Introduce SimulatorBuilder
[gromacs.git] / src / gromacs / simd / tests / simd_floatingpoint.cpp
blob55efc79e1227487d6c79ebfb3408abf41950dde5
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2014,2015,2016,2017,2018, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
35 #include "gmxpre.h"
37 #include <cmath>
39 #include <array>
41 #include "gromacs/math/utilities.h"
42 #include "gromacs/simd/simd.h"
43 #include "gromacs/utility/basedefinitions.h"
45 #include "testutils/testasserts.h"
47 #include "data.h"
48 #include "simd.h"
50 #if GMX_SIMD
52 namespace gmx
54 namespace test
57 namespace
60 /*! \cond internal */
61 /*! \addtogroup module_simd */
62 /*! \{ */
64 #if GMX_SIMD_HAVE_REAL
66 /*! \brief Test fixture for floating-point tests (identical to the generic \ref SimdTest) */
67 typedef SimdTest SimdFloatingpointTest;
69 TEST_F(SimdFloatingpointTest, setZero)
71 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(0.0), setZero());
74 TEST_F(SimdFloatingpointTest, set)
76 const real *p = &c0;
77 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(c1), SimdReal(c1));
78 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(c0), SimdReal(*p));
81 TEST_F(SimdFloatingpointTest, add)
83 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 + c3, c1 + c4, c2 + c5 ),
84 rSimd_c0c1c2 + rSimd_c3c4c5);
87 TEST_F(SimdFloatingpointTest, maskAdd)
89 SimdBool m = setSimdRealFrom3R(c6, 0, c7) != setZero();
90 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 + c3, c1 + 0.0, c2 + c5 ),
91 maskAdd(rSimd_c0c1c2, rSimd_c3c4c5, m));
94 TEST_F(SimdFloatingpointTest, sub)
96 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 - c3, c1 - c4, c2 - c5 ),
97 rSimd_c0c1c2 - rSimd_c3c4c5);
100 TEST_F(SimdFloatingpointTest, mul)
102 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3, c1 * c4, c2 * c5 ),
103 rSimd_c0c1c2 * rSimd_c3c4c5);
106 TEST_F(SimdFloatingpointTest, maskzMul)
108 SimdBool m = setSimdRealFrom3R(c1, 0, c1) != setZero();
109 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3, 0.0, c2 * c5 ),
110 maskzMul(rSimd_c0c1c2, rSimd_c3c4c5, m));
113 TEST_F(SimdFloatingpointTest, fma)
115 // The last bit of FMA operations depends on hardware, so we don't require exact match
116 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3 + c6, c1 * c4 + c7, c2 * c5 + c8),
117 fma(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8));
121 TEST_F(SimdFloatingpointTest, maskzFma)
123 SimdBool m = setSimdRealFrom3R(c2, 0, c3) != setZero();
124 // The last bit of FMA operations depends on hardware, so we don't require exact match
125 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3 + c6, 0.0, c2 * c5 + c8),
126 maskzFma(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8, m));
129 TEST_F(SimdFloatingpointTest, fms)
131 // The last bit of FMA operations depends on hardware, so we don't require exact match
132 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3 - c6, c1 * c4 - c7, c2 * c5 - c8),
133 fms(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8));
136 TEST_F(SimdFloatingpointTest, fnma)
138 // The last bit of FMA operations depends on hardware, so we don't require exact match
139 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c6 - c0 * c3, c7 - c1 * c4, c8 - c2 * c5),
140 fnma(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8));
143 TEST_F(SimdFloatingpointTest, fnms)
145 // The last bit of FMA operations depends on hardware, so we don't require exact match
146 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(-c0 * c3 - c6, -c1 * c4 - c7, -c2 * c5 - c8),
147 fnms(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8));
150 TEST_F(SimdFloatingpointTest, abs)
152 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, abs(rSimd_c0c1c2)); // fabs(x)=x
153 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, abs(rSimd_m0m1m2)); // fabs(-x)=x
156 TEST_F(SimdFloatingpointTest, neg)
158 GMX_EXPECT_SIMD_REAL_EQ(rSimd_m0m1m2, -(rSimd_c0c1c2)); // fneg(x)=-x
159 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, -(rSimd_m0m1m2)); // fneg(-x)=x
162 #if GMX_SIMD_HAVE_LOGICAL
163 TEST_F(SimdFloatingpointTest, and)
165 GMX_EXPECT_SIMD_REAL_EQ(rSimd_logicalResultAnd,
166 (rSimd_logicalA & rSimd_logicalB));
169 TEST_F(SimdFloatingpointTest, or)
171 GMX_EXPECT_SIMD_REAL_EQ(rSimd_logicalResultOr,
172 (rSimd_logicalA | rSimd_logicalB));
175 TEST_F(SimdFloatingpointTest, xor)
177 /* Test xor by taking xor with a number and its negative. This should result
178 * in only the sign bit being set. We then use this bit change the sign of
179 * different numbers.
