Remove unused function generate_excls and make clean_excls static
[gromacs.git] / docs / reference-manual / averages.rst
blobe64e58c536d4c9071aed60fff649b52ea992d02d
1 Averages and fluctuations
2 =========================
4 Formulae for averaging
5 ----------------------
7 **Note:** this section was taken from ref \ :ref:`179 <refGunsteren94a>`.
9 When analyzing a MD trajectory averages :math:`\left<x\right>` and
10 fluctuations
12 .. math::  \left<(\Delta x)^2\right>^{{\frac{1}{2}}} ~=~ \left<[x-\left<x\right>]^2\right>^{{\frac{1}{2}}}
13            :label: eqnvar0
15 of a quantity :math:`x` are to be computed. The variance
16 :math:`\sigma_x` of a series of N\ :math:`_x` values, {x:math:`_i`}, can
17 be computed from
19 .. math:: \sigma_x~=~ \sum_{i=1}^{N_x} x_i^2 ~-~  \frac{1}{N_x}\left(\sum_{i=1}^{N_x}x_i\right)^2
20           :label: eqnvar1
22 Unfortunately this formula is numerically not very accurate, especially
23 when :math:`\sigma_x^{{\frac{1}{2}}}` is small compared to the values of
24 :math:`x_i`. The following (equivalent) expression is numerically more
25 accurate
27 .. math:: \sigma_x ~=~ \sum_{i=1}^{N_x} [x_i  - \left<x\right>]^2
28           :label: eqnvar1equivalent
30 with
32 .. math:: \left<x\right> ~=~ \frac{1}{N_x} \sum_{i=1}^{N_x} x_i
33           :label: eqnvar2
35 Using :eq:`eqns. %s <eqnvar1>` and
36 :eq:`%s <eqnvar2>` one has to go through the series of
37 :math:`x_i` values twice, once to determine :math:`\left<x\right>` and
38 again to compute :math:`\sigma_x`, whereas
39 :eq:`eqn. %s <eqnvar0>` requires only one sequential scan of
40 the series {x:math:`_i`}. However, one may cast
41 :eq:`eqn. %s <eqnvar1>` in another form, containing partial
42 sums, which allows for a sequential update algorithm. Define the partial
43 sum
45 .. math:: X_{n,m} ~=~ \sum_{i=n}^{m} x_i
46           :label: eqnpartialsum
48 and the partial variance
50 .. math::  \sigma_{n,m} ~=~ \sum_{i=n}^{m}  \left[x_i - \frac{X_{n,m}}{m-n+1}\right]^2  
51            :label: eqnsigma
53 It can be shown that
55 .. math::  X_{n,m+k} ~=~  X_{n,m} + X_{m+1,m+k}         
56            :label: eqnXpartial
58 and
60 .. math:: \begin{aligned}
61           \sigma_{n,m+k} &=& \sigma_{n,m} + \sigma_{m+1,m+k} + \left[~\frac {X_{n,m}}{m-n+1} - \frac{X_{n,m+k}}{m+k-n+1}~\right]^2~* \nonumber\\
62           && ~\frac{(m-n+1)(m+k-n+1)}{k}
63           \end{aligned}
64           :label: eqnvarpartial
66 For :math:`n=1` one finds
68 .. math:: \sigma_{1,m+k} ~=~ \sigma_{1,m} + \sigma_{m+1,m+k}~+~
69           \left[~\frac{X_{1,m}}{m} - \frac{X_{1,m+k}}{m+k}~\right]^2~ \frac{m(m+k)}{k}
70           :label: eqnsig1
72 and for :math:`n=1` and :math:`k=1`
73 :eq:`eqn. %s <eqnvarpartial>` becomes
75 .. math:: \begin{aligned}
76           \sigma_{1,m+1}  &=& \sigma_{1,m} + 
77           \left[\frac{X_{1,m}}{m} - \frac{X_{1,m+1}}{m+1}\right]^2 m(m+1)\\
78           &=& \sigma_{1,m} + 
79           \frac {[~X_{1,m} - m x_{m+1}~]^2}{m(m+1)}
80           \end{aligned}
81           :label: eqnsimplevar0
83 where we have used the relation
85 .. math:: X_{1,m+1} ~=~  X_{1,m} + x_{m+1}                       
86           :label: eqnsimplevar1
88 Using formulae :eq:`eqn. %s <eqnsimplevar0>` and
89 :eq:`eqn. %s <eqnsimplevar1>` the average
91 .. math:: \left<x\right> ~=~ \frac{X_{1,N_x}}{N_x}
92           :label: eqnfinalaverage
94 and the fluctuation
96 .. math:: \left<(\Delta x)^2\right>^{{\frac{1}{2}}} = \left[\frac {\sigma_{1,N_x}}{N_x}\right]^{{\frac{1}{2}}}
97           :label: eqnfinalfluctuation
99 can be obtained by one sweep through the data.
