2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017,2018, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
43 #include "gromacs/commandline/pargs.h"
44 #include "gromacs/commandline/viewit.h"
45 #include "gromacs/correlationfunctions/autocorr.h"
46 #include "gromacs/correlationfunctions/expfit.h"
47 #include "gromacs/correlationfunctions/integrate.h"
48 #include "gromacs/fileio/xvgr.h"
49 #include "gromacs/gmxana/gmx_ana.h"
50 #include "gromacs/gmxana/gstat.h"
51 #include "gromacs/linearalgebra/matrix.h"
52 #include "gromacs/math/functions.h"
53 #include "gromacs/math/utilities.h"
54 #include "gromacs/math/vec.h"
55 #include "gromacs/statistics/statistics.h"
56 #include "gromacs/utility/arraysize.h"
57 #include "gromacs/utility/fatalerror.h"
58 #include "gromacs/utility/futil.h"
59 #include "gromacs/utility/pleasecite.h"
60 #include "gromacs/utility/smalloc.h"
61 #include "gromacs/utility/snprintf.h"
63 /* must correspond to char *avbar_opt[] declared in main() */
65 avbarSEL
, avbarNONE
, avbarSTDDEV
, avbarERROR
, avbar90
, avbarNR
68 static void power_fit(int n
, int nset
, real
**val
, real
*t
)
70 real
*x
, *y
, quality
, a
, b
, r
;
78 for (i
= 0; i
< n
; i
++)
82 x
[i
] = std::log(t
[i
]);
88 fprintf(stdout
, "First time is not larger than 0, using index number as time for power fit\n");
89 for (i
= 0; i
< n
; i
++)
91 x
[i
] = std::log1p(static_cast<real
>(i
));
95 for (s
= 0; s
< nset
; s
++)
97 for (i
= 0; i
< n
&& val
[s
][i
] >= 0; i
++)
99 y
[i
] = std::log(val
[s
][i
]);
103 fprintf(stdout
, "Will power fit up to point %d, since it is not larger than 0\n", i
);
105 lsq_y_ax_b(i
, x
, y
, &a
, &b
, &r
, &quality
);
106 fprintf(stdout
, "Power fit set %3d: error %.3f a %g b %g\n",
107 s
+1, quality
, a
, std::exp(b
));
114 static real
cosine_content(int nhp
, int n
, const real
*y
)
115 /* Assumes n equidistant points */
117 double fac
, cosyint
, yyint
;
125 fac
= M_PI
*nhp
/(n
-1);
129 for (i
= 0; i
< n
; i
++)
131 cosyint
+= std::cos(fac
*i
)*y
[i
];
135 return 2*cosyint
*cosyint
/(n
*yyint
);
138 static void plot_coscont(const char *ccfile
, int n
, int nset
, real
**val
,
139 const gmx_output_env_t
*oenv
)
145 fp
= xvgropen(ccfile
, "Cosine content", "set / half periods", "cosine content",
148 for (s
= 0; s
< nset
; s
++)
150 cc
= cosine_content(s
+1, n
, val
[s
]);
151 fprintf(fp
, " %d %g\n", s
+1, cc
);
152 fprintf(stdout
, "Cosine content of set %d with %.1f periods: %g\n",
155 fprintf(stdout
, "\n");
160 static void regression_analysis(int n
, gmx_bool bXYdy
,
161 real
*x
, int nset
, real
**val
)
163 real S
, chi2
, a
, b
, da
, db
, r
= 0;
166 if (bXYdy
|| (nset
== 1))
168 printf("Fitting data to a function f(x) = ax + b\n");
169 printf("Minimizing residual chi2 = Sum_i w_i [f(x_i) - y_i]2\n");
170 printf("Error estimates will be given if w_i (sigma) values are given\n");
171 printf("(use option -xydy).\n\n");
174 if ((ok
= lsq_y_ax_b_error(n
, x
, val
[0], val
[1], &a
, &b
, &da
, &db
, &r
, &S
)) != estatsOK
)
176 gmx_fatal(FARGS
, "Error fitting the data: %s",
177 gmx_stats_message(ok
));
182 if ((ok
= lsq_y_ax_b(n
, x
, val
[0], &a
, &b
, &r
, &S
)) != estatsOK
)
184 gmx_fatal(FARGS
, "Error fitting the data: %s",
185 gmx_stats_message(ok
));
188 chi2
= gmx::square((n
-2)*S
);
189 printf("Chi2 = %g\n", chi2
);
190 printf("S (Sqrt(Chi2/(n-2)) = %g\n", S
);
191 printf("Correlation coefficient = %.1f%%\n", 100*r
);
195 printf("a = %g +/- %g\n", a
, da
);
196 printf("b = %g +/- %g\n", b
, db
);
200 printf("a = %g\n", a
);
201 printf("b = %g\n", b
);
206 double chi2
, *a
, **xx
, *y
;
211 for (j
= 0; (j
< nset
-1); j
++)
215 for (i
= 0; (i
< n
); i
++)
218 for (j
= 1; (j
< nset
); j
++)
220 xx
[j
-1][i
] = val
[j
][i
];
224 chi2
= multi_regression(nullptr, n
, y
, nset
-1, xx
, a
);
225 printf("Fitting %d data points in %d sets\n", n
, nset
-1);
226 printf("chi2 = %g\n", chi2
);
228 for (i
= 0; (i
< nset
