2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2008, The GROMACS development team.
6 * Copyright (c) 2012,2014,2015,2017,2018 by the GROMACS development team.
7 * Copyright (c) 2019,2020, by the GROMACS development team, led by
8 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
9 * and including many others, as listed in the AUTHORS file in the
10 * top-level source directory and at http://www.gromacs.org.
12 * GROMACS is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public License
14 * as published by the Free Software Foundation; either version 2.1
15 * of the License, or (at your option) any later version.
17 * GROMACS is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with GROMACS; if not, see
24 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
25 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 * If you want to redistribute modifications to GROMACS, please
28 * consider that scientific software is very special. Version
29 * control is crucial - bugs must be traceable. We will be happy to
30 * consider code for inclusion in the official distribution, but
31 * derived work must not be called official GROMACS. Details are found
32 * in the README & COPYING files - if they are missing, get the
33 * official version at http://www.gromacs.org.
35 * To help us fund GROMACS development, we humbly ask that you cite
36 * the research papers on the package. Check out http://www.gromacs.org.
40 #include "groupcoord.h"
42 #include "gromacs/domdec/ga2la.h"
43 #include "gromacs/gmxlib/network.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/mdtypes/commrec.h"
46 #include "gromacs/pbcutil/pbc.h"
47 #include "gromacs/utility/smalloc.h"
49 #define MIN(a, b) (((a) < (b)) ? (a) : (b))
52 /* Select the indices of the group's atoms which are local and store them in
53 * anrs_loc[0..nr_loc]. The indices are saved in coll_ind[] for later reduction
54 * in communicate_group_positions()
56 void dd_make_local_group_indices(const gmx_ga2la_t
* ga2la
,
57 const int nr
, /* IN: Total number of atoms in the group */
58 int anrs
[], /* IN: Global atom numbers of the groups atoms */
59 int* nr_loc
, /* OUT: Number of group atoms found locally */
60 int* anrs_loc
[], /* OUT: Local atom numbers of the group */
61 int* nalloc_loc
, /* IN+OUT: Allocation size of anrs_loc */
62 int coll_ind
[]) /* OUT (opt): Where is this position found in the collective array? */
64 GMX_ASSERT(ga2la
, "We need a valid ga2la object");
66 /* Loop over all the atom indices of the group to check
67 * which ones are on the local node */
69 for (int i
= 0; i
< nr
; i
++)
71 if (const int* ii
= ga2la
->findHome(anrs
[i
]))
73 /* The atom with this index is a home atom */
74 if (localnr
>= *nalloc_loc
) /* Check whether memory suffices */
76 *nalloc_loc
= over_alloc_dd(localnr
+ 1);
77 /* We never need more memory than the number of atoms in the group */
78 *nalloc_loc
= MIN(*nalloc_loc
, nr
);
79 srenew(*anrs_loc
, *nalloc_loc
);
81 /* Save the atoms index in the local atom numbers array */
82 (*anrs_loc
)[localnr
] = *ii
;
84 if (coll_ind
!= nullptr)
86 /* Keep track of where this local atom belongs in the collective index array.
87 * This is needed when reducing the local arrays to a collective/global array
88 * in communicate_group_positions */
89 coll_ind
[localnr
] = i
;
92 /* add one to the local atom count */
97 /* Return the number of local atoms that were found */
102 static void get_shifts_group(int npbcdim
,
104 rvec
* xcoll
, /* IN: Collective set of positions [0..nr] */
105 int nr
, /* IN: Total number of atoms in the group */
106 rvec
* xcoll_old
, /* IN: Positions from the last time step [0...nr] */
107 ivec
* shifts
) /* OUT: Shifts for xcoll */
113 /* Get the shifts such that each atom is within closest
114 * distance to its position at the last NS time step after shifting.