101 Implementation
102 --------------
104 In |Gromacs| the instantaneous energies :math:`E(m)` are stored in the
105 :ref:`energy file <edr>`, along with the values of :math:`\sigma_{1,m}` and
106 :math:`X_{1,m}`. Although the steps are counted from 0, for the energy
107 and fluctuations steps are counted from 1. This means that the equations
108 presented here are the ones that are implemented. We give somewhat
109 lengthy derivations in this section to simplify checking of code and
110 equations later on.
112 Part of a Simulation
113 ~~~~~~~~~~~~~~~~~~~~
115 It is not uncommon to perform a simulation where the first part, *e.g.*
116 100 ps, is taken as equilibration. However, the averages and
117 fluctuations as printed in the :ref:`log file <log>` are computed over the whole
118 simulation. The equilibration time, which is now part of the simulation,
119 may in such a case invalidate the averages and fluctuations, because
120 these numbers are now dominated by the initial drift towards
121 equilibrium.
123 Using :eq:`eqns. %s <eqnXpartial>` and
124 :eq:`%s <eqnvarpartial>` the average and standard deviation
125 over part of the trajectory can be computed as:
127 .. math:: \begin{aligned}
128           X_{m+1,m+k}     &=& X_{1,m+k} - X_{1,m}                 \\
129           \sigma_{m+1,m+k} &=& \sigma_{1,m+k}-\sigma_{1,m} - \left[~\frac{X_{1,m}}{m} - \frac{X_{1,m+k}}{m+k}~\right]^{2}~ \frac{m(m+k)}{k}\end{aligned}
130           :label: eqnaveragesimpart
132 or, more generally (with :math:`p \geq 1` and :math:`q \geq p`):
134 .. math:: \begin{aligned}
135           X_{p,q}         &=&     X_{1,q} - X_{1,p-1}     \\
136           \sigma_{p,q}    &=&     \sigma_{1,q}-\sigma_{1,p-1} - \left[~\frac{X_{1,p-1}}{p-1} - \frac{X_{1,q}}{q}~\right]^{2}~ \frac{(p-1)q}{q-p+1}\end{aligned}
137           :label: eqnaveragesimpartgeneral
139 **Note** that implementation of this is not entirely trivial, since
140 energies are not stored every time step of the simulation. We therefore
141 have to construct :math:`X_{1,p-1}` and :math:`\sigma_{1,p-1}` from the
142 information at time :math:`p` using :eq:`eqns. %s <eqnsimplevar0>` and
143 :eq:`%s <eqnsimplevar1>`:
145 .. math:: \begin{aligned}
146           X_{1,p-1}       &=&     X_{1,p} - x_p   \\
147           \sigma_{1,p-1}  &=&     \sigma_{1,p} -  \frac {[~X_{1,p-1} - (p-1) x_{p}~]^2}{(p-1)p}\end{aligned}
148           :label: eqnfinalaveragesimpartnote
150 Combining two simulations
151 ~~~~~~~~~~~~~~~~~~~~~~~~~
153 Another frequently occurring problem is, that the fluctuations of two
154 simulations must be combined. Consider the following example: we have
155 two simulations (A) of :math:`n` and (B) of :math:`m` steps, in which
156 the second simulation is a continuation of the first. However, the
157 second simulation starts numbering from 1 instead of from :math:`n+1`.
