Remove the rest of the device coordinates management from PME
[gromacs.git] / src / gromacs / nbnxm / pairlist.cpp
blobb76ad3e9a75a5537ef9a3870ab286fda58ff2329
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2016 by the GROMACS development team.
5 * Copyright (c) 2017,2018,2019,2020, by the GROMACS development team, led by
6 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
7 * and including many others, as listed in the AUTHORS file in the
8 * top-level source directory and at http://www.gromacs.org.
10 * GROMACS is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public License
12 * as published by the Free Software Foundation; either version 2.1
13 * of the License, or (at your option) any later version.
15 * GROMACS is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with GROMACS; if not, see
22 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
23 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
25 * If you want to redistribute modifications to GROMACS, please
26 * consider that scientific software is very special. Version
27 * control is crucial - bugs must be traceable. We will be happy to
28 * consider code for inclusion in the official distribution, but
29 * derived work must not be called official GROMACS. Details are found
30 * in the README & COPYING files - if they are missing, get the
31 * official version at http://www.gromacs.org.
33 * To help us fund GROMACS development, we humbly ask that you cite
34 * the research papers on the package. Check out http://www.gromacs.org.
37 #include "gmxpre.h"
39 #include "pairlist.h"
41 #include "config.h"
43 #include <cassert>
44 #include <cmath>
45 #include <cstring>
47 #include <algorithm>
49 #include "gromacs/domdec/domdec_struct.h"
50 #include "gromacs/gmxlib/nrnb.h"
51 #include "gromacs/math/functions.h"
52 #include "gromacs/math/utilities.h"
53 #include "gromacs/math/vec.h"
54 #include "gromacs/mdlib/gmx_omp_nthreads.h"
55 #include "gromacs/mdtypes/group.h"
56 #include "gromacs/mdtypes/md_enums.h"
57 #include "gromacs/nbnxm/atomdata.h"
58 #include "gromacs/nbnxm/gpu_data_mgmt.h"
59 #include "gromacs/pbcutil/ishift.h"
60 #include "gromacs/pbcutil/pbc.h"
61 #include "gromacs/simd/simd.h"
62 #include "gromacs/simd/vector_operations.h"
63 #include "gromacs/utility/exceptions.h"
64 #include "gromacs/utility/fatalerror.h"
65 #include "gromacs/utility/gmxomp.h"
66 #include "gromacs/utility/listoflists.h"
67 #include "gromacs/utility/smalloc.h"
69 #include "boundingboxes.h"
70 #include "clusterdistancekerneltype.h"
71 #include "gridset.h"
72 #include "nbnxm_geometry.h"
73 #include "nbnxm_simd.h"
74 #include "pairlistset.h"
75 #include "pairlistsets.h"
76 #include "pairlistwork.h"
77 #include "pairsearch.h"
79 using namespace gmx; // TODO: Remove when this file is moved into gmx namespace
81 using BoundingBox = Nbnxm::BoundingBox; // TODO: Remove when refactoring this file
82 using BoundingBox1D = Nbnxm::BoundingBox1D; // TODO: Remove when refactoring this file
84 using Grid = Nbnxm::Grid; // TODO: Remove when refactoring this file
86 // Convience alias for partial Nbnxn namespace usage
87 using InteractionLocality = gmx::InteractionLocality;
89 /* We shift the i-particles backward for PBC.
90 * This leads to more conditionals than shifting forward.
91 * We do this to get more balanced pair lists.
93 constexpr bool c_pbcShiftBackward = true;
95 /* Layout for the nonbonded NxN pair lists */
96 enum class NbnxnLayout
98 NoSimd4x4, // i-cluster size 4, j-cluster size 4
99 Simd4xN, // i-cluster size 4, j-cluster size SIMD width
100 Simd2xNN, // i-cluster size 4, j-cluster size half SIMD width
101 Gpu8x8x8 // i-cluster size 8, j-cluster size 8 + super-clustering
104 #if GMX_SIMD
105 /* Returns the j-cluster size */
106 template<NbnxnLayout layout>
107 static constexpr int jClusterSize()
109 static_assert(layout == NbnxnLayout::NoSimd4x4 || layout == NbnxnLayout::Simd4xN
110 || layout == NbnxnLayout::Simd2xNN,
111 "Currently jClusterSize only supports CPU layouts");
113 return layout == NbnxnLayout::Simd4xN
114 ? GMX_SIMD_REAL_WIDTH
115 : (layout == NbnxnLayout::Simd2xNN ? GMX_SIMD_REAL_WIDTH / 2 : c_nbnxnCpuIClusterSize);
118 /*! \brief Returns the j-cluster index given the i-cluster index.
120 * \tparam jClusterSize The number of atoms in a j-cluster
121 * \tparam jSubClusterIndex The j-sub-cluster index (0/1), used when size(j-cluster) <
122 * size(i-cluster) \param[in] ci The i-cluster index
124 template<int jClusterSize, int jSubClusterIndex>
125 static inline int cjFromCi(int ci)
127 static_assert(jClusterSize == c_nbnxnCpuIClusterSize / 2 || jClusterSize == c_nbnxnCpuIClusterSize
128 || jClusterSize == c_nbnxnCpuIClusterSize * 2,
129 "Only j-cluster sizes 2, 4 and 8 are currently implemented");
131 static_assert(jSubClusterIndex == 0 || jSubClusterIndex == 1,
132 "Only sub-cluster indices 0 and 1 are supported");
134 if (jClusterSize == c_nbnxnCpuIClusterSize / 2)
136 if (jSubClusterIndex == 0)
138 return ci << 1;
140 else
142 return ((ci + 1) << 1) - 1;
145 else if (jClusterSize == c_nbnxnCpuIClusterSize)
147 return ci;
149 else
151 return ci >> 1;
155 /*! \brief Returns the j-cluster index given the i-cluster index.
157 * \tparam layout The pair-list layout
158 * \tparam jSubClusterIndex The j-sub-cluster index (0/1), used when size(j-cluster) <
159 * size(i-cluster) \param[in] ci The i-cluster index
161 template<NbnxnLayout layout, int jSubClusterIndex>
162 static inline int cjFromCi(int ci)
164 constexpr int clusterSize = jClusterSize<layout>();
166 return cjFromCi<clusterSize, jSubClusterIndex>(ci);
169 /* Returns the nbnxn coordinate data index given the i-cluster index */
170 template<NbnxnLayout layout>
171 static inline int xIndexFromCi(int ci)
173 constexpr int clusterSize = jClusterSize<layout>();
175 static_assert(clusterSize == c_nbnxnCpuIClusterSize / 2 || clusterSize == c_nbnxnCpuIClusterSize
176 || clusterSize == c_nbnxnCpuIClusterSize * 2,
177 "Only j-cluster sizes 2, 4 and 8 are currently implemented");
179 if (clusterSize <= c_nbnxnCpuIClusterSize)
181 /* Coordinates are stored packed in groups of 4 */
182 return ci * STRIDE_P4;
184 else
186 /* Coordinates packed in 8, i-cluster size is half the packing width */
187 return (ci >> 1) * STRIDE_P8 + (ci & 1) * (c_packX8 >> 1);
191 /* Returns the nbnxn coordinate data index given the j-cluster index */
192 template<NbnxnLayout layout>
193 static inline int xIndexFromCj(int cj)
195 constexpr int clusterSize = jClusterSize<layout>();
197 static_assert(clusterSize == c_nbnxnCpuIClusterSize / 2 || clusterSize == c_nbnxnCpuIClusterSize
198 || clusterSize == c_nbnxnCpuIClusterSize * 2,
199 "Only j-cluster sizes 2, 4 and 8 are currently implemented");
201 if (clusterSize == c_nbnxnCpuIClusterSize / 2)
203 /* Coordinates are stored packed in groups of 4 */
204 return (cj >> 1) * STRIDE_P4 + (cj & 1) * (c_packX4 >> 1);
206 else if (clusterSize == c_nbnxnCpuIClusterSize)
208 /* Coordinates are stored packed in groups of 4 */
209 return cj * STRIDE_P4;
211 else
213 /* Coordinates are stored packed in groups of 8 */
214 return cj * STRIDE_P8;
217 #endif // GMX_SIMD
220 void nbnxn_init_pairlist_fep(t_nblist* nl)
222 nl->type = GMX_NBLIST_INTERACTION_FREE_ENERGY;
223 nl->igeometry = GMX_NBLIST_GEOMETRY_PARTICLE_PARTICLE;
224 /* The interaction functions are set in the free energy kernel fuction */
225 nl->ivdw = -1;
226 nl->ivdwmod = -1;
227 nl->ielec = -1;
228 nl->ielecmod = -1;
230 nl->maxnri = 0;
231 nl->maxnrj = 0;
232 nl->nri = 0;
233 nl->nrj = 0;
234 nl->iinr = nullptr;
235 nl->gid = nullptr;
236 nl->shift = nullptr;
237 nl->jindex = nullptr;
238 nl->jjnr = nullptr;
239 nl->excl_fep = nullptr;
242 static void init_buffer_flags(nbnxn_buffer_flags_t* flags, int natoms)
244 flags->nflag = (natoms + NBNXN_BUFFERFLAG_SIZE - 1) / NBNXN_BUFFERFLAG_SIZE;
245 if (flags->nflag > flags->flag_nalloc)
247 flags->flag_nalloc = over_alloc_large(flags->nflag);
248 srenew(flags->flag, flags->flag_nalloc);
250 for (int b = 0; b < flags->nflag; b++)
252 bitmask_clear(&(flags->flag[b]));
256 /* Returns the pair-list cutoff between a bounding box and a grid cell given an atom-to-atom pair-list cutoff
258 * Given a cutoff distance between atoms, this functions returns the cutoff
259 * distance2 between a bounding box of a group of atoms and a grid cell.
260 * Since atoms can be geometrically outside of the cell they have been
261 * assigned to (when atom groups instead of individual atoms are assigned
262 * to cells), this distance returned can be larger than the input.
264 static real listRangeForBoundingBoxToGridCell(real rlist, const Grid::Dimensions& gridDims)
266 return rlist + gridDims.maxAtomGroupRadius;
268 /* Returns the pair-list cutoff between a grid cells given an atom-to-atom pair-list cutoff
270 * Given a cutoff distance between atoms, this functions returns the cutoff
271 * distance2 between two grid cells.
272 * Since atoms can be geometrically outside of the cell they have been
273 * assigned to (when atom groups instead of individual atoms are assigned
274 * to cells), this distance returned can be larger than the input.
276 static real listRangeForGridCellToGridCell(real rlist,
277 const Grid::Dimensions& iGridDims,
278 const Grid::Dimensions& jGridDims)
280 return rlist + iGridDims.maxAtomGroupRadius + jGridDims.maxAtomGroupRadius;
283 /* Determines the cell range along one dimension that
284 * the bounding box b0 - b1 sees.
286 template<int dim>
287 static void
288 get_cell_range(real b0, real b1, const Grid::Dimensions& jGridDims, real d2, real rlist, int* cf, int* cl)
290 real listRangeBBToCell2 = gmx::square(listRangeForBoundingBoxToGridCell(rlist, jGridDims));
291 real distanceInCells = (b0 - jGridDims.lowerCorner[dim]) * jGridDims.invCellSize[dim];
292 *cf = std::max(static_cast<int>(distanceInCells), 0);
294 while (*cf > 0
295 && d2 + gmx::square((b0 - jGridDims.lowerCorner[dim]) - (*cf - 1 + 1) * jGridDims.cellSize[dim])
296 < listRangeBBToCell2)
298 (*cf)--;
301 *cl = std::min(static_cast<int>((b1 - jGridDims.lowerCorner[dim]) * jGridDims.invCellSize[dim]),
302 jGridDims.numCells[dim] - 1);
303 while (*cl < jGridDims.numCells[dim] - 1
304 && d2 + gmx::square((*cl + 1) * jGridDims.cellSize[dim] - (b1 - jGridDims.lowerCorner[dim]))
305 < listRangeBBToCell2)
307 (*cl)++;
311 /* Reference code calculating the distance^2 between two bounding boxes */
313 static float box_dist2(float bx0, float bx1, float by0,
314 float by1, float bz0, float bz1,
315 const BoundingBox *bb)
317 float d2;
318 float dl, dh, dm, dm0;
320 d2 = 0;
322 dl = bx0 - bb->upper.x;
323 dh = bb->lower.x - bx1;
324 dm = std::max(dl, dh);
325 dm0 = std::max(dm, 0.0f);
326 d2 += dm0*dm0;
328 dl = by0 - bb->upper.y;
329 dh = bb->lower.y - by1;
330 dm = std::max(dl, dh);
331 dm0 = std::max(dm, 0.0f);
332 d2 += dm0*dm0;
334 dl = bz0 - bb->upper.z;
335 dh = bb->lower.z - bz1;
336 dm = std::max(dl, dh);
337 dm0 = std::max(dm, 0.0f);
338 d2 += dm0*dm0;
340 return d2;
344 #if !NBNXN_SEARCH_BB_SIMD4
346 /*! \brief Plain C code calculating the distance^2 between two bounding boxes in xyz0 format
348 * \param[in] bb_i First bounding box
349 * \param[in] bb_j Second bounding box
351 static float clusterBoundingBoxDistance2(const BoundingBox& bb_i, const BoundingBox& bb_j)
353 float dl = bb_i.lower.x - bb_j.upper.x;
354 float dh = bb_j.lower.x - bb_i.upper.x;
355 float dm = std::max(dl, dh);
356 float dm0 = std::max(dm, 0.0F);
357 float d2 = dm0 * dm0;
359 dl = bb_i.lower.y - bb_j.upper.y;
360 dh = bb_j.lower.y - bb_i.upper.y;
361 dm = std::max(dl, dh);
362 dm0 = std::max(dm, 0.0F);
363 d2 += dm0 * dm0;
365 dl = bb_i.lower.z - bb_j.upper.z;
366 dh = bb_j.lower.z - bb_i.upper.z;
367 dm = std::max(dl, dh);
368 dm0 = std::max(dm, 0.0F);
369 d2 += dm0 * dm0;
371 return d2;
374 #else /* NBNXN_SEARCH_BB_SIMD4 */
376 /*! \brief 4-wide SIMD code calculating the distance^2 between two bounding boxes in xyz0 format
378 * \param[in] bb_i First bounding box, should be aligned for 4-wide SIMD
379 * \param[in] bb_j Second bounding box, should be aligned for 4-wide SIMD
381 static float clusterBoundingBoxDistance2(const BoundingBox& bb_i, const BoundingBox& bb_j)
383 // TODO: During SIMDv2 transition only some archs use namespace (remove when done)
384 using namespace gmx;
386 const Simd4Float bb_i_S0 = load4(bb_i.lower.ptr());
387 const Simd4Float bb_i_S1 = load4(bb_i.upper.ptr());
388 const Simd4Float bb_j_S0 = load4(bb_j.lower.ptr());
389 const Simd4Float bb_j_S1 = load4(bb_j.upper.ptr());
391 const Simd4Float dl_S = bb_i_S0 - bb_j_S1;
392 const Simd4Float dh_S = bb_j_S0 - bb_i_S1;
394 const Simd4Float dm_S = max(dl_S, dh_S);
395 const Simd4Float dm0_S = max(dm_S, simd4SetZeroF());
397 return dotProduct(dm0_S, dm0_S);
400 /* Calculate bb bounding distances of bb_i[si,...,si+3] and store them in d2 */
401 template<int boundingBoxStart>
402 static inline void gmx_simdcall clusterBoundingBoxDistance2_xxxx_simd4_inner(const float* bb_i,
403 float* d2,
404 const Simd4Float xj_l,
405 const Simd4Float yj_l,
406 const Simd4Float zj_l,
407 const Simd4Float xj_h,
408 const Simd4Float yj_h,
409 const Simd4Float zj_h)
411 constexpr int stride = c_packedBoundingBoxesDimSize;
413 const int shi = boundingBoxStart * Nbnxm::c_numBoundingBoxBounds1D * DIM;
415 const Simd4Float zero = setZero();
417 const Simd4Float xi_l = load4(bb_i + shi + 0 * stride);
418 const Simd4Float yi_l = load4(bb_i + shi + 1 * stride);
419 const Simd4Float zi_l = load4(bb_i + shi + 2 * stride);
420 const Simd4Float xi_h = load4(bb_i + shi + 3 * stride);
421 const Simd4Float yi_h = load4(bb_i + shi + 4 * stride);
422 const Simd4Float zi_h = load4(bb_i + shi + 5 * stride);
424 const Simd4Float dx_0 = xi_l - xj_h;
425 const Simd4Float dy_0 = yi_l - yj_h;
426 const Simd4Float dz_0 = zi_l - zj_h;
428 const Simd4Float dx_1 = xj_l - xi_h;
429 const Simd4Float dy_1 = yj_l - yi_h;
430 const Simd4Float dz_1 = zj_l - zi_h;
432 const Simd4Float mx = max(dx_0, dx_1);
433 const Simd4Float my = max(dy_0, dy_1);
434 const Simd4Float mz = max(dz_0, dz_1);
436 const Simd4Float m0x = max(mx, zero);
437 const Simd4Float m0y = max(my, zero);
438 const Simd4Float m0z = max(mz, zero);
440 const Simd4Float d2x = m0x * m0x;
441 const Simd4Float d2y = m0y * m0y;
442 const Simd4Float d2z = m0z * m0z;
444 const Simd4Float d2s = d2x + d2y;
445 const Simd4Float d2t = d2s + d2z;
447 store4(d2 + boundingBoxStart, d2t);
450 /* 4-wide SIMD code for nsi bb distances for bb format xxxxyyyyzzzz */
451 static void clusterBoundingBoxDistance2_xxxx_simd4(const float* bb_j, const int nsi, const float* bb_i, float* d2)
453 constexpr int stride = c_packedBoundingBoxesDimSize;
455 // TODO: During SIMDv2 transition only some archs use namespace (remove when done)
456 using namespace gmx;
458 const Simd4Float xj_l = Simd4Float(bb_j[0 * stride]);
459 const Simd4Float yj_l = Simd4Float(bb_j[1 * stride]);
460 const Simd4Float zj_l = Simd4Float(bb_j[2 * stride]);
461 const Simd4Float xj_h = Simd4Float(bb_j[3 * stride]);
462 const Simd4Float yj_h = Simd4Float(bb_j[4 * stride]);
463 const Simd4Float zj_h = Simd4Float(bb_j[5 * stride]);
465 /* Here we "loop" over si (0,stride) from 0 to nsi with step stride.
466 * But as we know the number of iterations is 1 or 2, we unroll manually.
468 clusterBoundingBoxDistance2_xxxx_simd4_inner<0>(bb_i, d2, xj_l, yj_l, zj_l, xj_h, yj_h, zj_h);
469 if (stride < nsi)
471 clusterBoundingBoxDistance2_xxxx_simd4_inner<stride>(bb_i, d2, xj_l, yj_l, zj_l, xj_h, yj_h, zj_h);
475 #endif /* NBNXN_SEARCH_BB_SIMD4 */
478 /* Returns if any atom pair from two clusters is within distance sqrt(rlist2) */
479 static inline gmx_bool
480 clusterpair_in_range(const NbnxnPairlistGpuWork& work, int si, int csj, int stride, const real* x_j, real rlist2)
482 #if !GMX_SIMD4_HAVE_REAL
484 /* Plain C version.
485 * All coordinates are stored as xyzxyz...
488 const real* x_i = work.iSuperClusterData.x.data();
490 for (int i = 0; i < c_nbnxnGpuClusterSize; i++)
492 int i0 = (si * c_nbnxnGpuClusterSize + i) * DIM;
493 for (int j = 0; j < c_nbnxnGpuClusterSize; j++)
495 int j0 = (csj * c_nbnxnGpuClusterSize + j) * stride;
497 real d2 = gmx::square(x_i[i0] - x_j[j0]) + gmx::square(x_i[i0 + 1] - x_j[j0 + 1])
498 + gmx::square(x_i[i0 + 2] - x_j[j0 + 2]);
500 if (d2 < rlist2)
502 return TRUE;
507 return FALSE;
509 #else /* !GMX_SIMD4_HAVE_REAL */
511 /* 4-wide SIMD version.
512 * The coordinates x_i are stored as xxxxyyyy..., x_j is stored xyzxyz...
513 * Using 8-wide AVX(2) is not faster on Intel Sandy Bridge and Haswell.
