Velocities and forces for selections.
[gromacs/qmmm-gamess-us.git] / include / vec.h
blob09c2d845654edcefd0528aff49e0ca1c50b4758f
1 /*
2 *
3 * This source code is part of
4 *
5 * G R O M A C S
6 *
7 * GROningen MAchine for Chemical Simulations
8 *
9 * VERSION 3.2.0
10 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
11 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
12 * Copyright (c) 2001-2004, The GROMACS development team,
13 * check out http://www.gromacs.org for more information.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * If you want to redistribute modifications, please consider that
21 * scientific software is very special. Version control is crucial -
22 * bugs must be traceable. We will be happy to consider code for
23 * inclusion in the official distribution, but derived work must not
24 * be called official GROMACS. Details are found in the README & COPYING
25 * files - if they are missing, get the official version at www.gromacs.org.
27 * To help us fund GROMACS development, we humbly ask that you cite
28 * the papers on the package - you can find them in the top README file.
30 * For more info, check our website at http://www.gromacs.org
32 * And Hey:
33 * Gromacs Runs On Most of All Computer Systems
35 #ifndef _vec_h
36 #define _vec_h
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
41 #define gmx_inline inline
42 #else
43 #ifdef __GNUC__
44 #define gmx_inline __inline
45 #else
46 #define inline
47 #endif
49 #endif
52 collection of in-line ready operations:
54 lookup-table optimized scalar operations:
55 real gmx_invsqrt(real x)
56 void vecinvsqrt(real in[],real out[],int n)
57 void vecrecip(real in[],real out[],int n)
58 real sqr(real x)
59 double dsqr(double x)
61 vector operations:
62 void rvec_add(const rvec a,const rvec b,rvec c) c = a + b
63 void dvec_add(const dvec a,const dvec b,dvec c) c = a + b
64 void ivec_add(const ivec a,const ivec b,ivec c) c = a + b
65 void rvec_inc(rvec a,const rvec b) a += b
66 void dvec_inc(dvec a,const dvec b) a += b
67 void ivec_inc(ivec a,const ivec b) a += b
68 void rvec_sub(const rvec a,const rvec b,rvec c) c = a - b
69 void dvec_sub(const dvec a,const dvec b,dvec c) c = a - b
70 void rvec_dec(rvec a,rvec b) a -= b
71 void copy_rvec(const rvec a,rvec b) b = a (reals)
72 void copy_dvec(const dvec a,dvec b) b = a (reals)
73 void copy_ivec(const ivec a,ivec b) b = a (integers)
74 void ivec_sub(const ivec a,const ivec b,ivec c) c = a - b
75 void svmul(real a,rvec v1,rvec v2) v2 = a * v1
76 void dsvmul(double a,dvec v1,dvec v2) v2 = a * v1
77 void clear_rvec(rvec a) a = 0
78 void clear_dvec(dvec a) a = 0
79 void clear_ivec(rvec a) a = 0
80 void clear_rvecs(int n,rvec v[])
81 real iprod(rvec a,rvec b) = a . b (inner product)
82 double diprod(dvec a,dvec b) = a . b (inner product)
83 real iiprod(ivec a,ivec b) = a . b (integers)
84 real norm2(rvec a) = | a |^2 ( = x*y*z )
85 double dnorm2(dvec a) = | a |^2 ( = x*y*z )
86 real norm(rvec a) = | a |
87 double dnorm(dvec a) = | a |
88 void cprod(rvec a,rvec b,rvec c) c = a x b (cross product)
