2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013, by the GROMACS development team, led by
5 * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6 * others, as listed in the AUTHORS file in the top-level source
7 * directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
35 #ifndef _gmx_math_x86_avx_128_fma_double_h_
36 #define _gmx_math_x86_avx_128_fma_double_h_
38 #include <immintrin.h> /* AVX */
39 #ifdef HAVE_X86INTRIN_H
40 #include <x86intrin.h> /* FMA */
43 #include <intrin.h> /* FMA MSVC */
48 #include "gmx_x86_avx_128_fma.h"
52 # define M_PI 3.14159265358979323846264338327950288
56 /************************
58 * Simple math routines *
60 ************************/
63 static gmx_inline __m128d
64 gmx_mm_invsqrt_pd(__m128d x
)
66 const __m128d half
= _mm_set1_pd(0.5);
67 const __m128d three
= _mm_set1_pd(3.0);
69 /* Lookup instruction only exists in single precision, convert back and forth... */
70 __m128d lu
= _mm_cvtps_pd(_mm_rsqrt_ps( _mm_cvtpd_ps(x
)));
72 lu
= _mm_mul_pd(_mm_mul_pd(half
, lu
), _mm_nmacc_pd(_mm_mul_pd(lu
, lu
), x
, three
));
73 return _mm_mul_pd(_mm_mul_pd(half
, lu
), _mm_nmacc_pd(_mm_mul_pd(lu
, lu
), x
, three
));
76 /* 1.0/sqrt(x), done for a pair of arguments to improve throughput */
78 gmx_mm_invsqrt_pair_pd(__m128d x1
, __m128d x2
, __m128d
*invsqrt1
, __m128d
*invsqrt2
)
80 const __m128d half
= _mm_set1_pd(0.5);
81 const __m128d three
= _mm_set1_pd(3.0);
82 const __m128 halff
= _mm_set1_ps(0.5f
);
83 const __m128 threef
= _mm_set1_ps(3.0f
);
88 /* Do first N-R step in float for 2x throughput */
89 xf
= _mm_shuffle_ps(_mm_cvtpd_ps(x1
), _mm_cvtpd_ps(x2
), _MM_SHUFFLE(1, 0, 1, 0));
90 luf
= _mm_rsqrt_ps(xf
);
92 luf
= _mm_mul_ps(_mm_mul_ps(halff
, luf
), _mm_nmacc_ps(_mm_mul_ps(luf
, luf
), xf
, threef
));
95 lu2
= _mm_cvtps_pd(_mm_shuffle_ps(luf
, luf
, _MM_SHUFFLE(3, 2, 3, 2)));
96 lu1
= _mm_cvtps_pd(luf
);
98 *invsqrt1
= _mm_mul_pd(_mm_mul_pd(half
, lu1
), _mm_nmacc_pd(_mm_mul_pd(lu1
, lu1
), x1
, three
));
99 *invsqrt2
= _mm_mul_pd(_mm_mul_pd(half
, lu2
), _mm_nmacc_pd(_mm_mul_pd(lu2
, lu2
), x2
, three
));
102 /* sqrt(x) - Do NOT use this (but rather invsqrt) if you actually need 1.0/sqrt(x) */
103 static gmx_inline __m128d
104 gmx_mm_sqrt_pd(__m128d x
)
109 mask
= _mm_cmpeq_pd(x
, _mm_setzero_pd());
110 res
= _mm_andnot_pd(mask
, gmx_mm_invsqrt_pd(x
));
112 res
= _mm_mul_pd(x
, res
);
118 static gmx_inline __m128d
119 gmx_mm_inv_pd(__m128d x
)
121 const __m128d two
= _mm_set1_pd(2.0);
123 /* Lookup instruction only exists in single precision, convert back and forth... */
124 __m128d lu
= _mm_cvtps_pd(_mm_rcp_ps( _mm_cvtpd_ps(x
)));
126 /* Perform two N-R steps for double precision */
127 lu
= _mm_mul_pd(lu
, _mm_nmacc_pd(lu
, x
, two
));
128 return _mm_mul_pd(lu
, _mm_nmacc_pd(lu
, x
, two
));
131 static gmx_inline __m128d
132 gmx_mm_abs_pd(__m128d x
)
134 const __m128d signmask
= gmx_mm_castsi128_pd( _mm_set_epi32(0x7FFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF, 0xFFFFFFFF) );
136 return _mm_and_pd(x
, signmask
);
143 * The 2^w term is calculated from a (6,0)-th order (no denominator) Minimax polynomia on the interval
146 * The approximation on [-0.5,0.5] is a rational Padé approximation, 1+2*P(x^2)/(Q(x^2)-P(x^2)),
147 * according to the same algorithm as used in the Cephes/netlib math routines.
150 gmx_mm_exp2_pd(__m128d x
)
152 /* Lower bound: We do not allow numbers that would lead to an IEEE fp representation exponent smaller than -126. */
153 const __m128d arglimit
= _mm_set1_pd(1022.0);
154 const __m128i expbase
= _mm_set1_epi32(1023);
156 const __m128d P2
= _mm_set1_pd(2.30933477057345225087e-2);
157 const __m128d P1
= _mm_set1_pd(2.02020656693165307700e1
);
158 const __m128d P0
= _mm_set1_pd(1.51390680115615096133e3
);
160 const __m128d Q1
= _mm_set1_pd(2.33184211722314911771e2
);
161 const __m128d Q0
= _mm_set1_pd(4.36821166879210612817e3
);
162 const __m128d one
= _mm_set1_pd(1.0);
163 const __m128d two
= _mm_set1_pd(2.0);
170 __m128d PolyP
, PolyQ
;
172 iexppart
= _mm_cvtpd_epi32(x
);
173 intpart
= _mm_round_pd(x
, _MM_FROUND_TO_NEAREST_INT
);
175 /* The two lowest elements of iexppart now contains 32-bit numbers with a correctly biased exponent.
176 * To be able to shift it into the exponent for a double precision number we first need to
177 * shuffle so that the lower half contains the first element, and the upper half the second.
178 * This should really be done as a zero-extension, but since the next instructions will shift
179 * the registers left by 52 bits it doesn't matter what we put there - it will be shifted out.
180 * (thus we just use element 2 from iexppart).
182 iexppart
= _mm_shuffle_epi32(iexppart
, _MM_SHUFFLE(2, 1, 2, 0));
184 /* Do the shift operation on the 64-bit registers */
185 iexppart
= _mm_add_epi32(iexppart
, expbase
);
186 iexppart
= _mm_slli_epi64(iexppart
, 52);
188 valuemask
= _mm_cmpge_pd(arglimit
, gmx_mm_abs_pd(x
));
189 fexppart
= _mm_and_pd(valuemask
, gmx_mm_castsi128_pd(iexppart
));
191 z
= _mm_sub_pd(x
, intpart
);
192 z2
= _mm_mul_pd(z
, z
);
194 PolyP
= _mm_macc_pd(P2
, z2
, P1
);
195 PolyQ
= _mm_add_pd(z2
, Q1
);
196 PolyP
= _mm_macc_pd(PolyP
, z2
, P0
);
197 PolyQ
= _mm_macc_pd(PolyQ
, z2
, Q0
);
198 PolyP
= _mm_mul_pd(PolyP
, z
);
200 z
= _mm_mul_pd(PolyP
, gmx_mm_inv_pd(_mm_sub_pd(PolyQ
, PolyP
)));
201 z
= _mm_macc_pd(two
, z
, one
);
203 z
= _mm_mul_pd(z
, fexppart
);
208 /* Exponential function. This could be calculated from 2^x as Exp(x)=2^(y), where y=log2(e)*x,
209 * but there will then be a small rounding error since we lose some precision due to the
210 * multiplication. This will then be magnified a lot by the exponential.
212 * Instead, we calculate the fractional part directly as a Padé approximation of
213 * Exp(z) on [-0.5,0.5]. We use extended precision arithmetics to calculate the fraction
214 * remaining after 2^y, which avoids the precision-loss.
217 gmx_mm_exp_pd(__m128d exparg
)
219 const __m128d argscale
= _mm_set1_pd(1.4426950408889634073599);
220 /* Lower bound: We do not allow numbers that would lead to an IEEE fp representation exponent smaller than -126. */
221 const __m128d arglimit
= _mm_set1_pd(1022.0);
222 const __m128i expbase
= _mm_set1_epi32(1023);
224 const __m128d invargscale0
= _mm_set1_pd(6.93145751953125e-1);
225 const __m128d invargscale1
= _mm_set1_pd(1.42860682030941723212e-6);
227 const __m128d P2
= _mm_set1_pd(1.26177193074810590878e-4);
228 const __m128d P1
= _mm_set1_pd(3.02994407707441961300e-2);
230 const __m128d Q3
= _mm_set1_pd(3.00198505138664455042E-6);
231 const __m128d Q2
= _mm_set1_pd(2.52448340349684104192E-3);
232 const __m128d Q1
= _mm_set1_pd(2.27265548208155028766E-1);
234 const __m128d one
= _mm_set1_pd(1.0);
235 const __m128d two
= _mm_set1_pd(2.0);
242 __m128d PolyP
, PolyQ
;
244 x
= _mm_mul_pd(exparg
, argscale
);
246 iexppart
= _mm_cvtpd_epi32(x
);
247 intpart
= _mm_round_pd(x
, _MM_FROUND_TO_NEAREST_INT
);
249 /* The two lowest elements of iexppart now contains 32-bit numbers with a correctly biased exponent.