515 static_assert(c_nbnxnGpuClusterSize == 8 || c_nbnxnGpuClusterSize == 4,
516 "A cluster is hard-coded to 4/8 atoms.");
518 Simd4Real rc2_S = Simd4Real(rlist2);
520 const real* x_i = work.iSuperClusterData.xSimd.data();
522 int dim_stride = c_nbnxnGpuClusterSize * DIM;
523 Simd4Real ix_S0 = load4(x_i + si * dim_stride + 0 * GMX_SIMD4_WIDTH);
524 Simd4Real iy_S0 = load4(x_i + si * dim_stride + 1 * GMX_SIMD4_WIDTH);
525 Simd4Real iz_S0 = load4(x_i + si * dim_stride + 2 * GMX_SIMD4_WIDTH);
527 Simd4Real ix_S1, iy_S1, iz_S1;
528 if (c_nbnxnGpuClusterSize == 8)
530 ix_S1 = load4(x_i + si * dim_stride + 3 * GMX_SIMD4_WIDTH);
531 iy_S1 = load4(x_i + si * dim_stride + 4 * GMX_SIMD4_WIDTH);
532 iz_S1 = load4(x_i + si * dim_stride + 5 * GMX_SIMD4_WIDTH);
534 /* We loop from the outer to the inner particles to maximize
535 * the chance that we find a pair in range quickly and return.
537 int j0 = csj * c_nbnxnGpuClusterSize;
538 int j1 = j0 + c_nbnxnGpuClusterSize - 1;
539 while (j0 < j1)
541 Simd4Real jx0_S, jy0_S, jz0_S;
542 Simd4Real jx1_S, jy1_S, jz1_S;
544 Simd4Real dx_S0, dy_S0, dz_S0;
545 Simd4Real dx_S1, dy_S1, dz_S1;
546 Simd4Real dx_S2, dy_S2, dz_S2;
547 Simd4Real dx_S3, dy_S3, dz_S3;
549 Simd4Real rsq_S0;
550 Simd4Real rsq_S1;
551 Simd4Real rsq_S2;
552 Simd4Real rsq_S3;
554 Simd4Bool wco_S0;
555 Simd4Bool wco_S1;
556 Simd4Bool wco_S2;
557 Simd4Bool wco_S3;
558 Simd4Bool wco_any_S01, wco_any_S23, wco_any_S;
560 jx0_S = Simd4Real(x_j[j0 * stride + 0]);
561 jy0_S = Simd4Real(x_j[j0 * stride + 1]);
562 jz0_S = Simd4Real(x_j[j0 * stride + 2]);
564 jx1_S = Simd4Real(x_j[j1 * stride + 0]);
565 jy1_S = Simd4Real(x_j[j1 * stride + 1]);
566 jz1_S = Simd4Real(x_j[j1 * stride + 2]);
568 /* Calculate distance */
569 dx_S0 = ix_S0 - jx0_S;
570 dy_S0 = iy_S0 - jy0_S;
571 dz_S0 = iz_S0 - jz0_S;
572 dx_S2 = ix_S0 - jx1_S;
573 dy_S2 = iy_S0 - jy1_S;
574 dz_S2 = iz_S0 - jz1_S;
575 if (c_nbnxnGpuClusterSize == 8)
577 dx_S1 = ix_S1 - jx0_S;
578 dy_S1 = iy_S1 - jy0_S;
579 dz_S1 = iz_S1 - jz0_S;
580 dx_S3 = ix_S1 - jx1_S;
581 dy_S3 = iy_S1 - jy1_S;
582 dz_S3 = iz_S1 - jz1_S;
585 /* rsq = dx*dx+dy*dy+dz*dz */
586 rsq_S0 = norm2(dx_S0, dy_S0, dz_S0);
587 rsq_S2 = norm2(dx_S2, dy_S2, dz_S2);
588 if (c_nbnxnGpuClusterSize == 8)
590 rsq_S1 = norm2(dx_S1, dy_S1, dz_S1);
591 rsq_S3 = norm2(dx_S3, dy_S3, dz_S3);
594 wco_S0 = (rsq_S0 < rc2_S);
595 wco_S2 = (rsq_S2 < rc2_S);
596 if (c_nbnxnGpuClusterSize == 8)
598 wco_S1 = (rsq_S1 < rc2_S);
599 wco_S3 = (rsq_S3 < rc2_S);
601 if (c_nbnxnGpuClusterSize == 8)
603 wco_any_S01 = wco_S0 || wco_S1;
604 wco_any_S23 = wco_S2 || wco_S3;
605 wco_any_S = wco_any_S01 || wco_any_S23;
607 else
609 wco_any_S = wco_S0 || wco_S2;
612 if (anyTrue(wco_any_S))
614 return TRUE;
617 j0++;
618 j1--;
621 return FALSE;
623 #endif /* !GMX_SIMD4_HAVE_REAL */
626 /* Returns the j-cluster index for index cjIndex in a cj list */
627 static inline int nblCj(gmx::ArrayRef<const nbnxn_cj_t> cjList, int cjIndex)
629 return cjList[cjIndex].cj;
632 /* Returns the j-cluster index for index cjIndex in a cj4 list */
633 static inline int nblCj(gmx::ArrayRef<const nbnxn_cj4_t> cj4List, int cjIndex)
635 return cj4List[cjIndex / c_nbnxnGpuJgroupSize].cj[cjIndex & (c_nbnxnGpuJgroupSize - 1)];
638 /* Returns the i-interaction mask of the j sub-cell for index cj_ind */
639 static unsigned int nbl_imask0(const NbnxnPairlistGpu* nbl, int cj_ind)
641 return nbl->cj4[cj_ind / c_nbnxnGpuJgroupSize].imei[0].imask;
644 NbnxnPairlistCpu::NbnxnPairlistCpu() :
645 na_ci(c_nbnxnCpuIClusterSize),
646 na_cj(0),
647 rlist(0),
648 ncjInUse(0),
649 nci_tot(0),
650 work(std::make_unique<NbnxnPairlistCpuWork>())
654 NbnxnPairlistGpu::NbnxnPairlistGpu(gmx::PinningPolicy pinningPolicy) :
655 na_ci(c_nbnxnGpuClusterSize),
656 na_cj(c_nbnxnGpuClusterSize),
657 na_sc(c_gpuNumClusterPerCell * c_nbnxnGpuClusterSize),
658 rlist(0),
659 sci({}, { pinningPolicy }),
660 cj4({}, { pinningPolicy }),
661 excl({}, { pinningPolicy }),
662 nci_tot(0),
663 work(std::make_unique<NbnxnPairlistGpuWork>())
665 static_assert(c_nbnxnGpuNumClusterPerSupercluster == c_gpuNumClusterPerCell,
666 "The search code assumes that the a super-cluster matches a search grid cell");
668 static_assert(sizeof(cj4[0].imei[0].imask) * 8 >= c_nbnxnGpuJgroupSize * c_gpuNumClusterPerCell,
669 "The i super-cluster cluster interaction mask does not contain a sufficient "
670 "number of bits");
672 static_assert(sizeof(excl[0]) * 8 >= c_nbnxnGpuJgroupSize * c_gpuNumClusterPerCell,
673 "The GPU exclusion mask does not contain a sufficient number of bits");
675 // We always want a first entry without any exclusions
676 excl.resize(1);
679 // TODO: Move to pairlistset.cpp
680 PairlistSet::PairlistSet(const InteractionLocality locality, const PairlistParams& pairlistParams) :
681 locality_(locality),
682 params_(pairlistParams)
684 isCpuType_ = (params_.pairlistType == PairlistType::Simple4x2
685 || params_.pairlistType == PairlistType::Simple4x4
686 || params_.pairlistType == PairlistType::Simple4x8);
687 // Currently GPU lists are always combined
688 combineLists_ = !isCpuType_;
690 const int numLists = gmx_omp_nthreads_get(emntNonbonded);
692 if (!combineLists_ && numLists > NBNXN_BUFFERFLAG_MAX_THREADS)
694 gmx_fatal(FARGS,
695 "%d OpenMP threads were requested. Since the non-bonded force buffer reduction "
696 "is prohibitively slow with more than %d threads, we do not allow this. Use %d "
697 "or less OpenMP threads.",
698 numLists, NBNXN_BUFFERFLAG_MAX_THREADS, NBNXN_BUFFERFLAG_MAX_THREADS);
701 if (isCpuType_)
703 cpuLists_.resize(numLists);
704 if (numLists > 1)
706 cpuListsWork_.resize(numLists);
709 else
711 /* Only list 0 is used on the GPU, use normal allocation for i>0 */
712 gpuLists_.emplace_back(gmx::PinningPolicy::PinnedIfSupported);
713 /* Lists 0 to numLists are use for constructing lists in parallel
714 * on the CPU using numLists threads (and then merged into list 0).
716 for (int i = 1; i < numLists; i++)
718 gpuLists_.emplace_back(gmx::PinningPolicy::CannotBePinned);
721 if (params_.haveFep)
723 fepLists_.resize(numLists);
725 /* Execute in order to avoid memory interleaving between threads */
726 #pragma omp parallel for num_threads(numLists) schedule(static)
727 for (int i = 0; i < numLists; i++)
731 /* We used to allocate all normal lists locally on each thread
732 * as well. The question is if allocating the object on the
733 * master thread (but all contained list memory thread local)
734 * impacts performance.
736 fepLists_[i] = std::make_unique<t_nblist>();
737 nbnxn_init_pairlist_fep(fepLists_[i].get());
739 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
744 /* Print statistics of a pair list, used for debug output */
745 static void print_nblist_statistics(FILE* fp,
746 const NbnxnPairlistCpu& nbl,
747 const Nbnxm::GridSet& gridSet,
748 const real rl)
750 const Grid& grid = gridSet.grids()[0];
751 const Grid::Dimensions& dims = grid.dimensions();
753 fprintf(fp, "nbl nci %zu ncj %d\n", nbl.ci.size(), nbl.ncjInUse);
754 const int numAtomsJCluster = grid.geometry().numAtomsJCluster;
755 const double numAtomsPerCell = nbl.ncjInUse / static_cast<double>(grid.numCells()) * numAtomsJCluster;
756 fprintf(fp, "nbl na_cj %d rl %g ncp %d per cell %.1f atoms %.1f ratio %.2f\n", nbl.na_cj, rl,
757 nbl.ncjInUse, nbl.ncjInUse / static_cast<double>(grid.numCells()), numAtomsPerCell,
758 numAtomsPerCell
759 / (0.5 * 4.0 / 3.0 * M_PI * rl * rl * rl * grid.numCells() * numAtomsJCluster
760 / (dims.gridSize[XX] * dims.gridSize[YY] * dims.gridSize[ZZ])));
762 fprintf(fp, "nbl average j cell list length %.1f\n",
763 0.25 * nbl.ncjInUse / std::max(static_cast<double>(nbl.ci.size()), 1.0));
765 int cs[SHIFTS] = { 0 };
766 int npexcl = 0;
767 for (const nbnxn_ci_t& ciEntry : nbl.ci)
769 cs[ciEntry.shift & NBNXN_CI_SHIFT] += ciEntry.cj_ind_end - ciEntry.cj_ind_start;
771 int j = ciEntry.cj_ind_start;
772 while (j < ciEntry.cj_ind_end && nbl.cj[j].excl != NBNXN_INTERACTION_MASK_ALL)
774 npexcl++;
775 j++;
778 fprintf(fp, "nbl cell pairs, total: %zu excl: %d %.1f%%\n", nbl.cj.size(), npexcl,
779 100 * npexcl / std::max(static_cast<double>(nbl.cj.size()), 1.0));
780 for (int s = 0; s < SHIFTS; s++)
782 if (cs[s] > 0)
784 fprintf(fp, "nbl shift %2d ncj %3d\n", s, cs[s]);
789 /* Print statistics of a pair lists, used for debug output */
790 static void print_nblist_statistics(FILE* fp,
791 const NbnxnPairlistGpu& nbl,
792 const Nbnxm::GridSet& gridSet,
793 const real rl)
795 const Grid& grid = gridSet.grids()[0];
796 const Grid::Dimensions& dims = grid.dimensions();
798 fprintf(fp, "nbl nsci %zu ncj4 %zu nsi %d excl4 %zu\n", nbl.sci.size(), nbl.cj4.size(),
799 nbl.nci_tot, nbl.excl.size());
800 const int numAtomsCluster = grid.geometry().numAtomsICluster;
801 const double numAtomsPerCell = nbl.nci_tot / static_cast<double>(grid.numClusters()) * numAtomsCluster;
802 fprintf(fp, "nbl na_c %d rl %g ncp %d per cell %.1f atoms %.1f ratio %.2f\n", nbl.na_ci, rl,
803 nbl.nci_tot, nbl.nci_tot / static_cast<double>(grid.numClusters()), numAtomsPerCell,
804 numAtomsPerCell
805 / (0.5 * 4.0 / 3.0 * M_PI * rl * rl * rl * grid.numClusters() * numAtomsCluster
806 / (dims.gridSize[XX] * dims.gridSize[YY] * dims.gridSize[ZZ])));
808 double sum_nsp = 0;
809 double sum_nsp2 = 0;
810 int nsp_max = 0;
811 int c[c_gpuNumClusterPerCell + 1] = { 0 };
812 for (const nbnxn_sci_t& sci : nbl.sci)
814 int nsp = 0;
815 for (int j4 = sci.cj4_ind_start; j4 < sci.cj4_ind_end; j4++)
817 for (int j = 0; j < c_nbnxnGpuJgroupSize; j++)
819 int b = 0;
820 for (int si = 0; si < c_gpuNumClusterPerCell; si++)
822 if (nbl.cj4[j4].imei[0].imask & (1U << (j * c_gpuNumClusterPerCell + si)))
824 b++;
827 nsp += b;
828 c[b]++;
831 sum_nsp += nsp;
832 sum_nsp2 += nsp * nsp;
833 nsp_max = std::max(nsp_max, nsp);
835 if (!nbl.sci.empty())
837 sum_nsp /= nbl.sci.size();
838 sum_nsp2 /= nbl.sci.size();
840 fprintf(fp, "nbl #cluster-pairs: av %.1f stddev %.1f max %d\n", sum_nsp,
841 std::sqrt(sum_nsp2 - sum_nsp * sum_nsp), nsp_max);
843 if (!nbl.cj4.empty())
845 for (int b = 0; b <= c_gpuNumClusterPerCell; b++)
847 fprintf(fp, "nbl j-list #i-subcell %d %7d %4.1f\n", b, c[b],
848 100.0 * c[b] / size_t{ nbl.cj4.size() * c_nbnxnGpuJgroupSize });
853 /* Returns a reference to the exclusion mask for j-cluster-group \p cj4 and warp \p warp
854 * Generates a new exclusion entry when the j-cluster-group uses
855 * the default all-interaction mask at call time, so the returned mask
856 * can be modified when needed.
858 static nbnxn_excl_t& get_exclusion_mask(NbnxnPairlistGpu* nbl, int cj4, int warp)
860 if (nbl->cj4[cj4].imei[warp].excl_ind == 0)
862 /* No exclusions set, make a new list entry */
863 const size_t oldSize = nbl->excl.size();
864 GMX_ASSERT(oldSize >= 1, "We should always have entry [0]");
865 /* Add entry with default values: no exclusions */
866 nbl->excl.resize(oldSize + 1);
867 nbl->cj4[cj4].imei[warp].excl_ind = oldSize;
870 return nbl->excl[nbl->cj4[cj4].imei[warp].excl_ind];
873 /* Sets self exclusions and excludes half of the double pairs in the self cluster-pair \p nbl->cj4[cj4Index].cj[jOffsetInGroup]
875 * \param[in,out] nbl The cluster pair list
876 * \param[in] cj4Index The j-cluster group index into \p nbl->cj4
877 * \param[in] jOffsetInGroup The j-entry offset in \p nbl->cj4[cj4Index]
878 * \param[in] iClusterInCell The i-cluster index in the cell
880 static void setSelfAndNewtonExclusionsGpu(NbnxnPairlistGpu* nbl,
881 const int cj4Index,
882 const int jOffsetInGroup,
883 const int iClusterInCell)
885 constexpr int numJatomsPerPart = c_nbnxnGpuClusterSize / c_nbnxnGpuClusterpairSplit;
887 /* The exclusions are stored separately for each part of the split */
888 for (int part = 0; part < c_nbnxnGpuClusterpairSplit; part++)
890 const int jOffset = part * numJatomsPerPart;
891 /* Make a new exclusion mask entry for each part, if we don't already have one yet */
892 nbnxn_excl_t& excl = get_exclusion_mask(nbl, cj4Index, part);
894 /* Set all bits with j-index <= i-index */
895 for (int jIndexInPart = 0; jIndexInPart < numJatomsPerPart; jIndexInPart++)
897 for (int i = jOffset + jIndexInPart; i < c_nbnxnGpuClusterSize; i++)
899 excl.pair[jIndexInPart * c_nbnxnGpuClusterSize + i] &=
900 ~(1U << (jOffsetInGroup * c_gpuNumClusterPerCell + iClusterInCell));
906 /* Returns a diagonal or off-diagonal interaction mask for plain C lists */
907 static unsigned int get_imask(gmx_bool rdiag, int ci, int cj)
909 return (rdiag && ci == cj ? NBNXN_INTERACTION_MASK_DIAG : NBNXN_INTERACTION_MASK_ALL);
912 /* Returns a diagonal or off-diagonal interaction mask for cj-size=2 */
913 gmx_unused static unsigned int get_imask_simd_j2(gmx_bool rdiag, int ci, int cj)
915 return (rdiag && ci * 2 == cj ? NBNXN_INTERACTION_MASK_DIAG_J2_0
916 : (rdiag && ci * 2 + 1 == cj ? NBNXN_INTERACTION_MASK_DIAG_J2_1
917 : NBNXN_INTERACTION_MASK_ALL));
920 /* Returns a diagonal or off-diagonal interaction mask for cj-size=4 */
921 gmx_unused static unsigned int get_imask_simd_j4(gmx_bool rdiag, int ci, int cj)
923 return (rdiag && ci == cj ? NBNXN_INTERACTION_MASK_DIAG : NBNXN_INTERACTION_MASK_ALL);
926 /* Returns a diagonal or off-diagonal interaction mask for cj-size=8 */
927 gmx_unused static unsigned int get_imask_simd_j8(gmx_bool rdiag, int ci, int cj)
929 return (rdiag && ci == cj * 2 ? NBNXN_INTERACTION_MASK_DIAG_J8_0
930 : (rdiag && ci == cj * 2 + 1 ? NBNXN_INTERACTION_MASK_DIAG_J8_1
931 : NBNXN_INTERACTION_MASK_ALL));
934 #if GMX_SIMD
935 # if GMX_SIMD_REAL_WIDTH == 2
936 # define get_imask_simd_4xn get_imask_simd_j2
937 # endif
938 # if GMX_SIMD_REAL_WIDTH == 4
939 # define get_imask_simd_4xn get_imask_simd_j4
940 # endif
941 # if GMX_SIMD_REAL_WIDTH == 8
942 # define get_imask_simd_4xn get_imask_simd_j8
943 # define get_imask_simd_2xnn get_imask_simd_j4
944 # endif
945 # if GMX_SIMD_REAL_WIDTH == 16
946 # define get_imask_simd_2xnn get_imask_simd_j8
947 # endif
948 #endif
950 /* Plain C code for checking and adding cluster-pairs to the list.
952 * \param[in] gridj The j-grid
953 * \param[in,out] nbl The pair-list to store the cluster pairs in
954 * \param[in] icluster The index of the i-cluster
955 * \param[in] jclusterFirst The first cluster in the j-range
956 * \param[in] jclusterLast The last cluster in the j-range
957 * \param[in] excludeSubDiagonal Exclude atom pairs with i-index > j-index
958 * \param[in] x_j Coordinates for the j-atom, in xyz format
959 * \param[in] rlist2 The squared list cut-off
960 * \param[in] rbb2 The squared cut-off for putting cluster-pairs in the list based on bounding box distance only
961 * \param[in,out] numDistanceChecks The number of distance checks performed
963 static void makeClusterListSimple(const Grid& jGrid,
964 NbnxnPairlistCpu* nbl,
965 int icluster,
966 int jclusterFirst,
967 int jclusterLast,
968 bool excludeSubDiagonal,
969 const real* gmx_restrict x_j,
970 real rlist2,
971 float rbb2,
972 int* gmx_restrict numDistanceChecks)
974 const BoundingBox* gmx_restrict bb_ci = nbl->work->iClusterData.bb.data();
975 const real* gmx_restrict x_ci = nbl->work->iClusterData.x.data();
977 gmx_bool InRange;
979 InRange = FALSE;
980 while (!InRange && jclusterFirst <= jclusterLast)
982 real d2 = clusterBoundingBoxDistance2(bb_ci[0], jGrid.jBoundingBoxes()[jclusterFirst]);
983 *numDistanceChecks += 2;
985 /* Check if the distance is within the distance where
986 * we use only the bounding box distance rbb,
987 * or within the cut-off and there is at least one atom pair
988 * within the cut-off.