115 * If we start with a whole group, and always keep track of
116 * shift changes, the group will stay whole this way */
117 for (i
= 0; i
< nr
; i
++)
119 clear_ivec(shifts
[i
]);
122 for (i
= 0; i
< nr
; i
++)
124 /* The distance this atom moved since the last time step */
125 /* If this is more than just a bit, it has changed its home pbc box */
126 rvec_sub(xcoll
[i
], xcoll_old
[i
], dx
);
128 for (m
= npbcdim
- 1; m
>= 0; m
--)
130 while (dx
[m
] < -0.5 * box
[m
][m
])
132 for (d
= 0; d
< DIM
; d
++)
138 while (dx
[m
] >= 0.5 * box
[m
][m
])
140 for (d
= 0; d
< DIM
; d
++)
151 static void shift_positions_group(const matrix box
,
152 rvec x
[], /* The positions [0..nr] */
153 ivec
* is
, /* The shifts [0..nr] */
154 int nr
) /* The number of positions and shifts */
159 /* Loop over the group's atoms */
162 for (i
= 0; i
< nr
; i
++)
168 x
[i
][XX
] = x
[i
][XX
] + tx
* box
[XX
][XX
] + ty
* box
[YY
][XX
] + tz
* box
[ZZ
][XX
];
169 x
[i
][YY
] = x
[i
][YY
] + ty
* box
[YY
][YY
] + tz
* box
[ZZ
][YY
];
170 x
[i
][ZZ
] = x
[i
][ZZ
] + tz
* box
[ZZ
][ZZ
];
175 for (i
= 0; i
< nr
; i
++)
181 x
[i
][XX
] = x
[i
][XX
] + tx
* box
[XX
][XX
];
182 x
[i
][YY
] = x
[i
][YY
] + ty
* box
[YY
][YY
];
183 x
[i
][ZZ
] = x
[i
][ZZ
] + tz
* box
[ZZ
][ZZ
];
189 /* Assemble the positions of the group such that every node has all of them.
190 * The atom indices are retrieved from anrs_loc[0..nr_loc]
191 * Note that coll_ind[i] = i is needed in the serial case */
192 extern void communicate_group_positions(const t_commrec
* cr
, /* Pointer to MPI communication data */
193 rvec
* xcoll
, /* Collective array of positions */
194 ivec
* shifts
, /* Collective array of shifts for xcoll (can be NULL) */
195 ivec
* extra_shifts
, /* (optional) Extra shifts since last time step */
196 const gmx_bool bNS
, /* (optional) NS step, the shifts have changed */
197 const rvec
* x_loc
, /* Local positions on this node */
198 const int nr
, /* Total number of atoms in the group */
199 const int nr_loc
, /* Local number of atoms in the group */
200 const int* anrs_loc
, /* Local atom numbers */
201 const int* coll_ind
, /* Collective index */
202 rvec
* xcoll_old
, /* (optional) Positions from the last time
203 step, used to make group whole */
204 const matrix box
) /* (optional) The box */
209 /* Zero out the groups' global position array */
210 clear_rvecs(nr
, xcoll
);
212 /* Put the local positions that this node has into the right place of
213 * the collective array. Note that in the serial case, coll_ind[i] = i */
214 for (i
= 0; i
< nr_loc
; i
++)
216 copy_rvec(x_loc
[anrs_loc
[i
]], xcoll
[coll_ind
[i
]]);
221 /* Add the arrays from all nodes together */
222 gmx_sum(nr
* 3, xcoll
[0], cr
);
224 /* Now we have all the positions of the group in the xcoll array present on all
227 * The rest of the code is for making the group whole again in case atoms changed
228 * their PBC representation / crossed a box boundary. We only do that if the
229 * shifts array is allocated. */
230 if (nullptr != shifts
)
232 /* To make the group whole, start with a whole group and each
233 * step move the assembled positions at closest distance to the positions
234 * from the last step. First shift the positions with the saved shift
235 * vectors (these are 0 when this routine is called for the first time!) */
236 shift_positions_group(box
, xcoll
, shifts
, nr
);
238 /* Now check if some shifts changed since the last step.