250 * To be able to shift it into the exponent for a double precision number we first need to
251 * shuffle so that the lower half contains the first element, and the upper half the second.
252 * This should really be done as a zero-extension, but since the next instructions will shift
253 * the registers left by 52 bits it doesn't matter what we put there - it will be shifted out.
254 * (thus we just use element 2 from iexppart).
256 iexppart
= _mm_shuffle_epi32(iexppart
, _MM_SHUFFLE(2, 1, 2, 0));
258 /* Do the shift operation on the 64-bit registers */
259 iexppart
= _mm_add_epi32(iexppart
, expbase
);
260 iexppart
= _mm_slli_epi64(iexppart
, 52);
262 valuemask
= _mm_cmpge_pd(arglimit
, gmx_mm_abs_pd(x
));
263 fexppart
= _mm_and_pd(valuemask
, gmx_mm_castsi128_pd(iexppart
));
265 z
= _mm_sub_pd(exparg
, _mm_mul_pd(invargscale0
, intpart
));
266 z
= _mm_sub_pd(z
, _mm_mul_pd(invargscale1
, intpart
));
268 z2
= _mm_mul_pd(z
, z
);
270 PolyQ
= _mm_macc_pd(Q3
, z2
, Q2
);
271 PolyP
= _mm_macc_pd(P2
, z2
, P1
);
272 PolyQ
= _mm_macc_pd(PolyQ
, z2
, Q1
);
274 PolyP
= _mm_macc_pd(PolyP
, z2
, one
);
275 PolyQ
= _mm_macc_pd(PolyQ
, z2
, two
);
277 PolyP
= _mm_mul_pd(PolyP
, z
);
279 z
= _mm_mul_pd(PolyP
, gmx_mm_inv_pd(_mm_sub_pd(PolyQ
, PolyP
)));
280 z
= _mm_macc_pd(two
, z
, one
);
282 z
= _mm_mul_pd(z
, fexppart
);
290 gmx_mm_log_pd(__m128d x
)
292 /* Same algorithm as cephes library */
293 const __m128d expmask
= gmx_mm_castsi128_pd( _mm_set_epi32(0x7FF00000, 0x00000000, 0x7FF00000, 0x00000000) );
295 const __m128i expbase_m1
= _mm_set1_epi32(1023-1); /* We want non-IEEE format */
297 const __m128d half
= _mm_set1_pd(0.5);
298 const __m128d one
= _mm_set1_pd(1.0);
299 const __m128d two
= _mm_set1_pd(2.0);
300 const __m128d invsq2
= _mm_set1_pd(1.0/sqrt(2.0));
302 const __m128d corr1
= _mm_set1_pd(-2.121944400546905827679e-4);
303 const __m128d corr2
= _mm_set1_pd(0.693359375);
305 const __m128d P5
= _mm_set1_pd(1.01875663804580931796e-4);
306 const __m128d P4
= _mm_set1_pd(4.97494994976747001425e-1);
307 const __m128d P3
= _mm_set1_pd(4.70579119878881725854e0
);
308 const __m128d P2
= _mm_set1_pd(1.44989225341610930846e1
);
309 const __m128d P1
= _mm_set1_pd(1.79368678507819816313e1
);
310 const __m128d P0
= _mm_set1_pd(7.70838733755885391666e0
);
312 const __m128d Q4
= _mm_set1_pd(1.12873587189167450590e1
);
313 const __m128d Q3
= _mm_set1_pd(4.52279145837532221105e1
);
314 const __m128d Q2
= _mm_set1_pd(8.29875266912776603211e1
);
315 const __m128d Q1
= _mm_set1_pd(7.11544750618563894466e1
);
316 const __m128d Q0
= _mm_set1_pd(2.31251620126765340583e1
);
318 const __m128d R2
= _mm_set1_pd(-7.89580278884799154124e-1);
319 const __m128d R1
= _mm_set1_pd(1.63866645699558079767e1
);
320 const __m128d R0
= _mm_set1_pd(-6.41409952958715622951e1
);
322 const __m128d S2
= _mm_set1_pd(-3.56722798256324312549E1
);
323 const __m128d S1
= _mm_set1_pd(3.12093766372244180303E2
);
324 const __m128d S0
= _mm_set1_pd(-7.69691943550460008604E2
);
329 __m128d mask1
, mask2
;
330 __m128d corr
, t1
, t2
, q
;
331 __m128d zA
, yA
, xA
, zB
, yB
, xB
, z
;
332 __m128d polyR
, polyS
;
333 __m128d polyP1
, polyP2
, polyQ1
, polyQ2
;
335 /* Separate x into exponent and mantissa, with a mantissa in the range [0.5..1[ (not IEEE754 standard!) */
336 fexp
= _mm_and_pd(x
, expmask
);
337 iexp
= gmx_mm_castpd_si128(fexp
);
338 iexp
= _mm_srli_epi64(iexp
, 52);
339 iexp
= _mm_sub_epi32(iexp
, expbase_m1
);
340 iexp
= _mm_shuffle_epi32(iexp
, _MM_SHUFFLE(1, 1, 2, 0) );
341 fexp
= _mm_cvtepi32_pd(iexp
);
343 x
= _mm_andnot_pd(expmask
, x
);
344 x
= _mm_or_pd(x
, one
);
345 x
= _mm_mul_pd(x
, half
);
347 mask1
= _mm_cmpgt_pd(gmx_mm_abs_pd(fexp
), two
);
348 mask2
= _mm_cmplt_pd(x
, invsq2
);
350 fexp
= _mm_sub_pd(fexp
, _mm_and_pd(mask2
, one
));
352 /* If mask1 is set ('A') */
353 zA
= _mm_sub_pd(x
, half
);
354 t1
= _mm_blendv_pd( zA
, x
, mask2
);
355 zA
= _mm_sub_pd(t1
, half
);
356 t2
= _mm_blendv_pd( x
, zA
, mask2
);
357 yA
= _mm_mul_pd(half
, _mm_add_pd(t2
, one
));
359 xA
= _mm_mul_pd(zA
, gmx_mm_inv_pd(yA
));
360 zA
= _mm_mul_pd(xA
, xA
);
363 polyR
= _mm_macc_pd(R2
, zA
, R1
);
364 polyR
= _mm_macc_pd(polyR
, zA
, R0
);
366 polyS
= _mm_add_pd(zA
, S2
);
367 polyS
= _mm_macc_pd(polyS
, zA
, S1
);
368 polyS
= _mm_macc_pd(polyS
, zA
, S0
);
370 q
= _mm_mul_pd(polyR
, gmx_mm_inv_pd(polyS
));
371 zA
= _mm_mul_pd(_mm_mul_pd(xA
, zA
), q
);
373 zA
= _mm_macc_pd(corr1
, fexp
, zA
);
374 zA
= _mm_add_pd(zA
, xA
);
375 zA
= _mm_macc_pd(corr2
, fexp
, zA
);
377 /* If mask1 is not set ('B') */
378 corr
= _mm_and_pd(mask2
, x
);
379 xB
= _mm_add_pd(x
, corr
);
380 xB
= _mm_sub_pd(xB
, one
);
381 zB
= _mm_mul_pd(xB
, xB
);
383 polyP1
= _mm_macc_pd(P5
, zB
, P3
);
384 polyP2
= _mm_macc_pd(P4
, zB
, P2
);
385 polyP1
= _mm_macc_pd(polyP1
, zB
, P1
);
386 polyP2
= _mm_macc_pd(polyP2
, zB
, P0
);
387 polyP1
= _mm_macc_pd(polyP1
, xB
, polyP2
);
389 polyQ2
= _mm_macc_pd(Q4
, zB
, Q2
);
390 polyQ1
= _mm_add_pd(zB
, Q3
);
391 polyQ1
= _mm_macc_pd(polyQ1
, zB
, Q1
);
392 polyQ2
= _mm_macc_pd(polyQ2
, zB
, Q0
);
393 polyQ1
= _mm_macc_pd(polyQ1
, xB
, polyQ2
);
395 fexp
= _mm_and_pd(fexp
, _mm_cmpneq_pd(fexp
, _mm_setzero_pd()));
397 q
= _mm_mul_pd(polyP1
, gmx_mm_inv_pd(polyQ1
));
398 yB
= _mm_macc_pd(_mm_mul_pd(xB
, zB
), q
, _mm_mul_pd(corr1
, fexp
));
400 yB
= _mm_nmacc_pd(half
, zB
, yB
);
401 zB
= _mm_add_pd(xB
, yB
);
402 zB
= _mm_macc_pd(corr2
, fexp
, zB
);
404 z
= _mm_blendv_pd( zB
, zA
, mask1
);
412 gmx_mm_erf_pd(__m128d x
)
414 /* Coefficients for minimax approximation of erf(x)=x*(CAoffset + P(x^2)/Q(x^2)) in range [-0.75,0.75] */
415 const __m128d CAP4
= _mm_set1_pd(-0.431780540597889301512e-4);
416 const __m128d CAP3