158 For the partial sum this is no problem, we have to add :math:`X_{1,n}^A`
159 from run A:
161 .. math::  X_{1,n+m}^{AB} ~=~ X_{1,n}^A + X_{1,m}^B
162            :label: eqnpscomb
164 When we want to compute the partial variance from the two components we
165 have to make a correction :math:`\Delta\sigma`:
167 .. math:: \sigma_{1,n+m}^{AB} ~=~ \sigma_{1,n}^A + \sigma_{1,m}^B +\Delta\sigma
168           :label: eqnscombcorr
170 if we define :math:`x_i^{AB}` as the combined and renumbered set of
171 data points we can write:
173 .. math:: \sigma_{1,n+m}^{AB} ~=~ \sum_{i=1}^{n+m}  \left[x_i^{AB} - \frac{X_{1,n+m}^{AB}}{n+m}\right]^2
174           :label: eqnpscombpoints
176 and thus
178 .. math:: \sum_{i=1}^{n+m}  \left[x_i^{AB} - \frac{X_{1,n+m}^{AB}}{n+m}\right]^2  ~=~
179           \sum_{i=1}^{n}  \left[x_i^{A} - \frac{X_{1,n}^{A}}{n}\right]^2  +
180           \sum_{i=1}^{m}  \left[x_i^{B} - \frac{X_{1,m}^{B}}{m}\right]^2  +\Delta\sigma
181           :label: eqnpscombresult
185 .. math:: \begin{aligned}
186           \sum_{i=1}^{n+m}  \left[(x_i^{AB})^2 - 2 x_i^{AB}\frac{X^{AB}_{1,n+m}}{n+m} + \left(\frac{X^{AB}_{1,n+m}}{n+m}\right)^2  \right] &-& \nonumber \\
187           \sum_{i=1}^{n}  \left[(x_i^{A})^2 - 2 x_i^{A}\frac{X^A_{1,n}}{n} + \left(\frac{X^A_{1,n}}{n}\right)^2  \right] &-& \nonumber \\
188           \sum_{i=1}^{m}  \left[(x_i^{B})^2 - 2 x_i^{B}\frac{X^B_{1,m}}{m} + \left(\frac{X^B_{1,m}}{m}\right)^2  \right] &=& \Delta\sigma\end{aligned}
189           :label: eqnpscombresult2
191 all the :math:`x_i^2` terms drop out, and the terms independent of the
192 summation counter :math:`i` can be simplified:
194 .. math:: \begin{aligned}
195           \frac{\left(X^{AB}_{1,n+m}\right)^2}{n+m} \,-\, 
196           \frac{\left(X^A_{1,n}\right)^2}{n} \,-\, 
197           \frac{\left(X^B_{1,m}\right)^2}{m} &-& \nonumber \\
198           2\,\frac{X^{AB}_{1,n+m}}{n+m}\sum_{i=1}^{n+m}x_i^{AB} \,+\,
199           2\,\frac{X^{A}_{1,n}}{n}\sum_{i=1}^{n}x_i^{A} \,+\,
200           2\,\frac{X^{B}_{1,m}}{m}\sum_{i=1}^{m}x_i^{B} &=& \Delta\sigma\end{aligned}
201           :label: eqnpscombsimp
203 we recognize the three partial sums on the second line and use
204 :eq:`eqn. %s <eqnpscomb>` to obtain:
206 .. math:: \Delta\sigma ~=~ \frac{\left(mX^A_{1,n} - nX^B_{1,m}\right)^2}{nm(n+m)}
207           :label: eqnpscombused
209 if we check this by inserting :math:`m=1` we get back
210 :eq:`eqn. %s <eqnsimplevar0>`
212 Summing energy terms
213 ~~~~~~~~~~~~~~~~~~~~
215 The :ref:`gmx energy <gmx energy>` program
216 can also sum energy terms into one, *e.g.* potential + kinetic = total.
217 For the partial averages this is again easy if we have :math:`S` energy
218 components :math:`s`:
220 .. math::  X_{m,n}^S ~=~ \sum_{i=m}^n \sum_{s=1}^S x_i^s ~=~ \sum_{s=1}^S \sum_{i=m}^n x_i^s ~=~ \sum_{s=1}^S X_{m,n}^s
221            :label: eqnsumterms
223 For the fluctuations it is less trivial again, considering for example
224 that the fluctuation in potential and kinetic energy should cancel.