-1); i
++)
240 static void histogram(const char *distfile
, real binwidth
, int n
, int nset
, real
**val
,
241 const gmx_output_env_t
*oenv
)
245 double minval
, maxval
;
251 for (s
= 0; s
< nset
; s
++)
253 for (i
= 0; i
< n
; i
++)
255 if (val
[s
][i
] < minval
)
259 else if (val
[s
][i
] > maxval
)
266 minval
= binwidth
*std::floor(minval
/binwidth
);
267 maxval
= binwidth
*std::ceil(maxval
/binwidth
);
274 nbin
= static_cast<int>(((maxval
- minval
)/binwidth
+ 0.5) + 1);
275 fprintf(stderr
, "Making distributions with %d bins\n", nbin
);
277 fp
= xvgropen(distfile
, "Distribution", "", "", oenv
);
278 for (s
= 0; s
< nset
; s
++)
280 for (i
= 0; i
< nbin
; i
++)
284 for (i
= 0; i
< n
; i
++)
286 histo
[static_cast<int>((val
[s
][i
] - minval
)/binwidth
+ 0.5)]++;
288 for (i
= 0; i
< nbin
; i
++)
290 fprintf(fp
, " %g %g\n", minval
+i
*binwidth
, static_cast<double>(histo
[i
])/(n
*binwidth
));
294 fprintf(fp
, "%s\n", output_env_get_print_xvgr_codes(oenv
) ? "&" : "");
300 static int real_comp(const void *a
, const void *b
)
302 real dif
= *reinterpret_cast<const real
*>(a
) - *reinterpret_cast<const real
*>(b
);
318 static void average(const char *avfile
, int avbar_opt
,
319 int n
, int nset
, real
**val
, real
*t
)
326 fp
= gmx_ffopen(avfile
, "w");
327 if ((avbar_opt
== avbarERROR
) && (nset
== 1))
329 avbar_opt
= avbarNONE
;
331 if (avbar_opt
!= avbarNONE
)
333 if (avbar_opt
== avbar90
)
336 fprintf(fp
, "@TYPE xydydy\n");
337 edge
= static_cast<int>(nset
*0.05+0.5);
338 fprintf(stdout
, "Errorbars: discarding %d points on both sides: %d%%"
339 " interval\n", edge
, static_cast<int>(100.*(nset
-2*edge
)/nset
+0.5));
343 fprintf(fp
, "@TYPE xydy\n");
347 for (i
= 0; i
< n
; i
++)
350 for (s
= 0; s
< nset
; s
++)
355 fprintf(fp
, " %g %g", t
[i
], av
);
357 if (avbar_opt
!= avbarNONE
)
359 if (avbar_opt
== avbar90
)
361 for (s
= 0; s
< nset
; s
++)
365 qsort(tmp
, nset
, sizeof(tmp
[0]), real_comp
);
366 fprintf(fp
, " %g %g", tmp
[nset
-1-edge
]-av
, av
-tmp
[edge
]);
370 for (s
= 0; s
< nset
; s
++)
372 var
+= gmx::square(val
[s
][i
]-av
);
374 if (avbar_opt
== avbarSTDDEV
)
376 err
= std::sqrt(var
/nset
);
380 err
= std::sqrt(var
/(nset
*(nset
-1)));
382 fprintf(fp
, " %g", err
);
389 if (avbar_opt
== avbar90
)
395 /*! \brief Compute final error estimate.
397 * See Eqn A17, Hess, JCP 116 (2002) 209-217 for details.
399 static real
optimal_error_estimate(double sigma
, const double fitparm
[], real tTotal
)
401 double ss
= fitparm
[1]*fitparm
[0]+(1-fitparm
[1])*fitparm
[2];
402 if ((tTotal
<= 0) || (ss
<= 0))
404 fprintf(stderr
, "Problem in error estimate: T = %g, ss = %g\n",
409 return sigma
*std::sqrt(2*ss
/tTotal
);
412 static void estimate_error(const char *eefile
, int nb_min
, int resol
, int n
,
413 int nset
, double *av
, double *sig
, real
**val
, real dt
,
414 gmx_bool bFitAc
, gmx_bool bSingleExpFit
, gmx_bool bAllowNegLTCorr
,
415 const gmx_output_env_t
*oenv
)
418 int bs
, prev_bs
, nbs
, nb
;
423 real
*tbs
, *ybs
, rtmp
, dens
, *fitsig
, twooe
, tau1_est
, tau_sig
;
425 real ee
, a
, tau1
, tau2
;
429 fprintf(stdout
, "The number of points is smaller than 4, can not make an error estimate\n");
434 fp
= xvgropen(eefile
, "Error estimates",
435 "Block size (time)", "Error estimate", oenv
);
436 if (output_env_get_print_xvgr_codes(oenv
))
439 "@ subtitle \"using block averaging, total time %g (%d points)\"\n",
443 xvgr_legend(fp
, 2*nset
, leg
, oenv
);
446 spacing
= std::pow(2.0, 1.0/resol
);
450 for (s
= 0; s
< nset
; s
++)
457 bs
= n
/static_cast<int>(nbr
);
462 for (i
= 0; i
< nb
; i
++)
465 for (j
= 0; j
< bs
; j
++)
467 blav
+= val
[s
][bs
*i
+j
];
469 var
+= gmx::square(av
[s
] - blav
/bs
);
478 ybs
[nbs
] = var
/(nb
*(nb
-1.0))*(n
*dt
)/(sig
[s
]*sig
[s
]);
494 for (i
= 0; i
< nbs
/2; i
++)
497 tbs
[i
] = tbs
[nbs
-1-i
];
500 ybs
[i
] = ybs
[nbs
-1-i
];
503 /* The initial slope of the normalized ybs^2 is 1.