= _mm_set1_pd(-0.00578562306260059236059);
417 const __m128d CAP2
= _mm_set1_pd(-0.028593586920219752446);
418 const __m128d CAP1
= _mm_set1_pd(-0.315924962948621698209);
419 const __m128d CAP0
= _mm_set1_pd(0.14952975608477029151);
421 const __m128d CAQ5
= _mm_set1_pd(-0.374089300177174709737e-5);
422 const __m128d CAQ4
= _mm_set1_pd(0.00015126584532155383535);
423 const __m128d CAQ3
= _mm_set1_pd(0.00536692680669480725423);
424 const __m128d CAQ2
= _mm_set1_pd(0.0668686825594046122636);
425 const __m128d CAQ1
= _mm_set1_pd(0.402604990869284362773);
427 const __m128d CAoffset
= _mm_set1_pd(0.9788494110107421875);
429 /* Coefficients for minimax approximation of erfc(x)=exp(-x^2)*x*(P(x-1)/Q(x-1)) in range [1.0,4.5] */
430 const __m128d CBP6
= _mm_set1_pd(2.49650423685462752497647637088e-10);
431 const __m128d CBP5
= _mm_set1_pd(0.00119770193298159629350136085658);
432 const __m128d CBP4
= _mm_set1_pd(0.0164944422378370965881008942733);
433 const __m128d CBP3
= _mm_set1_pd(0.0984581468691775932063932439252);
434 const __m128d CBP2
= _mm_set1_pd(0.317364595806937763843589437418);
435 const __m128d CBP1
= _mm_set1_pd(0.554167062641455850932670067075);
436 const __m128d CBP0
= _mm_set1_pd(0.427583576155807163756925301060);
437 const __m128d CBQ7
= _mm_set1_pd(0.00212288829699830145976198384930);
438 const __m128d CBQ6
= _mm_set1_pd(0.0334810979522685300554606393425);
439 const __m128d CBQ5
= _mm_set1_pd(0.2361713785181450957579508850717);
440 const __m128d CBQ4
= _mm_set1_pd(0.955364736493055670530981883072);
441 const __m128d CBQ3
= _mm_set1_pd(2.36815675631420037315349279199);
442 const __m128d CBQ2
= _mm_set1_pd(3.55261649184083035537184223542);
443 const __m128d CBQ1
= _mm_set1_pd(2.93501136050160872574376997993);
446 /* Coefficients for minimax approximation of erfc(x)=exp(-x^2)/x*(P(1/x)/Q(1/x)) in range [4.5,inf] */
447 const __m128d CCP6
= _mm_set1_pd(-2.8175401114513378771);
448 const __m128d CCP5
= _mm_set1_pd(-3.22729451764143718517);
449 const __m128d CCP4
= _mm_set1_pd(-2.5518551727311523996);
450 const __m128d CCP3
= _mm_set1_pd(-0.687717681153649930619);
451 const __m128d CCP2
= _mm_set1_pd(-0.212652252872804219852);
452 const __m128d CCP1
= _mm_set1_pd(0.0175389834052493308818);
453 const __m128d CCP0
= _mm_set1_pd(0.00628057170626964891937);
455 const __m128d CCQ6
= _mm_set1_pd(5.48409182238641741584);
456 const __m128d CCQ5
= _mm_set1_pd(13.5064170191802889145);
457 const __m128d CCQ4
= _mm_set1_pd(22.9367376522880577224);
458 const __m128d CCQ3
= _mm_set1_pd(15.930646027911794143);
459 const __m128d CCQ2
= _mm_set1_pd(11.0567237927800161565);
460 const __m128d CCQ1
= _mm_set1_pd(2.79257750980575282228);
462 const __m128d CCoffset
= _mm_set1_pd(0.5579090118408203125);
464 const __m128d one
= _mm_set1_pd(1.0);
465 const __m128d two
= _mm_set1_pd(2.0);
467 const __m128d signbit
= gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000, 0x00000000, 0x80000000, 0x00000000) );
469 __m128d xabs
, x2
, x4
, t
, t2
, w
, w2
;
470 __m128d PolyAP0
, PolyAP1
, PolyAQ0
, PolyAQ1
;
471 __m128d PolyBP0
, PolyBP1
, PolyBQ0
, PolyBQ1
;
472 __m128d PolyCP0
, PolyCP1
, PolyCQ0
, PolyCQ1
;
473 __m128d res_erf
, res_erfcB
, res_erfcC
, res_erfc
, res
;
474 __m128d mask
, expmx2
;
476 /* Calculate erf() */
477 xabs
= gmx_mm_abs_pd(x
);
478 x2
= _mm_mul_pd(x
, x
);
479 x4
= _mm_mul_pd(x2
, x2
);
481 PolyAP0
= _mm_macc_pd(CAP4
, x4
, CAP2
);
482 PolyAP1
= _mm_macc_pd(CAP3
, x4
, CAP1
);
483 PolyAP0
= _mm_macc_pd(PolyAP0
, x4
, CAP0
);
484 PolyAP0
= _mm_macc_pd(PolyAP1
, x2
, PolyAP0
);
486 PolyAQ1
= _mm_macc_pd(CAQ5
, x4
, CAQ3
);
487 PolyAQ0
= _mm_macc_pd(CAQ4
, x4
, CAQ2
);
488 PolyAQ1
= _mm_macc_pd(PolyAQ1
, x4
, CAQ1
);
489 PolyAQ0
= _mm_macc_pd(PolyAQ0
, x4
, one
);
490 PolyAQ0
= _mm_macc_pd(PolyAQ1
, x2
, PolyAQ0
);
492 res_erf
= _mm_macc_pd(PolyAP0
, gmx_mm_inv_pd(PolyAQ0
), CAoffset
);
493 res_erf
= _mm_mul_pd(x
, res_erf
);
495 /* Calculate erfc() in range [1,4.5] */
496 t
= _mm_sub_pd(xabs
, one
);
497 t2
= _mm_mul_pd(t
, t
);
499 PolyBP0
= _mm_macc_pd(CBP6
, t2
, CBP4
);
500 PolyBP1
= _mm_macc_pd(CBP5
, t2
, CBP3
);
501 PolyBP0
= _mm_macc_pd(PolyBP0
, t2
, CBP2
);
502 PolyBP1
= _mm_macc_pd(PolyBP1
, t2
, CBP1
);
503 PolyBP0
= _mm_macc_pd(PolyBP0
, t2
, CBP0
);
504 PolyBP0
= _mm_macc_pd(PolyBP1
, t
, PolyBP0
);
506 PolyBQ1
= _mm_macc_pd(CBQ7
, t2
, CBQ5
);
507 PolyBQ0
= _mm_macc_pd(CBQ6
, t2
, CBQ4
);
508 PolyBQ1
= _mm_macc_pd(PolyBQ1
, t2
, CBQ3
);
509 PolyBQ0
= _mm_macc_pd(PolyBQ0
, t2
, CBQ2
);
510 PolyBQ1
= _mm_macc_pd(PolyBQ1
, t2
, CBQ1
);
511 PolyBQ0
= _mm_macc_pd(PolyBQ0
, t2
, one
);
512 PolyBQ0
= _mm_macc_pd(PolyBQ1
, t
, PolyBQ0
);
514 res_erfcB
= _mm_mul_pd(PolyBP0
, gmx_mm_inv_pd(PolyBQ0
));
516 res_erfcB
= _mm_mul_pd(res_erfcB
, xabs
);
518 /* Calculate erfc() in range [4.5,inf] */
519 w
= gmx_mm_inv_pd(xabs
);
520 w2
= _mm_mul_pd(w
, w
);
522 PolyCP0
= _mm_macc_pd(CCP6
, w2
, CCP4
);
523 PolyCP1
= _mm_macc_pd(CCP5
, w2
, CCP3
);
524 PolyCP0
= _mm_macc_pd(PolyCP0
, w2
, CCP2
);
525 PolyCP1
= _mm_macc_pd(PolyCP1
, w2
, CCP1
);
526 PolyCP0
= _mm_macc_pd(PolyCP0
, w2
, CCP0
);
527 PolyCP0
= _mm_macc_pd(PolyCP1
, w
, PolyCP0
);
529 PolyCQ0
= _mm_macc_pd(CCQ6
, w2
, CCQ4
);
530 PolyCQ1
= _mm_macc_pd(CCQ5
, w2
, CCQ3
);
531 PolyCQ0
= _mm_macc_pd(PolyCQ0
, w2
, CCQ2
);
532 PolyCQ1
= _mm_macc_pd(PolyCQ1
, w2
, CCQ1
);
533 PolyCQ0
= _mm_macc_pd(PolyCQ0
, w2
, one
);
534 PolyCQ0
= _mm_macc_pd(PolyCQ1
, w
, PolyCQ0
);
536 expmx2
= gmx_mm_exp_pd( _mm_or_pd(signbit
, x2
) );
538 res_erfcC
= _mm_macc_pd(PolyCP0
, gmx_mm_inv_pd(PolyCQ0
), CCoffset
);
539 res_erfcC
= _mm_mul_pd(res_erfcC
, w
);
541 mask
= _mm_cmpgt_pd(xabs
, _mm_set1_pd(4.5));
542 res_erfc
= _mm_blendv_pd(res_erfcB
, res_erfcC
, mask