990 if (d2 < rbb2)
992 InRange = TRUE;
994 else if (d2 < rlist2)
996 int cjf_gl = jGrid.cellOffset() + jclusterFirst;
997 for (int i = 0; i < c_nbnxnCpuIClusterSize && !InRange; i++)
999 for (int j = 0; j < c_nbnxnCpuIClusterSize; j++)
1001 InRange =
1002 InRange
1003 || (gmx::square(x_ci[i * STRIDE_XYZ + XX]
1004 - x_j[(cjf_gl * c_nbnxnCpuIClusterSize + j) * STRIDE_XYZ + XX])
1005 + gmx::square(x_ci[i * STRIDE_XYZ + YY]
1006 - x_j[(cjf_gl * c_nbnxnCpuIClusterSize + j) * STRIDE_XYZ + YY])
1007 + gmx::square(x_ci[i * STRIDE_XYZ + ZZ]
1008 - x_j[(cjf_gl * c_nbnxnCpuIClusterSize + j) * STRIDE_XYZ + ZZ])
1009 < rlist2);
1012 *numDistanceChecks += c_nbnxnCpuIClusterSize * c_nbnxnCpuIClusterSize;
1014 if (!InRange)
1016 jclusterFirst++;
1019 if (!InRange)
1021 return;
1024 InRange = FALSE;
1025 while (!InRange && jclusterLast > jclusterFirst)
1027 real d2 = clusterBoundingBoxDistance2(bb_ci[0], jGrid.jBoundingBoxes()[jclusterLast]);
1028 *numDistanceChecks += 2;
1030 /* Check if the distance is within the distance where
1031 * we use only the bounding box distance rbb,
1032 * or within the cut-off and there is at least one atom pair
1033 * within the cut-off.
1035 if (d2 < rbb2)
1037 InRange = TRUE;
1039 else if (d2 < rlist2)
1041 int cjl_gl = jGrid.cellOffset() + jclusterLast;
1042 for (int i = 0; i < c_nbnxnCpuIClusterSize && !InRange; i++)
1044 for (int j = 0; j < c_nbnxnCpuIClusterSize; j++)
1046 InRange =
1047 InRange
1048 || (gmx::square(x_ci[i * STRIDE_XYZ + XX]
1049 - x_j[(cjl_gl * c_nbnxnCpuIClusterSize + j) * STRIDE_XYZ + XX])
1050 + gmx::square(x_ci[i * STRIDE_XYZ + YY]
1051 - x_j[(cjl_gl * c_nbnxnCpuIClusterSize + j) * STRIDE_XYZ + YY])
1052 + gmx::square(x_ci[i * STRIDE_XYZ + ZZ]
1053 - x_j[(cjl_gl * c_nbnxnCpuIClusterSize + j) * STRIDE_XYZ + ZZ])
1054 < rlist2);
1057 *numDistanceChecks += c_nbnxnCpuIClusterSize * c_nbnxnCpuIClusterSize;
1059 if (!InRange)
1061 jclusterLast--;
1065 if (jclusterFirst <= jclusterLast)
1067 for (int jcluster = jclusterFirst; jcluster <= jclusterLast; jcluster++)
1069 /* Store cj and the interaction mask */
1070 nbnxn_cj_t cjEntry;
1071 cjEntry.cj = jGrid.cellOffset() + jcluster;
1072 cjEntry.excl = get_imask(excludeSubDiagonal, icluster, jcluster);
1073 nbl->cj.push_back(cjEntry);
1075 /* Increase the closing index in the i list */
1076 nbl->ci.back().cj_ind_end = nbl->cj.size();
1080 #ifdef GMX_NBNXN_SIMD_4XN
1081 # include "pairlist_simd_4xm.h"
1082 #endif
1083 #ifdef GMX_NBNXN_SIMD_2XNN
1084 # include "pairlist_simd_2xmm.h"
1085 #endif
1087 /* Plain C or SIMD4 code for making a pair list of super-cell sci vs scj.
1088 * Checks bounding box distances and possibly atom pair distances.
1090 static void make_cluster_list_supersub(const Grid& iGrid,
1091 const Grid& jGrid,
1092 NbnxnPairlistGpu* nbl,
1093 const int sci,
1094 const int scj,
1095 const bool excludeSubDiagonal,
1096 const int stride,
1097 const real* x,
1098 const real rlist2,
1099 const float rbb2,
1100 int* numDistanceChecks)
1102 NbnxnPairlistGpuWork& work = *nbl->work;
1104 #if NBNXN_BBXXXX
1105 const float* pbb_ci = work.iSuperClusterData.bbPacked.data();
1106 #else
1107 const BoundingBox* bb_ci = work.iSuperClusterData.bb.data();
1108 #endif
1110 assert(c_nbnxnGpuClusterSize == iGrid.geometry().numAtomsICluster);
1111 assert(c_nbnxnGpuClusterSize == jGrid.geometry().numAtomsICluster);
1113 /* We generate the pairlist mainly based on bounding-box distances
1114 * and do atom pair distance based pruning on the GPU.
1115 * Only if a j-group contains a single cluster-pair, we try to prune
1116 * that pair based on atom distances on the CPU to avoid empty j-groups.
1118 #define PRUNE_LIST_CPU_ONE 1
1119 #define PRUNE_LIST_CPU_ALL 0
1121 #if PRUNE_LIST_CPU_ONE
1122 int ci_last = -1;
1123 #endif
1125 float* d2l = work.distanceBuffer.data();
1127 for (int subc = 0; subc < jGrid.numClustersPerCell()[scj]; subc++)
1129 const int cj4_ind = work.cj_ind / c_nbnxnGpuJgroupSize;
1130 const int cj_offset = work.cj_ind - cj4_ind * c_nbnxnGpuJgroupSize;
1131 const int cj = scj * c_gpuNumClusterPerCell + subc;
1133 const int cj_gl = jGrid.cellOffset() * c_gpuNumClusterPerCell + cj;
1135 int ci1;
1136 if (excludeSubDiagonal && sci == scj)
1138 ci1 = subc + 1;
1140 else
1142 ci1 = iGrid.numClustersPerCell()[sci];
1145 #if NBNXN_BBXXXX
1146 /* Determine all ci1 bb distances in one call with SIMD4 */
1147 const int offset = packedBoundingBoxesIndex(cj) + (cj & (c_packedBoundingBoxesDimSize - 1));
1148 clusterBoundingBoxDistance2_xxxx_simd4(jGrid.packedBoundingBoxes().data() + offset, ci1,
1149 pbb_ci, d2l);
1150 *numDistanceChecks += c_nbnxnGpuClusterSize * 2;
1151 #endif
1153 int npair = 0;
1154 unsigned int imask = 0;
1155 /* We use a fixed upper-bound instead of ci1 to help optimization */
1156 for (int ci = 0; ci < c_gpuNumClusterPerCell; ci++)
1158 if (ci == ci1)
1160 break;
1163 #if !NBNXN_BBXXXX
1164 /* Determine the bb distance between ci and cj */
1165 d2l[ci] = clusterBoundingBoxDistance2(bb_ci[ci], jGrid.jBoundingBoxes()[cj]);
1166 *numDistanceChecks += 2;
1167 #endif
1168 float d2 = d2l[ci];
1170 #if PRUNE_LIST_CPU_ALL
1171 /* Check if the distance is within the distance where
1172 * we use only the bounding box distance rbb,
1173 * or within the cut-off and there is at least one atom pair
1174 * within the cut-off. This check is very costly.
1176 *numDistanceChecks += c_nbnxnGpuClusterSize * c_nbnxnGpuClusterSize;
1177 if (d2 < rbb2 || (d2 < rlist2 && clusterpair_in_range(work, ci, cj_gl, stride, x, rlist2)))
1178 #else
1179 /* Check if the distance between the two bounding boxes
1180 * in within the pair-list cut-off.
1182 if (d2 < rlist2)
1183 #endif
1185 /* Flag this i-subcell to be taken into account */
1186 imask |= (1U << (cj_offset * c_gpuNumClusterPerCell + ci));
1188 #if PRUNE_LIST_CPU_ONE
1189 ci_last = ci;
1190 #endif
1192 npair++;
1196 #if PRUNE_LIST_CPU_ONE
1197 /* If we only found 1 pair, check if any atoms are actually
1198 * within the cut-off, so we could get rid of it.
1200 if (npair == 1 && d2l[ci_last] >= rbb2
1201 && !clusterpair_in_range(work, ci_last, cj_gl, stride, x, rlist2))
1203 imask &= ~(1U << (cj_offset * c_gpuNumClusterPerCell + ci_last));
1204 npair--;
1206 #endif
1208 if (npair > 0)
1210 /* We have at least one cluster pair: add a j-entry */
1211 if (static_cast<size_t>(cj4_ind) == nbl->cj4.size())
1213 nbl->cj4.resize(nbl->cj4.size() + 1);
1215 nbnxn_cj4_t* cj4 = &nbl->cj4[cj4_ind];
1217 cj4->cj[cj_offset] = cj_gl;
1219 /* Set the exclusions for the ci==sj entry.
1220 * Here we don't bother to check if this entry is actually flagged,
1221 * as it will nearly always be in the list.
1223 if (excludeSubDiagonal && sci == scj)
1225 setSelfAndNewtonExclusionsGpu(nbl, cj4_ind, cj_offset, subc);
1228 /* Copy the cluster interaction mask to the list */
1229 for (int w = 0; w < c_nbnxnGpuClusterpairSplit; w++)
1231 cj4->imei[w].imask |= imask;
1234 nbl->work->cj_ind++;
1236 /* Keep the count */
1237 nbl->nci_tot += npair;
1239 /* Increase the closing index in i super-cell list */
1240 nbl->sci.back().cj4_ind_end =
1241 (nbl->work->cj_ind + c_nbnxnGpuJgroupSize - 1) / c_nbnxnGpuJgroupSize;
1246 /* Returns how many contiguous j-clusters we have starting in the i-list */
1247 template<typename CjListType>
1248 static int numContiguousJClusters(const int cjIndexStart,
1249 const int cjIndexEnd,
1250 gmx::ArrayRef<const CjListType> cjList)
1252 const int firstJCluster = nblCj(cjList, cjIndexStart);
1254 int numContiguous = 0;
1256 while (cjIndexStart + numContiguous < cjIndexEnd
1257 && nblCj(cjList, cjIndexStart + numContiguous) == firstJCluster + numContiguous)
1259 numContiguous++;
1262 return numContiguous;
1265 /*! \internal
1266 * \brief Helper struct for efficient searching for excluded atoms in a j-list
1268 struct JListRanges
1270 /*! \brief Constructs a j-list range from \p cjList with the given index range */
1271 template<typename CjListType>
1272 JListRanges(int cjIndexStart, int cjIndexEnd, gmx::ArrayRef<const CjListType> cjList);
1274 int cjIndexStart; //!< The start index in the j-list
1275 int cjIndexEnd; //!< The end index in the j-list
1276 int cjFirst; //!< The j-cluster with index cjIndexStart
1277 int cjLast; //!< The j-cluster with index cjIndexEnd-1
1278 int numDirect; //!< Up to cjIndexStart+numDirect the j-clusters are cjFirst + the index offset
1281 #ifndef DOXYGEN
1282 template<typename CjListType>
1283 JListRanges::JListRanges(int cjIndexStart, int cjIndexEnd, gmx::ArrayRef<const CjListType> cjList) :
1284 cjIndexStart(cjIndexStart),
1285 cjIndexEnd(cjIndexEnd)
1287 GMX_ASSERT(cjIndexEnd > cjIndexStart, "JListRanges should only be called with non-empty lists");
1289 cjFirst = nblCj(cjList, cjIndexStart);
1290 cjLast = nblCj(cjList, cjIndexEnd - 1);
1292 /* Determine how many contiguous j-cells we have starting
1293 * from the first i-cell. This number can be used to directly
1294 * calculate j-cell indices for excluded atoms.
1296 numDirect = numContiguousJClusters(cjIndexStart, cjIndexEnd, cjList);
1298 #endif // !DOXYGEN
1300 /* Return the index of \p jCluster in the given range or -1 when not present
1302 * Note: This code is executed very often and therefore performance is
1303 * important. It should be inlined and fully optimized.
1305 template<typename CjListType>
1306 static inline int findJClusterInJList(int jCluster,
1307 const JListRanges& ranges,
1308 gmx::ArrayRef<const CjListType> cjList)
1310 int index;
1312 if (jCluster < ranges.cjFirst + ranges.numDirect)
1314 /* We can calculate the index directly using the offset */
1315 index = ranges.cjIndexStart + jCluster - ranges.cjFirst;
1317 else
1319 /* Search for jCluster using bisection */
1320 index = -1;
1321 int rangeStart = ranges.cjIndexStart + ranges.numDirect;
1322 int rangeEnd = ranges.cjIndexEnd;
1323 int rangeMiddle;
1324 while (index == -1 && rangeStart < rangeEnd)
1326 rangeMiddle = (rangeStart + rangeEnd) >> 1;
1328 const int clusterMiddle = nblCj(cjList, rangeMiddle);
1330 if (jCluster == clusterMiddle)
1332 index = rangeMiddle;
1334 else if (jCluster < clusterMiddle)
1336 rangeEnd = rangeMiddle;
1338 else
1340 rangeStart = rangeMiddle + 1;
1345 return index;
1348 // TODO: Get rid of the two functions below by renaming sci to ci (or something better)
1350 /* Return the i-entry in the list we are currently operating on */
1351 static nbnxn_ci_t* getOpenIEntry(NbnxnPairlistCpu* nbl)
1353 return &nbl->ci.back();
1356 /* Return the i-entry in the list we are currently operating on */
1357 static nbnxn_sci_t* getOpenIEntry(NbnxnPairlistGpu* nbl)
1359 return &nbl->sci.back();
1362 /* Set all atom-pair exclusions for a simple type list i-entry
1364 * Set all atom-pair exclusions from the topology stored in exclusions
1365 * as masks in the pair-list for simple list entry iEntry.
1367 static void setExclusionsForIEntry(const Nbnxm::GridSet& gridSet,
1368 NbnxnPairlistCpu* nbl,
1369 gmx_bool diagRemoved,
1370 int na_cj_2log,
1371 const nbnxn_ci_t& iEntry,
1372 const ListOfLists<int>& exclusions)
1374 if (iEntry.cj_ind_end == iEntry.cj_ind_start)
1376 /* Empty list: no exclusions */
1377 return;
1380 const JListRanges ranges(iEntry.cj_ind_start, iEntry.cj_ind_end, gmx::makeConstArrayRef(nbl->cj));
1382 const int iCluster = iEntry.ci;
1384 gmx::ArrayRef<const int> cell = gridSet.cells();
1385 gmx::ArrayRef<const int> atomIndices = gridSet.atomIndices();
1387 /* Loop over the atoms in the i-cluster */
1388 for (int i = 0; i < nbl->na_ci; i++)
1390 const int iIndex = iCluster * nbl->na_ci + i;
1391 const int iAtom = atomIndices[iIndex];
1392 if (iAtom >= 0)
1394 /* Loop over the topology-based exclusions for this i-atom */
1395 for (const int jAtom : exclusions[iAtom])
1397 if (jAtom == iAtom)
1399 /* The self exclusion are already set, save some time */
1400 continue;
1403 /* Get the index of the j-atom in the nbnxn atom data */
1404 const int jIndex = cell[jAtom];
1406 /* Without shifts we only calculate interactions j>i
1407 * for one-way pair-lists.
1409 if (diagRemoved && jIndex <= iIndex)
1411 continue;
1414 const int jCluster = (jIndex >> na_cj_2log);
1416 /* Could the cluster se be in our list? */
1417 if (jCluster >= ranges.cjFirst && jCluster <= ranges.cjLast)
1419 const int index =
1420 findJClusterInJList(jCluster, ranges, gmx::makeConstArrayRef(nbl->cj));
1422 if (index >= 0)
1424 /* We found an exclusion, clear the corresponding
1425 * interaction bit.
1427 const int innerJ = jIndex - (jCluster << na_cj_2log);
1429 nbl->cj[index].excl &= ~(1U << ((i << na_cj_2log) + innerJ));
1437 /* Add a new i-entry to the FEP list and copy the i-properties */
1438 static inline void fep_list_new_nri_copy(t_nblist* nlist)
1440 /* Add a new i-entry */
1441 nlist->nri++;
1443 assert(nlist->nri < nlist->maxnri);
1445 /* Duplicate the last i-entry, except for jindex, which continues */
1446 nlist->iinr[nlist->nri] = nlist->iinr[nlist->nri - 1];
1447 nlist->shift[nlist->nri] = nlist->shift[nlist->nri - 1];
1448 nlist->gid[nlist->nri] = nlist->gid[nlist->nri - 1];
1449 nlist->jindex[nlist->nri] = nlist->nrj;
1452 /* Rellocate FEP list for size nl->maxnri, TODO: replace by C++ */
1453 static void reallocate_nblist(t_nblist* nl)
1455 if (gmx_debug_at)
1457 fprintf(debug,
1458 "reallocating neigborlist (ielec=%d, ivdw=%d, igeometry=%d, type=%d), maxnri=%d\n",
1459 nl->ielec, nl->ivdw, nl->igeometry, nl->type, nl->maxnri);
1461 srenew(nl->iinr, nl->maxnri);
1462 srenew(nl->gid, nl->maxnri);
1463 srenew(nl->shift, nl->maxnri);
1464 srenew(nl->jindex, nl->maxnri + 1);
1467 /* For load balancing of the free-energy lists over threads, we set
1468 * the maximum nrj size of an i-entry to 40. This leads to good
1469 * load balancing in the worst case scenario of a single perturbed
1470 * particle on 16 threads, while not introducing significant overhead.
1471 * Note that half of the perturbed pairs will anyhow end up in very small lists,
1472 * since non perturbed i-particles will see few perturbed j-particles).
1474 const int max_nrj_fep = 40;
1476 /* Exclude the perturbed pairs from the Verlet list. This is only done to avoid
1477 * singularities for overlapping particles (0/0), since the charges and
1478 * LJ parameters have been zeroed in the nbnxn data structure.
1479 * Simultaneously make a group pair list for the perturbed pairs.
1481 static void make_fep_list(gmx::ArrayRef<const int> atomIndices,
1482 const nbnxn_atomdata_t* nbat,
1483 NbnxnPairlistCpu* nbl,
1484 gmx_bool bDiagRemoved,
1485 nbnxn_ci_t* nbl_ci,
1486 real gmx_unused shx,
1487 real gmx_unused shy,
1488 real gmx_unused shz,
1489 real gmx_unused rlist_fep2,
1490 const Grid& iGrid,
1491 const Grid& jGrid,
1492 t_nblist* nlist)
1494 int ci, cj_ind_start, cj_ind_end, cja, cjr;
1495 int nri_max;
1496 int gid_i = 0, gid_j, gid;
1497 int egp_shift, egp_mask;
1498 int gid_cj = 0;
1499 int ind_i, ind_j, ai, aj;
1500 int nri;
1501 gmx_bool bFEP_i, bFEP_i_all;
1503 if (nbl_ci->cj_ind_end == nbl_ci->cj_ind_start)
1505 /* Empty list */
1506 return;
1509 ci = nbl_ci->ci;
1511 cj_ind_start = nbl_ci->cj_ind_start;
1512 cj_ind_end = nbl_ci->cj_ind_end;
1514 /* In worst case we have alternating energy groups
1515 * and create #atom-pair lists, which means we need the size
1516 * of a cluster pair (na_ci*na_cj) times the number of cj's.
