Move main.*, splitter.*, gmx_omp_nthreads.* to mdlib
[gromacs.git] / src / gromacs / mdlib / shellfc.cpp
bloba1570a22da2f651b97d5bccb87924ffc187ace81
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2008, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #include "gmxpre.h"
39 #include "shellfc.h"
41 #include <stdlib.h>
42 #include <string.h>
44 #include <algorithm>
46 #include "gromacs/domdec/domdec.h"
47 #include "gromacs/domdec/domdec_struct.h"
48 #include "gromacs/gmxlib/chargegroup.h"
49 #include "gromacs/gmxlib/network.h"
50 #include "gromacs/math/units.h"
51 #include "gromacs/math/vec.h"
52 #include "gromacs/math/vecdump.h"
53 #include "gromacs/mdlib/constr.h"
54 #include "gromacs/mdlib/force.h"
55 #include "gromacs/mdlib/mdrun.h"
56 #include "gromacs/mdlib/sim_util.h"
57 #include "gromacs/mdlib/vsite.h"
58 #include "gromacs/mdtypes/commrec.h"
59 #include "gromacs/mdtypes/md_enums.h"
60 #include "gromacs/pbcutil/mshift.h"
61 #include "gromacs/pbcutil/pbc.h"
62 #include "gromacs/topology/mtop_util.h"
63 #include "gromacs/utility/arraysize.h"
64 #include "gromacs/utility/cstringutil.h"
65 #include "gromacs/utility/fatalerror.h"
66 #include "gromacs/utility/smalloc.h"
68 typedef struct {
69 int nnucl;
70 int shell; /* The shell id */
71 int nucl1, nucl2, nucl3; /* The nuclei connected to the shell */
72 /* gmx_bool bInterCG; */ /* Coupled to nuclei outside cg? */
73 real k; /* force constant */
74 real k_1; /* 1 over force constant */
75 rvec xold;
76 rvec fold;
77 rvec step;
78 } t_shell;
80 struct gmx_shellfc_t {
81 int nshell_gl; /* The number of shells in the system */
82 t_shell *shell_gl; /* All the shells (for DD only) */
83 int *shell_index_gl; /* Global shell index (for DD only) */
84 gmx_bool bInterCG; /* Are there inter charge-group shells? */
85 int nshell; /* The number of local shells */
86 t_shell *shell; /* The local shells */
87 int shell_nalloc; /* The allocation size of shell */
88 gmx_bool bPredict; /* Predict shell positions */
89 gmx_bool bRequireInit; /* Require initialization of shell positions */
90 int nflexcon; /* The number of flexible constraints */
91 rvec *x[2]; /* Array for iterative minimization */
92 rvec *f[2]; /* Array for iterative minimization */
93 int x_nalloc; /* The allocation size of x and f */
94 rvec *acc_dir; /* Acceleration direction for flexcon */
95 rvec *x_old; /* Old coordinates for flexcon */
96 int flex_nalloc; /* The allocation size of acc_dir and x_old */
97 rvec *adir_xnold; /* Work space for init_adir */
98 rvec *adir_xnew; /* Work space for init_adir */
99 int adir_nalloc; /* Work space for init_adir */
103 static void pr_shell(FILE *fplog, int ns, t_shell s[])
105 int i;
107 fprintf(fplog, "SHELL DATA\n");
108 fprintf(fplog, "%5s %8s %5s %5s %5s\n",
109 "Shell", "Force k", "Nucl1", "Nucl2", "Nucl3");
110 for (i = 0; (i < ns); i++)
112 fprintf(fplog, "%5d %8.3f %5d", s[i].shell, 1.0/s[i].k_1, s[i].nucl1);
113 if (s[i].nnucl == 2)
115 fprintf(fplog, " %5d\n", s[i].nucl2);
117 else if (s[i].nnucl == 3)
119 fprintf(fplog, " %5d %5d\n", s[i].nucl2, s[i].nucl3);
121 else
123 fprintf(fplog, "\n");
128 static void predict_shells(FILE *fplog, rvec x[], rvec v[], real dt,
129 int ns, t_shell s[],
130 real mass[], gmx_mtop_t *mtop, gmx_bool bInit)
132 int i, m, s1, n1, n2, n3;
133 real dt_1, fudge, tm, m1, m2, m3;
134 rvec *ptr;
135 gmx_mtop_atomlookup_t alook = NULL;
136 t_atom *atom;
138 if (mass == NULL)
140 alook = gmx_mtop_atomlookup_init(mtop);
143 /* We introduce a fudge factor for performance reasons: with this choice
144 * the initial force on the shells is about a factor of two lower than
145 * without
147 fudge = 1.0;
149 if (bInit)
151 if (fplog)
153 fprintf(fplog, "RELAX: Using prediction for initial shell placement\n");
155 ptr = x;
156 dt_1 = 1;
158 else
160 ptr = v;
161 dt_1 = fudge*dt;
164 for (i = 0; (i < ns); i++)
166 s1 = s[i].shell;
167 if (bInit)
169 clear_rvec(x[s1]);
171 switch (s[i].nnucl)
173 case 1:
174 n1 = s[i].nucl1;
175 for (m = 0; (m < DIM); m++)
177 x[s1][m] += ptr[n1][m]*dt_1;
179 break;
180 case 2:
181 n1 = s[i].nucl1;
182 n2 = s[i].nucl2;
183 if (mass)
185 m1 = mass[n1];
186 m2 = mass[n2];
188 else
190 /* Not the correct masses with FE, but it is just a prediction... */
191 gmx_mtop_atomnr_to_atom(alook, n1, &atom);
192 m1 = atom->m;
193 gmx_mtop_atomnr_to_atom(alook, n2, &atom);
194 m2 = atom->m;
196 tm = dt_1/(m1+m2);
197 for (m = 0; (m < DIM); m++)
199 x[s1][m] += (m1*ptr[n1][m]+m2*ptr[n2][m])*tm;
201 break;
202 case 3:
203 n1 = s[i].nucl1;
204 n2 = s[i].nucl2;
205 n3 = s[i].nucl3;
206 if (mass)
208 m1 = mass[n1];
209 m2 = mass[n2];
210 m3 = mass[n3];
212 else
214 /* Not the correct masses with FE, but it is just a prediction... */
215 gmx_mtop_atomnr_to_atom(alook, n1, &atom);
216 m1 = atom->m;
217 gmx_mtop_atomnr_to_atom(alook, n2, &atom);
218 m2 = atom->m;
219 gmx_mtop_atomnr_to_atom(alook, n3, &atom);
220 m3 = atom->m;
222 tm = dt_1/(m1+m2+m3);
223 for (m = 0; (m < DIM); m++)
225 x[s1][m] += (m1*ptr[n1][m]+m2*ptr[n2][m]+m3*ptr[n3][m])*tm;
227 break;
228 default:
229 gmx_fatal(FARGS, "Shell %d has %d nuclei!", i, s[i].nnucl);
233 if (mass == NULL)
235 gmx_mtop_atomlookup_destroy(alook);
239 gmx_shellfc_t *init_shell_flexcon(FILE *fplog,
240 gmx_mtop_t *mtop, int nflexcon,
241 rvec *x)
243 gmx_shellfc_t *shfc;
244 t_shell *shell;
245 int *shell_index = NULL, *at2cg;
246 t_atom *atom;
247 int n[eptNR], ns, nshell, nsi;
248 int i, j, nmol, type, mb, a_offset, cg, mol, ftype, nra;
249 real qS, alpha;
250 int aS, aN = 0; /* Shell and nucleus */
251 int bondtypes[] = { F_BONDS, F_HARMONIC, F_CUBICBONDS, F_POLARIZATION, F_ANHARM_POL, F_WATER_POL };
252 #define NBT asize(bondtypes)
253 t_iatom *ia;
254 gmx_mtop_atomloop_block_t aloopb;
255 gmx_mtop_atomloop_all_t aloop;
256 gmx_ffparams_t *ffparams;
257 gmx_molblock_t *molb;
258 gmx_moltype_t *molt;
259 t_block *cgs;
261 /* Count number of shells, and find their indices */
262 for (i = 0; (i < eptNR); i++)
264 n[i] = 0;
267 aloopb = gmx_mtop_atomloop_block_init(mtop);
268 while (gmx_mtop_atomloop_block_next(aloopb, &atom, &nmol))
270 n[atom->ptype] += nmol;
273 if (fplog)
275 /* Print the number of each particle type */
276 for (i = 0; (i < eptNR); i++)
278 if (n[i] != 0)
280 fprintf(fplog, "There are: %d %ss\n", n[i], ptype_str[i]);
285 nshell = n[eptShell];
287 if (nshell == 0 && nflexcon == 0)
289 /* We're not doing shells or flexible constraints */
290 return NULL;
293 snew(shfc, 1);
294 shfc->nflexcon = nflexcon;
296 if (nshell == 0)
298 return shfc;
301 /* We have shells: fill the shell data structure */
303 /* Global system sized array, this should be avoided */
304 snew(shell_index, mtop->natoms);
306 aloop = gmx_mtop_atomloop_all_init(mtop);
307 nshell = 0;
308 while (gmx_mtop_atomloop_all_next(aloop, &i, &atom))
310 if (atom->ptype == eptShell)
312 shell_index[i] = nshell++;
316 snew(shell, nshell);
318 /* Initiate the shell structures */
319 for (i = 0; (i < nshell); i++)
321 shell[i].shell = -1;
322 shell[i].nnucl = 0;
323 shell[i].nucl1 = -1;
324 shell[i].nucl2 = -1;
325 shell[i].nucl3 = -1;
326 /* shell[i].bInterCG=FALSE; */
327 shell[i].k_1 = 0;
328 shell[i].k = 0;
331 ffparams = &mtop->ffparams;
333 /* Now fill the structures */
334 shfc->bInterCG = FALSE;
335 ns = 0;
336 a_offset = 0;
337 for (mb = 0; mb < mtop->nmolblock; mb++)
339 molb = &mtop->molblock[mb];
340 molt = &mtop->moltype[molb->type];
342 cgs = &molt->cgs;
343 snew(at2cg, molt->atoms.nr);
344 for (cg = 0; cg < cgs->nr; cg++)
346 for (i = cgs->index[cg]; i < cgs->index[cg+1]; i++)
348 at2cg[i] = cg;
352 atom = molt->atoms.atom;
353 for (mol = 0; mol < molb->nmol; mol++)
355 for (j = 0; (j < NBT); j++)
357 ia = molt->ilist[bondtypes[j]].iatoms;
358 for (i = 0; (i < molt->ilist[bondtypes[j]].nr); )
360 type = ia[0];
361 ftype = ffparams->functype[type];
362 nra = interaction_function[ftype].nratoms;
364 /* Check whether we have a bond with a shell */