);
544 res_erfc
= _mm_mul_pd(res_erfc
, expmx2
);
546 /* erfc(x<0) = 2-erfc(|x|) */
547 mask
= _mm_cmplt_pd(x
, _mm_setzero_pd());
548 res_erfc
= _mm_blendv_pd(res_erfc
, _mm_sub_pd(two
, res_erfc
), mask
);
550 /* Select erf() or erfc() */
551 mask
= _mm_cmplt_pd(xabs
, one
);
552 res
= _mm_blendv_pd(_mm_sub_pd(one
, res_erfc
), res_erf
, mask
);
559 gmx_mm_erfc_pd(__m128d x
)
561 /* Coefficients for minimax approximation of erf(x)=x*(CAoffset + P(x^2)/Q(x^2)) in range [-0.75,0.75] */
562 const __m128d CAP4
= _mm_set1_pd(-0.431780540597889301512e-4);
563 const __m128d CAP3
= _mm_set1_pd(-0.00578562306260059236059);
564 const __m128d CAP2
= _mm_set1_pd(-0.028593586920219752446);
565 const __m128d CAP1
= _mm_set1_pd(-0.315924962948621698209);
566 const __m128d CAP0
= _mm_set1_pd(0.14952975608477029151);
568 const __m128d CAQ5
= _mm_set1_pd(-0.374089300177174709737e-5);
569 const __m128d CAQ4
= _mm_set1_pd(0.00015126584532155383535);
570 const __m128d CAQ3
= _mm_set1_pd(0.00536692680669480725423);
571 const __m128d CAQ2
= _mm_set1_pd(0.0668686825594046122636);
572 const __m128d CAQ1
= _mm_set1_pd(0.402604990869284362773);
574 const __m128d CAoffset
= _mm_set1_pd(0.9788494110107421875);
576 /* Coefficients for minimax approximation of erfc(x)=exp(-x^2)*x*(P(x-1)/Q(x-1)) in range [1.0,4.5] */
577 const __m128d CBP6
= _mm_set1_pd(2.49650423685462752497647637088e-10);
578 const __m128d CBP5
= _mm_set1_pd(0.00119770193298159629350136085658);
579 const __m128d CBP4
= _mm_set1_pd(0.0164944422378370965881008942733);
580 const __m128d CBP3
= _mm_set1_pd(0.0984581468691775932063932439252);
581 const __m128d CBP2
= _mm_set1_pd(0.317364595806937763843589437418);
582 const __m128d CBP1
= _mm_set1_pd(0.554167062641455850932670067075);
583 const __m128d CBP0
= _mm_set1_pd(0.427583576155807163756925301060);
584 const __m128d CBQ7
= _mm_set1_pd(0.00212288829699830145976198384930);
585 const __m128d CBQ6
= _mm_set1_pd(0.0334810979522685300554606393425);
586 const __m128d CBQ5
= _mm_set1_pd(0.2361713785181450957579508850717);
587 const __m128d CBQ4
= _mm_set1_pd(0.955364736493055670530981883072);
588 const __m128d CBQ3
= _mm_set1_pd(2.36815675631420037315349279199);
589 const __m128d CBQ2
= _mm_set1_pd(3.55261649184083035537184223542);
590 const __m128d CBQ1
= _mm_set1_pd(2.93501136050160872574376997993);
593 /* Coefficients for minimax approximation of erfc(x)=exp(-x^2)/x*(P(1/x)/Q(1/x)) in range [4.5,inf] */
594 const __m128d CCP6
= _mm_set1_pd(-2.8175401114513378771);
595 const __m128d CCP5
= _mm_set1_pd(-3.22729451764143718517);
596 const __m128d CCP4
= _mm_set1_pd(-2.5518551727311523996);
597 const __m128d CCP3
= _mm_set1_pd(-0.687717681153649930619);
598 const __m128d CCP2
= _mm_set1_pd(-0.212652252872804219852);
599 const __m128d CCP1
= _mm_set1_pd(0.0175389834052493308818);
600 const __m128d CCP0
= _mm_set1_pd(0.00628057170626964891937);
602 const __m128d CCQ6
= _mm_set1_pd(5.48409182238641741584);
603 const __m128d CCQ5
= _mm_set1_pd(13.5064170191802889145);
604 const __m128d CCQ4
= _mm_set1_pd(22.9367376522880577224);
605 const __m128d CCQ3
= _mm_set1_pd(15.930646027911794143);
606 const __m128d CCQ2
= _mm_set1_pd(11.0567237927800161565);
607 const __m128d CCQ1
= _mm_set1_pd(2.79257750980575282228);
609 const __m128d CCoffset
= _mm_set1_pd(0.5579090118408203125);
611 const __m128d one
= _mm_set1_pd(1.0);
612 const __m128d two
= _mm_set1_pd(2.0);
614 const __m128d signbit
= gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000, 0x00000000, 0x80000000, 0x00000000) );
616 __m128d xabs
, x2
, x4
, t
, t2
, w
, w2
;
617 __m128d PolyAP0
, PolyAP1
, PolyAQ0
, PolyAQ1
;
618 __m128d PolyBP0
, PolyBP1
, PolyBQ0
, PolyBQ1
;
619 __m128d PolyCP0
, PolyCP1
, PolyCQ0
, PolyCQ1
;
620 __m128d res_erf
, res_erfcB
, res_erfcC
, res_erfc
, res
;
621 __m128d mask
, expmx2
;
623 /* Calculate erf() */
624 xabs
= gmx_mm_abs_pd(x
);
625 x2
= _mm_mul_pd(x
, x
);
626 x4
= _mm_mul_pd(x2
, x2
);
628 PolyAP0
= _mm_macc_pd(CAP4
, x4
, CAP2
);
629 PolyAP1
= _mm_macc_pd(CAP3
, x4
, CAP1
);
630 PolyAP0
= _mm_macc_pd(PolyAP0
, x4
, CAP0
);
631 PolyAP0
= _mm_macc_pd(PolyAP1
, x2
, PolyAP0
);
633 PolyAQ1
= _mm_macc_pd(CAQ5
, x4
, CAQ3
);
634 PolyAQ0
= _mm_macc_pd(CAQ4
, x4
, CAQ2
);
635 PolyAQ1
= _mm_macc_pd(PolyAQ1
, x4
, CAQ1
);
636 PolyAQ0
= _mm_macc_pd(PolyAQ0
, x4
, one
);
637 PolyAQ0
= _mm_macc_pd(PolyAQ1
, x2
, PolyAQ0
);
639 res_erf
= _mm_macc_pd(PolyAP0
, gmx_mm_inv_pd(PolyAQ0
), CAoffset
);
640 res_erf
= _mm_mul_pd(x
, res_erf
);
642 /* Calculate erfc() in range [1,4.5] */
643 t
= _mm_sub_pd(xabs
, one
);
644 t2
= _mm_mul_pd(t
, t
);
646 PolyBP0
= _mm_macc_pd(CBP6
, t2
, CBP4
);
647 PolyBP1
= _mm_macc_pd(CBP5
, t2
, CBP3
);
648 PolyBP0
= _mm_macc_pd(PolyBP0
, t2
, CBP2
);
649 PolyBP1
= _mm_macc_pd(PolyBP1
, t2
, CBP1
);
650 PolyBP0
= _mm_macc_pd(PolyBP0
, t2
, CBP0
);
651 PolyBP0
= _mm_macc_pd(PolyBP1
, t
, PolyBP0
);
653 PolyBQ1
= _mm_macc_pd(CBQ7
, t2
, CBQ5
);
654 PolyBQ0
= _mm_macc_pd(CBQ6
, t2
, CBQ4
);
655 PolyBQ1
= _mm_macc_pd(PolyBQ1
, t2
, CBQ3
);
656 PolyBQ0
= _mm_macc_pd(PolyBQ0
, t2
, CBQ2
);
657 PolyBQ1
= _mm_macc_pd(PolyBQ1
, t2
, CBQ1
);
658 PolyBQ0
= _mm_macc_pd(PolyBQ0
, t2
, one
);
659 PolyBQ0
= _mm_macc_pd(PolyBQ1
, t
, PolyBQ0
);
661 res_erfcB
= _mm_mul_pd(PolyBP0
, gmx_mm_inv_pd(PolyBQ0
));
663 res_erfcB
= _mm_mul_pd(res_erfcB
, xabs
);
665 /* Calculate erfc() in range [4.5,inf] */
666 w
= gmx_mm_inv_pd(xabs
);
667 w2
= _mm_mul_pd(w
, w
);
669 PolyCP0
= _mm_macc_pd(CCP6
, w2
, CCP4
);
670 PolyCP1
= _mm_macc_pd(CCP5
, w2
, CCP3
);
671 PolyCP0
= _mm_macc_pd(PolyCP0
, w2
, CCP2
);
672 PolyCP1
= _mm_macc_pd(PolyCP1
, w2
, CCP1
);
673 PolyCP0
= _mm_macc_pd(PolyCP0
, w2
, CCP0
);
674 PolyCP0
= _mm_macc_pd(PolyCP1
