1 /* s_tanl.c -- long double version of s_tan.c.
2 * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
5 /* @(#)s_tan.c 5.1 93/09/24 */
7 * ====================================================
8 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
10 * Developed at SunPro, a Sun Microsystems, Inc. business.
11 * Permission to use, copy, modify, and distribute this
12 * software is freely granted, provided that this notice
14 * ====================================================
18 * Return tangent function of x.
21 * __kernel_tanl ... tangent function on [-pi/4,pi/4]
22 * __ieee754_rem_pio2l ... argument reduction routine
25 * Let S,C and T denote the sin, cos and tan respectively on
26 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
27 * in [-pi/4 , +pi/4], and let n = k mod 4.
30 * n sin(x) cos(x) tan(x)
31 * ----------------------------------------------------------
36 * ----------------------------------------------------------
39 * Let trig be any of sin, cos, or tan.
40 * trig(+-INF) is NaN, with signals;
41 * trig(NaN) is that NaN;
44 * TRIG(x) returns trig(x) nearly rounded
48 #include "math_private.h"
49 #include <math_ldbl_opt.h>
52 long double __tanl(long double x
)
58 long double y
[2],z
=0.0L;
62 GET_LDOUBLE_MSW64(ix
,x
);
65 ix
&= 0x7fffffffffffffffLL
;
66 if(ix
<= 0x3fe921fb54442d10LL
) return __kernel_tanl(x
,z
,1);
68 /* tanl(Inf or NaN) is NaN */
69 else if (ix
>=0x7ff0000000000000LL
) return x
-x
; /* NaN */
71 /* argument reduction needed */
73 n
= __ieee754_rem_pio2l(x
,y
);
74 return __kernel_tanl(y
[0],y
[1],1-((n
&1)<<1)); /* 1 -- n even
78 long_double_symbol (libm
, __tanl
, tanl
);