504 * For a single exponential autocorrelation: ybs(tau1) = 2/e tau1
505 * From this we take our initial guess for tau1.
507 twooe
= 2.0/std::exp(1.0);
514 while (i
< nbs
- 1 &&
515 (ybs
[i
] > ybs
[i
+1] || ybs
[i
] > twooe
*tau1_est
));
519 fprintf(stdout
, "Data set %d has strange time correlations:\n"
520 "the std. error using single points is larger than that of blocks of 2 points\n"
521 "The error estimate might be inaccurate, check the fit\n",
523 /* Use the total time as tau for the fitting weights */
524 tau_sig
= (n
- 1)*dt
;
533 fprintf(debug
, "set %d tau1 estimate %f\n", s
+1, tau1_est
);
536 /* Generate more or less appropriate sigma's,
537 * also taking the density of points into account.
539 for (i
= 0; i
< nbs
; i
++)
543 dens
= tbs
[1]/tbs
[0] - 1;
547 dens
= tbs
[nbs
-1]/tbs
[nbs
-2] - 1;
551 dens
= 0.5*(tbs
[i
+1]/tbs
[i
-1] - 1);
553 fitsig
[i
] = std::sqrt((tau_sig
+ tbs
[i
])/dens
);
558 fitparm
[0] = tau1_est
;
560 /* We set the initial guess for tau2
561 * to halfway between tau1_est and the total time (on log scale).
563 fitparm
[2] = std::sqrt(tau1_est
*(n
-1)*dt
);
564 do_lmfit(nbs
, ybs
, fitsig
, 0, tbs
, 0, dt
*n
, oenv
,
565 bDebugMode(), effnERREST
, fitparm
, 0,
568 if (bSingleExpFit
|| fitparm
[0] < 0 || fitparm
[2] < 0 || fitparm
[1] < 0
569 || (fitparm
[1] > 1 && !bAllowNegLTCorr
) || fitparm
[2] > (n
-1)*dt
)
573 if (fitparm
[2] > (n
-1)*dt
)
576 "Warning: tau2 is longer than the length of the data (%g)\n"
577 " the statistics might be bad\n",
582 fprintf(stdout
, "a fitted parameter is negative\n");
584 fprintf(stdout
, "invalid fit: e.e. %g a %g tau1 %g tau2 %g\n",
585 optimal_error_estimate(sig
[s
], fitparm
, n
*dt
),
586 fitparm
[1], fitparm
[0], fitparm
[2]);
587 /* Do a fit with tau2 fixed at the total time.
588 * One could also choose any other large value for tau2.
590 fitparm
[0] = tau1_est
;
592 fitparm
[2] = (n
-1)*dt
;
593 fprintf(stdout
, "Will fix tau2 at the total time: %g\n", fitparm
[2]);
594 do_lmfit(nbs
, ybs
, fitsig
, 0, tbs
, 0, dt
*n
, oenv
, bDebugMode(),
595 effnERREST
, fitparm
, 4, nullptr);
597 if (bSingleExpFit
|| fitparm
[0] < 0 || fitparm
[1] < 0
598 || (fitparm
[1] > 1 && !bAllowNegLTCorr
))
602 fprintf(stdout
, "a fitted parameter is negative\n");
603 fprintf(stdout
, "invalid fit: e.e. %g a %g tau1 %g tau2 %g\n",
604 optimal_error_estimate(sig
[s
], fitparm
, n
*dt
),
605 fitparm
[1], fitparm
[0], fitparm
[2]);
607 /* Do a single exponential fit */
608 fprintf(stderr
, "Will use a single exponential fit for set %d\n", s
+1);
609 fitparm
[0] = tau1_est
;
612 do_lmfit(nbs
, ybs
, fitsig
, 0, tbs
, 0, dt
*n
, oenv
, bDebugMode(),
613 effnERREST
, fitparm
, 6, nullptr);
616 ee
= optimal_error_estimate(sig
[s
], fitparm
, n
*dt
);
621 fprintf(stdout
, "Set %3d: err.est. %g a %g tau1 %g tau2 %g\n",
622 s
+1, ee
, a
, tau1
, tau2
);
623 if (output_env_get_xvg_format(oenv
) == exvgXMGR
)
625 fprintf(fp
, "@ legend string %d \"av %f\"\n", 2*s
, av
[s
]);
626 fprintf(fp
, "@ legend string %d \"ee %6g\"\n", 2*s
+1,
627 optimal_error_estimate(sig
[s
], fitparm
, n
*dt
));
629 else if (output_env_get_xvg_format(oenv
) == exvgXMGRACE
)
631 fprintf(fp
, "@ s%d legend \"av %f\"\n", 2*s
, av
[s
]);
632 fprintf(fp
, "@ s%d legend \"ee %6g\"\n", 2*s
+1,
633 optimal_error_estimate(sig
[s
], fitparm
, n
*dt
));
635 for (i
= 0; i
< nbs
; i
++)
637 fprintf(fp
, "%g %g %g\n", tbs
[i
], sig
[s
]*std::sqrt(ybs
[i
]/(n
*dt
)),
638 sig
[s
]*std::sqrt(fit_function(effnERREST
, fitparm
, tbs
[i
])/(n
*dt
)));
648 for (i
= 0; i
< n
; i
++)
650 ac
[i
] = val
[s
][i
] - av
[s
];
653 fitsig
[i
] = std::sqrt(static_cast<real
>(i
));