89 void dprod(rvec a,rvec b,rvec c) c = a x b (cross product)
90 void dprod(rvec a,rvec b,rvec c) c = a * b (direct product)
91 real cos_angle(rvec a,rvec b)
92 real cos_angle_no_table(rvec a,rvec b)
93 real distance2(rvec v1, rvec v2) = | v2 - v1 |^2
94 void unitv(rvec src,rvec dest) dest = src / |src|
95 void unitv_no_table(rvec src,rvec dest) dest = src / |src|
97 matrix (3x3) operations:
98 ! indicates that dest should not be the same as a, b or src
99 the _ur0 varieties work on matrices that have only zeros
100 in the upper right part, such as box matrices, these varieties
101 could produce less rounding errors, not due to the operations themselves,
102 but because the compiler can easier recombine the operations
103 void copy_mat(matrix a,matrix b) b = a
104 void clear_mat(matrix a) a = 0
105 void mmul(matrix a,matrix b,matrix dest) ! dest = a . b
106 void mmul_ur0(matrix a,matrix b,matrix dest) dest = a . b
107 void transpose(matrix src,matrix dest) ! dest = src*
108 void tmmul(matrix a,matrix b,matrix dest) ! dest = a* . b
109 void mtmul(matrix a,matrix b,matrix dest) ! dest = a . b*
110 real det(matrix a) = det(a)
111 void m_add(matrix a,matrix b,matrix dest) dest = a + b
112 void m_sub(matrix a,matrix b,matrix dest) dest = a - b
113 void msmul(matrix m1,real r1,matrix dest) dest = r1 * m1
114 void m_inv_ur0(matrix src,matrix dest) dest = src^-1
115 void m_inv(matrix src,matrix dest) ! dest = src^-1
116 void mvmul(matrix a,rvec src,rvec dest) ! dest = a . src
117 void mvmul_ur0(matrix a,rvec src,rvec dest) dest = a . src
118 void tmvmul_ur0(matrix a,rvec src,rvec dest) dest = a* . src
119 real trace(matrix m) = trace(m)
122 #include "types/simple.h"
123 #include "maths.h"
124 #include "typedefs.h"
125 #include "sysstuff.h"
126 #include "macros.h"
127 #include "gmx_fatal.h"
128 #include "mpelogging.h"
129 #include "physics.h"
131 #ifdef __cplusplus
132 extern "C" {
133 #elif 0
134 } /* avoid screwing up indentation */
135 #endif
138 #define EXP_LSB 0x00800000
139 #define EXP_MASK 0x7f800000
140 #define EXP_SHIFT 23
141 #define FRACT_MASK 0x007fffff
142 #define FRACT_SIZE 11 /* significant part of fraction */
143 #define FRACT_SHIFT (EXP_SHIFT-FRACT_SIZE)
144 #define EXP_ADDR(val) (((val)&EXP_MASK)>>EXP_SHIFT)
145 #define FRACT_ADDR(val) (((val)&(FRACT_MASK|EXP_LSB))>>FRACT_SHIFT)
147 #define PR_VEC(a) a[XX],a[YY],a[ZZ]
149 #ifdef GMX_SOFTWARE_INVSQRT
150 extern const unsigned int * gmx_invsqrt_exptab;
151 extern const unsigned int * gmx_invsqrt_fracttab;
152 #endif
155 typedef union
157 unsigned int bval;
158 float fval;
159 } t_convert;
162 #ifdef GMX_SOFTWARE_INVSQRT
163 static real gmx_invsqrt(real x)
165 const real half=0.5;
166 const real three=3.0;
167 t_convert result,bit_pattern;
168 unsigned int exp,fract;
169 real lu;
170 real y;
171 #ifdef GMX_DOUBLE
172 real y2;
173 #endif
175 bit_pattern.fval=x;
176 exp = EXP_ADDR(bit_pattern.bval);
177 fract = FRACT_ADDR(bit_pattern.bval);
178 result.bval=gmx_invsqrt_exptab[exp] | gmx_invsqrt_fracttab[fract];
179 lu = result.fval;