, w
, PolyCP0
);
676 PolyCQ0
= _mm_macc_pd(CCQ6
, w2
, CCQ4
);
677 PolyCQ1
= _mm_macc_pd(CCQ5
, w2
, CCQ3
);
678 PolyCQ0
= _mm_macc_pd(PolyCQ0
, w2
, CCQ2
);
679 PolyCQ1
= _mm_macc_pd(PolyCQ1
, w2
, CCQ1
);
680 PolyCQ0
= _mm_macc_pd(PolyCQ0
, w2
, one
);
681 PolyCQ0
= _mm_macc_pd(PolyCQ1
, w
, PolyCQ0
);
683 expmx2
= gmx_mm_exp_pd( _mm_or_pd(signbit
, x2
) );
685 res_erfcC
= _mm_macc_pd(PolyCP0
, gmx_mm_inv_pd(PolyCQ0
), CCoffset
);
686 res_erfcC
= _mm_mul_pd(res_erfcC
, w
);
688 mask
= _mm_cmpgt_pd(xabs
, _mm_set1_pd(4.5));
689 res_erfc
= _mm_blendv_pd(res_erfcB
, res_erfcC
, mask
);
691 res_erfc
= _mm_mul_pd(res_erfc
, expmx2
);
693 /* erfc(x<0) = 2-erfc(|x|) */
694 mask
= _mm_cmplt_pd(x
, _mm_setzero_pd());
695 res_erfc
= _mm_blendv_pd(res_erfc
, _mm_sub_pd(two
, res_erfc
), mask
);
697 /* Select erf() or erfc() */
698 mask
= _mm_cmplt_pd(xabs
, one
);
699 res
= _mm_blendv_pd(res_erfc
, _mm_sub_pd(one
, res_erf
), mask
);
706 /* Calculate the force correction due to PME analytically.
708 * This routine is meant to enable analytical evaluation of the
709 * direct-space PME electrostatic force to avoid tables.
711 * The direct-space potential should be Erfc(beta*r)/r, but there
712 * are some problems evaluating that:
714 * First, the error function is difficult (read: expensive) to
715 * approxmiate accurately for intermediate to large arguments, and
716 * this happens already in ranges of beta*r that occur in simulations.
717 * Second, we now try to avoid calculating potentials in Gromacs but
718 * use forces directly.
720 * We can simply things slight by noting that the PME part is really
721 * a correction to the normal Coulomb force since Erfc(z)=1-Erf(z), i.e.
723 * V= 1/r - Erf(beta*r)/r
725 * The first term we already have from the inverse square root, so
726 * that we can leave out of this routine.
728 * For pme tolerances of 1e-3 to 1e-8 and cutoffs of 0.5nm to 1.8nm,
729 * the argument beta*r will be in the range 0.15 to ~4. Use your
730 * favorite plotting program to realize how well-behaved Erf(z)/z is
733 * We approximate f(z)=erf(z)/z with a rational minimax polynomial.
734 * However, it turns out it is more efficient to approximate f(z)/z and
735 * then only use even powers. This is another minor optimization, since
736 * we actually WANT f(z)/z, because it is going to be multiplied by
737 * the vector between the two atoms to get the vectorial force. The
738 * fastest flops are the ones we can avoid calculating!
740 * So, here's how it should be used:
743 * 2. Multiply by beta^2, so you get z^2=beta^2*r^2.
744 * 3. Evaluate this routine with z^2 as the argument.
745 * 4. The return value is the expression:
749 * ------------ - --------
752 * 5. Multiply the entire expression by beta^3. This will get you
754 * beta^3*2*exp(-z^2) beta^3*erf(z)
755 * ------------------ - ---------------
758 * or, switching back to r (z=r*beta):
760 * 2*beta*exp(-r^2*beta^2) erf(r*beta)
761 * ----------------------- - -----------
765 * With a bit of math exercise you should be able to confirm that
766 * this is exactly D[Erf[beta*r]/r,r] divided by r another time.
768 * 6. Add the result to 1/r^3, multiply by the product of the charges,
769 * and you have your force (divided by r). A final multiplication
770 * with the vector connecting the two particles and you have your
771 * vectorial force to add to the particles.
775 gmx_mm_pmecorrF_pd(__m128d z2
)
777 const __m128d FN10
= _mm_set1_pd(-8.0072854618360083154e-14);
778 const __m128d FN9
= _mm_set1_pd(1.1859116242260148027e-11);
779 const __m128d FN8
= _mm_set1_pd(-8.1490406329798423616e-10);
780 const __m128d FN7
= _mm_set1_pd(3.4404793543907847655e-8);
781 const __m128d FN6
= _mm_set1_pd(-9.9471420832602741006e-7);
782 const __m128d FN5
= _mm_set1_pd(0.000020740315999115847456);
783 const __m128d FN4
= _mm_set1_pd(-0.00031991745139313364005);
784 const __m128d FN3
= _mm_set1_pd(0.0035074449373659008203);
785 const __m128d FN2
= _mm_set1_pd(-0.031750380176100813405);
786 const __m128d FN1
= _mm_set1_pd(0.13884101728898463426);
787 const __m128d FN0
= _mm_set1_pd(-0.75225277815249618847);
789 const __m128d FD5
= _mm_set1_pd(0.000016009278224355026701);
790 const __m128d FD4
= _mm_set1_pd(0.00051055686934806966046);
791 const __m128d FD3
= _mm_set1_pd(0.0081803507497974289008);
792 const __m128d FD2
= _mm_set1_pd(0.077181146026670287235);
793 const __m128d FD1
= _mm_set1_pd(0.41543303143712535988);
794 const __m128d FD0
= _mm_set1_pd(1.0);
797 __m128d polyFN0
, polyFN1
, polyFD0
, polyFD1
;
799 z4
= _mm_mul_pd(z2
, z2
);
801 polyFD1
= _mm_macc_pd(FD5
, z4
, FD3
);
802 polyFD1
= _mm_macc_pd(polyFD1
, z4
, FD1
);
803 polyFD1
= _mm_mul_pd(polyFD1
, z2
);
804 polyFD0
= _mm_macc_pd(FD4
, z4
, FD2
);
805 polyFD0
= _mm_macc_pd(polyFD0
, z4
, FD0
);
806 polyFD0
= _mm_add_pd(polyFD0
, polyFD1
);
808 polyFD0
= gmx_mm_inv_pd(polyFD0
);
810 polyFN0
= _mm_macc_pd(FN10
, z4
, FN8
);
811 polyFN0
= _mm_macc_pd(polyFN0
, z4
, FN6
);
812 polyFN0
= _mm_macc_pd(polyFN0
, z4
, FN4
);
813 polyFN0
= _mm_macc_pd(polyFN0
, z4
, FN2
);
814 polyFN0
= _mm_macc_pd(polyFN0
, z4
, FN0
);
815 polyFN1
= _mm_macc_pd(FN9
, z4
, FN7
);
816 polyFN1
= _mm_macc_pd(polyFN1
, z4
, FN5
);
817 polyFN1
= _mm_macc_pd(polyFN1
, z4
, FN3
);
818 polyFN1
= _mm_macc_pd(polyFN1
, z4
, FN1
);
819 polyFN0
= _mm_macc_pd(polyFN1
, z2
, polyFN0
);
821 return _mm_mul_pd(polyFN0
, polyFD0
);
825 /* Calculate the potential correction due to PME analytically.
827 * This routine calculates Erf(z)/z, although you should provide z^2
828 * as the input argument.
830 * Here's how it should be used:
833 * 2. Multiply by beta^2, so you get z^2=beta^2*r^2.
834 * 3. Evaluate this routine with z^2 as the argument.