660 low_do_autocorr(nullptr, oenv
, nullptr, n
, 1, -1, &ac
,
661 dt
, eacNormal
, 1, FALSE
, TRUE
,
662 FALSE
, 0, 0, effnNONE
);
666 /* Integrate ACF only up to fitlen/2 to avoid integrating noise */
668 for (i
= 1; i
<= fitlen
/2; i
++)
674 /* Generate more or less appropriate sigma's */
675 for (i
= 0; i
<= fitlen
; i
++)
677 fitsig
[i
] = std::sqrt(acint
+ dt
*i
);
680 ac_fit
[0] = 0.5*acint
;
682 ac_fit
[2] = 10*acint
;
683 do_lmfit(n
/nb_min
, ac
, fitsig
, dt
, nullptr, 0, fitlen
*dt
, oenv
,
684 bDebugMode(), effnEXPEXP
, ac_fit
, 0, nullptr);
685 ac_fit
[3] = 1 - ac_fit
[1];
687 fprintf(stdout
, "Set %3d: ac erest %g a %g tau1 %g tau2 %g\n",
688 s
+1, optimal_error_estimate(sig
[s
], ac_fit
, n
*dt
),
689 ac_fit
[1], ac_fit
[0], ac_fit
[2]);
691 fprintf(fp
, "%s\n", output_env_get_print_xvgr_codes(oenv
) ? "&" : "");
692 for (i
= 0; i
< nbs
; i
++)
694 fprintf(fp
, "%g %g\n", tbs
[i
],
695 sig
[s
]*std::sqrt(fit_function(effnERREST
, ac_fit
, tbs
[i
]))/(n
*dt
));
702 fprintf(fp
, "%s\n", output_env_get_print_xvgr_codes(oenv
) ? "&" : "");
711 static void luzar_correl(int nn
, real
*time
, int nset
, real
**val
, real temp
,
712 gmx_bool bError
, real fit_start
)
718 please_cite(stdout
, "Spoel2006b");
720 /* Compute negative derivative k(t) = -dc(t)/dt */
724 compute_derivative(nn
, time
, val
[0], kt
);
725 for (j
= 0; (j
< nn
); j
++)
732 for (j
= 0; (j
< nn
); j
++)
734 d2
+= gmx::square(kt
[j
] - val
[3][j
]);
736 fprintf(debug
, "RMS difference in derivatives is %g\n", std::sqrt(d2
/nn
));
738 analyse_corr(nn
, time
, val
[0], val
[2], kt
, nullptr, nullptr, nullptr, fit_start
,
744 analyse_corr(nn
, time
, val
[0], val
[2], val
[4],
745 val
[1], val
[3], val
[5], fit_start
, temp
);
749 printf("Inconsistent input. I need c(t) sigma_c(t) n(t) sigma_n(t) K(t) sigma_K(t)\n");
750 printf("Not doing anything. Sorry.\n");
754 static void filter(real flen
, int n
, int nset
, real
**val
, real dt
)
757 double *filt
, sum
, vf
, fluc
, fluctot
;
759 f
= static_cast<int>(flen
/(2*dt
));
763 for (i
= 1; i
<= f
; i
++)
765 filt
[i
] = std::cos(M_PI
*dt
*i
/flen
);
768 for (i
= 0; i
<= f
; i
++)
772 fprintf(stdout
, "Will calculate the fluctuation over %d points\n", n
-2*f
);
773 fprintf(stdout
, " using a filter of length %g of %d points\n", flen
, 2*f
+1);
775 for (s
= 0; s
< nset
; s
++)
778 for (i
= f
; i
< n
-f
; i
++)
780 vf
= filt
[0]*val
[s
][i
];
781 for (j
= 1; j
<= f
; j
++)
783 vf
+= filt
[j
]*(val
[s
][i
-f
]+val
[s
][i
+f
]);
785 fluc
+= gmx::square(val
[s
][i
] - vf
);
789 fprintf(stdout
, "Set %3d filtered fluctuation: %12.6e\n", s
+1, std::sqrt(fluc
));
791 fprintf(stdout
, "Overall filtered fluctuation: %12.6e\n", std::sqrt(fluctot
/nset
));
792 fprintf(stdout
, "\n");
797 static void do_fit(FILE *out
, int n
, gmx_bool bYdy
,
798 int ny
, real
*x0
, real
**val
,
799 int npargs
, t_pargs
*ppa
, const gmx_output_env_t
*oenv
,
800 const char *fn_fitted
)
802 real
*c1
= nullptr, *sig
= nullptr;
804 real tendfit
, tbeginfit
;
805 int i
, efitfn
, nparm
;
807 efitfn
= get_acffitfn();
808 nparm
= effnNparams(efitfn
);
809 fprintf(out
, "Will fit to the following function:\n");
810 fprintf(out
, "%s\n", effnDescription(efitfn
));
816 fprintf(out
, "Using two columns as y and sigma values\n");
822 if (opt2parg_bSet("-beginfit", npargs
, ppa
))
824 tbeginfit
= opt2parg_real("-beginfit", npargs
, ppa
);
830 if (opt2parg_bSet("-endfit", npargs
, ppa
))
832 tendfit
= opt2parg_real("-endfit", npargs
, ppa
);
839 snew(fitparm
, nparm
);
851 fitparm
[1] = 0.5*c1
[0];
855 fitparm
[0] = fitparm
[2] = 0.5*c1
[0];
861 fitparm
[0] = fitparm
[2] = fitparm
[4] = 0.33*c1
[0];
868 fitparm
[0] = fitparm
