.
[glibc/history.git] / soft-fp / extended.h
blobe5f16debecb996083ab417322f29c798f131c6c1
1 /* Software floating-point emulation.
2 Definitions for IEEE Extended Precision.
3 Copyright (C) 1999,2006,2007 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Jakub Jelinek (jj@ultra.linux.cz).
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU Lesser General Public
13 License, the Free Software Foundation gives you unlimited
14 permission to link the compiled version of this file into
15 combinations with other programs, and to distribute those
16 combinations without any restriction coming from the use of this
17 file. (The Lesser General Public License restrictions do apply in
18 other respects; for example, they cover modification of the file,
19 and distribution when not linked into a combine executable.)
21 The GNU C Library is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 Lesser General Public License for more details.
26 You should have received a copy of the GNU Lesser General Public
27 License along with the GNU C Library; if not, write to the Free
28 Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
29 MA 02110-1301, USA. */
31 #if _FP_W_TYPE_SIZE < 32
32 #error "Here's a nickel, kid. Go buy yourself a real computer."
33 #endif
35 #if _FP_W_TYPE_SIZE < 64
36 #define _FP_FRACTBITS_E (4*_FP_W_TYPE_SIZE)
37 #else
38 #define _FP_FRACTBITS_E (2*_FP_W_TYPE_SIZE)
39 #endif
41 #define _FP_FRACBITS_E 64
42 #define _FP_FRACXBITS_E (_FP_FRACTBITS_E - _FP_FRACBITS_E)
43 #define _FP_WFRACBITS_E (_FP_WORKBITS + _FP_FRACBITS_E)
44 #define _FP_WFRACXBITS_E (_FP_FRACTBITS_E - _FP_WFRACBITS_E)
45 #define _FP_EXPBITS_E 15
46 #define _FP_EXPBIAS_E 16383
47 #define _FP_EXPMAX_E 32767
49 #define _FP_QNANBIT_E \
50 ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)
51 #define _FP_QNANBIT_SH_E \
52 ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
53 #define _FP_IMPLBIT_E \
54 ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)
55 #define _FP_IMPLBIT_SH_E \
56 ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
57 #define _FP_OVERFLOW_E \
58 ((_FP_W_TYPE)1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))
60 typedef float XFtype __attribute__((mode(XF)));
62 #if _FP_W_TYPE_SIZE < 64
64 union _FP_UNION_E
66 XFtype flt;
67 struct
69 #if __BYTE_ORDER == __BIG_ENDIAN
70 unsigned long pad1 : _FP_W_TYPE_SIZE;
71 unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
72 unsigned long sign : 1;
73 unsigned long exp : _FP_EXPBITS_E;
74 unsigned long frac1 : _FP_W_TYPE_SIZE;
75 unsigned long frac0 : _FP_W_TYPE_SIZE;
76 #else
77 unsigned long frac0 : _FP_W_TYPE_SIZE;
78 unsigned long frac1 : _FP_W_TYPE_SIZE;
79 unsigned exp : _FP_EXPBITS_E;
80 unsigned sign : 1;
81 #endif /* not bigendian */
82 } bits __attribute__((packed));
86 #define FP_DECL_E(X) _FP_DECL(4,X)
88 #define FP_UNPACK_RAW_E(X, val) \
89 do { \
90 union _FP_UNION_E _flo; _flo.flt = (val); \
92 X##_f[2] = 0; X##_f[3] = 0; \