365 aS = -1;
367 switch (bondtypes[j])
369 case F_BONDS:
370 case F_HARMONIC:
371 case F_CUBICBONDS:
372 case F_POLARIZATION:
373 case F_ANHARM_POL:
374 if (atom[ia[1]].ptype == eptShell)
376 aS = ia[1];
377 aN = ia[2];
379 else if (atom[ia[2]].ptype == eptShell)
381 aS = ia[2];
382 aN = ia[1];
384 break;
385 case F_WATER_POL:
386 aN = ia[4]; /* Dummy */
387 aS = ia[5]; /* Shell */
388 break;
389 default:
390 gmx_fatal(FARGS, "Death Horror: %s, %d", __FILE__, __LINE__);
393 if (aS != -1)
395 qS = atom[aS].q;
397 /* Check whether one of the particles is a shell... */
398 nsi = shell_index[a_offset+aS];
399 if ((nsi < 0) || (nsi >= nshell))
401 gmx_fatal(FARGS, "nsi is %d should be within 0 - %d. aS = %d",
402 nsi, nshell, aS);
404 if (shell[nsi].shell == -1)
406 shell[nsi].shell = a_offset + aS;
407 ns++;
409 else if (shell[nsi].shell != a_offset+aS)
411 gmx_fatal(FARGS, "Weird stuff in %s, %d", __FILE__, __LINE__);
414 if (shell[nsi].nucl1 == -1)
416 shell[nsi].nucl1 = a_offset + aN;
418 else if (shell[nsi].nucl2 == -1)
420 shell[nsi].nucl2 = a_offset + aN;
422 else if (shell[nsi].nucl3 == -1)
424 shell[nsi].nucl3 = a_offset + aN;
426 else
428 if (fplog)
430 pr_shell(fplog, ns, shell);
432 gmx_fatal(FARGS, "Can not handle more than three bonds per shell\n");
434 if (at2cg[aS] != at2cg[aN])
436 /* shell[nsi].bInterCG = TRUE; */
437 shfc->bInterCG = TRUE;
440 switch (bondtypes[j])
442 case F_BONDS:
443 case F_HARMONIC:
444 shell[nsi].k += ffparams->iparams[type].harmonic.krA;
445 break;
446 case F_CUBICBONDS:
447 shell[nsi].k += ffparams->iparams[type].cubic.kb;
448 break;
449 case F_POLARIZATION:
450 case F_ANHARM_POL:
451 if (!gmx_within_tol(qS, atom[aS].qB, GMX_REAL_EPS*10))
453 gmx_fatal(FARGS, "polarize can not be used with qA(%e) != qB(%e) for atom %d of molecule block %d", qS, atom[aS].qB, aS+1, mb+1);
455 shell[nsi].k += sqr(qS)*ONE_4PI_EPS0/
456 ffparams->iparams[type].polarize.alpha;
457 break;
458 case F_WATER_POL:
459 if (!gmx_within_tol(qS, atom[aS].qB, GMX_REAL_EPS*10))
461 gmx_fatal(FARGS, "water_pol can not be used with qA(%e) != qB(%e) for atom %d of molecule block %d", qS, atom[aS].qB, aS+1, mb+1);
463 alpha = (ffparams->iparams[type].wpol.al_x+
464 ffparams->iparams[type].wpol.al_y+
465 ffparams->iparams[type].wpol.al_z)/3.0;
466 shell[nsi].k += sqr(qS)*ONE_4PI_EPS0/alpha;
467 break;
468 default:
469 gmx_fatal(FARGS, "Death Horror: %s, %d", __FILE__, __LINE__);
471 shell[nsi].nnucl++;
473 ia += nra+1;
474 i += nra+1;
477 a_offset += molt->atoms.nr;
479 /* Done with this molecule type */
480 sfree(at2cg);
483 /* Verify whether it's all correct */
484 if (ns != nshell)
486 gmx_fatal(FARGS, "Something weird with shells. They may not be bonded to something");
489 for (i = 0; (i < ns); i++)
491 shell[i].k_1 = 1.0/shell[i].k;
494 if (debug)
496 pr_shell(debug, ns, shell);
500 shfc->nshell_gl = ns;
501 shfc->shell_gl = shell;
502 shfc->shell_index_gl = shell_index;
504 shfc->bPredict = (getenv("GMX_NOPREDICT") == NULL);
505 shfc->bRequireInit = FALSE;
506 if (!shfc->bPredict)
508 if (fplog)
510 fprintf(fplog, "\nWill never predict shell positions\n");
513 else
515 shfc->bRequireInit = (getenv("GMX_REQUIRE_SHELL_INIT") != NULL);
516 if (shfc->bRequireInit && fplog)
518 fprintf(fplog, "\nWill always initiate shell positions\n");
522 if (shfc->bPredict)
524 if (x)
526 predict_shells(fplog, x, NULL, 0, shfc->nshell_gl, shfc->shell_gl,
527 NULL, mtop, TRUE);
530 if (shfc->bInterCG)
532 if (fplog)
534 fprintf(fplog, "\nNOTE: there all shells that are connected to particles outside thier own charge group, will not predict shells positions during the run\n\n");
536 /* Prediction improves performance, so we should implement either:
537 * 1. communication for the atoms needed for prediction
538 * 2. prediction using the velocities of shells; currently the
539 * shell velocities are zeroed, it's a bit tricky to keep
540 * track of the shell displacements and thus the velocity.