[2] = fitparm
[4] = fitparm
[6] = 0.25*c1
[0];
876 fprintf(out
, "Warning: don't know how to initialize the parameters\n");
877 for (i
= 0; (i
< nparm
); i
++)
882 fprintf(out
, "Starting parameters:\n");
883 for (i
= 0; (i
< nparm
); i
++)
885 fprintf(out
, "a%-2d = %12.5e\n", i
+1, fitparm
[i
]);
887 if (do_lmfit(ny
, c1
, sig
, 0, x0
, tbeginfit
, tendfit
,
888 oenv
, bDebugMode(), efitfn
, fitparm
, 0,
891 for (i
= 0; (i
< nparm
); i
++)
893 fprintf(out
, "a%-2d = %12.5e\n", i
+1, fitparm
[i
]);
898 fprintf(out
, "No solution was found\n");
902 static void print_fitted_function(const char *fitfile
,
903 const char *fn_fitted
,
911 gmx_output_env_t
*oenv
)
913 FILE *out_fit
= gmx_ffopen(fitfile
, "w");
914 if (bXYdy
&& nset
>= 2)
916 do_fit(out_fit
, 0, TRUE
, n
, t
, val
, npargs
, ppa
, oenv
,
921 char *buf2
= nullptr;
923 if (nullptr != fn_fitted
)
925 buflen
= std::strlen(fn_fitted
)+32;
927 std::strncpy(buf2
, fn_fitted
, buflen
);
928 buf2
[std::strlen(buf2
)-4] = '\0';
930 for (s
= 0; s
< nset
; s
++)
933 if (nullptr != fn_fitted
)
936 snprintf(buf
, n
, "%s_%d.xvg", buf2
, s
);
938 do_fit(out_fit
, s
, FALSE
, n
, t
, val
, npargs
, ppa
, oenv
, buf
);
943 gmx_ffclose(out_fit
);
946 int gmx_analyze(int argc
, char *argv
[])
948 static const char *desc
[] = {
949 "[THISMODULE] reads an ASCII file and analyzes data sets.",
950 "A line in the input file may start with a time",
951 "(see option [TT]-time[tt]) and any number of [IT]y[it]-values may follow.",
952 "Multiple sets can also be",
953 "read when they are separated by & (option [TT]-n[tt]);",
954 "in this case only one [IT]y[it]-value is read from each line.",
955 "All lines starting with # and @ are skipped.",
956 "All analyses can also be done for the derivative of a set",
957 "(option [TT]-d[tt]).[PAR]",
959 "All options, except for [TT]-av[tt] and [TT]-power[tt], assume that the",
960 "points are equidistant in time.[PAR]",
962 "[THISMODULE] always shows the average and standard deviation of each",
963 "set, as well as the relative deviation of the third",
964 "and fourth cumulant from those of a Gaussian distribution with the same",
965 "standard deviation.[PAR]",
967 "Option [TT]-ac[tt] produces the autocorrelation function(s).",
968 "Be sure that the time interval between data points is",
969 "much shorter than the time scale of the autocorrelation.[PAR]",
971 "Option [TT]-cc[tt] plots the resemblance of set i with a cosine of",
972 "i/2 periods. The formula is::",
974 " [MATH]2 ([INT][FROM]0[from][TO]T[to][int] y(t) [COS]i [GRK]pi[grk] t[cos] dt)^2 / [INT][FROM]0[from][TO]T[to][int] y^2(t) dt[math]",
976 "This is useful for principal components obtained from covariance",
977 "analysis, since the principal components of random diffusion are",
978 "pure cosines.[PAR]",
980 "Option [TT]-msd[tt] produces the mean square displacement(s).[PAR]",
982 "Option [TT]-dist[tt] produces distribution plot(s).[PAR]",
984 "Option [TT]-av[tt] produces the average over the sets.",
985 "Error bars can be added with the option [TT]-errbar[tt].",
986 "The errorbars can represent the standard deviation, the error",
987 "(assuming the points are independent) or the interval containing",
988 "90% of the points, by discarding 5% of the points at the top and",
991 "Option [TT]-ee[tt] produces error estimates using block averaging.",
992 "A set is divided in a number of blocks and averages are calculated for",
993 "each block. The error for the total average is calculated from",
994 "the variance between averages of the m blocks B[SUB]i[sub] as follows:",
995 "error^2 = [SUM][sum] (B[SUB]i[sub] - [CHEVRON]B[chevron])^2 / (m*(m-1)).",