1518 nri_max = nbl->na_ci * nbl->na_cj * (cj_ind_end - cj_ind_start);
1519 if (nlist->nri + nri_max > nlist->maxnri)
1521 nlist->maxnri = over_alloc_large(nlist->nri + nri_max);
1522 reallocate_nblist(nlist);
1525 const int numAtomsJCluster = jGrid.geometry().numAtomsJCluster;
1527 const nbnxn_atomdata_t::Params& nbatParams = nbat->params();
1529 const int ngid = nbatParams.nenergrp;
1531 /* TODO: Consider adding a check in grompp and changing this to an assert */
1532 const int numBitsInEnergyGroupIdsForAtomsInJCluster = sizeof(gid_cj) * 8;
1533 if (ngid * numAtomsJCluster > numBitsInEnergyGroupIdsForAtomsInJCluster)
1535 gmx_fatal(FARGS,
1536 "The Verlet scheme with %dx%d kernels and free-energy only supports up to %zu "
1537 "energy groups",
1538 iGrid.geometry().numAtomsICluster, numAtomsJCluster,
1539 (sizeof(gid_cj) * 8) / numAtomsJCluster);
1542 egp_shift = nbatParams.neg_2log;
1543 egp_mask = (1 << egp_shift) - 1;
1545 /* Loop over the atoms in the i sub-cell */
1546 bFEP_i_all = TRUE;
1547 for (int i = 0; i < nbl->na_ci; i++)
1549 ind_i = ci * nbl->na_ci + i;
1550 ai = atomIndices[ind_i];
1551 if (ai >= 0)
1553 nri = nlist->nri;
1554 nlist->jindex[nri + 1] = nlist->jindex[nri];
1555 nlist->iinr[nri] = ai;
1556 /* The actual energy group pair index is set later */
1557 nlist->gid[nri] = 0;
1558 nlist->shift[nri] = nbl_ci->shift & NBNXN_CI_SHIFT;
1560 bFEP_i = iGrid.atomIsPerturbed(ci - iGrid.cellOffset(), i);
1562 bFEP_i_all = bFEP_i_all && bFEP_i;
1564 if (nlist->nrj + (cj_ind_end - cj_ind_start) * nbl->na_cj > nlist->maxnrj)
1566 nlist->maxnrj = over_alloc_small(nlist->nrj + (cj_ind_end - cj_ind_start) * nbl->na_cj);
1567 srenew(nlist->jjnr, nlist->maxnrj);
1568 srenew(nlist->excl_fep, nlist->maxnrj);
1571 if (ngid > 1)
1573 gid_i = (nbatParams.energrp[ci] >> (egp_shift * i)) & egp_mask;
1576 for (int cj_ind = cj_ind_start; cj_ind < cj_ind_end; cj_ind++)
1578 unsigned int fep_cj;
1580 cja = nbl->cj[cj_ind].cj;
1582 if (numAtomsJCluster == jGrid.geometry().numAtomsICluster)
1584 cjr = cja - jGrid.cellOffset();
1585 fep_cj = jGrid.fepBits(cjr);
1586 if (ngid > 1)
1588 gid_cj = nbatParams.energrp[cja];
1591 else if (2 * numAtomsJCluster == jGrid.geometry().numAtomsICluster)
1593 cjr = cja - jGrid.cellOffset() * 2;
1594 /* Extract half of the ci fep/energrp mask */
1595 fep_cj = (jGrid.fepBits(cjr >> 1) >> ((cjr & 1) * numAtomsJCluster))
1596 & ((1 << numAtomsJCluster) - 1);
1597 if (ngid > 1)
1599 gid_cj = nbatParams.energrp[cja >> 1] >> ((cja & 1) * numAtomsJCluster * egp_shift)
1600 & ((1 << (numAtomsJCluster * egp_shift)) - 1);
1603 else
1605 cjr = cja - (jGrid.cellOffset() >> 1);
1606 /* Combine two ci fep masks/energrp */
1607 fep_cj = jGrid.fepBits(cjr * 2)
1608 + (jGrid.fepBits(cjr * 2 + 1) << jGrid.geometry().numAtomsICluster);
1609 if (ngid > 1)
1611 gid_cj = nbatParams.energrp[cja * 2]
1612 + (nbatParams.energrp[cja * 2 + 1]
1613 << (jGrid.geometry().numAtomsICluster * egp_shift));
1617 if (bFEP_i || fep_cj != 0)
1619 for (int j = 0; j < nbl->na_cj; j++)
1621 /* Is this interaction perturbed and not excluded? */
1622 ind_j = cja * nbl->na_cj + j;
1623 aj = atomIndices[ind_j];
1624 if (aj >= 0 && (bFEP_i || (fep_cj & (1 << j))) && (!bDiagRemoved || ind_j >= ind_i))
1626 if (ngid > 1)
1628 gid_j = (gid_cj >> (j * egp_shift)) & egp_mask;
1629 gid = GID(gid_i, gid_j, ngid);
1631 if (nlist->nrj > nlist->jindex[nri] && nlist->gid[nri] != gid)
1633 /* Energy group pair changed: new list */
1634 fep_list_new_nri_copy(nlist);
1635 nri = nlist->nri;
1637 nlist->gid[nri] = gid;
1640 if (nlist->nrj - nlist->jindex[nri] >= max_nrj_fep)
1642 fep_list_new_nri_copy(nlist);
1643 nri = nlist->nri;
1646 /* Add it to the FEP list */
1647 nlist->jjnr[nlist->nrj] = aj;
1648 nlist->excl_fep[nlist->nrj] =
1649 (nbl->cj[cj_ind].excl >> (i * nbl->na_cj + j)) & 1;
1650 nlist->nrj++;
1652 /* Exclude it from the normal list.
1653 * Note that the charge has been set to zero,
1654 * but we need to avoid 0/0, as perturbed atoms
1655 * can be on top of each other.
1657 nbl->cj[cj_ind].excl &= ~(1U << (i * nbl->na_cj + j));
1663 if (nlist->nrj > nlist->jindex[nri])
1665 /* Actually add this new, non-empty, list */
1666 nlist->nri++;
1667 nlist->jindex[nlist->nri] = nlist->nrj;
1672 if (bFEP_i_all)
1674 /* All interactions are perturbed, we can skip this entry */
1675 nbl_ci->cj_ind_end = cj_ind_start;
1676 nbl->ncjInUse -= cj_ind_end - cj_ind_start;
1680 /* Return the index of atom a within a cluster */
1681 static inline int cj_mod_cj4(int cj)
1683 return cj & (c_nbnxnGpuJgroupSize - 1);
1686 /* Convert a j-cluster to a cj4 group */
1687 static inline int cj_to_cj4(int cj)
1689 return cj / c_nbnxnGpuJgroupSize;
1692 /* Return the index of an j-atom within a warp */
1693 static inline int a_mod_wj(int a)
1695 return a & (c_nbnxnGpuClusterSize / c_nbnxnGpuClusterpairSplit - 1);
1698 /* As make_fep_list above, but for super/sub lists. */
1699 static void make_fep_list(gmx::ArrayRef<const int> atomIndices,
1700 const nbnxn_atomdata_t* nbat,
1701 NbnxnPairlistGpu* nbl,
1702 gmx_bool bDiagRemoved,
1703 const nbnxn_sci_t* nbl_sci,
1704 real shx,
1705 real shy,
1706 real shz,
1707 real rlist_fep2,
1708 const Grid& iGrid,
1709 const Grid& jGrid,
1710 t_nblist* nlist)
1712 int nri_max;
1713 int c_abs;
1714 int ind_i, ind_j, ai, aj;
1715 int nri;
1716 gmx_bool bFEP_i;
1717 real xi, yi, zi;
1718 const nbnxn_cj4_t* cj4;
1720 const int numJClusterGroups = nbl_sci->numJClusterGroups();
1721 if (numJClusterGroups == 0)
1723 /* Empty list */
1724 return;
1727 const int sci = nbl_sci->sci;
1729 const int cj4_ind_start = nbl_sci->cj4_ind_start;
1730 const int cj4_ind_end = nbl_sci->cj4_ind_end;
1732 /* Here we process one super-cell, max #atoms na_sc, versus a list
1733 * cj4 entries, each with max c_nbnxnGpuJgroupSize cj's, each
1734 * of size na_cj atoms.
1735 * On the GPU we don't support energy groups (yet).
1736 * So for each of the na_sc i-atoms, we need max one FEP list
1737 * for each max_nrj_fep j-atoms.
1739 nri_max = nbl->na_sc * nbl->na_cj * (1 + (numJClusterGroups * c_nbnxnGpuJgroupSize) / max_nrj_fep);
1740 if (nlist->nri + nri_max > nlist->maxnri)
1742 nlist->maxnri = over_alloc_large(nlist->nri + nri_max);
1743 reallocate_nblist(nlist);
1746 /* Loop over the atoms in the i super-cluster */
1747 for (int c = 0; c < c_gpuNumClusterPerCell; c++)
1749 c_abs = sci * c_gpuNumClusterPerCell + c;
1751 for (int i = 0; i < nbl->na_ci; i++)
1753 ind_i = c_abs * nbl->na_ci + i;
1754 ai = atomIndices[ind_i];
1755 if (ai >= 0)
1757 nri = nlist->nri;
1758 nlist->jindex[nri + 1] = nlist->jindex[nri];
1759 nlist->iinr[nri] = ai;
1760 /* With GPUs, energy groups are not supported */
1761 nlist->gid[nri] = 0;
1762 nlist->shift[nri] = nbl_sci->shift & NBNXN_CI_SHIFT;
1764 bFEP_i = iGrid.atomIsPerturbed(c_abs - iGrid.cellOffset() * c_gpuNumClusterPerCell, i);
1766 xi = nbat->x()[ind_i * nbat->xstride + XX] + shx;
1767 yi = nbat->x()[ind_i * nbat->xstride + YY] + shy;
1768 zi = nbat->x()[ind_i * nbat->xstride + ZZ] + shz;
1770 const int nrjMax = nlist->nrj + numJClusterGroups * c_nbnxnGpuJgroupSize * nbl->na_cj;
1771 if (nrjMax > nlist->maxnrj)
1773 nlist->maxnrj = over_alloc_small(nrjMax);
1774 srenew(nlist->jjnr, nlist->maxnrj);
1775 srenew(nlist->excl_fep, nlist->maxnrj);
1778 for (int cj4_ind = cj4_ind_start; cj4_ind < cj4_ind_end; cj4_ind++)
1780 cj4 = &nbl->cj4[cj4_ind];
1782 for (int gcj = 0; gcj < c_nbnxnGpuJgroupSize; gcj++)
1784 if ((cj4->imei[0].imask & (1U << (gcj * c_gpuNumClusterPerCell + c))) == 0)
1786 /* Skip this ci for this cj */
1787 continue;
1790 const int cjr = cj4->cj[gcj] - jGrid.cellOffset() * c_gpuNumClusterPerCell;
1792 if (bFEP_i || jGrid.clusterIsPerturbed(cjr))
1794 for (int j = 0; j < nbl->na_cj; j++)
1796 /* Is this interaction perturbed and not excluded? */
1797 ind_j = (jGrid.cellOffset() * c_gpuNumClusterPerCell + cjr) * nbl->na_cj + j;
1798 aj = atomIndices[ind_j];
1799 if (aj >= 0 && (bFEP_i || jGrid.atomIsPerturbed(cjr, j))
1800 && (!bDiagRemoved || ind_j >= ind_i))
1802 int excl_pair;
1803 unsigned int excl_bit;
1804 real dx, dy, dz;
1806 const int jHalf =
1807 j / (c_nbnxnGpuClusterSize / c_nbnxnGpuClusterpairSplit);
1808 nbnxn_excl_t& excl = get_exclusion_mask(nbl, cj4_ind, jHalf);
1810 excl_pair = a_mod_wj(j) * nbl->na_ci + i;
1811 excl_bit = (1U << (gcj * c_gpuNumClusterPerCell + c));
1813 dx = nbat->x()[ind_j * nbat->xstride + XX] - xi;
1814 dy = nbat->x()[ind_j * nbat->xstride + YY] - yi;
1815 dz = nbat->x()[ind_j * nbat->xstride + ZZ] - zi;
1817 /* The unpruned GPU list has more than 2/3
1818 * of the atom pairs beyond rlist. Using
1819 * this list will cause a lot of overhead
1820 * in the CPU FEP kernels, especially
1821 * relative to the fast GPU kernels.
1822 * So we prune the FEP list here.
1824 if (dx * dx + dy * dy + dz * dz < rlist_fep2)
1826 if (nlist->nrj - nlist->jindex[nri] >= max_nrj_fep)
1828 fep_list_new_nri_copy(nlist);
1829 nri = nlist->nri;
1832 /* Add it to the FEP list */
1833 nlist->jjnr[nlist->nrj] = aj;
1834 nlist->excl_fep[nlist->nrj] =
1835 (excl.pair[excl_pair] & excl_bit) ? 1 : 0;
1836 nlist->nrj++;
1839 /* Exclude it from the normal list.
1840 * Note that the charge and LJ parameters have
1841 * been set to zero, but we need to avoid 0/0,
1842 * as perturbed atoms can be on top of each other.
1844 excl.pair[excl_pair] &= ~excl_bit;
1848 /* Note that we could mask out this pair in imask
1849 * if all i- and/or all j-particles are perturbed.
1850 * But since the perturbed pairs on the CPU will
1851 * take an order of magnitude more time, the GPU
1852 * will finish before the CPU and there is no gain.
1858 if (nlist->nrj > nlist->jindex[nri])
1860 /* Actually add this new, non-empty, list */
1861 nlist->nri++;
1862 nlist->jindex[nlist->nri] = nlist->nrj;
1869 /* Set all atom-pair exclusions for a GPU type list i-entry
1871 * Sets all atom-pair exclusions from the topology stored in exclusions
1872 * as masks in the pair-list for i-super-cluster list entry iEntry.
1874 static void setExclusionsForIEntry(const Nbnxm::GridSet& gridSet,
1875 NbnxnPairlistGpu* nbl,
1876 gmx_bool diagRemoved,
1877 int gmx_unused na_cj_2log,
1878 const nbnxn_sci_t& iEntry,
1879 const ListOfLists<int>& exclusions)
1881 if (iEntry.numJClusterGroups() == 0)
1883 /* Empty list */
1884 return;
1887 /* Set the search ranges using start and end j-cluster indices.
1888 * Note that here we can not use cj4_ind_end, since the last cj4
1889 * can be only partially filled, so we use cj_ind.
1891 const JListRanges ranges(iEntry.cj4_ind_start * c_nbnxnGpuJgroupSize, nbl->work->cj_ind,
1892 gmx::makeConstArrayRef(nbl->cj4));
1894 GMX_ASSERT(nbl->na_ci == c_nbnxnGpuClusterSize, "na_ci should match the GPU cluster size");
1895 constexpr int c_clusterSize = c_nbnxnGpuClusterSize;
1896 constexpr int c_superClusterSize = c_nbnxnGpuNumClusterPerSupercluster * c_nbnxnGpuClusterSize;
1898 const int iSuperCluster = iEntry.sci;
1900 gmx::ArrayRef<const int> atomIndices = gridSet.atomIndices();
1901 gmx::ArrayRef<const int> cell = gridSet.cells();
1903 /* Loop over the atoms in the i super-cluster */
1904 for (int i = 0; i < c_superClusterSize; i++)
1906 const int iIndex = iSuperCluster * c_superClusterSize + i;
1907 const int iAtom = atomIndices[iIndex];
1908 if (iAtom >= 0)
1910 const int iCluster = i / c_clusterSize;
1912 /* Loop over the topology-based exclusions for this i-atom */
1913 for (const int jAtom : exclusions[iAtom])
1915 if (jAtom == iAtom)
1917 /* The self exclusions are already set, save some time */
1918 continue;
1921 /* Get the index of the j-atom in the nbnxn atom data */
1922 const int jIndex = cell[jAtom];
1924 /* Without shifts we only calculate interactions j>i
1925 * for one-way pair-lists.
1927 /* NOTE: We would like to use iIndex on the right hand side,
1928 * but that makes this routine 25% slower with gcc6/7.
1929 * Even using c_superClusterSize makes it slower.
1930 * Either of these changes triggers peeling of the exclIndex
1931 * loop, which apparently leads to far less efficient code.
1933 if (diagRemoved && jIndex <= iSuperCluster * nbl->na_sc + i)
1935 continue;
1938 const int jCluster = jIndex / c_clusterSize;
1940 /* Check whether the cluster is in our list? */
1941 if (jCluster >= ranges.cjFirst && jCluster <= ranges.cjLast)
1943 const int index =
1944 findJClusterInJList(jCluster, ranges, gmx::makeConstArrayRef(nbl->cj4));
1946 if (index >= 0)
1948 /* We found an exclusion, clear the corresponding
1949 * interaction bit.
1951 const unsigned int pairMask =
1952 (1U << (cj_mod_cj4(index) * c_gpuNumClusterPerCell + iCluster));
1953 /* Check if the i-cluster interacts with the j-cluster */
1954 if (nbl_imask0(nbl, index) & pairMask)
1956 const int innerI = (i & (c_clusterSize - 1));
1957 const int innerJ = (jIndex & (c_clusterSize - 1));
1959 /* Determine which j-half (CUDA warp) we are in */
1960 const int jHalf = innerJ / (c_clusterSize / c_nbnxnGpuClusterpairSplit);
1962 nbnxn_excl_t& interactionMask =
1963 get_exclusion_mask(nbl, cj_to_cj4(index), jHalf);
1965 interactionMask.pair[a_mod_wj(innerJ) * c_clusterSize + innerI] &= ~pairMask;
1974 /* Make a new ci entry at the back of nbl->ci */
1975 static void addNewIEntry(NbnxnPairlistCpu* nbl, int ci, int shift, int flags)
1977 nbnxn_ci_t ciEntry;
1978 ciEntry.ci = ci;
1979 ciEntry.shift = shift;
1980 /* Store the interaction flags along with the shift */
1981 ciEntry.shift |= flags;
1982 ciEntry.cj_ind_start = nbl->cj.size();
1983 ciEntry.cj_ind_end = nbl->cj.size();
1984 nbl->ci.push_back(ciEntry);
1987 /* Make a new sci entry at index nbl->nsci */
1988 static void addNewIEntry(NbnxnPairlistGpu* nbl, int sci, int shift, int gmx_unused flags)
1990 nbnxn_sci_t sciEntry;
1991 sciEntry.sci = sci;
1992 sciEntry.shift = shift;
1993 sciEntry.cj4_ind_start = nbl->cj4.size();
1994 sciEntry.cj4_ind_end = nbl->cj4.size();
1996 nbl->sci.push_back(sciEntry);
1999 /* Sort the simple j-list cj on exclusions.
2000 * Entries with exclusions will all be sorted to the beginning of the list.
2002 static void sort_cj_excl(nbnxn_cj_t* cj, int ncj, NbnxnPairlistCpuWork* work)
2004 work->cj.resize(ncj);
2006 /* Make a list of the j-cells involving exclusions */
2007 int jnew = 0;
2008 for (int j = 0; j < ncj; j++)
2010 if (cj[j].excl != NBNXN_INTERACTION_MASK_ALL)
2012 work->cj[jnew++] = cj[j];
2015 /* Check if there are exclusions at all or not just the first entry */
2016 if (!((jnew == 0) || (jnew == 1 && cj[0].excl != NBNXN_INTERACTION_MASK_ALL)))
2018 for (int j = 0; j < ncj; j++)
2020 if (cj[j].excl == NBNXN_INTERACTION_MASK_ALL)
2022 work->cj[jnew++] = cj[j];
2025 for (int j = 0; j < ncj; j++)
2027 cj[j] = work->cj[j];
2032 /* Close this simple list i entry */
2033 static void closeIEntry(NbnxnPairlistCpu* nbl,
2034 int gmx_unused sp_max_av,
2035 gmx_bool gmx_unused progBal,
2036 float gmx_unused nsp_tot_est,
2037 int gmx_unused thread,
2038 int gmx_unused nthread)
2040 nbnxn_ci_t& ciEntry = nbl->ci.back();
2042 /* All content of the new ci entry have already been filled correctly,
2043 * we only need to sort and increase counts or remove the entry when empty.