542 shfc->bPredict = FALSE;
546 return shfc;
549 void make_local_shells(t_commrec *cr, t_mdatoms *md,
550 gmx_shellfc_t *shfc)
552 t_shell *shell;
553 int a0, a1, *ind, nshell, i;
554 gmx_domdec_t *dd = NULL;
556 if (DOMAINDECOMP(cr))
558 dd = cr->dd;
559 a0 = 0;
560 a1 = dd->nat_home;
562 else
564 /* Single node: we need all shells, just copy the pointer */
565 shfc->nshell = shfc->nshell_gl;
566 shfc->shell = shfc->shell_gl;
568 return;
571 ind = shfc->shell_index_gl;
573 nshell = 0;
574 shell = shfc->shell;
575 for (i = a0; i < a1; i++)
577 if (md->ptype[i] == eptShell)
579 if (nshell+1 > shfc->shell_nalloc)
581 shfc->shell_nalloc = over_alloc_dd(nshell+1);
582 srenew(shell, shfc->shell_nalloc);
584 if (dd)
586 shell[nshell] = shfc->shell_gl[ind[dd->gatindex[i]]];
588 else
590 shell[nshell] = shfc->shell_gl[ind[i]];
593 /* With inter-cg shells we can no do shell prediction,
594 * so we do not need the nuclei numbers.
596 if (!shfc->bInterCG)
598 shell[nshell].nucl1 = i + shell[nshell].nucl1 - shell[nshell].shell;
599 if (shell[nshell].nnucl > 1)
601 shell[nshell].nucl2 = i + shell[nshell].nucl2 - shell[nshell].shell;
603 if (shell[nshell].nnucl > 2)
605 shell[nshell].nucl3 = i + shell[nshell].nucl3 - shell[nshell].shell;
608 shell[nshell].shell = i;
609 nshell++;
613 shfc->nshell = nshell;
614 shfc->shell = shell;
617 static void do_1pos(rvec xnew, rvec xold, rvec f, real step)
619 real xo, yo, zo;
620 real dx, dy, dz;
622 xo = xold[XX];
623 yo = xold[YY];
624 zo = xold[ZZ];
626 dx = f[XX]*step;
627 dy = f[YY]*step;
628 dz = f[ZZ]*step;
630 xnew[XX] = xo+dx;
631 xnew[YY] = yo+dy;
632 xnew[ZZ] = zo+dz;
635 static void do_1pos3(rvec xnew, rvec xold, rvec f, rvec step)
637 real xo, yo, zo;
638 real dx, dy, dz;
640 xo = xold[XX];
641 yo = xold[YY];
642 zo = xold[ZZ];
644 dx = f[XX]*step[XX];
645 dy = f[YY]*step[YY];
646 dz = f[ZZ]*step[ZZ];
648 xnew[XX] = xo+dx;
649 xnew[YY] = yo+dy;
650 xnew[ZZ] = zo+dz;
653 static void directional_sd(rvec xold[], rvec xnew[], rvec acc_dir[],
654 int start, int homenr, real step)
656 int i;
658 for (i = start; i < homenr; i++)
660 do_1pos(xnew[i], xold[i], acc_dir[i], step);
664 static void shell_pos_sd(rvec xcur[], rvec xnew[], rvec f[],
665 int ns, t_shell s[], int count)
667 const real step_scale_min = 0.8,
668 step_scale_increment = 0.2,
669 step_scale_max = 1.2,
670 step_scale_multiple = (step_scale_max - step_scale_min) / step_scale_increment;
671 int i, shell, d;
672 real dx, df, k_est;
673 const real zero = 0;
674 #ifdef PRINT_STEP
675 real step_min, step_max;
677 step_min = 1e30;
678 step_max = 0;
679 #endif
680 for (i = 0; (i < ns); i++)
682 shell = s[i].shell;
683 if (count == 1)
685 for (d = 0; d < DIM; d++)
687 s[i].step[d] = s[i].k_1;
688 #ifdef PRINT_STEP
689 step_min = std::min(step_min, s[i].step[d]);
690 step_max = std::max(step_max, s[i].step[d]);
691 #endif
694 else
696 for (d = 0; d < DIM; d++)
698 dx = xcur[shell][d] - s[i].xold[d];
699 df = f[shell][d] - s[i].fold[d];
700 /* -dx/df gets used to generate an interpolated value, but would
701 * cause a NaN if df were binary-equal to zero. Values close to
702 * zero won't cause problems (because of the min() and max()), so
703 * just testing for binary inequality is OK. */
704 if (zero != df)
706 k_est = -dx/df;
707 /* Scale the step size by a factor interpolated from
708 * step_scale_min to step_scale_max, as k_est goes from 0 to