181 y=(half*lu*(three-((x*lu)*lu)));
182 #ifdef GMX_DOUBLE
183 y2=(half*y*(three-((x*y)*y)));
185 return y2; /* 10 Flops */
186 #else
187 return y; /* 5 Flops */
188 #endif
190 #define INVSQRT_DONE
191 #endif /* gmx_invsqrt */
193 #ifdef GMX_POWERPC_SQRT
194 static real gmx_invsqrt(real x)
196 const real half=0.5;
197 const real three=3.0;
198 t_convert result,bit_pattern;
199 unsigned int exp,fract;
200 real lu;
201 real y;
202 #ifdef GMX_DOUBLE
203 real y2;
204 #endif
206 lu = __frsqrte((double)x);
208 y=(half*lu*(three-((x*lu)*lu)));
210 #if (GMX_POWERPC_SQRT==2)
211 /* Extra iteration required */
212 y=(half*y*(three-((x*y)*y)));
213 #endif
215 #ifdef GMX_DOUBLE
216 y2=(half*y*(three-((x*y)*y)));
218 return y2; /* 10 Flops */
219 #else
220 return y; /* 5 Flops */
221 #endif
223 #define INVSQRT_DONE
224 #endif /* powerpc_invsqrt */
227 #ifndef INVSQRT_DONE
228 #define gmx_invsqrt(x) (1.0f/sqrt(x))
229 #endif
235 static real sqr(real x)
237 return (x*x);
240 static inline double dsqr(double x)
242 return (x*x);
245 extern void vecinvsqrt(real in[],real out[],int n);
246 /* Perform out[i]=1.0/sqrt(in[i]) for n elements */
249 extern void vecrecip(real in[],real out[],int n);
250 /* Perform out[i]=1.0/(in[i]) for n elements */
252 /* Note: If you need a fast version of vecinvsqrt
253 * and/or vecrecip, call detectcpu() and run the SSE/3DNow/SSE2/Altivec
254 * versions if your hardware supports it.
256 * To use those routines, your memory HAS TO BE CACHE-ALIGNED.
257 * Start by allocating 31 bytes more than you need, put
258 * this in a temp variable (e.g. _buf, so you can free it later), and
259 * create your aligned array buf with
261 * buf=(real *) ( ( (unsigned long int)_buf + 31 ) & (~0x1f) );
265 static inline void rvec_add(const rvec a,const rvec b,rvec c)
267 real x,y,z;
269 x=a[XX]+b[XX];
270 y=a[YY]+b[YY];
271 z=a[ZZ]+b[ZZ];
273 c[XX]=x;
274 c[YY]=y;
275 c[ZZ]=z;
278 static inline void dvec_add(const dvec a,const dvec b,dvec c)
280 double x,y,z;
282 x=a[XX]+b[XX];
283 y=a[YY]+b[YY];
284 z=a[ZZ]+b[ZZ];
286 c[XX]=x;
287 c[YY]=y;
288 c[ZZ]=z;
291 static inline void ivec_add(const ivec a,const ivec b,ivec c)
293 int x,y,z;
295 x=a[XX]+b[XX];
296 y=a[YY]+b[YY];
297 z=a[ZZ]+b[ZZ];
299 c[XX]=x;
300 c[YY]=y;
301 c[ZZ]=z;
304 static inline void rvec_inc(rvec a,const rvec b)
306 real x,y,z;
308 x=a[XX]+b[XX];
309 y=a[YY]+b[YY];
310 z=a[ZZ]+b[ZZ];
312 a[XX]=x;
313 a[YY]=y;
314 a[ZZ]=z;
317 static inline void dvec_inc(dvec a,const dvec b)
319 double x,y,z;
321 x=a[XX]+b[XX];
322 y=a[YY]+b[YY];
323 z=a[ZZ]+b[ZZ];
325 a[XX]=x;
326 a[YY]=y;
327 a[ZZ]=z;
330 static inline void rvec_sub(const rvec a,const rvec b,rvec c)
332 real x,y,z;
334 x=a[XX]-b[XX];
335 y=a[YY]-b[YY];
336 z=a[ZZ]-b[ZZ];
338 c[XX]=x;
339 c[YY]=y;
340 c[ZZ]=z;
343 static inline void dvec_sub(const dvec a,const dvec b,dvec c)
345 double x,y,z;
347 x=a[XX]-b[XX];
348 y=a[YY]-b[YY];
349 z=a[ZZ]-b[ZZ];
351 c[XX]=x;
352 c[YY]=y;
353 c[ZZ]=z;
356 static inline void rvec_dec(rvec a,const rvec b)
358 real x,y,z;
360 x=a[XX]-b[XX];
361 y=a[YY]-b[YY];
