef XZ_DEC_MICROLZMA
1207 /* This is a wrapper struct to have a nice struct name in the public API. */
1208 struct xz_dec_microlzma
{
1209 struct xz_dec_lzma2 s
;
1212 enum xz_ret
xz_dec_microlzma_run(struct xz_dec_microlzma
*s_ptr
,
1215 struct xz_dec_lzma2
*s
= &s_ptr
->s
;
1218 * sequence is SEQ_PROPERTIES before the first input byte,
1219 * SEQ_LZMA_PREPARE until a total of five bytes have been read,
1220 * and SEQ_LZMA_RUN for the rest of the input stream.
1222 if (s
->lzma2
.sequence
!= SEQ_LZMA_RUN
) {
1223 if (s
->lzma2
.sequence
== SEQ_PROPERTIES
) {
1224 /* One byte is needed for the props. */
1225 if (b
->in_pos
>= b
->in_size
)
1229 * Don't increment b->in_pos here. The same byte is
1230 * also passed to rc_read_init() which will ignore it.
1232 if (!lzma_props(s
, ~b
->in
[b
->in_pos
]))
1233 return XZ_DATA_ERROR
;
1235 s
->lzma2
.sequence
= SEQ_LZMA_PREPARE
;
1239 * xz_dec_microlzma_reset() doesn't validate the compressed
1240 * size so we do it here. We have to limit the maximum size
1241 * to avoid integer overflows in lzma2_lzma(). 3 GiB is a nice
1242 * round number and much more than users of this code should
1245 if (s
->lzma2
.compressed
< RC_INIT_BYTES
1246 || s
->lzma2
.compressed
> (3U << 30))
1247 return XZ_DATA_ERROR
;
1249 if (!rc_read_init(&s
->rc
, b
))
1252 s
->lzma2
.compressed
-= RC_INIT_BYTES
;
1253 s
->lzma2
.sequence
= SEQ_LZMA_RUN
;
1255 dict_reset(&s
->dict
, b
);
1258 /* This is to allow increasing b->out_size between calls. */
1259 if (DEC_IS_SINGLE(s
->dict
.mode
))
1260 s
->dict
.end
= b
->out_size
- b
->out_pos
;
1263 dict_limit(&s
->dict
, min_t(size_t, b
->out_size
- b
->out_pos
,
1264 s
->lzma2
.uncompressed
));
1266 if (!lzma2_lzma(s
, b
))
1267 return XZ_DATA_ERROR
;
1269 s
->lzma2
.uncompressed
-= dict_flush(&s
->dict
, b
);
1271 if (s
->lzma2
.uncompressed
== 0) {
1272 if (s
->lzma2
.pedantic_microlzma
) {
1273 if (s
->lzma2
.compressed
> 0 || s
->lzma
.len
> 0
1274 || !rc_is_finished(&s
->rc
))
1275 return XZ_DATA_ERROR
;
1278 return XZ_STREAM_END
;
1281 if (b
->out_pos
== b
->out_size
)
1284 if (b
->in_pos
== b
->in_size
1285 && s
->temp
.size
< s
->lzma2
.compressed
)
1290 struct xz_dec_microlzma
*xz_dec_microlzma_alloc(enum xz_mode mode
,
1293 struct xz_dec_microlzma
*s
;
1295 /* Restrict dict_size to the same range as in the LZMA2 code. */
1296 if (dict_size
< 4096 || dict_size
> (3U << 30))
1299 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1303 s
->s
.dict
.mode
= mode
;
1304 s
->s
.dict
.size
= dict_size
;
1306 if (DEC_IS_MULTI(mode
)) {
1307 s
->s
.dict
.end
= dict_size
;
1309 s
->s
.dict
.buf
= vmalloc(dict_size
);
1310 if (s
->s
.dict
.buf
== NULL
) {
1319 void xz_dec_microlzma_reset(struct xz_dec_microlzma
*s
, uint32_t comp_size
,
1320 uint32_t uncomp_size
, int uncomp_size_is_exact
)
1323 * comp_size is validated in xz_dec_microlzma_run().
1324 * uncomp_size can safely be anything.
1326 s
->s
.lzma2
.compressed
= comp_size
;
1327 s
->s
.lzma2
.uncompressed
= uncomp_size
;
1328 s
->s
.lzma2
.pedantic_microlzma
= uncomp_size_is_exact
;
1330 s
->s
.lzma2
.sequence
= SEQ_PROPERTIES
;
1334 void xz_dec_microlzma_end(struct xz_dec_microlzma
*s
)
1336 if (DEC_IS_MULTI(s
->s
.dict
.mode
))
1337 vfree(s
->s
.dict
.buf
);