2045 const int jlen = ciEntry.cj_ind_end - ciEntry.cj_ind_start;
2046 if (jlen > 0)
2048 sort_cj_excl(nbl->cj.data() + ciEntry.cj_ind_start, jlen, nbl->work.get());
2050 /* The counts below are used for non-bonded pair/flop counts
2051 * and should therefore match the available kernel setups.
2053 if (!(ciEntry.shift & NBNXN_CI_DO_COUL(0)))
2055 nbl->work->ncj_noq += jlen;
2057 else if ((ciEntry.shift & NBNXN_CI_HALF_LJ(0)) || !(ciEntry.shift & NBNXN_CI_DO_LJ(0)))
2059 nbl->work->ncj_hlj += jlen;
2062 else
2064 /* Entry is empty: remove it */
2065 nbl->ci.pop_back();
2069 /* Split sci entry for load balancing on the GPU.
2070 * Splitting ensures we have enough lists to fully utilize the whole GPU.
2071 * With progBal we generate progressively smaller lists, which improves
2072 * load balancing. As we only know the current count on our own thread,
2073 * we will need to estimate the current total amount of i-entries.
2074 * As the lists get concatenated later, this estimate depends
2075 * both on nthread and our own thread index.
2077 static void split_sci_entry(NbnxnPairlistGpu* nbl,
2078 int nsp_target_av,
2079 gmx_bool progBal,
2080 float nsp_tot_est,
2081 int thread,
2082 int nthread)
2084 int nsp_max;
2086 if (progBal)
2088 float nsp_est;
2090 /* Estimate the total numbers of ci's of the nblist combined
2091 * over all threads using the target number of ci's.
2093 nsp_est = (nsp_tot_est * thread) / nthread + nbl->nci_tot;
2095 /* The first ci blocks should be larger, to avoid overhead.
2096 * The last ci blocks should be smaller, to improve load balancing.
2097 * The factor 3/2 makes the first block 3/2 times the target average
2098 * and ensures that the total number of blocks end up equal to
2099 * that of equally sized blocks of size nsp_target_av.
2101 nsp_max = static_cast<int>(nsp_target_av * (nsp_tot_est * 1.5 / (nsp_est + nsp_tot_est)));
2103 else
2105 nsp_max = nsp_target_av;
2108 const int cj4_start = nbl->sci.back().cj4_ind_start;
2109 const int cj4_end = nbl->sci.back().cj4_ind_end;
2110 const int j4len = cj4_end - cj4_start;
2112 if (j4len > 1 && j4len * c_gpuNumClusterPerCell * c_nbnxnGpuJgroupSize > nsp_max)
2114 /* Modify the last ci entry and process the cj4's again */
2116 int nsp = 0;
2117 int nsp_sci = 0;
2118 int nsp_cj4_e = 0;
2119 int nsp_cj4 = 0;
2120 for (int cj4 = cj4_start; cj4 < cj4_end; cj4++)
2122 int nsp_cj4_p = nsp_cj4;
2123 /* Count the number of cluster pairs in this cj4 group */
2124 nsp_cj4 = 0;
2125 for (int p = 0; p < c_gpuNumClusterPerCell * c_nbnxnGpuJgroupSize; p++)
2127 nsp_cj4 += (nbl->cj4[cj4].imei[0].imask >> p) & 1;
2130 /* If adding the current cj4 with nsp_cj4 pairs get us further
2131 * away from our target nsp_max, split the list before this cj4.
2133 if (nsp > 0 && nsp_max - nsp < nsp + nsp_cj4 - nsp_max)
2135 /* Split the list at cj4 */
2136 nbl->sci.back().cj4_ind_end = cj4;
2137 /* Create a new sci entry */
2138 nbnxn_sci_t sciNew;
2139 sciNew.sci = nbl->sci.back().sci;
2140 sciNew.shift = nbl->sci.back().shift;
2141 sciNew.cj4_ind_start = cj4;
2142 nbl->sci.push_back(sciNew);
2144 nsp_sci = nsp;
2145 nsp_cj4_e = nsp_cj4_p;
2146 nsp = 0;
2148 nsp += nsp_cj4;
2151 /* Put the remaining cj4's in the last sci entry */
2152 nbl->sci.back().cj4_ind_end = cj4_end;
2154 /* Possibly balance out the last two sci's
2155 * by moving the last cj4 of the second last sci.
2157 if (nsp_sci - nsp_cj4_e >= nsp + nsp_cj4_e)
2159 GMX_ASSERT(nbl->sci.size() >= 2, "We expect at least two elements");
2160 nbl->sci[nbl->sci.size() - 2].cj4_ind_end--;
2161 nbl->sci[nbl->sci.size() - 1].cj4_ind_start--;
2166 /* Clost this super/sub list i entry */
2167 static void closeIEntry(NbnxnPairlistGpu* nbl, int nsp_max_av, gmx_bool progBal, float nsp_tot_est, int thread, int nthread)
2169 nbnxn_sci_t& sciEntry = *getOpenIEntry(nbl);
2171 /* All content of the new ci entry have already been filled correctly,
2172 * we only need to, potentially, split or remove the entry when empty.
2174 int j4len = sciEntry.numJClusterGroups();
2175 if (j4len > 0)
2177 /* We can only have complete blocks of 4 j-entries in a list,
2178 * so round the count up before closing.
2180 int ncj4 = (nbl->work->cj_ind + c_nbnxnGpuJgroupSize - 1) / c_nbnxnGpuJgroupSize;
2181 nbl->work->cj_ind = ncj4 * c_nbnxnGpuJgroupSize;
2183 if (nsp_max_av > 0)
2185 /* Measure the size of the new entry and potentially split it */
2186 split_sci_entry(nbl, nsp_max_av, progBal, nsp_tot_est, thread, nthread);
2189 else
2191 /* Entry is empty: remove it */
2192 nbl->sci.pop_back();
2196 /* Syncs the working array before adding another grid pair to the GPU list */
2197 static void sync_work(NbnxnPairlistCpu gmx_unused* nbl) {}
2199 /* Syncs the working array before adding another grid pair to the GPU list */
2200 static void sync_work(NbnxnPairlistGpu* nbl)
2202 nbl->work->cj_ind = nbl->cj4.size() * c_nbnxnGpuJgroupSize;
2205 /* Clears an NbnxnPairlistCpu data structure */
2206 static void clear_pairlist(NbnxnPairlistCpu* nbl)
2208 nbl->ci.clear();
2209 nbl->cj.clear();
2210 nbl->ncjInUse = 0;
2211 nbl->nci_tot = 0;
2212 nbl->ciOuter.clear();
2213 nbl->cjOuter.clear();
2215 nbl->work->ncj_noq = 0;
2216 nbl->work->ncj_hlj = 0;
2219 /* Clears an NbnxnPairlistGpu data structure */
2220 static void clear_pairlist(NbnxnPairlistGpu* nbl)
2222 nbl->sci.clear();
2223 nbl->cj4.clear();
2224 nbl->excl.resize(1);
2225 nbl->nci_tot = 0;
2228 /* Clears an atom-atom-style pair list */
2229 static void clear_pairlist_fep(t_nblist* nl)
2231 nl->nri = 0;
2232 nl->nrj = 0;
2233 if (nl->jindex == nullptr)
2235 snew(nl->jindex, 1);
2237 nl->jindex[0] = 0;
2240 /* Sets a simple list i-cell bounding box, including PBC shift */
2241 static inline void
2242 set_icell_bb_simple(gmx::ArrayRef<const BoundingBox> bb, int ci, real shx, real shy, real shz, BoundingBox* bb_ci)
2244 bb_ci->lower.x = bb[ci].lower.x + shx;
2245 bb_ci->lower.y = bb[ci].lower.y + shy;
2246 bb_ci->lower.z = bb[ci].lower.z + shz;
2247 bb_ci->upper.x = bb[ci].upper.x + shx;
2248 bb_ci->upper.y = bb[ci].upper.y + shy;
2249 bb_ci->upper.z = bb[ci].upper.z + shz;
2252 /* Sets a simple list i-cell bounding box, including PBC shift */
2253 static inline void set_icell_bb(const Grid& iGrid, int ci, real shx, real shy, real shz, NbnxnPairlistCpuWork* work)
2255 set_icell_bb_simple(iGrid.iBoundingBoxes(), ci, shx, shy, shz, &work->iClusterData.bb[0]);
2258 #if NBNXN_BBXXXX
2259 /* Sets a super-cell and sub cell bounding boxes, including PBC shift */
2260 static void set_icell_bbxxxx_supersub(gmx::ArrayRef<const float> bb, int ci, real shx, real shy, real shz, float* bb_ci)
2262 constexpr int cellBBStride = packedBoundingBoxesIndex(c_gpuNumClusterPerCell);
2263 constexpr int pbbStride = c_packedBoundingBoxesDimSize;
2264 const int ia = ci * cellBBStride;
2265 for (int m = 0; m < cellBBStride; m += c_packedBoundingBoxesSize)
2267 for (int i = 0; i < pbbStride; i++)
2269 bb_ci[m + 0 * pbbStride + i] = bb[ia + m + 0 * pbbStride + i] + shx;
2270 bb_ci[m + 1 * pbbStride + i] = bb[ia + m + 1 * pbbStride + i] + shy;
2271 bb_ci[m + 2 * pbbStride + i] = bb[ia + m + 2 * pbbStride + i] + shz;
2272 bb_ci[m + 3 * pbbStride + i] = bb[ia + m + 3 * pbbStride + i] + shx;
2273 bb_ci[m + 4 * pbbStride + i] = bb[ia + m + 4 * pbbStride + i] + shy;
2274 bb_ci[m + 5 * pbbStride + i] = bb[ia + m + 5 * pbbStride + i] + shz;
2278 #endif
2280 /* Sets a super-cell and sub cell bounding boxes, including PBC shift */
2281 gmx_unused static void set_icell_bb_supersub(gmx::ArrayRef<const BoundingBox> bb,
2282 int ci,
2283 real shx,
2284 real shy,
2285 real shz,
2286 BoundingBox* bb_ci)
2288 for (int i = 0; i < c_gpuNumClusterPerCell; i++)
2290 set_icell_bb_simple(bb, ci * c_gpuNumClusterPerCell + i, shx, shy, shz, &bb_ci[i]);
2294 /* Sets a super-cell and sub cell bounding boxes, including PBC shift */
2295 gmx_unused static void set_icell_bb(const Grid& iGrid, int ci, real shx, real shy, real shz, NbnxnPairlistGpuWork* work)
2297 #if NBNXN_BBXXXX
2298 set_icell_bbxxxx_supersub(iGrid.packedBoundingBoxes(), ci, shx, shy, shz,
2299 work->iSuperClusterData.bbPacked.data());
2300 #else
2301 set_icell_bb_supersub(iGrid.iBoundingBoxes(), ci, shx, shy, shz, work->iSuperClusterData.bb.data());
2302 #endif
2305 /* Copies PBC shifted i-cell atom coordinates x,y,z to working array */
2306 static void icell_set_x_simple(int ci,
2307 real shx,
2308 real shy,
2309 real shz,
2310 int stride,
2311 const real* x,
2312 NbnxnPairlistCpuWork::IClusterData* iClusterData)
2314 const int ia = ci * c_nbnxnCpuIClusterSize;
2316 for (int i = 0; i < c_nbnxnCpuIClusterSize; i++)
2318 iClusterData->x[i * STRIDE_XYZ + XX] = x[(ia + i) * stride + XX] + shx;
2319 iClusterData->x[i * STRIDE_XYZ + YY] = x[(ia + i) * stride + YY] + shy;
2320 iClusterData->x[i * STRIDE_XYZ + ZZ] = x[(ia + i) * stride + ZZ] + shz;
2324 static void icell_set_x(int ci,
2325 real shx,
2326 real shy,
2327 real shz,
2328 int stride,
2329 const real* x,
2330 const ClusterDistanceKernelType kernelType,
2331 NbnxnPairlistCpuWork* work)
2333 switch (kernelType)
2335 #if GMX_SIMD
2336 # ifdef GMX_NBNXN_SIMD_4XN
2337 case ClusterDistanceKernelType::CpuSimd_4xM:
2338 icell_set_x_simd_4xn(ci, shx, shy, shz, stride, x, work);
2339 break;
2340 # endif
2341 # ifdef GMX_NBNXN_SIMD_2XNN
2342 case ClusterDistanceKernelType::CpuSimd_2xMM:
2343 icell_set_x_simd_2xnn(ci, shx, shy, shz, stride, x, work);
2344 break;
2345 # endif
2346 #endif
2347 case ClusterDistanceKernelType::CpuPlainC:
2348 icell_set_x_simple(ci, shx, shy, shz, stride, x, &work->iClusterData);
2349 break;
2350 default: GMX_ASSERT(false, "Unhandled case"); break;
2354 /* Copies PBC shifted super-cell atom coordinates x,y,z to working array */
2355 static void icell_set_x(int ci,
2356 real shx,
2357 real shy,
2358 real shz,
2359 int stride,
2360 const real* x,
2361 ClusterDistanceKernelType gmx_unused kernelType,
2362 NbnxnPairlistGpuWork* work)
2364 #if !GMX_SIMD4_HAVE_REAL
2366 real* x_ci = work->iSuperClusterData.x.data();
2368 int ia = ci * c_gpuNumClusterPerCell * c_nbnxnGpuClusterSize;
2369 for (int i = 0; i < c_gpuNumClusterPerCell * c_nbnxnGpuClusterSize; i++)
2371 x_ci[i * DIM + XX] = x[(ia + i) * stride + XX] + shx;
2372 x_ci[i * DIM + YY] = x[(ia + i) * stride + YY] + shy;
2373 x_ci[i * DIM + ZZ] = x[(ia + i) * stride + ZZ] + shz;
2376 #else /* !GMX_SIMD4_HAVE_REAL */
2378 real* x_ci = work->iSuperClusterData.xSimd.data();
2380 for (int si = 0; si < c_gpuNumClusterPerCell; si++)
2382 for (int i = 0; i < c_nbnxnGpuClusterSize; i += GMX_SIMD4_WIDTH)
2384 int io = si * c_nbnxnGpuClusterSize + i;
2385 int ia = ci * c_gpuNumClusterPerCell * c_nbnxnGpuClusterSize + io;
2386 for (int j = 0; j < GMX_SIMD4_WIDTH; j++)
2388 x_ci[io * DIM + j + XX * GMX_SIMD4_WIDTH] = x[(ia + j) * stride + XX] + shx;
2389 x_ci[io * DIM + j + YY * GMX_SIMD4_WIDTH] = x[(ia + j) * stride + YY] + shy;
2390 x_ci[io * DIM + j + ZZ * GMX_SIMD4_WIDTH] = x[(ia + j) * stride + ZZ] + shz;
2395 #endif /* !GMX_SIMD4_HAVE_REAL */
2398 static real minimum_subgrid_size_xy(const Grid& grid)
2400 const Grid::Dimensions& dims = grid.dimensions();
2402 if (grid.geometry().isSimple)
2404 return std::min(dims.cellSize[XX], dims.cellSize[YY]);
2406 else
2408 return std::min(dims.cellSize[XX] / c_gpuNumClusterPerCellX,
2409 dims.cellSize[YY] / c_gpuNumClusterPerCellY);
2413 static real effective_buffer_1x1_vs_MxN(const Grid& iGrid, const Grid& jGrid)
2415 const real eff_1x1_buffer_fac_overest = 0.1;
2417 /* Determine an atom-pair list cut-off buffer size for atom pairs,
2418 * to be added to rlist (including buffer) used for MxN.
2419 * This is for converting an MxN list to a 1x1 list. This means we can't
2420 * use the normal buffer estimate, as we have an MxN list in which
2421 * some atom pairs beyond rlist are missing. We want to capture
2422 * the beneficial effect of buffering by extra pairs just outside rlist,
2423 * while removing the useless pairs that are further away from rlist.
2424 * (Also the buffer could have been set manually not using the estimate.)
2425 * This buffer size is an overestimate.
2426 * We add 10% of the smallest grid sub-cell dimensions.
2427 * Note that the z-size differs per cell and we don't use this,
2428 * so we overestimate.
2429 * With PME, the 10% value gives a buffer that is somewhat larger
2430 * than the effective buffer with a tolerance of 0.005 kJ/mol/ps.
2431 * Smaller tolerances or using RF lead to a smaller effective buffer,
2432 * so 10% gives a safe overestimate.
2434 return eff_1x1_buffer_fac_overest * (minimum_subgrid_size_xy(iGrid) + minimum_subgrid_size_xy(jGrid));
2437 /* Estimates the interaction volume^2 for non-local interactions */
2438 static real nonlocal_vol2(const struct gmx_domdec_zones_t* zones, const rvec ls, real r)
2440 real cl, ca, za;
2441 real vold_est;
2442 real vol2_est_tot;
2444 vol2_est_tot = 0;
2446 /* Here we simply add up the volumes of 1, 2 or 3 1D decomposition
2447 * not home interaction volume^2. As these volumes are not additive,
2448 * this is an overestimate, but it would only be significant in the limit
2449 * of small cells, where we anyhow need to split the lists into
2450 * as small parts as possible.
2453 for (int z = 0; z < zones->n; z++)
2455 if (zones->shift[z][XX] + zones->shift[z][YY] + zones->shift[z][ZZ] == 1)
2457 cl = 0;
2458 ca = 1;
2459 za = 1;
2460 for (int d = 0; d < DIM; d++)
2462 if (zones->shift[z][d] == 0)
2464 cl += 0.5 * ls[d];
2465 ca *= ls[d];
2466 za *= zones->size[z].x1[d] - zones->size[z].x0[d];
2470 /* 4 octants of a sphere */
2471 vold_est = 0.25 * M_PI * r * r * r * r;
2472 /* 4 quarter pie slices on the edges */
2473 vold_est += 4 * cl * M_PI / 6.0 * r * r * r;
2474 /* One rectangular volume on a face */
2475 vold_est += ca * 0.5 * r * r;
2477 vol2_est_tot += vold_est * za;
2481 return vol2_est_tot;
2484 /* Estimates the average size of a full j-list for super/sub setup */
2485 static void get_nsubpair_target(const Nbnxm::GridSet& gridSet,
2486 const InteractionLocality iloc,
2487 const real rlist,
2488 const int min_ci_balanced,
2489 int* nsubpair_target,
2490 float* nsubpair_tot_est)
2492 /* The target value of 36 seems to be the optimum for Kepler.
2493 * Maxwell is less sensitive to the exact value.
2495 const int nsubpair_target_min = 36;
2496 real r_eff_sup, vol_est, nsp_est, nsp_est_nl;
2498 const Grid& grid = gridSet.grids()[0];
2500 /* We don't need to balance list sizes if:
2501 * - We didn't request balancing.
2502 * - The number of grid cells >= the number of lists requested,
2503 * since we will always generate at least #cells lists.
2504 * - We don't have any cells, since then there won't be any lists.
2506 if (min_ci_balanced <= 0 || grid.numCells() >= min_ci_balanced || grid.numCells() == 0)
2508 /* nsubpair_target==0 signals no balancing */
2509 *nsubpair_target = 0;
2510 *nsubpair_tot_est = 0;
2512 return;
2515 gmx::RVec ls;
2516 const int numAtomsCluster = grid.geometry().numAtomsICluster;
2517 const Grid::Dimensions& dims = grid.dimensions();
2519 ls[XX] = dims.cellSize[XX] / c_gpuNumClusterPerCellX;
2520 ls[YY] = dims.cellSize[YY] / c_gpuNumClusterPerCellY;
2521 ls[ZZ] = numAtomsCluster / (dims.atomDensity * ls[XX] * ls[YY]);
2523 /* The formulas below are a heuristic estimate of the average nsj per si*/
2524 r_eff_sup = rlist + nbnxn_get_rlist_effective_inc(numAtomsCluster, ls);
2526 if (!gridSet.domainSetup().haveMultipleDomains || gridSet.domainSetup().zones->n == 1)
2528 nsp_est_nl = 0;
2530 else
2532 nsp_est_nl = gmx::square(dims.atomDensity / numAtomsCluster)
2533 * nonlocal_vol2(gridSet.domainSetup().zones, ls, r_eff_sup);
2536 if (iloc == InteractionLocality::Local)
2538 /* Sub-cell interacts with itself */
2539 vol_est = ls[XX] * ls[YY] * ls[ZZ];
2540 /* 6/2 rectangular volume on the faces */
2541 vol_est += (ls[XX] * ls[YY] + ls[XX] * ls[ZZ] + ls[YY] * ls[ZZ]) * r_eff_sup;
2542 /* 12/2 quarter pie slices on the edges */
2543 vol_est += 2 * (ls[XX] + ls[YY] + ls[ZZ]) * 0.25 * M_PI * gmx::square(r_eff_sup);
2544 /* 4 octants of a sphere */
2545 vol_est += 0.5 * 4.0 / 3.0 * M_PI * gmx::power3(r_eff_sup);
2547 /* Estimate the number of cluster pairs as the local number of
2548 * clusters times the volume they interact with times the density.