362 z=a[ZZ]-b[ZZ];
364 a[XX]=x;
365 a[YY]=y;
366 a[ZZ]=z;
369 static inline void copy_rvec(const rvec a,rvec b)
371 b[XX]=a[XX];
372 b[YY]=a[YY];
373 b[ZZ]=a[ZZ];
376 static inline void copy_dvec(const dvec a,dvec b)
378 b[XX]=a[XX];
379 b[YY]=a[YY];
380 b[ZZ]=a[ZZ];
383 static inline void copy_ivec(const ivec a,ivec b)
385 b[XX]=a[XX];
386 b[YY]=a[YY];
387 b[ZZ]=a[ZZ];
390 static inline void ivec_sub(const ivec a,const ivec b,ivec c)
392 int x,y,z;
394 x=a[XX]-b[XX];
395 y=a[YY]-b[YY];
396 z=a[ZZ]-b[ZZ];
398 c[XX]=x;
399 c[YY]=y;
400 c[ZZ]=z;
403 static inline void copy_mat(matrix a,matrix b)
405 copy_rvec(a[XX],b[XX]);
406 copy_rvec(a[YY],b[YY]);
407 copy_rvec(a[ZZ],b[ZZ]);
410 static inline void svmul(real a,const rvec v1,rvec v2)
412 v2[XX]=a*v1[XX];
413 v2[YY]=a*v1[YY];
414 v2[ZZ]=a*v1[ZZ];
417 static inline void dsvmul(double a,const dvec v1,dvec v2)
419 v2[XX]=a*v1[XX];
420 v2[YY]=a*v1[YY];
421 v2[ZZ]=a*v1[ZZ];
424 static inline real distance2(const rvec v1,const rvec v2)
426 return sqr(v2[XX]-v1[XX]) + sqr(v2[YY]-v1[YY]) + sqr(v2[ZZ]-v1[ZZ]);
429 static inline void clear_rvec(rvec a)
431 /* The ibm compiler has problems with inlining this
432 * when we use a const real variable
434 a[XX]=0.0;
435 a[YY]=0.0;
436 a[ZZ]=0.0;
439 static inline void clear_dvec(dvec a)
441 /* The ibm compiler has problems with inlining this
442 * when we use a const real variable
444 a[XX]=0.0;
445 a[YY]=0.0;
446 a[ZZ]=0.0;
449 static inline void clear_ivec(ivec a)
451 a[XX]=0;
452 a[YY]=0;
453 a[ZZ]=0;
456 static inline void clear_rvecs(int n,rvec v[])
458 /* memset(v[0],0,DIM*n*sizeof(v[0][0])); */
459 int i;
461 GMX_MPE_LOG(ev_clear_rvecs_start);
463 for(i=0; (i<n); i++)
464 clear_rvec(v[i]);
466 GMX_MPE_LOG(ev_clear_rvecs_finish);
469 static inline void clear_mat(matrix a)
471 /* memset(a[0],0,DIM*DIM*sizeof(a[0][0])); */
473 const real nul=0.0;
475 a[XX][XX]=a[XX][YY]=a[XX][ZZ]=nul;
476 a[YY][XX]=a[YY][YY]=a[YY][ZZ]=nul;
477 a[ZZ][XX]=a[ZZ][YY]=a[ZZ][ZZ]=nul;
480 static inline real iprod(const rvec a,const rvec b)
482 return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
485 static inline double diprod(const dvec a,const dvec b)
487 return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
490 static inline int iiprod(const ivec a,const ivec b)
492 return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
495 static inline real norm2(const rvec a)
497 return a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ];
500 static inline double dnorm2(const dvec a)
502 return a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ];
505 static inline real norm(const rvec a)
507 return (real)sqrt(a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ]);
510 static inline double dnorm(const dvec a)
512 return sqrt(a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ]);
515 /* WARNING:
516 * Do _not_ use these routines to calculate the angle between two vectors
517 * as acos(cos_angle(u,v)). While it might seem obvious, the acos function
518 * is very flat close to -1 and 1, which will lead to accuracy-loss.