996 "These errors are plotted as a function of the block size.",
997 "Also an analytical block average curve is plotted, assuming",
998 "that the autocorrelation is a sum of two exponentials.",
999 "The analytical curve for the block average is::",
1001 " [MATH]f(t) = [GRK]sigma[grk][TT]*[tt][SQRT]2/T ( [GRK]alpha[grk] ([GRK]tau[grk][SUB]1[sub] (([EXP]-t/[GRK]tau[grk][SUB]1[sub][exp] - 1) [GRK]tau[grk][SUB]1[sub]/t + 1)) +",
1002 " (1-[GRK]alpha[grk]) ([GRK]tau[grk][SUB]2[sub] (([EXP]-t/[GRK]tau[grk][SUB]2[sub][exp] - 1) [GRK]tau[grk][SUB]2[sub]/t + 1)))[sqrt][math],",
1004 "where T is the total time.",
1005 "[GRK]alpha[grk], [GRK]tau[grk][SUB]1[sub] and [GRK]tau[grk][SUB]2[sub] are obtained by fitting f^2(t) to error^2.",
1006 "When the actual block average is very close to the analytical curve,",
1007 "the error is [MATH][GRK]sigma[grk][TT]*[tt][SQRT]2/T (a [GRK]tau[grk][SUB]1[sub] + (1-a) [GRK]tau[grk][SUB]2[sub])[sqrt][math].",
1008 "The complete derivation is given in",
1009 "B. Hess, J. Chem. Phys. 116:209-217, 2002.[PAR]",
1011 "Option [TT]-filter[tt] prints the RMS high-frequency fluctuation",
1012 "of each set and over all sets with respect to a filtered average.",
1013 "The filter is proportional to cos([GRK]pi[grk] t/len) where t goes from -len/2",
1014 "to len/2. len is supplied with the option [TT]-filter[tt].",
1015 "This filter reduces oscillations with period len/2 and len by a factor",
1016 "of 0.79 and 0.33 respectively.[PAR]",
1018 "Option [TT]-g[tt] fits the data to the function given with option",
1019 "[TT]-fitfn[tt].[PAR]",
1021 "Option [TT]-power[tt] fits the data to [MATH]b t^a[math], which is accomplished",
1022 "by fitting to [MATH]a t + b[math] on log-log scale. All points after the first",
1023 "zero or with a negative value are ignored.[PAR]",
1025 "Option [TT]-luzar[tt] performs a Luzar & Chandler kinetics analysis",
1026 "on output from [gmx-hbond]. The input file can be taken directly",
1027 "from [TT]gmx hbond -ac[tt], and then the same result should be produced.[PAR]",
1028 "Option [TT]-fitfn[tt] performs curve fitting to a number of different",
1029 "curves that make sense in the context of molecular dynamics, mainly",
1030 "exponential curves. More information is in the manual. To check the output",
1031 "of the fitting procedure the option [TT]-fitted[tt] will print both the",
1032 "original data and the fitted function to a new data file. The fitting",
1033 "parameters are stored as comment in the output file."
1035 static real tb
= -1, te
= -1, frac
= 0.5, filtlen
= 0, binwidth
= 0.1, aver_start
= 0;
1036 static gmx_bool bHaveT
= TRUE
, bDer
= FALSE
, bSubAv
= TRUE
, bAverCorr
= FALSE
, bXYdy
= FALSE
;
1037 static gmx_bool bEESEF
= FALSE
, bEENLC
= FALSE
, bEeFitAc
= FALSE
, bPower
= FALSE
;
1038 static gmx_bool bIntegrate
= FALSE
, bRegression
= FALSE
, bLuzar
= FALSE
;
1039 static int nsets_in
= 1, d
= 1, nb_min
= 4, resol
= 10;
1040 static real temp
= 298.15, fit_start
= 1, fit_end
= 60;
1042 /* must correspond to enum avbar* declared at beginning of file */
1043 static const char *avbar_opt
[avbarNR
+1] = {
1044 nullptr, "none", "stddev", "error", "90", nullptr
1048 { "-time", FALSE
, etBOOL
, {&bHaveT
},
1049 "Expect a time in the input" },
1050 { "-b", FALSE
, etREAL
, {&tb
},
1051 "First time to read from set" },
1052 { "-e", FALSE
, etREAL
, {&te
},
1053 "Last time to read from set" },
1054 { "-n", FALSE
, etINT
, {&nsets_in
},
1055 "Read this number of sets separated by &" },
1056 { "-d", FALSE
, etBOOL
, {&bDer
},
1057 "Use the derivative" },
1058 { "-dp", FALSE
, etINT
, {&d
},
1059 "HIDDENThe derivative is the difference over this number of points" },
