Thu Jun 27 14:22:31 1996 Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
[glibc/history.git] / elf / rtld.c
blobf20602d0902546659c75338843318849add0531c
1 /* Run time dynamic linker.
2 Copyright (C) 1995, 1996 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If
17 not, write to the Free Software Foundation, Inc., 675 Mass Ave,
18 Cambridge, MA 02139, USA. */
20 #include <link.h>
21 #include "dynamic-link.h"
22 #include <stddef.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include "../stdio-common/_itoa.h"
28 #ifdef RTLD_START
29 RTLD_START
30 #else
31 #error "sysdeps/MACHINE/dl-machine.h fails to define RTLD_START"
32 #endif
34 /* System-specific function to do initial startup for the dynamic linker.
35 After this, file access calls and getenv must work. This is responsible
36 for setting _dl_secure if we need to be secure (e.g. setuid),
37 and for setting _dl_argc and _dl_argv, and then calling _dl_main. */
38 extern ElfW(Addr) _dl_sysdep_start (void **start_argptr,
39 void (*dl_main) (const ElfW(Phdr) *phdr,
40 ElfW(Half) phent,
41 ElfW(Addr) *user_entry));
42 extern void _dl_sysdep_start_cleanup (void);
44 int _dl_secure;
45 int _dl_argc;
46 char **_dl_argv;
47 const char *_dl_rpath;
49 static void dl_main (const ElfW(Phdr) *phdr,
50 ElfW(Half) phent,
51 ElfW(Addr) *user_entry);
53 struct link_map _dl_rtld_map;
55 ElfW(Addr)
56 _dl_start (void *arg)
58 struct link_map bootstrap_map;
60 /* Figure out the run-time load address of the dynamic linker itself. */
61 bootstrap_map.l_addr = elf_machine_load_address ();
63 /* Read our own dynamic section and fill in the info array.
64 Conveniently, the first element of the GOT contains the
65 offset of _DYNAMIC relative to the run-time load address. */
66 bootstrap_map.l_ld = (void *) bootstrap_map.l_addr + *elf_machine_got ();
67 elf_get_dynamic_info (bootstrap_map.l_ld, bootstrap_map.l_info);
69 #ifdef ELF_MACHINE_BEFORE_RTLD_RELOC
70 ELF_MACHINE_BEFORE_RTLD_RELOC (bootstrap_map.l_info);
71 #endif
73 /* Relocate ourselves so we can do normal function calls and
74 data access using the global offset table. */
76 ELF_DYNAMIC_RELOCATE (&bootstrap_map, 0, NULL);
79 /* Now life is sane; we can call functions and access global data.
80 Set up to use the operating system facilities, and find out from
81 the operating system's program loader where to find the program
82 header table in core. */
85 /* Transfer data about ourselves to the permanent link_map structure. */
86 _dl_rtld_map.l_addr = bootstrap_map.l_addr;
87 _dl_rtld_map.l_ld = bootstrap_map.l_ld;
88 memcpy (_dl_rtld_map.l_info, bootstrap_map.l_info,
89 sizeof _dl_rtld_map.l_info);
90 _dl_setup_hash (&_dl_rtld_map);
92 /* Cache the DT_RPATH stored in ld.so itself; this will be
93 the default search path. */
94 _dl_rpath = (void *) (_dl_rtld_map.l_addr +
95 _dl_rtld_map.l_info[DT_STRTAB]->d_un.d_ptr +
96 _dl_rtld_map.l_info[DT_RPATH]->d_un.d_val);
98 /* Call the OS-dependent function to set up life so we can do things like
99 file access. It will call `dl_main' (below) to do all the real work
100 of the dynamic linker, and then unwind our frame and run the user
101 entry point on the same stack we entered on. */
102 return _dl_sysdep_start (arg, &dl_main);
106 /* Now life is peachy; we can do all normal operations.
107 On to the real work. */
109 void _start (void);
111 unsigned int _dl_skip_args; /* Nonzero if we were run directly. */
113 static void
114 dl_main (const ElfW(Phdr) *phdr,
115 ElfW(Half) phent,
116 ElfW(Addr) *user_entry)
118 const ElfW(Phdr) *ph;
119 struct link_map *l;
120 const char *interpreter_name;
121 int lazy;
122 int list_only = 0;
124 if (*user_entry == (ElfW(Addr)) &_start)
126 /* Ho ho. We are not the program interpreter! We are the program
127 itself! This means someone ran ld.so as a command. Well, that
128 might be convenient to do sometimes. We support it by
129 interpreting the args like this:
131 ld.so PROGRAM ARGS...
133 The first argument is the name of a file containing an ELF
134 executable we will load and run with the following arguments.