2550 nsp_est = grid.numClusters() * vol_est * dims.atomDensity / numAtomsCluster;
2552 /* Subtract the non-local pair count */
2553 nsp_est -= nsp_est_nl;
2555 /* For small cut-offs nsp_est will be an underesimate.
2556 * With DD nsp_est_nl is an overestimate so nsp_est can get negative.
2557 * So to avoid too small or negative nsp_est we set a minimum of
2558 * all cells interacting with all 3^3 direct neighbors (3^3-1)/2+1=14.
2559 * This might be a slight overestimate for small non-periodic groups of
2560 * atoms as will occur for a local domain with DD, but for small
2561 * groups of atoms we'll anyhow be limited by nsubpair_target_min,
2562 * so this overestimation will not matter.
2564 nsp_est = std::max(nsp_est, grid.numClusters() * 14._real);
2566 if (debug)
2568 fprintf(debug, "nsp_est local %5.1f non-local %5.1f\n", nsp_est, nsp_est_nl);
2571 else
2573 nsp_est = nsp_est_nl;
2576 /* Thus the (average) maximum j-list size should be as follows.
2577 * Since there is overhead, we shouldn't make the lists too small
2578 * (and we can't chop up j-groups) so we use a minimum target size of 36.
2580 *nsubpair_target = std::max(nsubpair_target_min, roundToInt(nsp_est / min_ci_balanced));
2581 *nsubpair_tot_est = nsp_est;
2583 if (debug)
2585 fprintf(debug, "nbl nsp estimate %.1f, nsubpair_target %d\n", nsp_est, *nsubpair_target);
2589 /* Debug list print function */
2590 static void print_nblist_ci_cj(FILE* fp, const NbnxnPairlistCpu& nbl)
2592 for (const nbnxn_ci_t& ciEntry : nbl.ci)
2594 fprintf(fp, "ci %4d shift %2d ncj %3d\n", ciEntry.ci, ciEntry.shift,
2595 ciEntry.cj_ind_end - ciEntry.cj_ind_start);
2597 for (int j = ciEntry.cj_ind_start; j < ciEntry.cj_ind_end; j++)
2599 fprintf(fp, " cj %5d imask %x\n", nbl.cj[j].cj, nbl.cj[j].excl);
2604 /* Debug list print function */
2605 static void print_nblist_sci_cj(FILE* fp, const NbnxnPairlistGpu& nbl)
2607 for (const nbnxn_sci_t& sci : nbl.sci)
2609 fprintf(fp, "ci %4d shift %2d ncj4 %2d\n", sci.sci, sci.shift, sci.numJClusterGroups());
2611 int ncp = 0;
2612 for (int j4 = sci.cj4_ind_start; j4 < sci.cj4_ind_end; j4++)
2614 for (int j = 0; j < c_nbnxnGpuJgroupSize; j++)
2616 fprintf(fp, " sj %5d imask %x\n", nbl.cj4[j4].cj[j], nbl.cj4[j4].imei[0].imask);
2617 for (int si = 0; si < c_gpuNumClusterPerCell; si++)
2619 if (nbl.cj4[j4].imei[0].imask & (1U << (j * c_gpuNumClusterPerCell + si)))
2621 ncp++;
2626 fprintf(fp, "ci %4d shift %2d ncj4 %2d ncp %3d\n", sci.sci, sci.shift,
2627 sci.numJClusterGroups(), ncp);
2631 /* Combine pair lists *nbl generated on multiple threads nblc */
2632 static void combine_nblists(gmx::ArrayRef<const NbnxnPairlistGpu> nbls, NbnxnPairlistGpu* nblc)
2634 int nsci = nblc->sci.size();
2635 int ncj4 = nblc->cj4.size();
2636 int nexcl = nblc->excl.size();
2637 for (auto& nbl : nbls)
2639 nsci += nbl.sci.size();
2640 ncj4 += nbl.cj4.size();
2641 nexcl += nbl.excl.size();
2644 /* Resize with the final, combined size, so we can fill in parallel */
2645 /* NOTE: For better performance we should use default initialization */
2646 nblc->sci.resize(nsci);
2647 nblc->cj4.resize(ncj4);
2648 nblc->excl.resize(nexcl);
2650 /* Each thread should copy its own data to the combined arrays,
2651 * as otherwise data will go back and forth between different caches.
2653 const int gmx_unused nthreads = gmx_omp_nthreads_get(emntPairsearch);
2655 #pragma omp parallel for num_threads(nthreads) schedule(static)
2656 for (gmx::index n = 0; n < nbls.ssize(); n++)
2660 /* Determine the offset in the combined data for our thread.
2661 * Note that the original sizes in nblc are lost.
2663 int sci_offset = nsci;
2664 int cj4_offset = ncj4;
2665 int excl_offset = nexcl;
2667 for (gmx::index i = n; i < nbls.ssize(); i++)
2669 sci_offset -= nbls[i].sci.size();
2670 cj4_offset -= nbls[i].cj4.size();
2671 excl_offset -= nbls[i].excl.size();
2674 const NbnxnPairlistGpu& nbli = nbls[n];
2676 for (size_t i = 0; i < nbli.sci.size(); i++)
2678 nblc->sci[sci_offset + i] = nbli.sci[i];
2679 nblc->sci[sci_offset + i].cj4_ind_start += cj4_offset;
2680 nblc->sci[sci_offset + i].cj4_ind_end += cj4_offset;
2683 for (size_t j4 = 0; j4 < nbli.cj4.size(); j4++)
2685 nblc->cj4[cj4_offset + j4] = nbli.cj4[j4];
2686 nblc->cj4[cj4_offset + j4].imei[0].excl_ind += excl_offset;
2687 nblc->cj4[cj4_offset + j4].imei[1].excl_ind += excl_offset;
2690 for (size_t j4 = 0; j4 < nbli.excl.size(); j4++)
2692 nblc->excl[excl_offset + j4] = nbli.excl[j4];
2695 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
2698 for (auto& nbl : nbls)
2700 nblc->nci_tot += nbl.nci_tot;
2704 static void balance_fep_lists(gmx::ArrayRef<std::unique_ptr<t_nblist>> fepLists,
2705 gmx::ArrayRef<PairsearchWork> work)
2707 const int numLists = fepLists.ssize();
2709 if (numLists == 1)
2711 /* Nothing to balance */
2712 return;
2715 /* Count the total i-lists and pairs */
2716 int nri_tot = 0;
2717 int nrj_tot = 0;
2718 for (const auto& list : fepLists)
2720 nri_tot += list->nri;
2721 nrj_tot += list->nrj;
2724 const int nrj_target = (nrj_tot + numLists - 1) / numLists;
2726 GMX_ASSERT(gmx_omp_nthreads_get(emntNonbonded) == numLists,
2727 "We should have as many work objects as FEP lists");
2729 #pragma omp parallel for schedule(static) num_threads(numLists)
2730 for (int th = 0; th < numLists; th++)
2734 t_nblist* nbl = work[th].nbl_fep.get();
2736 /* Note that here we allocate for the total size, instead of
2737 * a per-thread esimate (which is hard to obtain).
2739 if (nri_tot > nbl->maxnri)
2741 nbl->maxnri = over_alloc_large(nri_tot);
2742 reallocate_nblist(nbl);
2744 if (nri_tot > nbl->maxnri || nrj_tot > nbl->maxnrj)
2746 nbl->maxnrj = over_alloc_small(nrj_tot);
2747 srenew(nbl->jjnr, nbl->maxnrj);
2748 srenew(nbl->excl_fep, nbl->maxnrj);
2751 clear_pairlist_fep(nbl);
2753 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
2756 /* Loop over the source lists and assign and copy i-entries */
2757 int th_dest = 0;
2758 t_nblist* nbld = work[th_dest].nbl_fep.get();
2759 for (int th = 0; th < numLists; th++)
2761 const t_nblist* nbls = fepLists[th].get();
2763 for (int i = 0; i < nbls->nri; i++)
2765 int nrj;
2767 /* The number of pairs in this i-entry */
2768 nrj = nbls->jindex[i + 1] - nbls->jindex[i];
2770 /* Decide if list th_dest is too large and we should procede
2771 * to the next destination list.
2773 if (th_dest + 1 < numLists && nbld->nrj > 0
2774 && nbld->nrj + nrj - nrj_target > nrj_target - nbld->nrj)
2776 th_dest++;
2777 nbld = work[th_dest].nbl_fep.get();
2780 nbld->iinr[nbld->nri] = nbls->iinr[i];
2781 nbld->gid[nbld->nri] = nbls->gid[i];
2782 nbld->shift[nbld->nri] = nbls->shift[i];
2784 for (int j = nbls->jindex[i]; j < nbls->jindex[i + 1]; j++)
2786 nbld->jjnr[nbld->nrj] = nbls->jjnr[j];
2787 nbld->excl_fep[nbld->nrj] = nbls->excl_fep[j];
2788 nbld->nrj++;
2790 nbld->nri++;
2791 nbld->jindex[nbld->nri] = nbld->nrj;
2795 /* Swap the list pointers */
2796 for (int th = 0; th < numLists; th++)
2798 fepLists[th].swap(work[th].nbl_fep);
2800 if (debug)
2802 fprintf(debug, "nbl_fep[%d] nri %4d nrj %4d\n", th, fepLists[th]->nri, fepLists[th]->nrj);
2807 /* Returns the next ci to be processes by our thread */
2808 static gmx_bool next_ci(const Grid& grid, int nth, int ci_block, int* ci_x, int* ci_y, int* ci_b, int* ci)
2810 (*ci_b)++;
2811 (*ci)++;
2813 if (*ci_b == ci_block)
2815 /* Jump to the next block assigned to this task */
2816 *ci += (nth - 1) * ci_block;
2817 *ci_b = 0;
2820 if (*ci >= grid.numCells())
2822 return FALSE;
2825 while (*ci >= grid.firstCellInColumn(*ci_x * grid.dimensions().numCells[YY] + *ci_y + 1))
2827 *ci_y += 1;
2828 if (*ci_y == grid.dimensions().numCells[YY])
2830 *ci_x += 1;
2831 *ci_y = 0;
2835 return TRUE;
2838 /* Returns the distance^2 for which we put cell pairs in the list
2839 * without checking atom pair distances. This is usually < rlist^2.
2841 static float boundingbox_only_distance2(const Grid::Dimensions& iGridDims,
2842 const Grid::Dimensions& jGridDims,
2843 real rlist,
2844 gmx_bool simple)
2846 /* If the distance between two sub-cell bounding boxes is less
2847 * than this distance, do not check the distance between
2848 * all particle pairs in the sub-cell, since then it is likely
2849 * that the box pair has atom pairs within the cut-off.
2850 * We use the nblist cut-off minus 0.5 times the average x/y diagonal
2851 * spacing of the sub-cells. Around 40% of the checked pairs are pruned.
2852 * Using more than 0.5 gains at most 0.5%.
2853 * If forces are calculated more than twice, the performance gain
2854 * in the force calculation outweighs the cost of checking.
2855 * Note that with subcell lists, the atom-pair distance check
2856 * is only performed when only 1 out of 8 sub-cells in within range,
2857 * this is because the GPU is much faster than the cpu.
2859 real bbx, bby;
2860 real rbb2;
2862 bbx = 0.5 * (iGridDims.cellSize[XX] + jGridDims.cellSize[XX]);
2863 bby = 0.5 * (iGridDims.cellSize[YY] + jGridDims.cellSize[YY]);
2864 if (!simple)
2866 bbx /= c_gpuNumClusterPerCellX;
2867 bby /= c_gpuNumClusterPerCellY;
2870 rbb2 = std::max(0.0, rlist - 0.5 * std::sqrt(bbx * bbx + bby * bby));
2871 rbb2 = rbb2 * rbb2;
2873 #if !GMX_DOUBLE
2874 return rbb2;
2875 #else
2876 return (float)((1 + GMX_FLOAT_EPS) * rbb2);
2877 #endif
2880 static int get_ci_block_size(const Grid& iGrid, const bool haveMultipleDomains, const int numLists)
2882 const int ci_block_enum = 5;
2883 const int ci_block_denom = 11;
2884 const int ci_block_min_atoms = 16;
2885 int ci_block;
2887 /* Here we decide how to distribute the blocks over the threads.
2888 * We use prime numbers to try to avoid that the grid size becomes
2889 * a multiple of the number of threads, which would lead to some
2890 * threads getting "inner" pairs and others getting boundary pairs,
2891 * which in turns will lead to load imbalance between threads.
2892 * Set the block size as 5/11/ntask times the average number of cells
2893 * in a y,z slab. This should ensure a quite uniform distribution
2894 * of the grid parts of the different thread along all three grid
2895 * zone boundaries with 3D domain decomposition. At the same time
2896 * the blocks will not become too small.
2898 GMX_ASSERT(iGrid.dimensions().numCells[XX] > 0, "Grid can't be empty");
2899 GMX_ASSERT(numLists > 0, "We need at least one list");
2900 ci_block = (iGrid.numCells() * ci_block_enum)
2901 / (ci_block_denom * iGrid.dimensions().numCells[XX] * numLists);
2903 const int numAtomsPerCell = iGrid.geometry().numAtomsPerCell;
2905 /* Ensure the blocks are not too small: avoids cache invalidation */
2906 if (ci_block * numAtomsPerCell < ci_block_min_atoms)
2908 ci_block = (ci_block_min_atoms + numAtomsPerCell - 1) / numAtomsPerCell;
2911 /* Without domain decomposition
2912 * or with less than 3 blocks per task, divide in nth blocks.
2914 if (!haveMultipleDomains || numLists * 3 * ci_block > iGrid.numCells())
2916 ci_block = (iGrid.numCells() + numLists - 1) / numLists;
2919 if (ci_block > 1 && (numLists - 1) * ci_block >= iGrid.numCells())
2921 /* Some threads have no work. Although reducing the block size
2922 * does not decrease the block count on the first few threads,
2923 * with GPUs better mixing of "upper" cells that have more empty
2924 * clusters results in a somewhat lower max load over all threads.
2925 * Without GPUs the regime of so few atoms per thread is less
2926 * performance relevant, but with 8-wide SIMD the same reasoning
2927 * applies, since the pair list uses 4 i-atom "sub-clusters".
2929 ci_block--;
2932 return ci_block;
2935 /* Returns the number of bits to right-shift a cluster index to obtain
2936 * the corresponding force buffer flag index.
2938 static int getBufferFlagShift(int numAtomsPerCluster)
2940 int bufferFlagShift = 0;
2941 while ((numAtomsPerCluster << bufferFlagShift) < NBNXN_BUFFERFLAG_SIZE)
2943 bufferFlagShift++;
2946 return bufferFlagShift;
2949 static bool pairlistIsSimple(const NbnxnPairlistCpu gmx_unused& pairlist)
2951 return true;
2954 static bool pairlistIsSimple(const NbnxnPairlistGpu gmx_unused& pairlist)
2956 return false;
2959 static void makeClusterListWrapper(NbnxnPairlistCpu* nbl,
2960 const Grid gmx_unused& iGrid,
2961 const int ci,
2962 const Grid& jGrid,
2963 const int firstCell,
2964 const int lastCell,
2965 const bool excludeSubDiagonal,
2966 const nbnxn_atomdata_t* nbat,
2967 const real rlist2,
2968 const real rbb2,
2969 const ClusterDistanceKernelType kernelType,
2970 int* numDistanceChecks)
2972 switch (kernelType)
2974 case ClusterDistanceKernelType::CpuPlainC:
2975 makeClusterListSimple(jGrid, nbl, ci, firstCell, lastCell, excludeSubDiagonal,
2976 nbat->x().data(), rlist2, rbb2, numDistanceChecks);
2977 break;
2978 #ifdef GMX_NBNXN_SIMD_4XN
2979 case ClusterDistanceKernelType::CpuSimd_4xM:
2980 makeClusterListSimd4xn(jGrid, nbl, ci, firstCell, lastCell, excludeSubDiagonal,
2981 nbat->x().data(), rlist2, rbb2, numDistanceChecks);
2982 break;
2983 #endif
2984 #ifdef GMX_NBNXN_SIMD_2XNN
2985 case ClusterDistanceKernelType::CpuSimd_2xMM:
2986 makeClusterListSimd2xnn(jGrid, nbl, ci, firstCell, lastCell, excludeSubDiagonal,
2987 nbat->x().data(), rlist2, rbb2, numDistanceChecks);
2988 break;
2989 #endif
2990 default: GMX_ASSERT(false, "Unhandled kernel type");
2994 static void makeClusterListWrapper(NbnxnPairlistGpu* nbl,
2995 const Grid& gmx_unused iGrid,
2996 const int ci,
2997 const Grid& jGrid,
2998 const int firstCell,
2999 const int lastCell,
3000 const bool excludeSubDiagonal,
3001 const nbnxn_atomdata_t* nbat,
3002 const real rlist2,
3003 const real rbb2,
3004 ClusterDistanceKernelType gmx_unused kernelType,
3005 int* numDistanceChecks)
3007 for (int cj = firstCell; cj <= lastCell; cj++)
3009 make_cluster_list_supersub(iGrid, jGrid, nbl, ci, cj, excludeSubDiagonal, nbat->xstride,
3010 nbat->x().data(), rlist2, rbb2, numDistanceChecks);
3014 static int getNumSimpleJClustersInList(const NbnxnPairlistCpu& nbl)
3016 return nbl.cj.size();
3019 static int getNumSimpleJClustersInList(const gmx_unused NbnxnPairlistGpu& nbl)
3021 return 0;
3024 static void incrementNumSimpleJClustersInList(NbnxnPairlistCpu* nbl, int ncj_old_j)
3026 nbl->ncjInUse += nbl->cj.size();
3027 nbl->ncjInUse -= ncj_old_j;
3030 static void incrementNumSimpleJClustersInList(NbnxnPairlistGpu gmx_unused* nbl, int gmx_unused ncj_old_j)
3034 static void checkListSizeConsistency(const NbnxnPairlistCpu& nbl, const bool haveFreeEnergy)
3036 GMX_RELEASE_ASSERT(static_cast<size_t>(nbl.ncjInUse) == nbl.cj.size() || haveFreeEnergy,
3037 "Without free-energy all cj pair-list entries should be in use. "
3038 "Note that subsequent code does not make use of the equality, "
3039 "this check is only here to catch bugs");
3042 static void checkListSizeConsistency(const NbnxnPairlistGpu gmx_unused& nbl, bool gmx_unused haveFreeEnergy)
3044 /* We currently can not check consistency here */
3047 /* Set the buffer flags for newly added entries in the list */
3048 static void setBufferFlags(const NbnxnPairlistCpu& nbl,
3049 const int ncj_old_j,
3050 const int gridj_flag_shift,
3051 gmx_bitmask_t* gridj_flag,
3052 const int th)
3054 if (gmx::ssize(nbl.cj) > ncj_old_j)
3056 int cbFirst = nbl.cj[ncj_old_j].cj >> gridj_flag_shift;
3057 int cbLast = nbl.cj.back().cj >> gridj_flag_shift;
3058 for (int cb = cbFirst; cb <= cbLast; cb++)
3060 bitmask_init_bit(&gridj_flag[cb], th);
3065 static void setBufferFlags(const NbnxnPairlistGpu gmx_unused& nbl,
3066 int gmx_unused ncj_old_j,
3067 int gmx_unused gridj_flag_shift,
3068 gmx_bitmask_t gmx_unused* gridj_flag,
3069 int gmx_unused th)
3071 GMX_ASSERT(false, "This function should never be called");
3074 /* Generates the part of pair-list nbl assigned to our thread */
3075 template<typename T>
3076 static void nbnxn_make_pairlist_part(const Nbnxm::GridSet& gridSet,
3077 const Grid& iGrid,
3078 const Grid& jGrid,
3079 PairsearchWork* work,
3080 const nbnxn_atomdata_t* nbat,
3081 const ListOfLists<int>& exclusions,
3082 real rlist,
3083 const PairlistType pairlistType,
3084 int ci_block,
3085 gmx_bool bFBufferFlag,
3086 int nsubpair_max,
3087 gmx_bool progBal,
3088 float nsubpair_tot_est,
3089 int th,
3090 int nth,
3091 T* nbl,
3092 t_nblist* nbl_fep)
3094 int na_cj_2log;
3095 matrix box;
3096 real rl_fep2 = 0;
3097 float rbb2;
3098 int ci_b, ci, ci_x, ci_y, ci_xy;
3099 ivec shp;
3100 real bx0, bx1, by0, by1, bz0, bz1;
3101 real bz1_frac;
3102 real d2cx, d2z, d2z_cx, d2z_cy, d2zx, d2zxy, d2xy;
3103 int cxf, cxl, cyf, cyf_x, cyl;
3104 int numDistanceChecks;
3105 int gridi_flag_shift = 0, gridj_flag_shift = 0;
3106 gmx_bitmask_t* gridj_flag = nullptr;
3107 int ncj_old_i, ncj_old_j;
3109 if (jGrid.geometry().isSimple != pairlistIsSimple(*nbl)
3110 || iGrid.geometry().isSimple != pairlistIsSimple(*nbl))
3112 gmx_incons("Grid incompatible with pair-list");
3115 sync_work(nbl);
3116 GMX_ASSERT(nbl->na_ci == jGrid.geometry().numAtomsICluster,
3117 "The cluster sizes in the list and grid should match");
3118 nbl->na_cj = JClusterSizePerListType[pairlistType];
3119 na_cj_2log = get_2log(nbl->na_cj);
3121 nbl->rlist = rlist;
3123 if (bFBufferFlag)
3125 /* Determine conversion of clusters to flag blocks */
3126 gridi_flag_shift = getBufferFlagShift(nbl->na_ci);
3127 gridj_flag_shift = getBufferFlagShift(nbl->na_cj);
3129 gridj_flag = work->buffer_flags.flag;
3132 gridSet.getBox(box);
3134 const bool haveFep = gridSet.haveFep();
3136 const real rlist2 = nbl->rlist * nbl->rlist;
3138 // Select the cluster pair distance kernel type
3139 const ClusterDistanceKernelType kernelType = getClusterDistanceKernelType(pairlistType, *nbat);
3141 if (haveFep && !pairlistIsSimple(*nbl))
3143 /* Determine an atom-pair list cut-off distance for FEP atom pairs.