519 * Instead, use the new gmx_angle() function directly.
521 static inline real
522 cos_angle(const rvec a,const rvec b)
525 * ax*bx + ay*by + az*bz
526 * cos-vec (a,b) = ---------------------
527 * ||a|| * ||b||
529 real cosval;
530 int m;
531 double aa,bb,ip,ipa,ipb,ipab; /* For accuracy these must be double! */
533 ip=ipa=ipb=0.0;
534 for(m=0; (m<DIM); m++) { /* 18 */
535 aa = a[m];
536 bb = b[m];
537 ip += aa*bb;
538 ipa += aa*aa;
539 ipb += bb*bb;
541 ipab = ipa*ipb;
542 if (ipab > 0)
543 cosval = ip*gmx_invsqrt(ipab); /* 7 */
544 else
545 cosval = 1;
546 /* 25 TOTAL */
547 if (cosval > 1.0)
548 return 1.0;
549 if (cosval <-1.0)
550 return -1.0;
552 return cosval;
555 /* WARNING:
556 * Do _not_ use these routines to calculate the angle between two vectors
557 * as acos(cos_angle(u,v)). While it might seem obvious, the acos function
558 * is very flat close to -1 and 1, which will lead to accuracy-loss.
559 * Instead, use the new gmx_angle() function directly.
561 static inline real
562 cos_angle_no_table(const rvec a,const rvec b)
564 /* This version does not need the invsqrt lookup table */
565 real cosval;
566 int m;
567 double aa,bb,ip,ipa,ipb; /* For accuracy these must be double! */
569 ip=ipa=ipb=0.0;
570 for(m=0; (m<DIM); m++) { /* 18 */
571 aa = a[m];
572 bb = b[m];
573 ip += aa*bb;
574 ipa += aa*aa;
575 ipb += bb*bb;
577 cosval=ip/sqrt(ipa*ipb); /* 12 */
578 /* 30 TOTAL */
579 if (cosval > 1.0)
580 return 1.0;
581 if (cosval <-1.0)
582 return -1.0;
584 return cosval;
588 static inline void cprod(const rvec a,const rvec b,rvec c)
590 c[XX]=a[YY]*b[ZZ]-a[ZZ]*b[YY];
591 c[YY]=a[ZZ]*b[XX]-a[XX]*b[ZZ];
592 c[ZZ]=a[XX]*b[YY]-a[YY]*b[XX];
595 static inline void dcprod(const dvec a,const dvec b,dvec c)
597 c[XX]=a[YY]*b[ZZ]-a[ZZ]*b[YY];
598 c[YY]=a[ZZ]*b[XX]-a[XX]*b[ZZ];
599 c[ZZ]=a[XX]*b[YY]-a[YY]*b[XX];
602 /* This routine calculates the angle between a & b without any loss of accuracy close to 0/PI.
603 * If you only need cos(theta), use the cos_angle() routines to save a few cycles.
604 * This routine is faster than it might appear, since atan2 is accelerated on many CPUs (e.g. x86).