135 To simplify life here, PROGRAM is searched for using the
136 normal rules for shared objects, rather than $PATH or anything
137 like that. We just load it and use its entry point; we don't
138 pay attention to its PT_INTERP command (we are the interpreter
139 ourselves). This is an easy way to test a new ld.so before
140 installing it. */
141 if (_dl_argc < 2)
142 _dl_sysdep_fatal ("\
143 Usage: ld.so [--list] EXECUTABLE-FILE [ARGS-FOR-PROGRAM...]\n\
144 You have invoked `ld.so', the helper program for shared library executables.\n\
145 This program usually lives in the file `/lib/ld.so', and special directives\n\
146 in executable files using ELF shared libraries tell the system's program\n\
147 loader to load the helper program from this file. This helper program loads\n\
148 the shared libraries needed by the program executable, prepares the program\n\
149 to run, and runs it. You may invoke this helper program directly from the\n\
150 command line to load and run an ELF executable file; this is like executing\n\
151 that file itself, but always uses this helper program from the file you\n\
152 specified, instead of the helper program file specified in the executable\n\
153 file you run. This is mostly of use for maintainers to test new versions\n\
154 of this helper program; chances are you did not intend to run this program.\n",
155 NULL);
157 interpreter_name = _dl_argv[0];
159 if (! strcmp (_dl_argv[1], "--list"))
161 list_only = 1;
163 ++_dl_skip_args;
164 --_dl_argc;
165 ++_dl_argv;
168 ++_dl_skip_args;
169 --_dl_argc;
170 ++_dl_argv;
172 l = _dl_map_object (NULL, _dl_argv[0], lt_library);
173 phdr = l->l_phdr;
174 phent = l->l_phnum;
175 l->l_name = (char *) "";
176 *user_entry = l->l_entry;
178 else
180 /* Create a link_map for the executable itself.
181 This will be what dlopen on "" returns. */
182 l = _dl_new_object ((char *) "", "", lt_library);
183 l->l_phdr = phdr;
184 l->l_phnum = phent;
185 interpreter_name = 0;
186 l->l_entry = *user_entry;
189 if (l != _dl_loaded)
191 /* GDB assumes that the first element on the chain is the
192 link_map for the executable itself, and always skips it.
193 Make sure the first one is indeed that one. */
194 l->l_prev->l_next = l->l_next;
195 if (l->l_next)
196 l->l_next->l_prev = l->l_prev;
197 l->l_prev = NULL;
198 l->l_next = _dl_loaded;
199 _dl_loaded->l_prev = l;
200 _dl_loaded = l;
203 /* Scan the program header table for the dynamic section. */
204 for (ph = phdr; ph < &phdr[phent]; ++ph)
205 switch (ph->p_type)
207 case PT_DYNAMIC:
208 /* This tells us where to find the dynamic section,
209 which tells us everything we need to do. */
210 l->l_ld = (void *) l->l_addr + ph->p_vaddr;
211 break;
212 case PT_INTERP:
213 /* This "interpreter segment" was used by the program loader to
214 find the program interpreter, which is this program itself, the
215 dynamic linker. We note what name finds us, so that a future
216 dlopen call or DT_NEEDED entry, for something that wants to link
217 against the dynamic linker as a shared library, will know that
218 the shared object is already loaded. */
219 interpreter_name = (void *) l->l_addr + ph->p_vaddr;
220 break;
222 assert (interpreter_name); /* How else did we get here? */
224 /* Extract the contents of the dynamic section for easy access. */
225 elf_get_dynamic_info (l->l_ld, l->l_info);
226 if (l->l_info[DT_HASH])
227 /* Set up our cache of pointers into the hash table. */
228 _dl_setup_hash (l);
230 /* Put the link_map for ourselves on the chain so it can be found by
231 name. */
232 _dl_rtld_map.l_name = (char *) _dl_rtld_map.l_libname = interpreter_name;
233 _dl_rtld_map.l_type = lt_library;
234 while (l->l_next)
235 l = l->l_next;
236 l->l_next = &_dl_rtld_map;
237 _dl_rtld_map.l_prev = l;
239 /* Load all the libraries specified by DT_NEEDED entries. */
240 _dl_map_object_deps (l);
242 /* We are done mapping things, so close the zero-fill descriptor. */
243 __close (_dl_zerofd);
244 _dl_zerofd = -1;
246 /* Remove _dl_rtld_map from the chain. */
247 _dl_rtld_map.l_prev->l_next = _dl_rtld_map.l_next;
248 if (_dl_rtld_map.l_next)
249 _dl_rtld_map.l_next->l_prev = _dl_rtld_map.l_prev;
251 if (_dl_rtld_map.l_opencount)
253 /* Some DT_NEEDED entry referred to the interpreter object itself, so
254 put it back in the list of visible objects. We insert it into the
255 chain in symbol search order because gdb uses the chain's order as
256 its symbol search order. */
257 unsigned int i = 1;
258 while (l->l_searchlist[i] != &_dl_rtld_map)
259 ++i;
260 _dl_rtld_map.l_prev = l->l_searchlist[i - 1];
261 _dl_rtld_map.l_next = (i + 1 < l->l_nsearchlist ?