93 X##_f[0] = _flo.bits.frac0; \
94 X##_f[1] = _flo.bits.frac1; \
95 X##_e = _flo.bits.exp; \
96 X##_s = _flo.bits.sign; \
97 } while (0)
99 #define FP_UNPACK_RAW_EP(X, val) \
100 do { \
101 union _FP_UNION_E *_flo = \
102 (union _FP_UNION_E *)(val); \
104 X##_f[2] = 0; X##_f[3] = 0; \
105 X##_f[0] = _flo->bits.frac0; \
106 X##_f[1] = _flo->bits.frac1; \
107 X##_e = _flo->bits.exp; \
108 X##_s = _flo->bits.sign; \
109 } while (0)
111 #define FP_PACK_RAW_E(val, X) \
112 do { \
113 union _FP_UNION_E _flo; \
115 if (X##_e) X##_f[1] |= _FP_IMPLBIT_E; \
116 else X##_f[1] &= ~(_FP_IMPLBIT_E); \
117 _flo.bits.frac0 = X##_f[0]; \
118 _flo.bits.frac1 = X##_f[1]; \
119 _flo.bits.exp = X##_e; \
120 _flo.bits.sign = X##_s; \
122 (val) = _flo.flt; \
123 } while (0)
125 #define FP_PACK_RAW_EP(val, X) \
126 do { \
127 if (!FP_INHIBIT_RESULTS) \
129 union _FP_UNION_E *_flo = \
130 (union _FP_UNION_E *)(val); \
132 if (X##_e) X##_f[1] |= _FP_IMPLBIT_E; \
133 else X##_f[1] &= ~(_FP_IMPLBIT_E); \
134 _flo->bits.frac0 = X##_f[0]; \
135 _flo->bits.frac1 = X##_f[1]; \
136 _flo->bits.exp = X##_e; \
137 _flo->bits.sign = X##_s; \
139 } while (0)
141 #define FP_UNPACK_E(X,val) \
142 do { \
143 FP_UNPACK_RAW_E(X,val); \
144 _FP_UNPACK_CANONICAL(E,4,X); \
145 } while (0)
147 #define FP_UNPACK_EP(X,val) \
148 do { \
149 FP_UNPACK_RAW_EP(X,val); \
150 _FP_UNPACK_CANONICAL(E,4,X); \
151 } while (0)
153 #define FP_UNPACK_SEMIRAW_E(X,val) \
154 do { \
155 FP_UNPACK_RAW_E(X,val); \
156 _FP_UNPACK_SEMIRAW(E,4,X); \
157 } while (0)
159 #define FP_UNPACK_SEMIRAW_EP(X,val) \
160 do { \
161 FP_UNPACK_RAW_EP(X,val); \
162 _FP_UNPACK_SEMIRAW(E,4,X); \
163 } while (0)
165 #define FP_PACK_E(val,X) \
166 do { \
167 _FP_PACK_CANONICAL(E,4,X); \
168 FP_PACK_RAW_E(val,X); \
169 } while (0)
171 #define FP_PACK_EP(val,X) \
172 do { \
173 _FP_PACK_CANONICAL(E,4,X); \
174 FP_PACK_RAW_EP(val,X); \
175 } while (0)
177 #define FP_PACK_SEMIRAW_E(val,X) \
178 do { \
179 _FP_PACK_SEMIRAW(E,4,X); \
180 FP_PACK_RAW_E(val,X); \
181 } while (0)
183 #define FP_PACK_SEMIRAW_EP(val,X) \
184 do { \
185 _FP_PACK_SEMIRAW(E,4,X); \
186 FP_PACK_RAW_EP(val,X); \
187 } while (0)
189 #define FP_ISSIGNAN_E(X) _FP_ISSIGNAN(E,4,X)
190 #define FP_NEG_E(R,X) _FP_NEG(E,4,R,X)
191 #define FP_ADD_E(R,X,Y) _FP_ADD(E,4,R,X,Y)
192 #define FP_SUB_E(R,X,Y) _FP_SUB(E,4,R,X,Y)
193 #define FP_MUL_E(R,X,Y) _FP_MUL(E,4,R,X,Y)
194 #define FP_DIV_E(R,X,Y) _FP_DIV(E,4,R,X,Y)
195 #define FP_SQRT_E(R,X) _FP_SQRT(E,4,R,X)
198 * Square root algorithms:
199 * We have just one right now, maybe Newton approximation
200 * should be added for those machines where division is fast.
201 * This has special _E version because standard _4 square
202 * root would not work (it has to start normally with the
203 * second word and not the first), but as we have to do it
204 * anyway, we optimize it by doing most of the calculations
205 * in two UWtype registers instead of four.