835 * 4. The return value is the expression:
842 * 5. Multiply the entire expression by beta and switching back to r (z=r*beta):
848 * 6. Subtract the result from 1/r, multiply by the product of the charges,
849 * and you have your potential.
853 gmx_mm_pmecorrV_pd(__m128d z2
)
855 const __m128d VN9
= _mm_set1_pd(-9.3723776169321855475e-13);
856 const __m128d VN8
= _mm_set1_pd(1.2280156762674215741e-10);
857 const __m128d VN7
= _mm_set1_pd(-7.3562157912251309487e-9);
858 const __m128d VN6
= _mm_set1_pd(2.6215886208032517509e-7);
859 const __m128d VN5
= _mm_set1_pd(-4.9532491651265819499e-6);
860 const __m128d VN4
= _mm_set1_pd(0.00025907400778966060389);
861 const __m128d VN3
= _mm_set1_pd(0.0010585044856156469792);
862 const __m128d VN2
= _mm_set1_pd(0.045247661136833092885);
863 const __m128d VN1
= _mm_set1_pd(0.11643931522926034421);
864 const __m128d VN0
= _mm_set1_pd(1.1283791671726767970);
866 const __m128d VD5
= _mm_set1_pd(0.000021784709867336150342);
867 const __m128d VD4
= _mm_set1_pd(0.00064293662010911388448);
868 const __m128d VD3
= _mm_set1_pd(0.0096311444822588683504);
869 const __m128d VD2
= _mm_set1_pd(0.085608012351550627051);
870 const __m128d VD1
= _mm_set1_pd(0.43652499166614811084);
871 const __m128d VD0
= _mm_set1_pd(1.0);
874 __m128d polyVN0
, polyVN1
, polyVD0
, polyVD1
;
876 z4
= _mm_mul_pd(z2
, z2
);
878 polyVD1
= _mm_macc_pd(VD5
, z4
, VD3
);
879 polyVD0
= _mm_macc_pd(VD4
, z4
, VD2
);
880 polyVD1
= _mm_macc_pd(polyVD1
, z4
, VD1
);
881 polyVD0
= _mm_macc_pd(polyVD0
, z4
, VD0
);
882 polyVD0
= _mm_macc_pd(polyVD1
, z2
, polyVD0
);
884 polyVD0
= gmx_mm_inv_pd(polyVD0
);
886 polyVN1
= _mm_macc_pd(VN9
, z4
, VN7
);
887 polyVN0
= _mm_macc_pd(VN8
, z4
, VN6
);
888 polyVN1
= _mm_macc_pd(polyVN1
, z4
, VN5
);
889 polyVN0
= _mm_macc_pd(polyVN0
, z4
, VN4
);
890 polyVN1
= _mm_macc_pd(polyVN1
, z4
, VN3
);
891 polyVN0
= _mm_macc_pd(polyVN0
, z4
, VN2
);
892 polyVN1
= _mm_macc_pd(polyVN1
, z4
, VN1
);
893 polyVN0
= _mm_macc_pd(polyVN0
, z4
, VN0
);
894 polyVN0
= _mm_macc_pd(polyVN1
, z2
, polyVN0
);
896 return _mm_mul_pd(polyVN0
, polyVD0
);
901 gmx_mm_sincos_pd(__m128d x
,
906 __declspec(align(16))
907 const double sintable
[34] =
909 1.00000000000000000e+00, 0.00000000000000000e+00,
910 9.95184726672196929e-01, 9.80171403295606036e-02,
911 9.80785280403230431e-01, 1.95090322016128248e-01,
912 9.56940335732208824e-01, 2.90284677254462331e-01,
913 9.23879532511286738e-01, 3.82683432365089782e-01,
914 8.81921264348355050e-01, 4.71396736825997642e-01,
915 8.31469612302545236e-01, 5.55570233019602178e-01,
916 7.73010453362736993e-01, 6.34393284163645488e-01,
917 7.07106781186547573e-01, 7.07106781186547462e-01,
918 6.34393284163645599e-01, 7.73010453362736882e-01,
919 5.55570233019602289e-01, 8.31469612302545125e-01,
920 4.71396736825997809e-01, 8.81921264348354939e-01,
921 3.82683432365089837e-01, 9.23879532511286738e-01,
922 2.90284677254462276e-01, 9.56940335732208935e-01,
923 1.95090322016128304e-01, 9.80785280403230431e-01,
924 9.80171403295607702e-02, 9.95184726672196818e-01,
925 0.0, 1.00000000000000000e+00
928 const __m128d sintable
[17] =
930 _mm_set_pd( 0.0, 1.0 ),
931 _mm_set_pd( sin( 1.0 * (M_PI
/2.0) / 16.0), cos( 1.0 * (M_PI
/2.0) / 16.0) ),
932 _mm_set_pd( sin( 2.0 * (M_PI
/2.0) / 16.0), cos( 2.0 * (M_PI
/2.0) / 16.0) ),
933 _mm_set_pd( sin( 3.0 * (M_PI
/2.0) / 16.0), cos( 3.0 * (M_PI
/2.0) / 16.0) ),
934 _mm_set_pd( sin( 4.0 * (M_PI
/2.0) / 16.0), cos( 4.0 * (M_PI
/2.0) / 16.0) ),
935 _mm_set_pd( sin( 5.0 * (M_PI
/2.0) / 16.0), cos( 5.0 * (M_PI
/2.0) / 16.0) ),
936 _mm_set_pd( sin( 6.0 * (M_PI
/2.0) / 16.0), cos( 6.0 * (M_PI
/2.0) / 16.0) ),
937 _mm_set_pd( sin( 7.0 * (M_PI
/2.0) / 16.0), cos( 7.0 * (M_PI
/2.0) / 16.0) ),
938 _mm_set_pd( sin( 8.0 * (M_PI
/2.0) / 16.0), cos( 8.0 * (M_PI
/2.0) / 16.0) ),
939 _mm_set_pd( sin( 9.0 * (M_PI
/2.0) / 16.0), cos( 9.0 * (M_PI
/2.0) / 16.0) ),
940 _mm_set_pd( sin( 10.0 * (M_PI
/2.0) / 16.0), cos( 10.0 * (M_PI
/2.0) / 16.0) ),
941 _mm_set_pd( sin( 11.0 * (M_PI
/2.0) / 16.0), cos( 11.0 * (M_PI
/2.0) / 16.0) ),
942 _mm_set_pd( sin( 12.0 * (M_PI
/2.0) / 16.0), cos( 12.0 * (M_PI
/2.0) / 16.0) ),
943 _mm_set_pd( sin( 13.0 * (M_PI
/2.0) / 16.0), cos( 13.0 * (M_PI
/2.0) / 16.0) ),
944 _mm_set_pd( sin( 14.0 * (M_PI
/2.0) / 16.0), cos( 14.0 * (M_PI
/2.0) / 16.0) ),
945 _mm_set_pd( sin( 15.0 * (M_PI
/2.0) / 16.0), cos( 15.0 * (M_PI
/2.0) / 16.0) ),
946 _mm_set_pd( 1.0, 0.0 )
950 const __m128d signmask
= gmx_mm_castsi128_pd( _mm_set_epi32(0x7FFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF, 0xFFFFFFFF) );
951 const __m128i signbit_epi32
= _mm_set1_epi32(0x80000000);
953 const __m128d tabscale
= _mm_set1_pd(32.0/M_PI
);
954 const __m128d invtabscale0
= _mm_set1_pd(9.81747508049011230469e-02);
955 const __m128d invtabscale1
= _mm_set1_pd(1.96197799156550576057e-08);
956 const __m128i ione
= _mm_set1_epi32(1);
957 const __m128i i32
= _mm_set1_epi32(32);
958 const __m128i i16
= _mm_set1_epi32(16);
959 const __m128i tabmask
= _mm_set1_epi32(0x3F);
960 const __m128d sinP7
= _mm_set1_pd(-1.0/5040.0);
961 const __m128d sinP5
= _mm_set1_pd(1.0/120.0);
962 const __m128d sinP3
= _mm_set1_pd(-1.0/6.0);
963 const __m128d sinP1
= _mm_set1_pd(1.0);
965 const __m128d cosP6
= _mm_set1_pd(-1.0/720.0);
966 const __m128d cosP4
= _mm_set1_pd(1.0/24.0);
967 const __m128d cosP2
= _mm_set1_pd(-1.0/2.0);
968 const __m128d cosP0
= _mm_set1_pd(1.0);
971 __m128i tabidx
, corridx
;
972 __m128d xabs
, z
, z2
, polySin
, polyCos
;
974 __m128d ypoint0
, ypoint1
;
976 __m128d sinpoint
, cospoint
;
977 __m128d xsign
, ssign
, csign
;