181 SimdReal signbit = SimdReal(c1) ^ SimdReal(-c1);
182 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c2, c3, -c4), (signbit ^ setSimdRealFrom3R(c2, -c3, c4)));
185 TEST_F(SimdFloatingpointTest, andNot)
187 /* Use xor (which we already tested, so fix that first if both tests fail)
188 * to extract the sign bit, and then use andnot to take absolute values.
190 SimdReal signbit = SimdReal(c1) ^ SimdReal(-c1);
191 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c2, c3, c4), andNot(signbit, setSimdRealFrom3R(-c2, c3, -c4)));
194 #endif
196 TEST_F(SimdFloatingpointTest, max)
198 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R( c3, c1, c4), max(rSimd_c0c1c2, rSimd_c3c0c4));
199 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R( c3, c1, c4), max(rSimd_c3c0c4, rSimd_c0c1c2));
200 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c0, -c0, -c2), max(rSimd_m0m1m2, rSimd_m3m0m4));
201 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c0, -c0, -c2), max(rSimd_m3m0m4, rSimd_m0m1m2));
204 TEST_F(SimdFloatingpointTest, min)
206 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R( c0, c0, c2), min(rSimd_c0c1c2, rSimd_c3c0c4));
207 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R( c0, c0, c2), min(rSimd_c3c0c4, rSimd_c0c1c2));
208 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c3, -c1, -c4), min(rSimd_m0m1m2, rSimd_m3m0m4));
209 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c3, -c1, -c4), min(rSimd_m3m0m4, rSimd_m0m1m2));
212 TEST_F(SimdFloatingpointTest, round)
214 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(2), round(rSimd_2p25));
215 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(4), round(rSimd_3p75));
216 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(-2), round(rSimd_m2p25));
217 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(-4), round(rSimd_m3p75));
220 TEST_F(SimdFloatingpointTest, roundMode)
222 /* Rounding mode needs to be consistent between round and cvtR2I */
223 SimdReal x0 = setSimdRealFrom3R(0.5, 11.5, 99.5);
224 SimdReal x1 = setSimdRealFrom3R(-0.5, -11.5, -99.5);
226 GMX_EXPECT_SIMD_REAL_EQ(round(x0), cvtI2R(cvtR2I(x0)));
227 GMX_EXPECT_SIMD_REAL_EQ(round(x1), cvtI2R(cvtR2I(x1)));
230 TEST_F(SimdFloatingpointTest, trunc)
232 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(2), trunc(rSimd_2p25));
233 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(3), trunc(rSimd_3p75));
234 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(-2), trunc(rSimd_m2p25));
235 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(-3), trunc(rSimd_m3p75));
238 // We explicitly test the exponent/mantissa routines with double precision data,
239 // since these usually rely on direct manipulation and shift of the SIMD registers,
240 // where it is easy to make mistakes with single vs double precision.