1060 { "-bw", FALSE
, etREAL
, {&binwidth
},
1061 "Binwidth for the distribution" },
1062 { "-errbar", FALSE
, etENUM
, {avbar_opt
},
1063 "Error bars for [TT]-av[tt]" },
1064 { "-integrate", FALSE
, etBOOL
, {&bIntegrate
},
1065 "Integrate data function(s) numerically using trapezium rule" },
1066 { "-aver_start", FALSE
, etREAL
, {&aver_start
},
1067 "Start averaging the integral from here" },
1068 { "-xydy", FALSE
, etBOOL
, {&bXYdy
},
1069 "Interpret second data set as error in the y values for integrating" },
1070 { "-regression", FALSE
, etBOOL
, {&bRegression
},
1071 "Perform a linear regression analysis on the data. If [TT]-xydy[tt] is set a second set will be interpreted as the error bar in the Y value. Otherwise, if multiple data sets are present a multilinear regression will be performed yielding the constant A that minimize [MATH][GRK]chi[grk]^2 = (y - A[SUB]0[sub] x[SUB]0[sub] - A[SUB]1[sub] x[SUB]1[sub] - ... - A[SUB]N[sub] x[SUB]N[sub])^2[math] where now Y is the first data set in the input file and x[SUB]i[sub] the others. Do read the information at the option [TT]-time[tt]." },
1072 { "-luzar", FALSE
, etBOOL
, {&bLuzar
},
1073 "Do a Luzar and Chandler analysis on a correlation function and "
1074 "related as produced by [gmx-hbond]. When in addition the "
1075 "[TT]-xydy[tt] flag is given the second and fourth column will be "
1076 "interpreted as errors in c(t) and n(t)." },
1077 { "-temp", FALSE
, etREAL
, {&temp
},
1078 "Temperature for the Luzar hydrogen bonding kinetics analysis (K)" },
1079 { "-fitstart", FALSE
, etREAL
, {&fit_start
},
1080 "Time (ps) from which to start fitting the correlation functions in order to obtain the forward and backward rate constants for HB breaking and formation" },
1081 { "-fitend", FALSE
, etREAL
, {&fit_end
},
1082 "Time (ps) where to stop fitting the correlation functions in order to obtain the forward and backward rate constants for HB breaking and formation. Only with [TT]-gem[tt]" },
1083 { "-nbmin", FALSE
, etINT
, {&nb_min
},
1084 "HIDDENMinimum number of blocks for block averaging" },
1085 { "-resol", FALSE
, etINT
, {&resol
},
1086 "HIDDENResolution for the block averaging, block size increases with"
1087 " a factor 2^(1/resol)" },
1088 { "-eeexpfit", FALSE
, etBOOL
, {&bEESEF
},
1089 "HIDDENAlways use a single exponential fit for the error estimate" },
1090 { "-eenlc", FALSE
, etBOOL
, {&bEENLC
},
1091 "HIDDENAllow a negative long-time correlation" },
1092 { "-eefitac", FALSE
, etBOOL
, {&bEeFitAc
},
1093 "HIDDENAlso plot analytical block average using a autocorrelation fit" },
1094 { "-filter", FALSE
, etREAL
, {&filtlen
},
1095 "Print the high-frequency fluctuation after filtering with a cosine filter of this length" },
1096 { "-power", FALSE
, etBOOL
, {&bPower
},
1097 "Fit data to: b t^a" },
1098 { "-subav", FALSE
, etBOOL
, {&bSubAv
},
1099 "Subtract the average before autocorrelating" },
1100 { "-oneacf", FALSE
, etBOOL
, {&bAverCorr
},
1101 "Calculate one ACF over all sets" },
1103 #define NPA asize(pa)
1106 int n
, nlast
, s
, nset
, i
, j
= 0;
1107 real
**val
, *t
, dt
, tot
, error
;
1108 double *av
, *sig
, cum1
, cum2
, cum3
, cum4
, db
;
1109 const char *acfile
, *msdfile
, *ccfile
, *distfile
, *avfile
, *eefile
, *fitfile
;
1110 gmx_output_env_t
*oenv
;
1113 { efXVG
, "-f", "graph", ffREAD
},
1114 { efXVG
, "-ac", "autocorr", ffOPTWR
},
1115 { efXVG
, "-msd", "msd", ffOPTWR
},
1116 { efXVG
, "-cc", "coscont", ffOPTWR
},
1117 { efXVG
, "-dist", "distr", ffOPTWR
},
1118 { efXVG
, "-av", "average", ffOPTWR
},
1119 { efXVG
, "-ee", "errest", ffOPTWR
},
1120 { efXVG
, "-fitted", "fitted", ffOPTWR
},