606 static inline real
607 gmx_angle(const rvec a, const rvec b)
609 rvec w;
610 real wlen,s,theta;
612 cprod(a,b,w);
614 wlen = norm(w);
615 s = iprod(a,b);
617 return atan2(wlen,s);
620 static inline void mmul_ur0(matrix a,matrix b,matrix dest)
622 dest[XX][XX]=a[XX][XX]*b[XX][XX];
623 dest[XX][YY]=0.0;
624 dest[XX][ZZ]=0.0;
625 dest[YY][XX]=a[YY][XX]*b[XX][XX]+a[YY][YY]*b[YY][XX];
626 dest[YY][YY]= a[YY][YY]*b[YY][YY];
627 dest[YY][ZZ]=0.0;
628 dest[ZZ][XX]=a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
629 dest[ZZ][YY]= a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
630 dest[ZZ][ZZ]= a[ZZ][ZZ]*b[ZZ][ZZ];
633 static inline void mmul(matrix a,matrix b,matrix dest)
635 dest[XX][XX]=a[XX][XX]*b[XX][XX]+a[XX][YY]*b[YY][XX]+a[XX][ZZ]*b[ZZ][XX];
636 dest[YY][XX]=a[YY][XX]*b[XX][XX]+a[YY][YY]*b[YY][XX]+a[YY][ZZ]*b[ZZ][XX];
637 dest[ZZ][XX]=a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
638 dest[XX][YY]=a[XX][XX]*b[XX][YY]+a[XX][YY]*b[YY][YY]+a[XX][ZZ]*b[ZZ][YY];
639 dest[YY][YY]=a[YY][XX]*b[XX][YY]+a[YY][YY]*b[YY][YY]+a[YY][ZZ]*b[ZZ][YY];
640 dest[ZZ][YY]=a[ZZ][XX]*b[XX][YY]+a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
641 dest[XX][ZZ]=a[XX][XX]*b[XX][ZZ]+a[XX][YY]*b[YY][ZZ]+a[XX][ZZ]*b[ZZ][ZZ];
642 dest[YY][ZZ]=a[YY][XX]*b[XX][ZZ]+a[YY][YY]*b[YY][ZZ]+a[YY][ZZ]*b[ZZ][ZZ];
643 dest[ZZ][ZZ]=a[ZZ][XX]*b[XX][ZZ]+a[ZZ][YY]*b[YY][ZZ]+a[ZZ][ZZ]*b[ZZ][ZZ];
646 static inline void transpose(matrix src,matrix dest)
648 dest[XX][XX]=src[XX][XX];
649 dest[YY][XX]=src[XX][YY];
650 dest[ZZ][XX]=src[XX][ZZ];
651 dest[XX][YY]=src[YY][XX];
652 dest[YY][YY]=src[YY][YY];
653 dest[ZZ][YY]=src[YY][ZZ];
654 dest[XX][ZZ]=src[ZZ][XX];
655 dest[YY][ZZ]=src[ZZ][YY];
656 dest[ZZ][ZZ]=src[ZZ][ZZ];
659 static inline void tmmul(matrix a,matrix b,matrix dest)
661 /* Computes dest=mmul(transpose(a),b,dest) - used in do_pr_pcoupl */
662 dest[XX][XX]=a[XX][XX]*b[XX][XX]+a[YY][XX]*b[YY][XX]+a[ZZ][XX]*b[ZZ][XX];
663 dest[XX][YY]=a[XX][XX]*b[XX][YY]+a[YY][XX]*b[YY][YY]+a[ZZ][XX]*b[ZZ][YY];
664 dest[XX][ZZ]=a[XX][XX]*b[XX][ZZ]+a[YY][XX]*b[YY][ZZ]+a[ZZ][XX]*b[ZZ][ZZ];