3144 * We should not simply use rlist, since then we would not have
3145 * the small, effective buffering of the NxN lists.
3146 * The buffer is on overestimate, but the resulting cost for pairs
3147 * beyond rlist is neglible compared to the FEP pairs within rlist.
3149 rl_fep2 = nbl->rlist + effective_buffer_1x1_vs_MxN(iGrid, jGrid);
3151 if (debug)
3153 fprintf(debug, "nbl_fep atom-pair rlist %f\n", rl_fep2);
3155 rl_fep2 = rl_fep2 * rl_fep2;
3158 const Grid::Dimensions& iGridDims = iGrid.dimensions();
3159 const Grid::Dimensions& jGridDims = jGrid.dimensions();
3161 rbb2 = boundingbox_only_distance2(iGridDims, jGridDims, nbl->rlist, pairlistIsSimple(*nbl));
3163 if (debug)
3165 fprintf(debug, "nbl bounding box only distance %f\n", std::sqrt(rbb2));
3168 const bool isIntraGridList = (&iGrid == &jGrid);
3170 /* Set the shift range */
3171 for (int d = 0; d < DIM; d++)
3173 /* Check if we need periodicity shifts.
3174 * Without PBC or with domain decomposition we don't need them.
3176 if (d >= numPbcDimensions(gridSet.domainSetup().pbcType)
3177 || gridSet.domainSetup().haveMultipleDomainsPerDim[d])
3179 shp[d] = 0;
3181 else
3183 const real listRangeCellToCell =
3184 listRangeForGridCellToGridCell(rlist, iGrid.dimensions(), jGrid.dimensions());
3185 if (d == XX && box[XX][XX] - fabs(box[YY][XX]) - fabs(box[ZZ][XX]) < listRangeCellToCell)
3187 shp[d] = 2;
3189 else
3191 shp[d] = 1;
3195 const bool bSimple = pairlistIsSimple(*nbl);
3196 gmx::ArrayRef<const BoundingBox> bb_i;
3197 #if NBNXN_BBXXXX
3198 gmx::ArrayRef<const float> pbb_i;
3199 if (bSimple)
3201 bb_i = iGrid.iBoundingBoxes();
3203 else
3205 pbb_i = iGrid.packedBoundingBoxes();
3207 #else
3208 /* We use the normal bounding box format for both grid types */
3209 bb_i = iGrid.iBoundingBoxes();
3210 #endif
3211 gmx::ArrayRef<const BoundingBox1D> bbcz_i = iGrid.zBoundingBoxes();
3212 gmx::ArrayRef<const int> flags_i = iGrid.clusterFlags();
3213 gmx::ArrayRef<const BoundingBox1D> bbcz_j = jGrid.zBoundingBoxes();
3214 int cell0_i = iGrid.cellOffset();
3216 if (debug)
3218 fprintf(debug, "nbl nc_i %d col.av. %.1f ci_block %d\n", iGrid.numCells(),
3219 iGrid.numCells() / static_cast<double>(iGrid.numColumns()), ci_block);
3222 numDistanceChecks = 0;
3224 const real listRangeBBToJCell2 =
3225 gmx::square(listRangeForBoundingBoxToGridCell(rlist, jGrid.dimensions()));
3227 /* Initially ci_b and ci to 1 before where we want them to start,
3228 * as they will both be incremented in next_ci.
3230 ci_b = -1;
3231 ci = th * ci_block - 1;
3232 ci_x = 0;
3233 ci_y = 0;
3234 while (next_ci(iGrid, nth, ci_block, &ci_x, &ci_y, &ci_b, &ci))
3236 if (bSimple && flags_i[ci] == 0)
3238 continue;
3240 ncj_old_i = getNumSimpleJClustersInList(*nbl);
3242 d2cx = 0;
3243 if (!isIntraGridList && shp[XX] == 0)
3245 if (bSimple)
3247 bx1 = bb_i[ci].upper.x;
3249 else
3251 bx1 = iGridDims.lowerCorner[XX] + (real(ci_x) + 1) * iGridDims.cellSize[XX];
3253 if (bx1 < jGridDims.lowerCorner[XX])
3255 d2cx = gmx::square(jGridDims.lowerCorner[XX] - bx1);
3257 if (d2cx >= listRangeBBToJCell2)
3259 continue;
3264 ci_xy = ci_x * iGridDims.numCells[YY] + ci_y;
3266 /* Loop over shift vectors in three dimensions */
3267 for (int tz = -shp[ZZ]; tz <= shp[ZZ]; tz++)
3269 const real shz = real(tz) * box[ZZ][ZZ];
3271 bz0 = bbcz_i[ci].lower + shz;
3272 bz1 = bbcz_i[ci].upper + shz;
3274 if (tz == 0)
3276 d2z = 0;
3278 else if (tz < 0)
3280 d2z = gmx::square(bz1);
3282 else
3284 d2z = gmx::square(bz0 - box[ZZ][ZZ]);
3287 d2z_cx = d2z + d2cx;
3289 if (d2z_cx >= rlist2)
3291 continue;
3294 bz1_frac = bz1 / real(iGrid.numCellsInColumn(ci_xy));
3295 if (bz1_frac < 0)
3297 bz1_frac = 0;
3299 /* The check with bz1_frac close to or larger than 1 comes later */
3301 for (int ty = -shp[YY]; ty <= shp[YY]; ty++)
3303 const real shy = real(ty) * box[YY][YY] + real(tz) * box[ZZ][YY];
3305 if (bSimple)
3307 by0 = bb_i[ci].lower.y + shy;
3308 by1 = bb_i[ci].upper.y + shy;
3310 else
3312 by0 = iGridDims.lowerCorner[YY] + (real(ci_y)) * iGridDims.cellSize[YY] + shy;
3313 by1 = iGridDims.lowerCorner[YY] + (real(ci_y) + 1) * iGridDims.cellSize[YY] + shy;
3316 get_cell_range<YY>(by0, by1, jGridDims, d2z_cx, rlist, &cyf, &cyl);
3318 if (cyf > cyl)
3320 continue;
3323 d2z_cy = d2z;
3324 if (by1 < jGridDims.lowerCorner[YY])
3326 d2z_cy += gmx::square(jGridDims.lowerCorner[YY] - by1);
3328 else if (by0 > jGridDims.upperCorner[YY])
3330 d2z_cy += gmx::square(by0 - jGridDims.upperCorner[YY]);
3333 for (int tx = -shp[XX]; tx <= shp[XX]; tx++)
3335 const int shift = XYZ2IS(tx, ty, tz);
3337 const bool excludeSubDiagonal = (isIntraGridList && shift == CENTRAL);
3339 if (c_pbcShiftBackward && isIntraGridList && shift > CENTRAL)
3341 continue;
3344 const real shx =
3345 real(tx) * box[XX][XX] + real(ty) * box[YY][XX] + real(tz) * box[ZZ][XX];
3347 if (bSimple)
3349 bx0 = bb_i[ci].lower.x + shx;
3350 bx1 = bb_i[ci].upper.x + shx;
3352 else
3354 bx0 = iGridDims.lowerCorner[XX] + (real(ci_x)) * iGridDims.cellSize[XX] + shx;
3355 bx1 = iGridDims.lowerCorner[XX] + (real(ci_x) + 1) * iGridDims.cellSize[XX] + shx;
3358 get_cell_range<XX>(bx0, bx1, jGridDims, d2z_cy, rlist, &cxf, &cxl);
3360 if (cxf > cxl)
3362 continue;
3365 addNewIEntry(nbl, cell0_i + ci, shift, flags_i[ci]);
3367 if ((!c_pbcShiftBackward || excludeSubDiagonal) && cxf < ci_x)
3369 /* Leave the pairs with i > j.
3370 * x is the major index, so skip half of it.
3372 cxf = ci_x;
3375 set_icell_bb(iGrid, ci, shx, shy, shz, nbl->work.get());
3377 icell_set_x(cell0_i + ci, shx, shy, shz, nbat->xstride, nbat->x().data(),
3378 kernelType, nbl->work.get());
3380 for (int cx = cxf; cx <= cxl; cx++)
3382 const real cx_real = cx;
3383 d2zx = d2z;
3384 if (jGridDims.lowerCorner[XX] + cx_real * jGridDims.cellSize[XX] > bx1)
3386 d2zx += gmx::square(jGridDims.lowerCorner[XX]
3387 + cx_real * jGridDims.cellSize[XX] - bx1);
3389 else if (jGridDims.lowerCorner[XX] + (cx_real + 1) * jGridDims.cellSize[XX] < bx0)
3391 d2zx += gmx::square(jGridDims.lowerCorner[XX]
3392 + (cx_real + 1) * jGridDims.cellSize[XX] - bx0);
3395 if (isIntraGridList && cx == 0 && (!c_pbcShiftBackward || shift == CENTRAL)
3396 && cyf < ci_y)
3398 /* Leave the pairs with i > j.
3399 * Skip half of y when i and j have the same x.
3401 cyf_x = ci_y;
3403 else
3405 cyf_x = cyf;
3408 for (int cy = cyf_x; cy <= cyl; cy++)
3410 const int columnStart =
3411 jGrid.firstCellInColumn(cx * jGridDims.numCells[YY] + cy);
3412 const int columnEnd =
3413 jGrid.firstCellInColumn(cx * jGridDims.numCells[YY] + cy + 1);
3415 const real cy_real = cy;
3416 d2zxy = d2zx;
3417 if (jGridDims.lowerCorner[YY] + cy_real * jGridDims.cellSize[YY] > by1)
3419 d2zxy += gmx::square(jGridDims.lowerCorner[YY]
3420 + cy_real * jGridDims.cellSize[YY] - by1);
3422 else if (jGridDims.lowerCorner[YY] + (cy_real + 1) * jGridDims.cellSize[YY] < by0)
3424 d2zxy += gmx::square(jGridDims.lowerCorner[YY]
3425 + (cy_real + 1) * jGridDims.cellSize[YY] - by0);
3427 if (columnStart < columnEnd && d2zxy < listRangeBBToJCell2)
3429 /* To improve efficiency in the common case
3430 * of a homogeneous particle distribution,
3431 * we estimate the index of the middle cell
3432 * in range (midCell). We search down and up
3433 * starting from this index.
3435 * Note that the bbcz_j array contains bounds
3436 * for i-clusters, thus for clusters of 4 atoms.
3437 * For the common case where the j-cluster size
3438 * is 8, we could step with a stride of 2,
3439 * but we do not do this because it would
3440 * complicate this code even more.
3442 int midCell =
3443 columnStart
3444 + static_cast<int>(bz1_frac
3445 * static_cast<real>(columnEnd - columnStart));
3446 if (midCell >= columnEnd)
3448 midCell = columnEnd - 1;
3451 d2xy = d2zxy - d2z;
3453 /* Find the lowest cell that can possibly
3454 * be within range.
3455 * Check if we hit the bottom of the grid,
3456 * if the j-cell is below the i-cell and if so,
3457 * if it is within range.
3459 int downTestCell = midCell;
3460 while (downTestCell >= columnStart
3461 && (bbcz_j[downTestCell].upper >= bz0
3462 || d2xy + gmx::square(bbcz_j[downTestCell].upper - bz0) < rlist2))
3464 downTestCell--;
3466 int firstCell = downTestCell + 1;
3468 /* Find the highest cell that can possibly
3469 * be within range.
3470 * Check if we hit the top of the grid,
3471 * if the j-cell is above the i-cell and if so,
3472 * if it is within range.
3474 int upTestCell = midCell + 1;
3475 while (upTestCell < columnEnd
3476 && (bbcz_j[upTestCell].lower <= bz1
3477 || d2xy + gmx::square(bbcz_j[upTestCell].lower - bz1) < rlist2))
3479 upTestCell++;
3481 int lastCell = upTestCell - 1;
3483 #define NBNXN_REFCODE 0
3484 #if NBNXN_REFCODE
3486 /* Simple reference code, for debugging,
3487 * overrides the more complex code above.
3489 firstCell = columnEnd;
3490 lastCell = -1;
3491 for (int k = columnStart; k < columnEnd; k++)
3493 if (d2xy + gmx::square(bbcz_j[k * NNBSBB_D + 1] - bz0) < rlist2
3494 && k < firstCell)
3496 firstCell = k;
3498 if (d2xy + gmx::square(bbcz_j[k * NNBSBB_D] - bz1) < rlist2
3499 && k > lastCell)
3501 lastCell = k;
3505 #endif
3507 if (isIntraGridList)
3509 /* We want each atom/cell pair only once,
3510 * only use cj >= ci.
3512 if (!c_pbcShiftBackward || shift == CENTRAL)
3514 firstCell = std::max(firstCell, ci);
3518 if (firstCell <= lastCell)
3520 GMX_ASSERT(firstCell >= columnStart && lastCell < columnEnd,
3521 "The range should reside within the current grid "
3522 "column");
3524 /* For f buffer flags with simple lists */
3525 ncj_old_j = getNumSimpleJClustersInList(*nbl);
3527 makeClusterListWrapper(nbl, iGrid, ci, jGrid, firstCell, lastCell,
3528 excludeSubDiagonal, nbat, rlist2, rbb2,
3529 kernelType, &numDistanceChecks);
3531 if (bFBufferFlag)
3533 setBufferFlags(*nbl, ncj_old_j, gridj_flag_shift, gridj_flag, th);
3536 incrementNumSimpleJClustersInList(nbl, ncj_old_j);
3542 if (!exclusions.empty())
3544 /* Set the exclusions for this ci list */
3545 setExclusionsForIEntry(gridSet, nbl, excludeSubDiagonal, na_cj_2log,
3546 *getOpenIEntry(nbl), exclusions);
3549 if (haveFep)
3551 make_fep_list(gridSet.atomIndices(), nbat, nbl, excludeSubDiagonal,
3552 getOpenIEntry(nbl), shx, shy, shz, rl_fep2, iGrid, jGrid, nbl_fep);
3555 /* Close this ci list */
3556 closeIEntry(nbl, nsubpair_max, progBal, nsubpair_tot_est, th, nth);
3561 if (bFBufferFlag && getNumSimpleJClustersInList(*nbl) > ncj_old_i)
3563 bitmask_init_bit(&(work->buffer_flags.flag[(iGrid.cellOffset() + ci) >> gridi_flag_shift]), th);
3567 work->ndistc = numDistanceChecks;
3569 checkListSizeConsistency(*nbl, haveFep);
3571 if (debug)
3573 fprintf(debug, "number of distance checks %d\n", numDistanceChecks);
3575 print_nblist_statistics(debug, *nbl, gridSet, rlist);
3577 if (haveFep)
3579 fprintf(debug, "nbl FEP list pairs: %d\n", nbl_fep->nrj);
3584 static void reduce_buffer_flags(gmx::ArrayRef<PairsearchWork> searchWork,
3585 int nsrc,
3586 const nbnxn_buffer_flags_t* dest)
3588 for (int s = 0; s < nsrc; s++)
3590 gmx_bitmask_t* flag = searchWork[s].buffer_flags.flag;
3592 for (int b = 0; b < dest->nflag; b++)
3594 bitmask_union(&(dest->flag[b]), flag[b]);
3599 static void print_reduction_cost(const nbnxn_buffer_flags_t* flags, int nout)
3601 int nelem, nkeep, ncopy, nred, out;
3602 gmx_bitmask_t mask_0;
3604 nelem = 0;
3605 nkeep = 0;
3606 ncopy = 0;
3607 nred = 0;
3608 bitmask_init_bit(&mask_0, 0);
3609 for (int b = 0; b < flags->nflag; b++)
3611 if (bitmask_is_equal(flags->flag[b], mask_0))
3613 /* Only flag 0 is set, no copy of reduction required */
3614 nelem++;
3615 nkeep++;
3617 else if (!bitmask_is_zero(flags->flag[b]))
3619 int c = 0;
3620 for (out = 0; out < nout; out++)
3622 if (bitmask_is_set(flags->flag[b], out))
3624 c++;
3627 nelem += c;
3628 if (c == 1)
3630 ncopy++;
3632 else
3634 nred += c;
3639 fprintf(debug,
3640 "nbnxn reduction: #flag %d #list %d elem %4.2f, keep %4.2f copy %4.2f red %4.2f\n",
3641 flags->nflag, nout, nelem / static_cast<double>(flags->nflag),
3642 nkeep / static_cast<double>(flags->nflag), ncopy / static_cast<double>(flags->nflag),
3643 nred / static_cast<double>(flags->nflag));
3646 /* Copies the list entries from src to dest when cjStart <= *cjGlobal < cjEnd.
3647 * *cjGlobal is updated with the cj count in src.
3648 * When setFlags==true, flag bit t is set in flag for all i and j clusters.
3650 template<bool setFlags>
3651 static void copySelectedListRange(const nbnxn_ci_t* gmx_restrict srcCi,
3652 const NbnxnPairlistCpu* gmx_restrict src,
3653 NbnxnPairlistCpu* gmx_restrict dest,
3654 gmx_bitmask_t* flag,
3655 int iFlagShift,
3656 int jFlagShift,
3657 int t)
3659 const int ncj = srcCi->cj_ind_end - srcCi->cj_ind_start;
3661 dest->ci.push_back(*srcCi);
3662 dest->ci.back().cj_ind_start = dest->cj.size();
3663 dest->ci.back().cj_ind_end = dest->ci.back().cj_ind_start + ncj;
3665 if (setFlags)
3667 bitmask_init_bit(&flag[srcCi->ci >> iFlagShift], t);
3670 for (int j = srcCi->cj_ind_start; j < srcCi->cj_ind_end; j++)
3672 dest->cj.push_back(src->cj[j]);
3674 if (setFlags)
3676 /* NOTE: This is relatively expensive, since this
3677 * operation is done for all elements in the list,
3678 * whereas at list generation this is done only
3679 * once for each flag entry.