208 #define _FP_SQRT_MEAT_E(R, S, T, X, q) \
209 do { \
210 q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
211 _FP_FRAC_SRL_4(X, (_FP_WORKBITS)); \
212 while (q) \
214 T##_f[1] = S##_f[1] + q; \
215 if (T##_f[1] <= X##_f[1]) \
217 S##_f[1] = T##_f[1] + q; \
218 X##_f[1] -= T##_f[1]; \
219 R##_f[1] += q; \
221 _FP_FRAC_SLL_2(X, 1); \
222 q >>= 1; \
224 q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
225 while (q) \
227 T##_f[0] = S##_f[0] + q; \
228 T##_f[1] = S##_f[1]; \
229 if (T##_f[1] < X##_f[1] || \
230 (T##_f[1] == X##_f[1] && \
231 T##_f[0] <= X##_f[0])) \
233 S##_f[0] = T##_f[0] + q; \
234 S##_f[1] += (T##_f[0] > S##_f[0]); \
235 _FP_FRAC_DEC_2(X, T); \
236 R##_f[0] += q; \
238 _FP_FRAC_SLL_2(X, 1); \
239 q >>= 1; \
241 _FP_FRAC_SLL_4(R, (_FP_WORKBITS)); \
242 if (X##_f[0] | X##_f[1]) \
244 if (S##_f[1] < X##_f[1] || \
245 (S##_f[1] == X##_f[1] && \
246 S##_f[0] < X##_f[0])) \
247 R##_f[0] |= _FP_WORK_ROUND; \
248 R##_f[0] |= _FP_WORK_STICKY; \
250 } while (0)
252 #define FP_CMP_E(r,X,Y,un) _FP_CMP(E,4,r,X,Y,un)
253 #define FP_CMP_EQ_E(r,X,Y) _FP_CMP_EQ(E,4,r,X,Y)
254 #define FP_CMP_UNORD_E(r,X,Y) _FP_CMP_UNORD(E,4,r,X,Y)
256 #define FP_TO_INT_E(r,X,rsz,rsg) _FP_TO_INT(E,4,r,X,rsz,rsg)
257 #define FP_FROM_INT_E(X,r,rs,rt) _FP_FROM_INT(E,4,X,r,rs,rt)
259 #define _FP_FRAC_HIGH_E(X) (X##_f[2])
260 #define _FP_FRAC_HIGH_RAW_E(X) (X##_f[1])
262 #else /* not _FP_W_TYPE_SIZE < 64 */
263 union _FP_UNION_E
265 XFtype flt;
266 struct {
267 #if __BYTE_ORDER == __BIG_ENDIAN
268 _FP_W_TYPE pad : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
269 unsigned sign : 1;
270 unsigned exp : _FP_EXPBITS_E;
271 _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
272 #else
273 _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
274 unsigned exp : _FP_EXPBITS_E;
275 unsigned sign : 1;
276 #endif
277 } bits;
280 #define FP_DECL_E(X) _FP_DECL(2,X)
282 #define FP_UNPACK_RAW_E(X, val) \
283 do { \
284 union _FP_UNION_E _flo; _flo.flt = (val); \
286 X##_f0 = _flo.bits.frac; \
287 X##_f1 = 0; \
288 X##_e = _flo.bits.exp; \
289 X##_s = _flo.bits.sign; \
290 } while (0)
292 #define FP_UNPACK_RAW_EP(X, val) \
293 do { \
294 union _FP_UNION_E *_flo = \
295 (union _FP_UNION_E *)(val); \
297 X##_f0 = _flo->bits.frac; \
298 X##_f1 = 0; \
299 X##_e = _flo->bits.exp; \
300 X##_s = _flo->bits.sign; \
301 } while (0)
303 #define FP_PACK_RAW_E(val, X) \
304 do { \
305 union _FP_UNION_E _flo; \
307 if (X##_e) X##_f0 |= _FP_IMPLBIT_E; \
308 else X##_f0 &= ~(_FP_IMPLBIT_E); \
309 _flo.bits.frac = X##_f0; \
310 _flo.bits.exp = X##_e; \
311 _flo.bits.sign = X##_s; \
313 (val) = _flo.flt; \
314 } while (0)
316 #define FP_PACK_RAW_EP(fs, val, X) \
317 do { \
318 if (!FP_INHIBIT_RESULTS) \
320 union _FP_UNION_E *_flo = \