665 dest[YY][XX]=a[XX][YY]*b[XX][XX]+a[YY][YY]*b[YY][XX]+a[ZZ][YY]*b[ZZ][XX];
666 dest[YY][YY]=a[XX][YY]*b[XX][YY]+a[YY][YY]*b[YY][YY]+a[ZZ][YY]*b[ZZ][YY];
667 dest[YY][ZZ]=a[XX][YY]*b[XX][ZZ]+a[YY][YY]*b[YY][ZZ]+a[ZZ][YY]*b[ZZ][ZZ];
668 dest[ZZ][XX]=a[XX][ZZ]*b[XX][XX]+a[YY][ZZ]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
669 dest[ZZ][YY]=a[XX][ZZ]*b[XX][YY]+a[YY][ZZ]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
670 dest[ZZ][ZZ]=a[XX][ZZ]*b[XX][ZZ]+a[YY][ZZ]*b[YY][ZZ]+a[ZZ][ZZ]*b[ZZ][ZZ];
673 static inline void mtmul(matrix a,matrix b,matrix dest)
675 /* Computes dest=mmul(a,transpose(b),dest) - used in do_pr_pcoupl */
676 dest[XX][XX]=a[XX][XX]*b[XX][XX]+a[XX][YY]*b[XX][YY]+a[XX][ZZ]*b[XX][ZZ];
677 dest[XX][YY]=a[XX][XX]*b[YY][XX]+a[XX][YY]*b[YY][YY]+a[XX][ZZ]*b[YY][ZZ];
678 dest[XX][ZZ]=a[XX][XX]*b[ZZ][XX]+a[XX][YY]*b[ZZ][YY]+a[XX][ZZ]*b[ZZ][ZZ];
679 dest[YY][XX]=a[YY][XX]*b[XX][XX]+a[YY][YY]*b[XX][YY]+a[YY][ZZ]*b[XX][ZZ];
680 dest[YY][YY]=a[YY][XX]*b[YY][XX]+a[YY][YY]*b[YY][YY]+a[YY][ZZ]*b[YY][ZZ];
681 dest[YY][ZZ]=a[YY][XX]*b[ZZ][XX]+a[YY][YY]*b[ZZ][YY]+a[YY][ZZ]*b[ZZ][ZZ];
682 dest[ZZ][XX]=a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[XX][YY]+a[ZZ][ZZ]*b[XX][ZZ];
683 dest[ZZ][YY]=a[ZZ][XX]*b[YY][XX]+a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[YY][ZZ];
684 dest[ZZ][ZZ]=a[ZZ][XX]*b[ZZ][XX]+a[ZZ][YY]*b[ZZ][YY]+a[ZZ][ZZ]*b[ZZ][ZZ];
687 static inline real det(matrix a)
689 return ( a[XX][XX]*(a[YY][YY]*a[ZZ][ZZ]-a[ZZ][YY]*a[YY][ZZ])
690 -a[YY][XX]*(a[XX][YY]*a[ZZ][ZZ]-a[ZZ][YY]*a[XX][ZZ])
691 +a[ZZ][XX]*(a[XX][YY]*a[YY][ZZ]-a[YY][YY]*a[XX][ZZ]));
694 static inline void m_add(matrix a,matrix b,matrix dest)
696 dest[XX][XX]=a[XX][XX]+b[XX][XX];
697 dest[XX][YY]=a[XX][YY]+b[XX][YY];
698 dest[XX][ZZ]=a[XX][ZZ]+b[XX][ZZ];
699 dest[YY][XX]=a[YY][XX]+b[YY][XX];
700 dest[YY][YY]=a[YY][YY]+b[YY][YY];
701 dest[YY][ZZ]=a[YY][ZZ]+b[YY][ZZ];
702 dest[ZZ][XX]=a[ZZ][XX]+b[ZZ][XX];
703 dest[ZZ][YY]=a[ZZ][YY]+b[ZZ][YY];
704 dest[ZZ][ZZ]=a[ZZ][ZZ]+b[ZZ][ZZ];
707 static inline void m_sub(matrix a,matrix b,matrix dest)
709 dest[XX][XX]=a[XX][XX]-b[XX][XX];