978 __m128i imask
, sswapsign
, cswapsign
;
981 xsign
= _mm_andnot_pd(signmask
, x
);
982 xabs
= _mm_and_pd(x
, signmask
);
984 scalex
= _mm_mul_pd(tabscale
, xabs
);
985 tabidx
= _mm_cvtpd_epi32(scalex
);
987 xpoint
= _mm_round_pd(scalex
, _MM_FROUND_TO_NEAREST_INT
);
989 /* Extended precision arithmetics */
990 z
= _mm_nmacc_pd(invtabscale0
, xpoint
, xabs
);
991 z
= _mm_nmacc_pd(invtabscale1
, xpoint
, z
);
993 /* Range reduction to 0..2*Pi */
994 tabidx
= _mm_and_si128(tabidx
, tabmask
);
996 /* tabidx is now in range [0,..,64] */
997 imask
= _mm_cmpgt_epi32(tabidx
, i32
);
1000 corridx
= _mm_and_si128(imask
, i32
);
1001 tabidx
= _mm_sub_epi32(tabidx
, corridx
);
1003 /* tabidx is now in range [0..32] */
1004 imask
= _mm_cmpgt_epi32(tabidx
, i16
);
1005 cswapsign
= _mm_xor_si128(cswapsign
, imask
);
1006 corridx
= _mm_sub_epi32(i32
, tabidx
);
1007 tabidx
= _mm_blendv_epi8(tabidx
, corridx
, imask
);
1008 /* tabidx is now in range [0..16] */
1009 ssign
= _mm_cvtepi32_pd( _mm_or_si128( sswapsign
, ione
) );
1010 csign
= _mm_cvtepi32_pd( _mm_or_si128( cswapsign
, ione
) );
1013 ypoint0
= _mm_load_pd(sintable
+ 2*_mm_extract_epi32(tabidx
, 0));
1014 ypoint1
= _mm_load_pd(sintable
+ 2*_mm_extract_epi32(tabidx
, 1));
1016 ypoint0
= sintable
[_mm_extract_epi32(tabidx
, 0)];
1017 ypoint1
= sintable
[_mm_extract_epi32(tabidx
, 1)];
1019 sinpoint
= _mm_unpackhi_pd(ypoint0
, ypoint1
);
1020 cospoint
= _mm_unpacklo_pd(ypoint0
, ypoint1
);
1022 sinpoint
= _mm_mul_pd(sinpoint
, ssign
);
1023 cospoint
= _mm_mul_pd(cospoint
, csign
);
1025 z2
= _mm_mul_pd(z
, z
);
1027 polySin
= _mm_macc_pd(sinP7
, z2
, sinP5
);
1028 polySin
= _mm_macc_pd(polySin
, z2
, sinP3
);
1029 polySin
= _mm_macc_pd(polySin
, z2
, sinP1
);
1030 polySin
= _mm_mul_pd(polySin
, z
);
1032 polyCos
= _mm_macc_pd(cosP6
, z2
, cosP4
);
1033 polyCos
= _mm_macc_pd(polyCos
, z2
, cosP2
);
1034 polyCos
= _mm_macc_pd(polyCos
, z2
, cosP0
);
1036 *sinval
= _mm_xor_pd(_mm_add_pd( _mm_mul_pd(sinpoint
, polyCos
), _mm_mul_pd(cospoint
, polySin
) ), xsign
);
1037 *cosval
= _mm_sub_pd( _mm_mul_pd(cospoint
, polyCos
), _mm_mul_pd(sinpoint
, polySin
) );
1043 * IMPORTANT: Do NOT call both sin & cos if you need both results, since each of them
1044 * will then call the sincos() routine and waste a factor 2 in performance!
1047 gmx_mm_sin_pd(__m128d x
)
1050 gmx_mm_sincos_pd(x
, &s
, &c
);
1055 * IMPORTANT: Do NOT call both sin & cos if you need both results, since each of them
1056 * will then call the sincos() routine and waste a factor 2 in performance!
1059 gmx_mm_cos_pd(__m128d x
)
1062 gmx_mm_sincos_pd(x
, &s
, &c
);
1069 gmx_mm_tan_pd(__m128d x
)
1071 __m128d sinval
, cosval
;
1074 gmx_mm_sincos_pd(x
, &sinval
, &cosval
);
1076 tanval
= _mm_mul_pd(sinval
, gmx_mm_inv_pd(cosval
));
1084 gmx_mm_asin_pd(__m128d x
)
1086 /* Same algorithm as cephes library */
1087 const __m128d signmask
= gmx_mm_castsi128_pd( _mm_set_epi32(0x7FFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF, 0xFFFFFFFF) );
1088 const __m128d limit1
= _mm_set1_pd(0.625);
1089 const __m128d limit2
= _mm_set1_pd(1e-8);
1090 const __m128d one
= _mm_set1_pd(1.0);
1091 const __m128d halfpi
= _mm_set1_pd(M_PI
/2.0);
1092 const __m128d quarterpi
= _mm_set1_pd(M_PI
/4.0);
1093 const __m128d morebits
= _mm_set1_pd(6.123233995736765886130e-17);
1095 const __m128d P5
= _mm_set1_pd(4.253011369004428248960e-3);
1096 const __m128d P4
= _mm_set1_pd(-6.019598008014123785661e-1);
1097 const __m128d P3
= _mm_set1_pd(5.444622390564711410273e0
);
1098 const __m128d P2
= _mm_set1_pd(-1.626247967210700244449e1
);
1099 const __m128d P1
= _mm_set1_pd(1.956261983317594739197e1
);
1100 const __m128d P0
= _mm_set1_pd(-8.198089802484824371615e0
);
1102 const __m128d Q4
= _mm_set1_pd(-1.474091372988853791896e1
);
1103 const __m128d Q3
= _mm_set1_pd(7.049610280856842141659e1
);
1104 const __m128d Q2
= _mm_set1_pd(-1.471791292232726029859e2
);
1105 const __m128d Q1
= _mm_set1_pd(1.395105614657485689735e2
);
1106 const __m128d Q0
= _mm_set1_pd(-4.918853881490881290097e1
);
1108 const __m128d R4
= _mm_set1_pd(2.967721961301243206100e-3);
1109 const __m128d R3
= _mm_set1_pd(-5.634242780008963776856e-1);
1110 const __m128d R2
= _mm_set1_pd(6.968710824104713396794e0
);
1111 const __m128d R1
= _mm_set1_pd(-2.556901049652824852289e1
);
1112 const __m128d R0
= _mm_set1_pd(2.853665548261061424989e1
);
1114 const __m128d S3
= _mm_set1_pd(-2.194779531642920639778e1
);
1115 const __m128d S2
= _mm_set1_pd(1.470656354026814941758e2
);
1116 const __m128d S1
= _mm_set1_pd(-3.838770957603691357202e2
);
1117 const __m128d S0
= _mm_set1_pd(3.424398657913078477438e2
);
1122 __m128d zz
, ww
, z
, q
, w
, y
, zz2
, ww2
;
1129 sign
= _mm_andnot_pd(signmask
, x
);
1130 xabs
= _mm_and_pd(x
, signmask
);
1132 mask
= _mm_cmpgt_pd(xabs
, limit1
);
1134 zz
= _mm_sub_pd(one
, xabs
);
1135 ww
= _mm_mul_pd(xabs
, xabs
);
1136 zz2
= _mm_mul_pd(zz
, zz
);
1137 ww2
= _mm_mul_pd(ww
, ww
);
1140 RA
= _mm_macc_pd(R4
, zz2
, R2
);
1141 RB
= _mm_macc_pd(R3
, zz2
, R1
);
1142 RA
= _mm_macc_pd(RA
, zz2
, R0
);
1143 RA
= _mm_macc_pd(RB
, zz
, RA
);
1146 SB
= _mm_macc_pd(S3
, zz2
, S1
);
1147 SA
= _mm_add_pd(zz2
, S2
);
1148 SA
= _mm_macc_pd(SA
, zz2
, S0
);
1149 SA
= _mm_macc_pd(SB
, zz
, SA
);
1152 PA
= _mm_macc_pd(P5
, ww2
, P3
);
1153 PB
= _mm_macc_pd(P4
, ww2
, P2
);
1154 PA
= _mm_macc_pd(PA
, ww2
, P1
);
1155 PB
= _mm_macc_pd(PB
, ww2
, P0
);
1156 PA
= _mm_macc_pd(PA
, ww
, PB
);
1159 QB
= _mm_macc_pd(Q4
, ww2
, Q2
);
1160 QA
= _mm_add_pd(ww2
, Q3
);
1161 QA
= _mm_macc_pd(QA
, ww2
, Q1
);
1162 QB
= _mm_macc_pd(QB
, ww2