709 * step_scale_multiple * s[i].step[d] */
710 s[i].step[d] =
711 step_scale_min * s[i].step[d] +
712 step_scale_increment * std::min(step_scale_multiple * s[i].step[d], std::max(k_est, zero));
714 else
716 /* Here 0 == df */
717 if (gmx_numzero(dx)) /* 0 == dx */
719 /* Likely this will never happen, but if it does just
720 * don't scale the step. */
722 else /* 0 != dx */
724 s[i].step[d] *= step_scale_max;
727 #ifdef PRINT_STEP
728 step_min = std::min(step_min, s[i].step[d]);
729 step_max = std::max(step_max, s[i].step[d]);
730 #endif
733 copy_rvec(xcur[shell], s[i].xold);
734 copy_rvec(f[shell], s[i].fold);
736 do_1pos3(xnew[shell], xcur[shell], f[shell], s[i].step);
738 if (gmx_debug_at)
740 fprintf(debug, "shell[%d] = %d\n", i, shell);
741 pr_rvec(debug, 0, "fshell", f[shell], DIM, TRUE);
742 pr_rvec(debug, 0, "xold", xcur[shell], DIM, TRUE);
743 pr_rvec(debug, 0, "step", s[i].step, DIM, TRUE);
744 pr_rvec(debug, 0, "xnew", xnew[shell], DIM, TRUE);
747 #ifdef PRINT_STEP
748 printf("step %.3e %.3e\n", step_min, step_max);
749 #endif
752 static void decrease_step_size(int nshell, t_shell s[])
754 int i;
756 for (i = 0; i < nshell; i++)
758 svmul(0.8, s[i].step, s[i].step);
762 static void print_epot(FILE *fp, gmx_int64_t mdstep, int count, real epot, real df,
763 int ndir, real sf_dir)
765 char buf[22];
767 fprintf(fp, "MDStep=%5s/%2d EPot: %12.8e, rmsF: %6.2e",
768 gmx_step_str(mdstep, buf), count, epot, df);
769 if (ndir)
771 fprintf(fp, ", dir. rmsF: %6.2e\n", sqrt(sf_dir/ndir));
773 else
775 fprintf(fp, "\n");
780 static real rms_force(t_commrec *cr, rvec f[], int ns, t_shell s[],
781 int ndir, real *sf_dir, real *Epot)
783 int i, shell, ntot;
784 double buf[4];
786 buf[0] = *sf_dir;
787 for (i = 0; i < ns; i++)
789 shell = s[i].shell;
790 buf[0] += norm2(f[shell]);
792 ntot = ns;
794 if (PAR(cr))
796 buf[1] = ntot;
797 buf[2] = *sf_dir;
798 buf[3] = *Epot;
799 gmx_sumd(4, buf, cr);
800 ntot = (int)(buf[1] + 0.5);
801 *sf_dir = buf[2];
802 *Epot = buf[3];
804 ntot += ndir;
806 return (ntot ? sqrt(buf[0]/ntot) : 0);
809 static void check_pbc(FILE *fp, rvec x[], int shell)
811 int m, now;
813 now = shell-4;
814 for (m = 0; (m < DIM); m++)
816 if (fabs(x[shell][m]-x[now][m]) > 0.3)
818 pr_rvecs(fp, 0, "SHELL-X", x+now, 5);
819 break;
824 static void dump_shells(FILE *fp, rvec x[], rvec f[], real ftol, int ns, t_shell s[])
826 int i, shell;
827 real ft2, ff2;
829 ft2 = sqr(ftol);
831 for (i = 0; (i < ns); i++)
833 shell = s[i].shell;
834 ff2 = iprod(f[shell], f[shell]);
835 if (ff2 > ft2)
837 fprintf(fp, "SHELL %5d, force %10.5f %10.5f %10.5f, |f| %10.5f\n",
838 shell, f[shell][XX], f[shell][YY], f[shell][ZZ], sqrt(ff2));
840 check_pbc(fp, x, shell);
844 static void init_adir(FILE *log, gmx_shellfc_t *shfc,
845 gmx_constr_t constr, t_idef *idef, t_inputrec *ir,
846 t_commrec *cr, int dd_ac1,
847 gmx_int64_t step, t_mdatoms *md, int start, int end,
848 rvec *x_old, rvec *x_init, rvec *x,
849 rvec *f, rvec *acc_dir,
850 gmx_bool bMolPBC, matrix box,
851 real *lambda, real *dvdlambda, t_nrnb *nrnb)
853 rvec *xnold, *xnew;
854 double dt, w_dt;
855 int n, d;
856 unsigned short *ptype;
858 if (DOMAINDECOMP(cr))
860 n = dd_ac1;
862 else
864 n = end - start;
866 if (n > shfc->adir_nalloc)
868 shfc->adir_nalloc = over_alloc_dd(n);
869 srenew(shfc->adir_xnold, shfc->adir_nalloc);
870 srenew(shfc->adir_xnew, shfc->adir_nalloc);
872 xnold = shfc->adir_xnold;
873 xnew = shfc->adir_xnew;