225 Nevertheless we can try the same approach as before by writing:
227 .. math:: \sigma_{m,n}^S ~=~ \sum_{s=1}^S \sigma_{m,n}^s + \Delta\sigma
228           :label: eqnsigmatermsfluct
230 if we fill in :eq:`eqn. %s <eqnsigma>`:
232 .. math:: \sum_{i=m}^n \left[\left(\sum_{s=1}^S x_i^s\right) - \frac{X_{m,n}^S}{m-n+1}\right]^2 ~=~
233           \sum_{s=1}^S \sum_{i=m}^n \left[\left(x_i^s\right) - \frac{X_{m,n}^s}{m-n+1}\right]^2 + \Delta\sigma
234           :label: eqnsigmaterms
236 which we can expand to:
238 .. math:: \begin{aligned}
239           &~&\sum_{i=m}^n \left[\sum_{s=1}^S (x_i^s)^2 + \left(\frac{X_{m,n}^S}{m-n+1}\right)^2 -2\left(\frac{X_{m,n}^S}{m-n+1}\sum_{s=1}^S x_i^s + \sum_{s=1}^S \sum_{s'=s+1}^S x_i^s x_i^{s'} \right)\right]    \nonumber \\
240           &-&\sum_{s=1}^S \sum_{i=m}^n \left[(x_i^s)^2 - 2\,\frac{X_{m,n}^s}{m-n+1}\,x_i^s + \left(\frac{X_{m,n}^s}{m-n+1}\right)^2\right] ~=~\Delta\sigma \end{aligned}
241           :label: eqnsimtermsexpanded
243 the terms with :math:`(x_i^s)^2` cancel, so that we can simplify to:
245 .. math:: \begin{aligned}
246           &~&\frac{\left(X_{m,n}^S\right)^2}{m-n+1} -2 \frac{X_{m,n}^S}{m-n+1}\sum_{i=m}^n\sum_{s=1}^S x_i^s -2\sum_{i=m}^n\sum_{s=1}^S \sum_{s'=s+1}^S x_i^s x_i^{s'}\, -        \nonumber \\
247           &~&\sum_{s=1}^S \sum_{i=m}^n \left[- 2\,\frac{X_{m,n}^s}{m-n+1}\,x_i^s + \left(\frac{X_{m,n}^s}{m-n+1}\right)^2\right] ~=~\Delta\sigma \end{aligned}
248           :label: eqnsigmatermssimplefied
252 .. math:: -\frac{\left(X_{m,n}^S\right)^2}{m-n+1}  -2\sum_{i=m}^n\sum_{s=1}^S \sum_{s'=s+1}^S x_i^s x_i^{s'}\, +  \sum_{s=1}^S \frac{\left(X_{m,n}^s\right)^2}{m-n+1}  ~=~\Delta\sigma
253            :label: eqnsigmatermsalternative
255 If we now expand the first term using
256 :eq:`eqn. %s <eqnsumterms>` we obtain:
258 .. math:: -\frac{\left(\sum_{s=1}^SX_{m,n}^s\right)^2}{m-n+1}  -2\sum_{i=m}^n\sum_{s=1}^S \sum_{s'=s+1}^S x_i^s x_i^{s'}\, +      \sum_{s=1}^S \frac{\left(X_{m,n}^s\right)^2}{m-n+1}  ~=~\Delta\sigma
259           :label: eqnsigmatermsfirstexpand
261 which we can reformulate to:
263 .. math:: -2\left[\sum_{s=1}^S \sum_{s'=s+1}^S X_{m,n}^s X_{m,n}^{s'}\,+\sum_{i=m}^n\sum_{s=1}^S \sum_{s'=s+1}^S x_i^s x_i^{s'}\right] ~=~\Delta\sigma
264           :label: eqnsigmatermsreformed
268 .. math:: -2\left[\sum_{s=1}^S X_{m,n}^s \sum_{s'=s+1}^S X_{m,n}^{s'}\,+\,\sum_{s=1}^S \sum_{i=m}^nx_i^s \sum_{s'=s+1}^S x_i^{s'}\right] ~=~\Delta\sigma
269           :label: eqnsigmatermsreformedalternative
271 which gives
273 .. math:: -2\sum_{s=1}^S \left[X_{m,n}^s \sum_{s'=s+1}^S \sum_{i=m}^n x_i^{s'}\,+\,\sum_{i=m}^n x_i^s \sum_{s'=s+1}^S x_i^{s'}\right] ~=~\Delta\sigma
274           :label: eqnsigmatermsfinal
276 Since we need all data points :math:`i` to evaluate this, in general
277 this is not possible. We can then make an estimate of
278 :math:`\sigma_{m,n}^S` using only the data points that are available
279 using the left hand side of :eq:`eqn. %s <eqnsigmaterms>`.
280 While the average can be computed using all time steps in the
281 simulation, the accuracy of the fluctuations is thus limited by the
282 frequency with which energies are saved. Since this can be easily done
283 with a program such as ``xmgr`` this is not
284 built-in in |Gromacs|.
286 .. raw:: latex
288     \clearpage