239 * This only needs to be done when the shifts are expected to have changed,
240 * i.e. after neighbor searching */
243 get_shifts_group(3, box
, xcoll
, nr
, xcoll_old
, extra_shifts
);
245 /* Shift with the additional shifts such that we get a whole group now */
246 shift_positions_group(box
, xcoll
, extra_shifts
, nr
);
248 /* Add the shift vectors together for the next time step */
249 for (i
= 0; i
< nr
; i
++)
251 shifts
[i
][XX
] += extra_shifts
[i
][XX
];
252 shifts
[i
][YY
] += extra_shifts
[i
][YY
];
253 shifts
[i
][ZZ
] += extra_shifts
[i
][ZZ
];
256 /* Store current correctly-shifted positions for comparison in the next NS time step */
257 for (i
= 0; i
< nr
; i
++)
259 copy_rvec(xcoll
[i
], xcoll_old
[i
]);
266 /* Determine the (weighted) sum vector from positions x */
267 extern double get_sum_of_positions(rvec x
[], real weight
[], const int nat
, dvec dsumvec
)
271 double weight_sum
= 0.0;
274 /* Zero out the center */
277 /* Loop over all atoms and add their weighted position vectors */
278 if (weight
!= nullptr)
280 for (i
= 0; i
< nat
; i
++)
282 weight_sum
+= weight
[i
];
283 svmul(weight
[i
], x
[i
], x_weighted
);
284 dsumvec
[XX
] += x_weighted
[XX
];
285 dsumvec
[YY
] += x_weighted
[YY
];
286 dsumvec
[ZZ
] += x_weighted
[ZZ
];
291 for (i
= 0; i
< nat
; i
++)
293 dsumvec
[XX
] += x
[i
][XX
];
294 dsumvec
[YY
] += x
[i
][YY
];
295 dsumvec
[ZZ
] += x
[i
][ZZ
];
302 /* Determine center of structure from collective positions x */
303 extern void get_center(rvec x
[], real weight
[], const int nr
, rvec rcenter
)
306 double weight_sum
, denom
;
309 weight_sum
= get_sum_of_positions(x
, weight
, nr
, dcenter
);
311 if (weight
!= nullptr)
313 denom
= weight_sum
; /* Divide by the sum of weight */
317 denom
= nr
; /* Divide by the number of atoms */
319 dsvmul(1.0 / denom
, dcenter
, dcenter
);
321 rcenter
[XX
] = dcenter
[XX
];
322 rcenter
[YY
] = dcenter
[YY
];
323 rcenter
[ZZ
] = dcenter
[ZZ
];
327 /* Get the center from local positions that already have the correct
328 * PBC representation */
329 extern void get_center_comm(const t_commrec
* cr
,
330 rvec x_loc
[], /* Local positions */
331 real weight_loc
[], /* Local masses or other weights */
332 int nr_loc
, /* Local number of atoms */
333 int nr_group
, /* Total number of atoms of the group */
334 rvec center
) /* Weighted center */
336 double weight_sum
, denom
;
341 weight_sum
= get_sum_of_positions(x_loc
, weight_loc
, nr_loc
, dsumvec
);
343 /* Add the local contributions from all nodes. Put the sum vector and the
344 * weight in a buffer array so that we get along with a single communication
348 buf
[0] = dsumvec
[XX
];
349 buf
[1] = dsumvec
[YY
];
350 buf
[2] = dsumvec
[ZZ
];
353 /* Communicate buffer */
354 gmx_sumd(4, buf
, cr
);
356 dsumvec
[XX
] = buf
[0];
357 dsumvec
[YY
] = buf
[1];
358 dsumvec
[ZZ
] = buf
[2];
362 if (weight_loc
!= nullptr)
364 denom
= 1.0 / weight_sum
; /* Divide by the sum of weight to get center of mass e.g. */
368 denom
= 1.0 / nr_group
; /* Divide by the number of atoms to get the geometrical center */
370 center
[XX
] = dsumvec
[XX
] * denom
;
371 center
[YY
] = dsumvec
[YY
] * denom
;
372 center
[ZZ
] = dsumvec
[ZZ
] * denom
;
376 /* Translate x with transvec */
377 extern void translate_x(rvec x
[], const int nr
, const rvec transvec
)
382 for (i
= 0; i
< nr
; i
++)
384 rvec_inc(x
[i
], transvec
);
389 extern void rotate_x(rvec x
[], const int nr
, matrix rmat
)
395 /* Apply the rotation matrix */
396 for (i
= 0; i
< nr
; i
++)
398 for (j
= 0; j
< 3; j
++)
402 for (j
= 0; j
< 3; j
++)
405 for (k
= 0; k
< 3; k
++)
407 x
[i
][j
] += rmat
[k
][j
] * x_old
[k
];