875 ptype = md->ptype;
877 dt = ir->delta_t;
879 /* Does NOT work with freeze or acceleration groups (yet) */
880 for (n = start; n < end; n++)
882 w_dt = md->invmass[n]*dt;
884 for (d = 0; d < DIM; d++)
886 if ((ptype[n] != eptVSite) && (ptype[n] != eptShell))
888 xnold[n-start][d] = x[n][d] - (x_init[n][d] - x_old[n][d]);
889 xnew[n-start][d] = 2*x[n][d] - x_old[n][d] + f[n][d]*w_dt*dt;
891 else
893 xnold[n-start][d] = x[n][d];
894 xnew[n-start][d] = x[n][d];
898 constrain(log, FALSE, FALSE, constr, idef, ir, cr, step, 0, 1.0, md,
899 x, xnold-start, NULL, bMolPBC, box,
900 lambda[efptBONDED], &(dvdlambda[efptBONDED]),
901 NULL, NULL, nrnb, econqCoord);
902 constrain(log, FALSE, FALSE, constr, idef, ir, cr, step, 0, 1.0, md,
903 x, xnew-start, NULL, bMolPBC, box,
904 lambda[efptBONDED], &(dvdlambda[efptBONDED]),
905 NULL, NULL, nrnb, econqCoord);
907 for (n = start; n < end; n++)
909 for (d = 0; d < DIM; d++)
911 xnew[n-start][d] =
912 -(2*x[n][d]-xnold[n-start][d]-xnew[n-start][d])/sqr(dt)
913 - f[n][d]*md->invmass[n];
915 clear_rvec(acc_dir[n]);
918 /* Project the acceleration on the old bond directions */
919 constrain(log, FALSE, FALSE, constr, idef, ir, cr, step, 0, 1.0, md,
920 x_old, xnew-start, acc_dir, bMolPBC, box,
921 lambda[efptBONDED], &(dvdlambda[efptBONDED]),
922 NULL, NULL, nrnb, econqDeriv_FlexCon);
925 int relax_shell_flexcon(FILE *fplog, t_commrec *cr, gmx_bool bVerbose,
926 gmx_int64_t mdstep, t_inputrec *inputrec,
927 gmx_bool bDoNS, int force_flags,
928 gmx_localtop_t *top,
929 gmx_constr_t constr,
930 gmx_enerdata_t *enerd, t_fcdata *fcd,
931 t_state *state, rvec f[],
932 tensor force_vir,
933 t_mdatoms *md,
934 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
935 t_graph *graph,
936 gmx_groups_t *groups,
937 gmx_shellfc_t *shfc,
938 t_forcerec *fr,
939 gmx_bool bBornRadii,
940 double t, rvec mu_tot,
941 gmx_bool *bConverged,
942 gmx_vsite_t *vsite,
943 FILE *fp_field)
945 int nshell;
946 t_shell *shell;
947 t_idef *idef;
948 rvec *pos[2], *force[2], *acc_dir = NULL, *x_old = NULL;
949 real Epot[2], df[2];
950 real sf_dir, invdt;
951 real ftol, dum = 0;
952 char sbuf[22];
953 gmx_bool bCont, bInit;
954 int nat, dd_ac0, dd_ac1 = 0, i;
955 int start = 0, homenr = md->homenr, end = start+homenr, cg0, cg1;
956 int nflexcon, number_steps, d, Min = 0, count = 0;
957 #define Try (1-Min) /* At start Try = 1 */
959 bCont = (mdstep == inputrec->init_step) && inputrec->bContinuation;
960 bInit = (mdstep == inputrec->init_step) || shfc->bRequireInit;
961 ftol = inputrec->em_tol;
962 number_steps = inputrec->niter;
963 nshell = shfc->nshell;
964 shell = shfc->shell;
965 nflexcon = shfc->nflexcon;
967 idef = &top->idef;
969 if (DOMAINDECOMP(cr))
971 nat = dd_natoms_vsite(cr->dd);
972 if (nflexcon > 0)
974 dd_get_constraint_range(cr->dd, &dd_ac0, &dd_ac1);
975 nat = std::max(nat, dd_ac1);
978 else
980 nat = state->natoms;
983 if (nat > shfc->x_nalloc)
985 /* Allocate local arrays */
986 shfc->x_nalloc = over_alloc_dd(nat);
987 for (i = 0; (i < 2); i++)
989 srenew(shfc->x[i], shfc->x_nalloc);
990 srenew(shfc->f[i], shfc->x_nalloc);
993 for (i = 0; (i < 2); i++)
995 pos[i] = shfc->x[i];
996 force[i] = shfc->f[i];
999 if (bDoNS && inputrec->ePBC != epbcNONE && !DOMAINDECOMP(cr))
1001 /* This is the only time where the coordinates are used
1002 * before do_force is called, which normally puts all
1003 * charge groups in the box.
