2006-03-03 Steven Munroe <sjmunroe@us.ibm.com>
[glibc/history.git] / sysdeps / ieee754 / ldbl-128ibm / s_tanl.c
blobea5a7f0ffb7fd44c541b5eb2fe7e6b8a8b4c6004
1 /* s_tanl.c -- long double version of s_tan.c.
2 * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
3 */
5 /* @(#)s_tan.c 5.1 93/09/24 */
6 /*
7 * ====================================================
8 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
10 * Developed at SunPro, a Sun Microsystems, Inc. business.
11 * Permission to use, copy, modify, and distribute this
12 * software is freely granted, provided that this notice
13 * is preserved.
14 * ====================================================
17 /* tanl(x)
18 * Return tangent function of x.
20 * kernel function:
21 * __kernel_tanl ... tangent function on [-pi/4,pi/4]
22 * __ieee754_rem_pio2l ... argument reduction routine
24 * Method.
25 * Let S,C and T denote the sin, cos and tan respectively on
26 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
27 * in [-pi/4 , +pi/4], and let n = k mod 4.
28 * We have
30 * n sin(x) cos(x) tan(x)
31 * ----------------------------------------------------------
32 * 0 S C T
33 * 1 C -S -1/T
34 * 2 -S -C T
35 * 3 -C S -1/T
36 * ----------------------------------------------------------
38 * Special cases:
39 * Let trig be any of sin, cos, or tan.
40 * trig(+-INF) is NaN, with signals;
41 * trig(NaN) is that NaN;
43 * Accuracy:
44 * TRIG(x) returns trig(x) nearly rounded
47 #include "math.h"
48 #include "math_private.h"
49 #include <math_ldbl_opt.h>
51 #ifdef __STDC__
52 long double __tanl(long double x)
53 #else
54 long double __tanl(x)
55 long double x;
56 #endif
58 long double y[2],z=0.0L;
59 int64_t n, ix;
61 /* High word of x. */
62 GET_LDOUBLE_MSW64(ix,x);
64 /* |x| ~< pi/4 */
65 ix &= 0x7fffffffffffffffLL;
66 if(ix <= 0x3fe921fb54442d10LL) return __kernel_tanl(x,z,1);
68 /* tanl(Inf or NaN) is NaN */
69 else if (ix>=0x7ff0000000000000LL) return x-x; /* NaN */
71 /* argument reduction needed */
72 else {
73 n = __ieee754_rem_pio2l(x,y);
74 return __kernel_tanl(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
75 -1 -- n odd */
78 long_double_symbol (libm, __tanl, tanl);