3681 bitmask_init_bit(&flag[src->cj[j].cj >> jFlagShift], t);
3686 #if defined(__GNUC__) && !defined(__clang__) && !defined(__ICC) && __GNUC__ == 7
3687 /* Avoid gcc 7 avx512 loop vectorization bug (actually only needed with -mavx512f) */
3688 # pragma GCC push_options
3689 # pragma GCC optimize("no-tree-vectorize")
3690 #endif
3692 /* Returns the number of cluster pairs that are in use summed over all lists */
3693 static int countClusterpairs(gmx::ArrayRef<const NbnxnPairlistCpu> pairlists)
3695 /* gcc 7 with -mavx512f can miss the contributions of 16 consecutive
3696 * elements to the sum calculated in this loop. Above we have disabled
3697 * loop vectorization to avoid this bug.
3699 int ncjTotal = 0;
3700 for (const auto& pairlist : pairlists)
3702 ncjTotal += pairlist.ncjInUse;
3704 return ncjTotal;
3707 #if defined(__GNUC__) && !defined(__clang__) && !defined(__ICC) && __GNUC__ == 7
3708 # pragma GCC pop_options
3709 #endif
3711 /* This routine re-balances the pairlists such that all are nearly equally
3712 * sized. Only whole i-entries are moved between lists. These are moved
3713 * between the ends of the lists, such that the buffer reduction cost should
3714 * not change significantly.
3715 * Note that all original reduction flags are currently kept. This can lead
3716 * to reduction of parts of the force buffer that could be avoided. But since
3717 * the original lists are quite balanced, this will only give minor overhead.
3719 static void rebalanceSimpleLists(gmx::ArrayRef<const NbnxnPairlistCpu> srcSet,
3720 gmx::ArrayRef<NbnxnPairlistCpu> destSet,
3721 gmx::ArrayRef<PairsearchWork> searchWork)
3723 const int ncjTotal = countClusterpairs(srcSet);
3724 const int numLists = srcSet.ssize();
3725 const int ncjTarget = (ncjTotal + numLists - 1) / numLists;
3727 #pragma omp parallel num_threads(numLists)
3729 int t = gmx_omp_get_thread_num();
3731 int cjStart = ncjTarget * t;
3732 int cjEnd = ncjTarget * (t + 1);
3734 /* The destination pair-list for task/thread t */
3735 NbnxnPairlistCpu& dest = destSet[t];
3737 clear_pairlist(&dest);
3738 dest.na_cj = srcSet[0].na_cj;
3740 /* Note that the flags in the work struct (still) contain flags
3741 * for all entries that are present in srcSet->nbl[t].
3743 gmx_bitmask_t* flag = searchWork[t].buffer_flags.flag;
3745 int iFlagShift = getBufferFlagShift(dest.na_ci);
3746 int jFlagShift = getBufferFlagShift(dest.na_cj);
3748 int cjGlobal = 0;
3749 for (int s = 0; s < numLists && cjGlobal < cjEnd; s++)
3751 const NbnxnPairlistCpu* src = &srcSet[s];
3753 if (cjGlobal + src->ncjInUse > cjStart)
3755 for (gmx::index i = 0; i < gmx::ssize(src->ci) && cjGlobal < cjEnd; i++)
3757 const nbnxn_ci_t* srcCi = &src->ci[i];
3758 int ncj = srcCi->cj_ind_end - srcCi->cj_ind_start;
3759 if (cjGlobal >= cjStart)
3761 /* If the source list is not our own, we need to set
3762 * extra flags (the template bool parameter).
3764 if (s != t)
3766 copySelectedListRange<true>(srcCi, src, &dest, flag, iFlagShift, jFlagShift, t);
3768 else
3770 copySelectedListRange<false>(srcCi, src, &dest, flag, iFlagShift,
3771 jFlagShift, t);
3774 cjGlobal += ncj;
3777 else
3779 cjGlobal += src->ncjInUse;
3783 dest.ncjInUse = dest.cj.size();
3786 #ifndef NDEBUG
3787 const int ncjTotalNew = countClusterpairs(destSet);
3788 GMX_RELEASE_ASSERT(ncjTotalNew == ncjTotal,
3789 "The total size of the lists before and after rebalancing should match");
3790 #endif
3793 /* Returns if the pairlists are so imbalanced that it is worth rebalancing. */
3794 static bool checkRebalanceSimpleLists(gmx::ArrayRef<const NbnxnPairlistCpu> lists)
3796 int numLists = lists.ssize();
3797 int ncjMax = 0;
3798 int ncjTotal = 0;
3799 for (int s = 0; s < numLists; s++)
3801 ncjMax = std::max(ncjMax, lists[s].ncjInUse);
3802 ncjTotal += lists[s].ncjInUse;
3804 if (debug)
3806 fprintf(debug, "Pair-list ncjMax %d ncjTotal %d\n", ncjMax, ncjTotal);
3808 /* The rebalancing adds 3% extra time to the search. Heuristically we
3809 * determined that under common conditions the non-bonded kernel balance
3810 * improvement will outweigh this when the imbalance is more than 3%.
3811 * But this will, obviously, depend on search vs kernel time and nstlist.
3813 const real rebalanceTolerance = 1.03;
3815 return real(numLists * ncjMax) > real(ncjTotal) * rebalanceTolerance;
3818 /* Perform a count (linear) sort to sort the smaller lists to the end.
3819 * This avoids load imbalance on the GPU, as large lists will be
3820 * scheduled and executed first and the smaller lists later.
3821 * Load balancing between multi-processors only happens at the end
3822 * and there smaller lists lead to more effective load balancing.
3823 * The sorting is done on the cj4 count, not on the actual pair counts.
3824 * Not only does this make the sort faster, but it also results in
3825 * better load balancing than using a list sorted on exact load.
3826 * This function swaps the pointer in the pair list to avoid a copy operation.
3828 static void sort_sci(NbnxnPairlistGpu* nbl)
3830 if (nbl->cj4.size() <= nbl->sci.size())
3832 /* nsci = 0 or all sci have size 1, sorting won't change the order */
3833 return;
3836 NbnxnPairlistGpuWork& work = *nbl->work;
3838 /* We will distinguish differences up to double the average */
3839 const int m = static_cast<int>((2 * ssize(nbl->cj4)) / ssize(nbl->sci));
3841 /* Resize work.sci_sort so we can sort into it */
3842 work.sci_sort.resize(nbl->sci.size());
3844 std::vector<int>& sort = work.sortBuffer;
3845 /* Set up m + 1 entries in sort, initialized at 0 */
3846 sort.clear();
3847 sort.resize(m + 1, 0);
3848 /* Count the entries of each size */
3849 for (const nbnxn_sci_t& sci : nbl->sci)
3851 int i = std::min(m, sci.numJClusterGroups());
3852 sort[i]++;
3854 /* Calculate the offset for each count */
3855 int s0 = sort[m];
3856 sort[m] = 0;
3857 for (gmx::index i = m - 1; i >= 0; i--)
3859 int s1 = sort[i];
3860 sort[i] = sort[i + 1] + s0;
3861 s0 = s1;
3864 /* Sort entries directly into place */
3865 gmx::ArrayRef<nbnxn_sci_t> sci_sort = work.sci_sort;
3866 for (const nbnxn_sci_t& sci : nbl->sci)
3868 int i = std::min(m, sci.numJClusterGroups());
3869 sci_sort[sort[i]++] = sci;
3872 /* Swap the sci pointers so we use the new, sorted list */
3873 std::swap(nbl->sci, work.sci_sort);
3876 /* Returns the i-zone range for pairlist construction for the give locality */
3877 static Range<int> getIZoneRange(const Nbnxm::GridSet::DomainSetup& domainSetup,
3878 const InteractionLocality locality)
3880 if (domainSetup.doTestParticleInsertion)
3882 /* With TPI we do grid 1, the inserted molecule, versus grid 0, the rest */
3883 return { 1, 2 };
3885 else if (locality == InteractionLocality::Local)
3887 /* Local: only zone (grid) 0 vs 0 */
3888 return { 0, 1 };
3890 else
3892 /* Non-local: we need all i-zones */
3893 return { 0, int(domainSetup.zones->iZones.size()) };
3897 /* Returns the j-zone range for pairlist construction for the give locality and i-zone */
3898 static Range<int> getJZoneRange(const gmx_domdec_zones_t& ddZones,
3899 const InteractionLocality locality,
3900 const int iZone)
3902 if (locality == InteractionLocality::Local)
3904 /* Local: zone 0 vs 0 or with TPI 1 vs 0 */
3905 return { 0, 1 };
3907 else if (iZone == 0)
3909 /* Non-local: we need to avoid the local (zone 0 vs 0) interactions */
3910 return { 1, *ddZones.iZones[iZone].jZoneRange.end() };
3912 else
3914 /* Non-local with non-local i-zone: use all j-zones */
3915 return ddZones.iZones[iZone].jZoneRange;
3919 //! Prepares CPU lists produced by the search for dynamic pruning
3920 static void prepareListsForDynamicPruning(gmx::ArrayRef<NbnxnPairlistCpu> lists);
3922 void PairlistSet::constructPairlists(const Nbnxm::GridSet& gridSet,
3923 gmx::ArrayRef<PairsearchWork> searchWork,
3924 nbnxn_atomdata_t* nbat,
3925 const ListOfLists<int>& exclusions,
3926 const int minimumIlistCountForGpuBalancing,
3927 t_nrnb* nrnb,
3928 SearchCycleCounting* searchCycleCounting)
3930 const real rlist = params_.rlistOuter;
3932 int nsubpair_target;
3933 float nsubpair_tot_est;
3934 int ci_block;
3935 gmx_bool progBal;
3936 int np_tot, np_noq, np_hlj, nap;
3938 const int numLists = (isCpuType_ ? cpuLists_.size() : gpuLists_.size());
3940 if (debug)
3942 fprintf(debug, "ns making %d nblists\n", numLists);
3945 nbat->bUseBufferFlags = (nbat->out.size() > 1);
3946 /* We should re-init the flags before making the first list */
3947 if (nbat->bUseBufferFlags && locality_ == InteractionLocality::Local)
3949 init_buffer_flags(&nbat->buffer_flags, nbat->numAtoms());
3952 if (!isCpuType_ && minimumIlistCountForGpuBalancing > 0)
3954 get_nsubpair_target(gridSet, locality_, rlist, minimumIlistCountForGpuBalancing,
3955 &nsubpair_target, &nsubpair_tot_est);
3957 else
3959 nsubpair_target = 0;
3960 nsubpair_tot_est = 0;
3963 /* Clear all pair-lists */
3964 for (int th = 0; th < numLists; th++)
3966 if (isCpuType_)
3968 clear_pairlist(&cpuLists_[th]);
3970 else
3972 clear_pairlist(&gpuLists_[th]);
3975 if (params_.haveFep)
3977 clear_pairlist_fep(fepLists_[th].get());
3981 const gmx_domdec_zones_t& ddZones = *gridSet.domainSetup().zones;
3983 const auto iZoneRange = getIZoneRange(gridSet.domainSetup(), locality_);
3985 for (const int iZone : iZoneRange)
3987 const Grid& iGrid = gridSet.grids()[iZone];
3989 const auto jZoneRange = getJZoneRange(ddZones, locality_, iZone);
3991 for (int jZone : jZoneRange)
3993 const Grid& jGrid = gridSet.grids()[jZone];
3995 if (debug)
3997 fprintf(debug, "ns search grid %d vs %d\n", iZone, jZone);
4000 searchCycleCounting->start(enbsCCsearch);
4002 ci_block = get_ci_block_size(iGrid, gridSet.domainSetup().haveMultipleDomains, numLists);
4004 /* With GPU: generate progressively smaller lists for
4005 * load balancing for local only or non-local with 2 zones.
4007 progBal = (locality_ == InteractionLocality::Local || ddZones.n <= 2);
4009 #pragma omp parallel for num_threads(numLists) schedule(static)
4010 for (int th = 0; th < numLists; th++)
4014 /* Re-init the thread-local work flag data before making
4015 * the first list (not an elegant conditional).
4017 if (nbat->bUseBufferFlags && (iZone == 0 && jZone == 0))
4019 init_buffer_flags(&searchWork[th].buffer_flags, nbat->numAtoms());
4022 if (combineLists_ && th > 0)
4024 GMX_ASSERT(!isCpuType_, "Can only combine GPU lists");
4026 clear_pairlist(&gpuLists_[th]);
4029 PairsearchWork& work = searchWork[th];
4031 work.cycleCounter.start();
4033 t_nblist* fepListPtr = (fepLists_.empty() ? nullptr : fepLists_[th].get());
4035 /* Divide the i cells equally over the pairlists */
4036 if (isCpuType_)
4038 nbnxn_make_pairlist_part(gridSet, iGrid, jGrid, &work, nbat, exclusions, rlist,
4039 params_.pairlistType, ci_block, nbat->bUseBufferFlags,
4040 nsubpair_target, progBal, nsubpair_tot_est, th,
4041 numLists, &cpuLists_[th], fepListPtr);
4043 else
4045 nbnxn_make_pairlist_part(gridSet, iGrid, jGrid, &work, nbat, exclusions, rlist,
4046 params_.pairlistType, ci_block, nbat->bUseBufferFlags,
4047 nsubpair_target, progBal, nsubpair_tot_est, th,
4048 numLists, &gpuLists_[th], fepListPtr);
4051 work.cycleCounter.stop();
4053 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
4055 searchCycleCounting->stop(enbsCCsearch);
4057 np_tot = 0;
4058 np_noq = 0;
4059 np_hlj = 0;
4060 for (int th = 0; th < numLists; th++)
4062 inc_nrnb(nrnb, eNR_NBNXN_DIST2, searchWork[th].ndistc);
4064 if (isCpuType_)
4066 const NbnxnPairlistCpu& nbl = cpuLists_[th];
4067 np_tot += nbl.cj.size();
4068 np_noq += nbl.work->ncj_noq;
4069 np_hlj += nbl.work->ncj_hlj;
4071 else
4073 const NbnxnPairlistGpu& nbl = gpuLists_[th];
4074 /* This count ignores potential subsequent pair pruning */
4075 np_tot += nbl.nci_tot;
4078 if (isCpuType_)
4080 nap = cpuLists_[0].na_ci * cpuLists_[0].na_cj;
4082 else
4084 nap = gmx::square(gpuLists_[0].na_ci);
4086 natpair_ljq_ = (np_tot - np_noq) * nap - np_hlj * nap / 2;
4087 natpair_lj_ = np_noq * nap;
4088 natpair_q_ = np_hlj * nap / 2;
4090 if (combineLists_ && numLists > 1)
4092 GMX_ASSERT(!isCpuType_, "Can only combine GPU lists");
4094 searchCycleCounting->start(enbsCCcombine);
4096 combine_nblists(gmx::constArrayRefFromArray(&gpuLists_[1], numLists - 1), &gpuLists_[0]);
4098 searchCycleCounting->stop(enbsCCcombine);
4103 if (isCpuType_)
4105 if (numLists > 1 && checkRebalanceSimpleLists(cpuLists_))
4107 rebalanceSimpleLists(cpuLists_, cpuListsWork_, searchWork);
4109 /* Swap the sets of pair lists */
4110 cpuLists_.swap(cpuListsWork_);
4113 else
4115 /* Sort the entries on size, large ones first */
4116 if (combineLists_ || gpuLists_.size() == 1)
4118 sort_sci(&gpuLists_[0]);
4120 else
4122 #pragma omp parallel for num_threads(numLists) schedule(static)
4123 for (int th = 0; th < numLists; th++)
4127 sort_sci(&gpuLists_[th]);
4129 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
4134 if (nbat->bUseBufferFlags)
4136 reduce_buffer_flags(searchWork, numLists, &nbat->buffer_flags);
4139 if (gridSet.haveFep())
4141 /* Balance the free-energy lists over all the threads */
4142 balance_fep_lists(fepLists_, searchWork);
4145 if (isCpuType_)
4147 /* This is a fresh list, so not pruned, stored using ci.
4148 * ciOuter is invalid at this point.
4150 GMX_ASSERT(cpuLists_[0].ciOuter.empty(), "ciOuter is invalid so it should be empty");
4153 /* If we have more than one list, they either got rebalancing (CPU)
4154 * or combined (GPU), so we should dump the final result to debug.
4156 if (debug)
4158 if (isCpuType_ && cpuLists_.size() > 1)
4160 for (auto& cpuList : cpuLists_)
4162 print_nblist_statistics(debug, cpuList, gridSet, rlist);
4165 else if (!isCpuType_ && gpuLists_.size() > 1)
4167 print_nblist_statistics(debug, gpuLists_[0], gridSet, rlist);
4171 if (debug)
4173 if (gmx_debug_at)
4175 if (isCpuType_)
4177 for (auto& cpuList : cpuLists_)
4179 print_nblist_ci_cj(debug, cpuList);
4182 else
4184 print_nblist_sci_cj(debug, gpuLists_[0]);
4188 if (nbat->bUseBufferFlags)
4190 print_reduction_cost(&nbat->buffer_flags, numLists);
4194 if (params_.useDynamicPruning && isCpuType_)
4196 prepareListsForDynamicPruning(cpuLists_);
4200 void PairlistSets::construct(const InteractionLocality iLocality,
4201 PairSearch* pairSearch,
4202 nbnxn_atomdata_t* nbat,
4203 const ListOfLists<int>& exclusions,
4204 const int64_t step,
4205 t_nrnb* nrnb)
4207 const auto& gridSet = pairSearch->gridSet();
4208 const auto* ddZones = gridSet.domainSetup().zones;
4210 /* The Nbnxm code can also work with more exclusions than those in i-zones only
4211 * when using DD, but the equality check can catch more issues.
4213 GMX_RELEASE_ASSERT(
4214 exclusions.empty() || (!ddZones && exclusions.ssize() == gridSet.numRealAtomsTotal())
4215 || (ddZones && exclusions.ssize() == ddZones->cg_range[ddZones->iZones.size()]),
4216 "exclusions should either be empty or the number of lists should match the number of "
4217 "local i-atoms");
4219 pairlistSet(iLocality).constructPairlists(gridSet, pairSearch->work(), nbat, exclusions,
4220 minimumIlistCountForGpuBalancing_, nrnb,
4221 &pairSearch->cycleCounting_);
4223 if (iLocality == InteractionLocality::Local)
4225 outerListCreationStep_ = step;
4227 else
4229 GMX_RELEASE_ASSERT(outerListCreationStep_ == step,
4230 "Outer list should be created at the same step as the inner list");
4233 /* Special performance logging stuff (env.var. GMX_NBNXN_CYCLE) */
4234 if (iLocality == InteractionLocality::Local)
4236 pairSearch->cycleCounting_.searchCount_++;
4238 if (pairSearch->cycleCounting_.recordCycles_
4239 && (!pairSearch->gridSet().domainSetup().haveMultipleDomains || iLocality == InteractionLocality::NonLocal)
4240 && pairSearch->cycleCounting_.searchCount_ % 100 == 0)
4242 pairSearch->cycleCounting_.printCycles(stderr, pairSearch->work());
4246 void nonbonded_verlet_t::constructPairlist(const InteractionLocality iLocality,
4247 const ListOfLists<int>& exclusions,
4248 int64_t step,
4249 t_nrnb* nrnb)
4251 pairlistSets_->construct(iLocality, pairSearch_.get(), nbat.get(), exclusions, step, nrnb);
4253 if (useGpu())
4255 /* Launch the transfer of the pairlist to the GPU.
4257 * NOTE: The launch overhead is currently not timed separately
4259 Nbnxm::gpu_init_pairlist(gpu_nbv, pairlistSets().pairlistSet(iLocality).gpuList(), iLocality);
4263 static void prepareListsForDynamicPruning(gmx::ArrayRef<NbnxnPairlistCpu> lists)
4265 /* TODO: Restructure the lists so we have actual outer and inner
4266 * list objects so we can set a single pointer instead of
4267 * swapping several pointers.
4270 for (auto& list : lists)
4272 /* The search produced a list in ci/cj.
4273 * Swap the list pointers so we get the outer list is ciOuter,cjOuter
4274 * and we can prune that to get an inner list in ci/cj.
4276 GMX_RELEASE_ASSERT(list.ciOuter.empty() && list.cjOuter.empty(),
4277 "The outer lists should be empty before preparation");
4279 std::swap(list.ci, list.ciOuter);
4280 std::swap(list.cj, list.cjOuter);