242 TEST_F(SimdFloatingpointTest, frexp)
244 SimdReal fraction;
245 SimdInt32 exponent;
247 fraction = frexp(rSimd_Exp, &exponent);
249 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(0.609548660288905419513128,
250 0.5833690139241746175358116,
251 -0.584452007502232362412542),
252 fraction);
253 GMX_EXPECT_SIMD_INT_EQ(setSimdIntFrom3I(61, -40, 55), exponent);
256 #if GMX_SIMD_HAVE_DOUBLE && GMX_DOUBLE
257 fraction = frexp(rSimd_ExpDouble, &exponent);
259 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(0.6206306194761728178832527,
260 0.5236473618795619566768096,
261 -0.9280331023751380303821179),
262 fraction);
263 GMX_EXPECT_SIMD_INT_EQ(setSimdIntFrom3I(588, -461, 673), exponent);
264 #endif
267 TEST_F(SimdFloatingpointTest, ldexp)
269 SimdReal one = setSimdRealFrom1R(1.0);
271 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(pow(2.0, 60.0), pow(2.0, -41.0), pow(2.0, 54.0)),
272 ldexp<MathOptimization::Unsafe>(one, setSimdIntFrom3I(60, -41, 54)));
273 #if GMX_SIMD_HAVE_DOUBLE && GMX_DOUBLE
274 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(pow(2.0, 587.0), pow(2.0, -462.0), pow(2.0, 672.0)),
275 ldexp<MathOptimization::Unsafe>(one, setSimdIntFrom3I(587, -462, 672)));
276 #endif
277 // The default safe version must be able to handle very negative arguments too
278 GMX_EXPECT_SIMD_REAL_EQ(setZero(), ldexp(one, setSimdIntFrom3I(-2000, -1000000, -1000000000)));
282 * We do extensive 1/sqrt(x) and 1/x accuracy testing in the math module, so
283 * we just make sure the lookup instructions appear to work here
286 TEST_F(SimdFloatingpointTest, rsqrt)
288 SimdReal x = setSimdRealFrom3R(4.0, M_PI, 1234567890.0);
289 SimdReal ref = setSimdRealFrom3R(0.5, 1.0/std::sqrt(M_PI), 1.0/std::sqrt(1234567890.0));
290 int shiftbits = std::numeric_limits<real>::digits-GMX_SIMD_RSQRT_BITS;
292 if (shiftbits < 0)
294 shiftbits = 0;
297 /* Set the allowed ulp error as 2 to the power of the number of bits in
298 * the mantissa that do not have to be correct after the table lookup.
300 setUlpTol(1LL << shiftbits);
301 GMX_EXPECT_SIMD_REAL_NEAR(ref, rsqrt(x));
304 TEST_F(SimdFloatingpointTest, maskzRsqrt)
306 SimdReal x = setSimdRealFrom3R(M_PI, -4.0, 0.0);
307 // simdCmpLe is tested separately further down
308 SimdBool m = setZero() < x;
309 SimdReal ref = setSimdRealFrom3R(1.0/std::sqrt(M_PI), 0.0, 0.0);
310 int shiftbits = std::numeric_limits<real>::digits-GMX_SIMD_RSQRT_BITS;
312 if (shiftbits < 0)
314 shiftbits = 0;
317 /* Set the allowed ulp error as 2 to the power of the number of bits in
318 * the mantissa that do not have to be correct after the table lookup.
320 setUlpTol(1LL << shiftbits);
321 GMX_EXPECT_SIMD_REAL_NEAR(ref, maskzRsqrt(x, m));
324 TEST_F(SimdFloatingpointTest, rcp)
326 SimdReal x = setSimdRealFrom3R(4.0, M_PI, 1234567890.0);
327 SimdReal ref = setSimdRealFrom3R(0.25, 1.0/M_PI, 1.0/1234567890.0);
328 int shiftbits = std::numeric_limits<real>::digits-GMX_SIMD_RCP_BITS;
330 if (shiftbits < 0)
332 shiftbits = 0;
335 /* Set the allowed ulp error as 2 to the power of the number of bits in
336 * the mantissa that do not have to be correct after the table lookup.
338 setUlpTol(1LL << shiftbits);
339 GMX_EXPECT_SIMD_REAL_NEAR(ref, rcp(x));
342 TEST_F(SimdFloatingpointTest, maskzRcp)
344 SimdReal x = setSimdRealFrom3R(M_PI, 0.0, -1234567890.0);
345 SimdBool m = (x != setZero());
346 SimdReal ref = setSimdRealFrom3R(1.0/M_PI, 0.0, -1.0/1234567890.0);
347 int shiftbits = std::numeric_limits<real>::digits-GMX_SIMD_RCP_BITS;
349 if (shiftbits < 0)
351 shiftbits = 0;
354 /* Set the allowed ulp error as 2 to the power of the number of bits in
355 * the mantissa that do not have to be correct after the table lookup.