1005 if (inputrec->cutoff_scheme == ecutsVERLET)
1007 put_atoms_in_box_omp(fr->ePBC, state->box, md->homenr, state->x);
1009 else
1011 cg0 = 0;
1012 cg1 = top->cgs.nr;
1013 put_charge_groups_in_box(fplog, cg0, cg1, fr->ePBC, state->box,
1014 &(top->cgs), state->x, fr->cg_cm);
1017 if (graph)
1019 mk_mshift(fplog, graph, fr->ePBC, state->box, state->x);
1023 /* After this all coordinate arrays will contain whole charge groups */
1024 if (graph)
1026 shift_self(graph, state->box, state->x);
1029 if (nflexcon)
1031 if (nat > shfc->flex_nalloc)
1033 shfc->flex_nalloc = over_alloc_dd(nat);
1034 srenew(shfc->acc_dir, shfc->flex_nalloc);
1035 srenew(shfc->x_old, shfc->flex_nalloc);
1037 acc_dir = shfc->acc_dir;
1038 x_old = shfc->x_old;
1039 for (i = 0; i < homenr; i++)
1041 for (d = 0; d < DIM; d++)
1043 shfc->x_old[i][d] =
1044 state->x[start+i][d] - state->v[start+i][d]*inputrec->delta_t;
1049 /* Do a prediction of the shell positions */
1050 if (shfc->bPredict && !bCont)
1052 predict_shells(fplog, state->x, state->v, inputrec->delta_t, nshell, shell,
1053 md->massT, NULL, bInit);
1056 /* do_force expected the charge groups to be in the box */
1057 if (graph)
1059 unshift_self(graph, state->box, state->x);
1062 /* Calculate the forces first time around */
1063 if (gmx_debug_at)
1065 pr_rvecs(debug, 0, "x b4 do_force", state->x + start, homenr);
1067 do_force(fplog, cr, inputrec, mdstep, nrnb, wcycle, top, groups,
1068 state->box, state->x, &state->hist,
1069 force[Min], force_vir, md, enerd, fcd,
1070 state->lambda, graph,
1071 fr, vsite, mu_tot, t, fp_field, NULL, bBornRadii,
1072 (bDoNS ? GMX_FORCE_NS : 0) | force_flags);
1074 sf_dir = 0;
1075 if (nflexcon)
1077 init_adir(fplog, shfc,
1078 constr, idef, inputrec, cr, dd_ac1, mdstep, md, start, end,
1079 shfc->x_old-start, state->x, state->x, force[Min],
1080 shfc->acc_dir-start,
1081 fr->bMolPBC, state->box, state->lambda, &dum, nrnb);
1083 for (i = start; i < end; i++)
1085 sf_dir += md->massT[i]*norm2(shfc->acc_dir[i-start]);
1089 Epot[Min] = enerd->term[F_EPOT];
1091 df[Min] = rms_force(cr, shfc->f[Min], nshell, shell, nflexcon, &sf_dir, &Epot[Min]);
1092 df[Try] = 0;
1093 if (debug)
1095 fprintf(debug, "df = %g %g\n", df[Min], df[Try]);
1098 if (gmx_debug_at)
1100 pr_rvecs(debug, 0, "force0", force[Min], md->nr);
1103 if (nshell+nflexcon > 0)
1105 /* Copy x to pos[Min] & pos[Try]: during minimization only the
1106 * shell positions are updated, therefore the other particles must
1107 * be set here.
1109 memcpy(pos[Min], state->x, nat*sizeof(state->x[0]));
1110 memcpy(pos[Try], state->x, nat*sizeof(state->x[0]));
1113 if (bVerbose && MASTER(cr))
1115 print_epot(stdout, mdstep, 0, Epot[Min], df[Min], nflexcon, sf_dir);
1118 if (debug)
1120 fprintf(debug, "%17s: %14.10e\n",
1121 interaction_function[F_EKIN].longname, enerd->term[F_EKIN]);
1122 fprintf(debug, "%17s: %14.10e\n",
1123 interaction_function[F_EPOT].longname, enerd->term[F_EPOT]);
1124 fprintf(debug, "%17s: %14.10e\n",
1125 interaction_function[F_ETOT].longname, enerd->term[F_ETOT]);
1126 fprintf(debug, "SHELLSTEP %s\n", gmx_step_str(mdstep, sbuf));
1129 /* First check whether we should do shells, or whether the force is
1130 * low enough even without minimization.
