Wrapper around strtod.c to compile as strtof_l.
[glibc/history.git] / stdlib / qsort.c
blob498230b38fecc21665ac3dc34d24f836bb30bdc7
1 /* Copyright (C) 1991, 1992, 1996, 1997 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
3 Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If not,
17 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 Boston, MA 02111-1307, USA. */
20 #include <stdlib.h>
21 #include <string.h>
23 extern void _quicksort __P ((void *const pbase, size_t total_elems,
24 size_t size, __compar_fn_t cmp));
26 /* Byte-wise swap two items of size SIZE. */
27 #define SWAP(a, b, size) \
28 do \
29 { \
30 register size_t __size = (size); \
31 register char *__a = (a), *__b = (b); \
32 do \
33 { \
34 char __tmp = *__a; \
35 *__a++ = *__b; \
36 *__b++ = __tmp; \
37 } while (--__size > 0); \
38 } while (0)
40 /* Discontinue quicksort algorithm when partition gets below this size.
41 This particular magic number was chosen to work best on a Sun 4/260. */
42 #define MAX_THRESH 4
44 /* Stack node declarations used to store unfulfilled partition obligations. */
45 typedef struct
47 char *lo;
48 char *hi;
49 } stack_node;
51 /* The next 4 #defines implement a very fast in-line stack abstraction. */
52 #define STACK_SIZE (8 * sizeof(unsigned long int))
53 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
54 #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
55 #define STACK_NOT_EMPTY (stack < top)
58 /* Order size using quicksort. This implementation incorporates
59 four optimizations discussed in Sedgewick:
61 1. Non-recursive, using an explicit stack of pointer that store the
62 next array partition to sort. To save time, this maximum amount
63 of space required to store an array of MAX_INT is allocated on the
64 stack. Assuming a 32-bit integer, this needs only 32 *
65 sizeof(stack_node) == 136 bits. Pretty cheap, actually.
67 2. Chose the pivot element using a median-of-three decision tree.
68 This reduces the probability of selecting a bad pivot value and
69 eliminates certain extraneous comparisons.
71 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
72 insertion sort to order the MAX_THRESH items within each partition.
73 This is a big win, since insertion sort is faster for small, mostly
74 sorted array segments.
76 4. The larger of the two sub-partitions is always pushed onto the
77 stack first, with the algorithm then concentrating on the
78 smaller partition. This *guarantees* no more than log (n)
79 stack size is needed (actually O(1) in this case)! */
81 void
82 _quicksort (pbase, total_elems, size, cmp)
83 void *const pbase;
84 size_t total_elems;
85 size_t size;
86 __compar_fn_t cmp;
88 register char *base_ptr = (char *) pbase;
90 /* Allocating SIZE bytes for a pivot buffer facilitates a better
91 algorithm below since we can do comparisons directly on the pivot. */
92 char *pivot_buffer = (char *) __alloca (size);
93 const size_t max_thresh = MAX_THRESH * size;
95 if (total_elems == 0)
96 /* Avoid lossage with unsigned arithmetic below. */
97 return;
99 if (total_elems > MAX_THRESH)
101 char *lo = base_ptr;
102 char *hi = &lo[size * (total_elems - 1)];
103 /* Largest size needed for 32-bit int!!! */
104 stack_node stack[STACK_SIZE];
105 stack_node *top = stack + 1;
107 while (STACK_NOT_EMPTY)
109 char *left_ptr;
110 char *right_ptr;
112 char *pivot = pivot_buffer;
114 /* Select median value from among LO, MID, and HI. Rearrange
115 LO and HI so the three values are sorted. This lowers the
116 probability of picking a pathological pivot value and
117 skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
119 char *mid = lo + size * ((hi - lo) / size >> 1);
121 if ((*cmp) ((void *) mid, (void *) lo) < 0)
122 SWAP (mid, lo, size);
123 if ((*cmp) ((void *) hi, (void *) mid) < 0)
124 SWAP (mid, hi, size);
125 else
126 goto jump_over;
127 if ((*cmp) ((void *) mid, (void *) lo) < 0)
128 SWAP (mid, lo, size);
129 jump_over:;
130 memcpy (pivot, mid, size);
131 pivot = pivot_buffer;
133 left_ptr = lo + size;
134 right_ptr = hi - size;
136 /* Here's the famous ``collapse the walls'' section of quicksort.
137 Gotta like those tight inner loops! They are the main reason
138 that this algorithm runs much faster than others. */
141 while ((*cmp) ((void *) left_ptr, (void *) pivot) < 0)
142 left_ptr += size;
144 while ((*cmp) ((void *) pivot, (void *) right_ptr) < 0)
145 right_ptr -= size;
147 if (left_ptr < right_ptr)
149 SWAP (left_ptr, right_ptr, size);
150 left_ptr += size;
151 right_ptr -= size;
153 else if (left_ptr == right_ptr)
155 left_ptr += size;
156 right_ptr -= size;
157 break;
160 while (left_ptr <= right_ptr);
162 /* Set up pointers for next iteration. First determine whether
163 left and right partitions are below the threshold size. If so,
164 ignore one or both. Otherwise, push the larger partition's
165 bounds on the stack and continue sorting the smaller one. */
167 if ((size_t) (right_ptr - lo) <= max_thresh)
169 if ((size_t) (hi - left_ptr) <= max_thresh)
170 /* Ignore both small partitions. */
171 POP (lo, hi);
172 else
173 /* Ignore small left partition. */
174 lo = left_ptr;
176 else if ((size_t) (hi - left_ptr) <= max_thresh)
177 /* Ignore small right partition. */
178 hi = right_ptr;
179 else if ((right_ptr - lo) > (hi - left_ptr))
181 /* Push larger left partition indices. */
182 PUSH (lo, right_ptr);
183 lo = left_ptr;
185 else
187 /* Push larger right partition indices. */
188 PUSH (left_ptr, hi);
189 hi = right_ptr;
194 /* Once the BASE_PTR array is partially sorted by quicksort the rest
195 is completely sorted using insertion sort, since this is efficient
196 for partitions below MAX_THRESH size. BASE_PTR points to the beginning
197 of the array to sort, and END_PTR points at the very last element in
198 the array (*not* one beyond it!). */
200 #define min(x, y) ((x) < (y) ? (x) : (y))
203 char *const end_ptr = &base_ptr[size * (total_elems - 1)];
204 char *tmp_ptr = base_ptr;
205 char *thresh = min(end_ptr, base_ptr + max_thresh);
206 register char *run_ptr;
208 /* Find smallest element in first threshold and place it at the
209 array's beginning. This is the smallest array element,
210 and the operation speeds up insertion sort's inner loop. */
212 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
213 if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)
214 tmp_ptr = run_ptr;
216 if (tmp_ptr != base_ptr)
217 SWAP (tmp_ptr, base_ptr, size);
219 /* Insertion sort, running from left-hand-side up to right-hand-side. */
221 run_ptr = base_ptr + size;
222 while ((run_ptr += size) <= end_ptr)
224 tmp_ptr = run_ptr - size;
225 while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)
226 tmp_ptr -= size;
228 tmp_ptr += size;
229 if (tmp_ptr != run_ptr)
231 char *trav;
233 trav = run_ptr + size;
234 while (--trav >= run_ptr)
236 char c = *trav;
237 char *hi, *lo;
239 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
240 *hi = *lo;
241 *hi = c;