262 l->l_searchlist[i + 1] : NULL);
263 assert (_dl_rtld_map.l_prev->l_next == _dl_rtld_map.l_next);
264 _dl_rtld_map.l_prev->l_next = &_dl_rtld_map;
265 if (_dl_rtld_map.l_next)
267 assert (_dl_rtld_map.l_next->l_prev == _dl_rtld_map.l_prev);
268 _dl_rtld_map.l_next->l_prev = &_dl_rtld_map;
272 if (list_only)
274 /* We were run just to list the shared libraries. It is
275 important that we do this before real relocation, because the
276 functions we call below for output may no longer work properly
277 after relocation. */
279 int i;
281 if (! _dl_loaded->l_info[DT_NEEDED])
282 _dl_sysdep_message ("\t", "statically linked\n", NULL);
283 else
284 for (l = _dl_loaded->l_next; l; l = l->l_next)
286 char buf[20], *bp;
287 buf[sizeof buf - 1] = '\0';
288 bp = _itoa (l->l_addr, &buf[sizeof buf - 1], 16, 0);
289 while (&buf[sizeof buf - 1] - bp < sizeof l->l_addr * 2)
290 *--bp = '0';
291 _dl_sysdep_message ("\t", l->l_libname, " => ", l->l_name,
292 " (0x", bp, ")\n", NULL);
295 for (i = 1; i < _dl_argc; ++i)
297 const ElfW(Sym) *ref = NULL;
298 ElfW(Addr) loadbase = _dl_lookup_symbol (_dl_argv[i], &ref,
299 &_dl_default_scope[2],
300 "argument", 0, 0);
301 char buf[20], *bp;
302 buf[sizeof buf - 1] = '\0';
303 bp = _itoa (ref->st_value, &buf[sizeof buf - 1], 16, 0);
304 while (&buf[sizeof buf - 1] - bp < sizeof loadbase * 2)
305 *--bp = '0';
306 _dl_sysdep_message (_dl_argv[i], " found at 0x", bp, NULL);
307 buf[sizeof buf - 1] = '\0';
308 bp = _itoa (loadbase, &buf[sizeof buf - 1], 16, 0);
309 while (&buf[sizeof buf - 1] - bp < sizeof loadbase * 2)
310 *--bp = '0';
311 _dl_sysdep_message (" in object at 0x", bp, "\n", NULL);
314 _exit (0);
317 lazy = !_dl_secure && *(getenv ("LD_BIND_NOW") ?: "") == '\0';
320 /* Now we have all the objects loaded. Relocate them all except for
321 the dynamic linker itself. We do this in reverse order so that copy
322 relocs of earlier objects overwrite the data written by later
323 objects. We do not re-relocate the dynamic linker itself in this
324 loop because that could result in the GOT entries for functions we
325 call being changed, and that would break us. It is safe to relocate
326 the dynamic linker out of order because it has no copy relocs (we
327 know that because it is self-contained). */
329 l = _dl_loaded;
330 while (l->l_next)
331 l = l->l_next;
334 if (l != &_dl_rtld_map)
336 _dl_relocate_object (l, _dl_object_relocation_scope (l), lazy);
337 *_dl_global_scope_end = NULL;
339 l = l->l_prev;
340 } while (l);
342 /* Do any necessary cleanups for the startup OS interface code.
343 We do these now so that no calls are made after rtld re-relocation
344 which might be resolved to different functions than we expect.
345 We cannot do this before relocating the other objects because
346 _dl_relocate_object might need to call `mprotect' for DT_TEXTREL. */
347 _dl_sysdep_start_cleanup ();
349 if (_dl_rtld_map.l_opencount > 0)
350 /* There was an explicit ref to the dynamic linker as a shared lib.
351 Re-relocate ourselves with user-controlled symbol definitions. */
352 _dl_relocate_object (&_dl_rtld_map, &_dl_default_scope[2], 0);
356 /* Initialize _r_debug. */
357 struct r_debug *r = _dl_debug_initialize (_dl_rtld_map.l_addr);
359 l = _dl_loaded;
360 if (l->l_info[DT_DEBUG])
361 /* There is a DT_DEBUG entry in the dynamic section. Fill it in
362 with the run-time address of the r_debug structure */
363 l->l_info[DT_DEBUG]->d_un.d_ptr = (ElfW(Addr)) r;
365 /* Notify the debugger that all objects are now mapped in. */
366 r->r_state = RT_ADD;
367 _dl_debug_state ();
370 if (_dl_rtld_map.l_info[DT_INIT])
372 /* Call the initializer for the compatibility version of the
373 dynamic linker. There is no additional initialization
374 required for the ABI-compliant dynamic linker. */
376 (*(void (*) (void)) (_dl_rtld_map.l_addr +
377 _dl_rtld_map.l_info[DT_INIT]->d_un.d_ptr)) ();
379 /* Clear the field so a future dlopen won't run it again. */
380 _dl_rtld_map.l_info[DT_INIT] = NULL;
383 /* Once we return, _dl_sysdep_start will invoke
384 the DT_INIT functions and then *USER_ENTRY. */