1132 *bConverged = (df[Min] < ftol);
1134 for (count = 1; (!(*bConverged) && (count < number_steps)); count++)
1136 if (vsite)
1138 construct_vsites(vsite, pos[Min], inputrec->delta_t, state->v,
1139 idef->iparams, idef->il,
1140 fr->ePBC, fr->bMolPBC, cr, state->box);
1143 if (nflexcon)
1145 init_adir(fplog, shfc,
1146 constr, idef, inputrec, cr, dd_ac1, mdstep, md, start, end,
1147 x_old-start, state->x, pos[Min], force[Min], acc_dir-start,
1148 fr->bMolPBC, state->box, state->lambda, &dum, nrnb);
1150 directional_sd(pos[Min], pos[Try], acc_dir-start, start, end,
1151 fr->fc_stepsize);
1154 /* New positions, Steepest descent */
1155 shell_pos_sd(pos[Min], pos[Try], force[Min], nshell, shell, count);
1157 /* do_force expected the charge groups to be in the box */
1158 if (graph)
1160 unshift_self(graph, state->box, pos[Try]);
1163 if (gmx_debug_at)
1165 pr_rvecs(debug, 0, "RELAX: pos[Min] ", pos[Min] + start, homenr);
1166 pr_rvecs(debug, 0, "RELAX: pos[Try] ", pos[Try] + start, homenr);
1168 /* Try the new positions */
1169 do_force(fplog, cr, inputrec, 1, nrnb, wcycle,
1170 top, groups, state->box, pos[Try], &state->hist,
1171 force[Try], force_vir,
1172 md, enerd, fcd, state->lambda, graph,
1173 fr, vsite, mu_tot, t, fp_field, NULL, bBornRadii,
1174 force_flags);
1176 if (gmx_debug_at)
1178 pr_rvecs(debug, 0, "RELAX: force[Min]", force[Min] + start, homenr);
1179 pr_rvecs(debug, 0, "RELAX: force[Try]", force[Try] + start, homenr);
1181 sf_dir = 0;
1182 if (nflexcon)
1184 init_adir(fplog, shfc,
1185 constr, idef, inputrec, cr, dd_ac1, mdstep, md, start, end,
1186 x_old-start, state->x, pos[Try], force[Try], acc_dir-start,
1187 fr->bMolPBC, state->box, state->lambda, &dum, nrnb);
1189 for (i = start; i < end; i++)
1191 sf_dir += md->massT[i]*norm2(acc_dir[i-start]);
1195 Epot[Try] = enerd->term[F_EPOT];
1197 df[Try] = rms_force(cr, force[Try], nshell, shell, nflexcon, &sf_dir, &Epot[Try]);
1199 if (debug)
1201 fprintf(debug, "df = %g %g\n", df[Min], df[Try]);
1204 if (debug)
1206 if (gmx_debug_at)
1208 pr_rvecs(debug, 0, "F na do_force", force[Try] + start, homenr);
1210 if (gmx_debug_at)
1212 fprintf(debug, "SHELL ITER %d\n", count);
1213 dump_shells(debug, pos[Try], force[Try], ftol, nshell, shell);
1217 if (bVerbose && MASTER(cr))
1219 print_epot(stdout, mdstep, count, Epot[Try], df[Try], nflexcon, sf_dir);
1222 *bConverged = (df[Try] < ftol);
1224 if ((df[Try] < df[Min]))
1226 if (debug)
1228 fprintf(debug, "Swapping Min and Try\n");
1230 if (nflexcon)
1232 /* Correct the velocities for the flexible constraints */
1233 invdt = 1/inputrec->delta_t;
1234 for (i = start; i < end; i++)
1236 for (d = 0; d < DIM; d++)
1238 state->v[i][d] += (pos[Try][i][d] - pos[Min][i][d])*invdt;
1242 Min = Try;
1244 else
1246 decrease_step_size(nshell, shell);
1249 if (MASTER(cr) && !(*bConverged))
1251 /* Note that the energies and virial are incorrect when not converged */
1252 if (fplog)
1254 fprintf(fplog,
1255 "step %s: EM did not converge in %d iterations, RMS force %.3f\n",
1256 gmx_step_str(mdstep, sbuf), number_steps, df[Min]);
1258 fprintf(stderr,
1259 "step %s: EM did not converge in %d iterations, RMS force %.3f\n",
1260 gmx_step_str(mdstep, sbuf), number_steps, df[Min]);
1263 /* Copy back the coordinates and the forces */
1264 memcpy(state->x, pos[Min], nat*sizeof(state->x[0]));
1265 memcpy(f, force[Min], nat*sizeof(f[0]));
1267 return count;