1121 { efLOG
, "-g", "fitlog", ffOPTWR
}
1123 #define NFILE asize(fnm)
1129 ppa
= add_acf_pargs(&npargs
, pa
);
1131 if (!parse_common_args(&argc
, argv
, PCA_CAN_VIEW
,
1132 NFILE
, fnm
, npargs
, ppa
, asize(desc
), desc
, 0, nullptr, &oenv
))
1138 acfile
= opt2fn_null("-ac", NFILE
, fnm
);
1139 msdfile
= opt2fn_null("-msd", NFILE
, fnm
);
1140 ccfile
= opt2fn_null("-cc", NFILE
, fnm
);
1141 distfile
= opt2fn_null("-dist", NFILE
, fnm
);
1142 avfile
= opt2fn_null("-av", NFILE
, fnm
);
1143 eefile
= opt2fn_null("-ee", NFILE
, fnm
);
1144 if (opt2parg_bSet("-fitfn", npargs
, ppa
) && acfile
== nullptr)
1146 fitfile
= opt2fn("-g", NFILE
, fnm
);
1150 fitfile
= opt2fn_null("-g", NFILE
, fnm
);
1153 val
= read_xvg_time(opt2fn("-f", NFILE
, fnm
), bHaveT
,
1154 opt2parg_bSet("-b", npargs
, ppa
), tb
,
1155 opt2parg_bSet("-e", npargs
, ppa
), te
,
1156 nsets_in
, &nset
, &n
, &dt
, &t
);
1157 printf("Read %d sets of %d points, dt = %g\n\n", nset
, n
, dt
);
1161 printf("Calculating the derivative as (f[i+%d]-f[i])/(%d*dt)\n\n",
1164 for (s
= 0; s
< nset
; s
++)
1166 for (i
= 0; (i
< n
); i
++)
1168 val
[s
][i
] = (val
[s
][i
+d
]-val
[s
][i
])/(d
*dt
);
1177 printf("Calculating the integral using the trapezium rule\n");
1181 sum
= evaluate_integral(n
, t
, val
[0], val
[1], aver_start
, &stddev
);
1182 printf("Integral %10.3f +/- %10.5f\n", sum
, stddev
);
1186 for (s
= 0; s
< nset
; s
++)
1188 sum
= evaluate_integral(n
, t
, val
[s
], nullptr, aver_start
, &stddev
);
1189 printf("Integral %d %10.5f +/- %10.5f\n", s
+1, sum
, stddev
);
1194 if (fitfile
!= nullptr)
1196 print_fitted_function(fitfile
,
1197 opt2fn_null("-fitted", NFILE
, fnm
),
1204 printf(" std. dev. relative deviation of\n");
1205 printf(" standard --------- cumulants from those of\n");
1206 printf("set average deviation sqrt(n-1) a Gaussian distribition\n");
1207 printf(" cum. 3 cum. 4\n");
1210 for (s
= 0; (s
< nset
); s
++)
1216 for (i
= 0; (i
< n
); i
++)
1221 for (i
= 0; (i
< n
); i
++)
1223 db
= val
[s
][i
]-cum1
;
1226 cum4
+= db
*db
*db
*db
;
1232 sig
[s
] = std::sqrt(cum2
);
1235 error
= std::sqrt(cum2
/(n
-1));
1241 printf("SS%d %13.6e %12.6e %12.6e %6.3f %6.3f\n",
1242 s
+1, av
[s
], sig
[s
], error
,
1243 sig
[s
] != 0.0 ? cum3
/(sig
[s
]*sig
[s
]*sig
[s
]*std::sqrt(8/M_PI
)) : 0,
1244 sig
[s
] != 0.0 ? cum4
/(sig
[s
]*sig
[s
]*sig
[s
]*sig
[s
]*3)-1 : 0);
1248 if (filtlen
!= 0.0f
)
1250 filter(filtlen
, n
, nset
, val
, dt
);
1255 out
= xvgropen(msdfile
, "Mean square displacement",
1256 "time", "MSD (nm\\S2\\N)", oenv
);
1257 nlast
= static_cast<int>(n
*frac
);
1258 for (s
= 0; s
< nset
; s
++)
1260 for (j
= 0; j
<= nlast
; j
++)
1264 fprintf(stderr
, "\r%d", j
);
1268 for (i
= 0; i
< n
-j
; i
++)
1270 tot
+= gmx::square(val
[s
][i
]-val
[s
][i
+j
]);
1273 fprintf(out
, " %g %8g\n", dt
*j
, tot
);
1277 fprintf(out
, "%s\n", output_env_get_print_xvgr_codes(oenv
) ? "&" : "");
1281 fprintf(stderr
, "\r%d, time=%g\n", j
-1, (j
-1)*dt
);
1286 plot_coscont(ccfile
, n
, nset
, val
, oenv
);
1291 histogram(distfile
, binwidth
, n
, nset
, val
, oenv
);
1295 average(avfile
, nenum(avbar_opt
), n
, nset
, val
, t
);
1299 estimate_error(eefile
, nb_min
, resol
, n
, nset
, av
, sig
, val
, dt
,
1300 bEeFitAc
, bEESEF
, bEENLC
, oenv
);
1304 power_fit(n
, nset
, val
, t
);
1307 if (acfile
!= nullptr)
1311 for (s
= 0; s
< nset
; s
++)
1313 for (i
= 0; i
< n
; i
++)
1319 do_autocorr(acfile
, oenv
, "Autocorrelation", n
, nset
, val
, dt
,
1320 eacNormal
, bAverCorr
);
1325 regression_analysis(n
, bXYdy
, t
, nset
, val
);
1330 luzar_correl(n
, t
, nset
, val
, temp
, bXYdy
, fit_start
);
1333 view_all(oenv
, NFILE
, fnm
);