357 setUlpTol(1LL << shiftbits);
358 GMX_EXPECT_SIMD_REAL_NEAR(ref, maskzRcp(x, m));
361 TEST_F(SimdFloatingpointTest, cmpEqAndSelectByMask)
363 SimdBool eq = rSimd_c4c6c8 == rSimd_c6c7c8;
364 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(0, 0, c2), selectByMask(rSimd_c0c1c2, eq));
367 TEST_F(SimdFloatingpointTest, selectByNotMask)
369 SimdBool eq = rSimd_c4c6c8 == rSimd_c6c7c8;
370 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, c1, 0), selectByNotMask(rSimd_c0c1c2, eq));
373 TEST_F(SimdFloatingpointTest, cmpNe)
375 SimdBool eq = rSimd_c4c6c8 != rSimd_c6c7c8;
376 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, c1, 0), selectByMask(rSimd_c0c1c2, eq));
379 TEST_F(SimdFloatingpointTest, cmpLe)
381 SimdBool le = rSimd_c4c6c8 <= rSimd_c6c7c8;
382 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, selectByMask(rSimd_c0c1c2, le));
385 TEST_F(SimdFloatingpointTest, cmpLt)
387 SimdBool lt = rSimd_c4c6c8 < rSimd_c6c7c8;
388 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, c1, 0), selectByMask(rSimd_c0c1c2, lt));
391 #if GMX_SIMD_HAVE_INT32_LOGICAL || GMX_SIMD_HAVE_LOGICAL
392 TEST_F(SimdFloatingpointTest, testBits)
394 SimdBool eq = testBits(setSimdRealFrom3R(c1, 0, c1));
395 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, 0, c2), selectByMask(rSimd_c0c1c2, eq));
397 // Test if we detect only the sign bit being set
398 eq = testBits(setSimdRealFrom1R(GMX_REAL_NEGZERO));
399 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, selectByMask(rSimd_c0c1c2, eq));
401 #endif
403 TEST_F(SimdFloatingpointTest, andB)
405 SimdBool eq = rSimd_c4c6c8 == rSimd_c6c7c8;
406 SimdBool le = rSimd_c4c6c8 <= rSimd_c6c7c8;
407 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(0, 0, c2), selectByMask(rSimd_c0c1c2, (eq && le)));
410 TEST_F(SimdFloatingpointTest, orB)
412 SimdBool eq = rSimd_c4c6c8 == rSimd_c6c7c8;
413 SimdBool lt = rSimd_c4c6c8 < rSimd_c6c7c8;
414 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, selectByMask(rSimd_c0c1c2, (eq || lt)));
417 TEST_F(SimdFloatingpointTest, anyTrueB)
419 alignas(GMX_SIMD_ALIGNMENT) std::array<real, GMX_SIMD_REAL_WIDTH> mem {};
421 // Test the false case
422 EXPECT_FALSE(anyTrue(setZero() < load<SimdReal>(mem.data())));
424 // Test each bit (these should all be true)
425 for (int i = 0; i < GMX_SIMD_REAL_WIDTH; i++)
427 mem.fill(0.0);
428 mem[i] = 1.0;
429 EXPECT_TRUE(anyTrue(setZero() < load<SimdReal>(mem.data()))) << "Not detecting true in element " << i;
433 TEST_F(SimdFloatingpointTest, blend)
435 SimdBool lt = rSimd_c4c6c8 < rSimd_c6c7c8;
436 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c3, c4, c2), blend(rSimd_c0c1c2, rSimd_c3c4c5, lt));
439 TEST_F(SimdFloatingpointTest, reduce)
441 // The horizontal sum of the SIMD variable depends on the width, so
442 // simply store it an extra time and calculate what the sum should be
443 std::vector<real> v = simdReal2Vector(rSimd_c3c4c5);
444 real sum = 0.0;
446 for (int i = 0; i < GMX_SIMD_REAL_WIDTH; i++)
448 sum += v[i];
451 EXPECT_REAL_EQ_TOL(sum, reduce(rSimd_c3c4c5), defaultRealTolerance() );
454 #endif // GMX_SIMD_HAVE_REAL
456 #if GMX_SIMD_HAVE_FLOAT && GMX_SIMD_HAVE_DOUBLE
457 TEST_F(SimdFloatingpointTest, cvtFloat2Double)
459 alignas(GMX_SIMD_ALIGNMENT) float f[GMX_SIMD_FLOAT_WIDTH];
460 alignas(GMX_SIMD_ALIGNMENT) double d[GMX_SIMD_FLOAT_WIDTH]; // Yes, double array length should be same as float
462 int i;
463 SimdFloat vf;
464 SimdDouble vd0;
465 FloatingPointTolerance tolerance(defaultRealTolerance());
467 for (i = 0; i < GMX_SIMD_FLOAT_WIDTH; i++)
469 // Scale by 1+100*eps to use low bits too.