321 (union _FP_UNION_E *)(val); \
323 if (X##_e) X##_f0 |= _FP_IMPLBIT_E; \
324 else X##_f0 &= ~(_FP_IMPLBIT_E); \
325 _flo->bits.frac = X##_f0; \
326 _flo->bits.exp = X##_e; \
327 _flo->bits.sign = X##_s; \
329 } while (0)
332 #define FP_UNPACK_E(X,val) \
333 do { \
334 FP_UNPACK_RAW_E(X,val); \
335 _FP_UNPACK_CANONICAL(E,2,X); \
336 } while (0)
338 #define FP_UNPACK_EP(X,val) \
339 do { \
340 FP_UNPACK_RAW_EP(X,val); \
341 _FP_UNPACK_CANONICAL(E,2,X); \
342 } while (0)
344 #define FP_UNPACK_SEMIRAW_E(X,val) \
345 do { \
346 FP_UNPACK_RAW_E(X,val); \
347 _FP_UNPACK_SEMIRAW(E,2,X); \
348 } while (0)
350 #define FP_UNPACK_SEMIRAW_EP(X,val) \
351 do { \
352 FP_UNPACK_RAW_EP(X,val); \
353 _FP_UNPACK_SEMIRAW(E,2,X); \
354 } while (0)
356 #define FP_PACK_E(val,X) \
357 do { \
358 _FP_PACK_CANONICAL(E,2,X); \
359 FP_PACK_RAW_E(val,X); \
360 } while (0)
362 #define FP_PACK_EP(val,X) \
363 do { \
364 _FP_PACK_CANONICAL(E,2,X); \
365 FP_PACK_RAW_EP(val,X); \
366 } while (0)
368 #define FP_PACK_SEMIRAW_E(val,X) \
369 do { \
370 _FP_PACK_SEMIRAW(E,2,X); \
371 FP_PACK_RAW_E(val,X); \
372 } while (0)
374 #define FP_PACK_SEMIRAW_EP(val,X) \
375 do { \
376 _FP_PACK_SEMIRAW(E,2,X); \
377 FP_PACK_RAW_EP(val,X); \
378 } while (0)
380 #define FP_ISSIGNAN_E(X) _FP_ISSIGNAN(E,2,X)
381 #define FP_NEG_E(R,X) _FP_NEG(E,2,R,X)
382 #define FP_ADD_E(R,X,Y) _FP_ADD(E,2,R,X,Y)
383 #define FP_SUB_E(R,X,Y) _FP_SUB(E,2,R,X,Y)
384 #define FP_MUL_E(R,X,Y) _FP_MUL(E,2,R,X,Y)
385 #define FP_DIV_E(R,X,Y) _FP_DIV(E,2,R,X,Y)
386 #define FP_SQRT_E(R,X) _FP_SQRT(E,2,R,X)
389 * Square root algorithms:
390 * We have just one right now, maybe Newton approximation
391 * should be added for those machines where division is fast.
392 * We optimize it by doing most of the calculations
393 * in one UWtype registers instead of two, although we don't
394 * have to.
396 #define _FP_SQRT_MEAT_E(R, S, T, X, q) \
397 do { \
398 q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
399 _FP_FRAC_SRL_2(X, (_FP_WORKBITS)); \
400 while (q) \
402 T##_f0 = S##_f0 + q; \
403 if (T##_f0 <= X##_f0) \
405 S##_f0 = T##_f0 + q; \
406 X##_f0 -= T##_f0; \
407 R##_f0 += q; \
409 _FP_FRAC_SLL_1(X, 1); \
410 q >>= 1; \
412 _FP_FRAC_SLL_2(R, (_FP_WORKBITS)); \
413 if (X##_f0) \
415 if (S##_f0 < X##_f0) \
416 R##_f0 |= _FP_WORK_ROUND; \
417 R##_f0 |= _FP_WORK_STICKY; \
419 } while (0)
421 #define FP_CMP_E(r,X,Y,un) _FP_CMP(E,2,r,X,Y,un)
422 #define FP_CMP_EQ_E(r,X,Y) _FP_CMP_EQ(E,2,r,X,Y)
423 #define FP_CMP_UNORD_E(r,X,Y) _FP_CMP_UNORD(E,2,r,X,Y)
425 #define FP_TO_INT_E(r,X,rsz,rsg) _FP_TO_INT(E,2,r,X,rsz,rsg)
426 #define FP_FROM_INT_E(X,r,rs,rt) _FP_FROM_INT(E,2,X,r,rs,rt)
428 #define _FP_FRAC_HIGH_E(X) (X##_f1)
429 #define _FP_FRAC_HIGH_RAW_E(X) (X##_f0)
431 #endif /* not _FP_W_TYPE_SIZE < 64 */