1 ; VARIOUS PREPROCESSING OPTIONS
2 ; Preprocessor information: use cpp syntax.
3 ; e.g.: -I/home/joe/doe -I/home/mary/roe
5 ; e.g.: -DPOSRES -DFLEXIBLE (note these variable names are case sensitive)
8 ; RUN CONTROL PARAMETERS
10 ; Start time and timestep in ps
14 ; For exact run continuation or redoing part of a run
16 ; Part index is updated automatically on checkpointing (keeps files separate)
18 ; mode for center of mass motion removal
20 ; number of steps for center of mass motion removal
22 ; group(s) for center of mass motion removal
25 ; LANGEVIN DYNAMICS OPTIONS
26 ; Friction coefficient (amu/ps) and random seed
30 ; ENERGY MINIMIZATION OPTIONS
31 ; Force tolerance and initial step-size
34 ; Max number of iterations in relax-shells
36 ; Step size (ps^2) for minimization of flexible constraints
38 ; Frequency of steepest descents steps when doing CG
42 ; TEST PARTICLE INSERTION OPTIONS
45 ; OUTPUT CONTROL OPTIONS
46 ; Output frequency for coords (x), velocities (v) and forces (f)
50 ; Output frequency for energies to log file and energy file
54 ; Output frequency and precision for .xtc file
57 ; This selects the subset of atoms for the .xtc file. You can
58 ; select multiple groups. By default all atoms will be written.
60 ; Selection of energy groups
63 ; NEIGHBORSEARCHING PARAMETERS
64 ; cut-off scheme (group: using charge groups, Verlet: particle based cut-offs)
65 cutoff-scheme = verlet
66 ; nblist update frequency
68 ; ns algorithm (simple or grid)
70 ; Periodic boundary conditions: xyz, no, xy
72 periodic-molecules = no
73 ; Allowed energy drift due to the Verlet buffer in kJ/mol/ps per atom,
74 ; a value of -1 means: use rlist
75 verlet-buffer-drift = -1
78 ; long-range cut-off for switched potentials
82 ; OPTIONS FOR ELECTROSTATICS AND VDW
83 ; Method for doing electrostatics
85 coulomb-modifier = Potential-shift-Verlet
88 ; Relative dielectric constant for the medium and the reaction field
91 ; Method for doing Van der Waals
93 vdw-modifier = Potential-shift-Verlet
97 ; Apply long range dispersion corrections for Energy and Pressure
99 ; Extension of the potential lookup tables beyond the cut-off
101 ; Seperate tables between energy group pairs
103 ; Spacing for the PME/PPPM FFT grid
104 fourierspacing = 0.12
105 ; FFT grid size, when a value is 0 fourierspacing will be used
109 ; EWALD/PME/PPPM parameters
116 ; IMPLICIT SOLVENT ALGORITHM
117 implicit-solvent = No
119 ; GENERALIZED BORN ELECTROSTATICS
120 ; Algorithm for calculating Born radii
122 ; Frequency of calculating the Born radii inside rlist
124 ; Cutoff for Born radii calculation; the contribution from atoms
125 ; between rlist and rgbradii is updated every nstlist steps
127 ; Dielectric coefficient of the implicit solvent
128 gb-epsilon-solvent = 80
129 ; Salt concentration in M for Generalized Born models
131 ; Scaling factors used in the OBC GB model. Default values are OBC(II)
135 gb-dielectric-offset = 0.009
136 sa-algorithm = Ace-approximation
137 ; Surface tension (kJ/mol/nm^2) for the SA (nonpolar surface) part of GBSA
138 ; The value -1 will set default value for Still/HCT/OBC GB-models.
139 sa-surface-tension = -1
141 ; OPTIONS FOR WEAK COUPLING ALGORITHMS
142 ; Temperature coupling
146 print-nose-hoover-chain-variables = no
147 ; Groups to couple separately
149 ; Time constant (ps) and reference temperature (K)
154 pcoupltype = Isotropic
156 ; Time constant (ps), compressibility (1/bar) and reference P (bar)
158 compressibility = 4.5e-5
160 ; Scaling of reference coordinates, No, All or COM
161 refcoord-scaling = No
163 ; OPTIONS FOR QMMM calculations
165 ; Groups treated Quantum Mechanically
185 ; Scale factor for MM charges
186 MMChargeScaleFactor = 1
187 ; Optimization of QM subsystem
191 ; SIMULATED ANNEALING
192 ; Type of annealing for each temperature group (no/single/periodic)
194 ; Number of time points to use for specifying annealing in each group
196 ; List of times at the annealing points for each group
198 ; Temp. at each annealing point, for each group.
201 ; GENERATE VELOCITIES FOR STARTUP RUN
207 constraints = all-bonds
208 ; Type of constraint algorithm
209 constraint-algorithm = Lincs
210 ; Do not constrain the start configuration
212 ; Use successive overrelaxation to reduce the number of shake iterations
214 ; Relative tolerance of shake
216 ; Highest order in the expansion of the constraint coupling matrix
218 ; Number of iterations in the final step of LINCS. 1 is fine for
219 ; normal simulations, but use 2 to conserve energy in NVE runs.
220 ; For energy minimization with constraints it should be 4 to 8.
222 ; Lincs will write a warning to the stderr if in one step a bond
223 ; rotates over more degrees than
225 ; Convert harmonic bonds to morse potentials
228 ; ENERGY GROUP EXCLUSIONS
229 ; Pairs of energy groups for which all non-bonded interactions are excluded
233 ; Number of walls, type, atom types, densities and box-z scale factor for Ewald
242 ; Pull type: no, umbrella, constraint or constant-force
246 ; Enforced rotation: No or Yes
249 ; NMR refinement stuff
250 ; Distance restraints type: No, Simple or Ensemble
252 ; Force weighting of pairs in one distance restraint: Conservative or Equal
253 disre-weighting = Conservative
254 ; Use sqrt of the time averaged times the instantaneous violation
258 ; Output frequency for pair distances to energy file
260 ; Orientation restraints: No or Yes
262 ; Orientation restraints force constant and tau for time averaging
266 ; Output frequency for trace(SD) and S to energy file
269 ; Free energy variables
272 couple-lambda0 = vdw-q
273 couple-lambda1 = vdw-q
276 init-lambda-state = 0
285 temperature-lambdas =
286 init-lambda-weights =
287 dhdl-print-energy = no
293 separate-dhdl-file = yes
294 dhdl-derivatives = yes
296 dh_hist_spacing = 0.1
298 ; Non-equilibrium MD stuff
306 ; simulated tempering variables
307 simulated-tempering = no
308 simulated-tempering-scaling = geometric
313 ; Format is number of terms (int) and for all terms an amplitude (real)
314 ; and a phase angle (real)
325 ; User defined thingies