470 // Due to the conversions we want to avoid being too sensitive to fluctuations in last bit
471 f[i] = i * (1.0 + 100*GMX_FLOAT_EPS);
474 vf = load<SimdFloat>(f);
475 #if (GMX_SIMD_FLOAT_WIDTH == 2*GMX_SIMD_DOUBLE_WIDTH)
476 SimdDouble vd1;
477 cvtF2DD(vf, &vd0, &vd1);
478 store(d + GMX_SIMD_DOUBLE_WIDTH, vd1); // Store upper part halfway through array
479 #elif (GMX_SIMD_FLOAT_WIDTH == GMX_SIMD_DOUBLE_WIDTH)
480 vd0 = cvtF2D(vf);
481 #else
482 # error Width of float SIMD must either be identical to double, or twice the width.
483 #endif
484 store(d, vd0); // store lower (or whole) part from start of vector
486 for (i = 0; i < GMX_SIMD_FLOAT_WIDTH; i++)
488 EXPECT_REAL_EQ_TOL(f[i], d[i], tolerance);
492 TEST_F(SimdFloatingpointTest, cvtDouble2Float)
494 alignas(GMX_SIMD_ALIGNMENT) float f[GMX_SIMD_FLOAT_WIDTH];
495 alignas(GMX_SIMD_ALIGNMENT) double d[GMX_SIMD_FLOAT_WIDTH]; // Yes, double array length should be same as float
496 int i;
497 SimdFloat vf;
498 SimdDouble vd0;
499 FloatingPointTolerance tolerance(defaultRealTolerance());
501 // This fills elements for pd1 too when double width is 2*single width
502 for (i = 0; i < GMX_SIMD_FLOAT_WIDTH; i++)
504 // Scale by 1+eps to use low bits too.
505 // Due to the conversions we want to avoid being too sensitive to fluctuations in last bit
506 d[i] = i * (1.0 + 100*GMX_FLOAT_EPS);
509 vd0 = load<SimdDouble>(d);
510 #if (GMX_SIMD_FLOAT_WIDTH == 2*GMX_SIMD_DOUBLE_WIDTH)
511 SimdDouble vd1 = load<SimdDouble>(d + GMX_SIMD_DOUBLE_WIDTH); // load upper half of data
512 vf = cvtDD2F(vd0, vd1);
513 #elif (GMX_SIMD_FLOAT_WIDTH == GMX_SIMD_DOUBLE_WIDTH)
514 vf = cvtD2F(vd0);
515 #else
516 # error Width of float SIMD must either be identical to double, or twice the width.
517 #endif
518 store(f, vf);
520 // This will check elements in pd1 too when double width is 2*single width
521 for (i = 0; i < GMX_SIMD_FLOAT_WIDTH; i++)
523 EXPECT_FLOAT_EQ_TOL(d[i], f[i], tolerance);
526 #endif // GMX_SIMD_HAVE_FLOAT && GMX_SIMD_HAVE_DOUBLE
528 /*! \} */
529 /*! \endcond */
531 } // namespace
532 } // namespace test
533 } // namespace gmx
535 #endif // GMX_SIMD