, Q0
);
1163 QA
= _mm_macc_pd(QA
, ww
, QB
);
1165 RA
= _mm_mul_pd(RA
, zz
);
1166 PA
= _mm_mul_pd(PA
, ww
);
1168 nom
= _mm_blendv_pd( PA
, RA
, mask
);
1169 denom
= _mm_blendv_pd( QA
, SA
, mask
);
1171 q
= _mm_mul_pd( nom
, gmx_mm_inv_pd(denom
) );
1173 zz
= _mm_add_pd(zz
, zz
);
1174 zz
= gmx_mm_sqrt_pd(zz
);
1175 z
= _mm_sub_pd(quarterpi
, zz
);
1176 zz
= _mm_mul_pd(zz
, q
);
1177 zz
= _mm_sub_pd(zz
, morebits
);
1178 z
= _mm_sub_pd(z
, zz
);
1179 z
= _mm_add_pd(z
, quarterpi
);
1181 w
= _mm_macc_pd(xabs
, q
, xabs
);
1183 z
= _mm_blendv_pd( w
, z
, mask
);
1185 mask
= _mm_cmpgt_pd(xabs
, limit2
);
1186 z
= _mm_blendv_pd( xabs
, z
, mask
);
1188 z
= _mm_xor_pd(z
, sign
);
1195 gmx_mm_acos_pd(__m128d x
)
1197 const __m128d signmask
= gmx_mm_castsi128_pd( _mm_set_epi32(0x7FFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF, 0xFFFFFFFF) );
1198 const __m128d one
= _mm_set1_pd(1.0);
1199 const __m128d half
= _mm_set1_pd(0.5);
1200 const __m128d pi
= _mm_set1_pd(M_PI
);
1201 const __m128d quarterpi0
= _mm_set1_pd(7.85398163397448309616e-1);
1202 const __m128d quarterpi1
= _mm_set1_pd(6.123233995736765886130e-17);
1209 mask1
= _mm_cmpgt_pd(x
, half
);
1210 z1
= _mm_mul_pd(half
, _mm_sub_pd(one
, x
));
1211 z1
= gmx_mm_sqrt_pd(z1
);
1212 z
= _mm_blendv_pd( x
, z1
, mask1
);
1214 z
= gmx_mm_asin_pd(z
);
1216 z1
= _mm_add_pd(z
, z
);
1218 z2
= _mm_sub_pd(quarterpi0
, z
);
1219 z2
= _mm_add_pd(z2
, quarterpi1
);
1220 z2
= _mm_add_pd(z2
, quarterpi0
);
1222 z
= _mm_blendv_pd(z2
, z1
, mask1
);
1228 gmx_mm_atan_pd(__m128d x
)
1230 /* Same algorithm as cephes library */
1231 const __m128d signmask
= gmx_mm_castsi128_pd( _mm_set_epi32(0x7FFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF, 0xFFFFFFFF) );
1232 const __m128d limit1
= _mm_set1_pd(0.66);
1233 const __m128d limit2
= _mm_set1_pd(2.41421356237309504880);
1234 const __m128d quarterpi
= _mm_set1_pd(M_PI
/4.0);
1235 const __m128d halfpi
= _mm_set1_pd(M_PI
/2.0);
1236 const __m128d mone
= _mm_set1_pd(-1.0);
1237 const __m128d morebits1
= _mm_set1_pd(0.5*6.123233995736765886130E-17);
1238 const __m128d morebits2
= _mm_set1_pd(6.123233995736765886130E-17);
1240 const __m128d P4
= _mm_set1_pd(-8.750608600031904122785E-1);
1241 const __m128d P3
= _mm_set1_pd(-1.615753718733365076637E1
);
1242 const __m128d P2
= _mm_set1_pd(-7.500855792314704667340E1
);
1243 const __m128d P1
= _mm_set1_pd(-1.228866684490136173410E2
);
1244 const __m128d P0
= _mm_set1_pd(-6.485021904942025371773E1
);
1246 const __m128d Q4
= _mm_set1_pd(2.485846490142306297962E1
);
1247 const __m128d Q3
= _mm_set1_pd(1.650270098316988542046E2
);
1248 const __m128d Q2
= _mm_set1_pd(4.328810604912902668951E2
);
1249 const __m128d Q1
= _mm_set1_pd(4.853903996359136964868E2
);
1250 const __m128d Q0
= _mm_set1_pd(1.945506571482613964425E2
);
1253 __m128d mask1
, mask2
;
1256 __m128d P_A
, P_B
, Q_A
, Q_B
;
1258 sign
= _mm_andnot_pd(signmask
, x
);
1259 x
= _mm_and_pd(x
, signmask
);
1261 mask1
= _mm_cmpgt_pd(x
, limit1
);
1262 mask2
= _mm_cmpgt_pd(x
, limit2
);
1264 t1
= _mm_mul_pd(_mm_add_pd(x
, mone
), gmx_mm_inv_pd(_mm_sub_pd(x
, mone
)));
1265 t2
= _mm_mul_pd(mone
, gmx_mm_inv_pd(x
));
1267 y
= _mm_and_pd(mask1
, quarterpi
);
1268 y
= _mm_or_pd( _mm_and_pd(mask2
, halfpi
), _mm_andnot_pd(mask2
, y
) );
1270 x
= _mm_or_pd( _mm_and_pd(mask1
, t1
), _mm_andnot_pd(mask1
, x
) );
1271 x
= _mm_or_pd( _mm_and_pd(mask2
, t2
), _mm_andnot_pd(mask2
, x
) );
1273 z
= _mm_mul_pd(x
, x
);
1274 z2
= _mm_mul_pd(z
, z
);
1276 P_A
= _mm_macc_pd(P4
, z2
, P2
);
1277 P_B
= _mm_macc_pd(P3
, z2
, P1
);
1278 P_A
= _mm_macc_pd(P_A
, z2
, P0
);
1279 P_A
= _mm_macc_pd(P_B
, z
, P_A
);
1282 Q_B
= _mm_macc_pd(Q4
, z2
, Q2
);
1283 Q_A
= _mm_add_pd(z2
, Q3
);
1284 Q_A
= _mm_macc_pd(Q_A
, z2
, Q1
);
1285 Q_B
= _mm_macc_pd(Q_B
, z2
, Q0
);
1286 Q_A
= _mm_macc_pd(Q_A
, z
, Q_B
);
1288 z
= _mm_mul_pd(z
, P_A
);
1289 z
= _mm_mul_pd(z
, gmx_mm_inv_pd(Q_A
));
1290 z
= _mm_macc_pd(z
, x
, x
);
1292 t1
= _mm_and_pd(mask1
, morebits1
);
1293 t1
= _mm_or_pd( _mm_and_pd(mask2
, morebits2
), _mm_andnot_pd(mask2
, t1
) );
1295 z
= _mm_add_pd(z
, t1
);
1296 y
= _mm_add_pd(y
, z
);
1298 y
= _mm_xor_pd(y
, sign
);
1305 gmx_mm_atan2_pd(__m128d y
, __m128d x
)
1307 const __m128d pi
= _mm_set1_pd(M_PI
);
1308 const __m128d minuspi
= _mm_set1_pd(-M_PI
);
1309 const __m128d halfpi
= _mm_set1_pd(M_PI
/2.0);
1310 const __m128d minushalfpi
= _mm_set1_pd(-M_PI
/2.0);
1312 __m128d z
, z1
, z3
, z4
;
1314 __m128d maskx_lt
, maskx_eq
;
1315 __m128d masky_lt
, masky_eq
;
1316 __m128d mask1
, mask2
, mask3
, mask4
, maskall
;
1318 maskx_lt
= _mm_cmplt_pd(x
, _mm_setzero_pd());
1319 masky_lt
= _mm_cmplt_pd(y
, _mm_setzero_pd());
1320 maskx_eq
= _mm_cmpeq_pd(x
, _mm_setzero_pd());
1321 masky_eq
= _mm_cmpeq_pd(y
, _mm_setzero_pd());
1323 z
= _mm_mul_pd(y
, gmx_mm_inv_pd(x
));
1324 z
= gmx_mm_atan_pd(z
);
1326 mask1
= _mm_and_pd(maskx_eq
, masky_lt
);
1327 mask2
= _mm_andnot_pd(maskx_lt
, masky_eq
);
1328 mask3
= _mm_andnot_pd( _mm_or_pd(masky_lt
, masky_eq
), maskx_eq
);
1329 mask4
= _mm_and_pd(masky_eq
, maskx_lt
);
1331 maskall
= _mm_or_pd( _mm_or_pd(mask1
, mask2
), _mm_or_pd(mask3
, mask4
) );
1333 z
= _mm_andnot_pd(maskall
, z
);
1334 z1
= _mm_and_pd(mask1
, minushalfpi
);
1335 z3
= _mm_and_pd(mask3
, halfpi
);
1336 z4
= _mm_and_pd(mask4
, pi
);
1338 z
= _mm_or_pd( _mm_or_pd(z
, z1
), _mm_or_pd(z3
, z4
) );
1340 w
= _mm_blendv_pd(pi
, minuspi
, masky_lt
);
1341 w
= _mm_and_pd(w
, maskx_lt
);
1343 w
= _mm_andnot_pd(maskall
, w
);
1345 z
= _mm_add_pd(z
, w
);
1350 #endif /*_gmx_math_x86_avx_128_fma_double_h_ */