710 dest[XX][YY]=a[XX][YY]-b[XX][YY];
711 dest[XX][ZZ]=a[XX][ZZ]-b[XX][ZZ];
712 dest[YY][XX]=a[YY][XX]-b[YY][XX];
713 dest[YY][YY]=a[YY][YY]-b[YY][YY];
714 dest[YY][ZZ]=a[YY][ZZ]-b[YY][ZZ];
715 dest[ZZ][XX]=a[ZZ][XX]-b[ZZ][XX];
716 dest[ZZ][YY]=a[ZZ][YY]-b[ZZ][YY];
717 dest[ZZ][ZZ]=a[ZZ][ZZ]-b[ZZ][ZZ];
720 static inline void msmul(matrix m1,real r1,matrix dest)
722 dest[XX][XX]=r1*m1[XX][XX];
723 dest[XX][YY]=r1*m1[XX][YY];
724 dest[XX][ZZ]=r1*m1[XX][ZZ];
725 dest[YY][XX]=r1*m1[YY][XX];
726 dest[YY][YY]=r1*m1[YY][YY];
727 dest[YY][ZZ]=r1*m1[YY][ZZ];
728 dest[ZZ][XX]=r1*m1[ZZ][XX];
729 dest[ZZ][YY]=r1*m1[ZZ][YY];
730 dest[ZZ][ZZ]=r1*m1[ZZ][ZZ];
733 static inline void m_inv_ur0(matrix src,matrix dest)
735 double tmp = src[XX][XX]*src[YY][YY]*src[ZZ][ZZ];
736 if (fabs(tmp) <= 100*GMX_REAL_MIN)
737 gmx_fatal(FARGS,"Can not invert matrix, determinant is zero");
739 dest[XX][XX] = 1/src[XX][XX];
740 dest[YY][YY] = 1/src[YY][YY];
741 dest[ZZ][ZZ] = 1/src[ZZ][ZZ];
742 dest[ZZ][XX] = (src[YY][XX]*src[ZZ][YY]*dest[YY][YY]
743 - src[ZZ][XX])*dest[XX][XX]*dest[ZZ][ZZ];
744 dest[YY][XX] = -src[YY][XX]*dest[XX][XX]*dest[YY][YY];
745 dest[ZZ][YY] = -src[ZZ][YY]*dest[YY][YY]*dest[ZZ][ZZ];
746 dest[XX][YY] = 0.0;
747 dest[XX][ZZ] = 0.0;
748 dest[YY][ZZ] = 0.0;
751 static inline void m_inv(matrix src,matrix dest)
753 const real smallreal = (real)1.0e-24;
754 const real largereal = (real)1.0e24;
755 real deter,c,fc;
757 deter = det(src);
758 c = (real)1.0/deter;
759 fc = (real)fabs(c);
761 if ((fc <= smallreal) || (fc >= largereal))
762 gmx_fatal(FARGS,"Can not invert matrix, determinant = %e",deter);
764 dest[XX][XX]= c*(src[YY][YY]*src[ZZ][ZZ]-src[ZZ][YY]*src[YY][ZZ]);
765 dest[XX][YY]=-c*(src[XX][YY]*src[ZZ][ZZ]-src[ZZ][YY]*src[XX][ZZ]);
766 dest[XX][ZZ]= c*(src[XX][YY]*src[YY][ZZ]-src[YY][YY]*src[XX][ZZ]);
767 dest[YY][XX]=-c*(src[YY][XX]*src[ZZ][ZZ]-src[ZZ][XX]*src[YY][ZZ]);
768 dest[YY][YY]= c*(src[XX][XX]*src[ZZ][ZZ]-src[ZZ][XX]*src[XX][ZZ]);
769 dest[YY][ZZ]=-c*(src[XX][XX]*src[YY][ZZ]-src[YY][XX]*src[XX][ZZ]);
770 dest[ZZ][XX]= c*(src[YY][XX]*src[ZZ][YY]-src[ZZ][XX]*src[YY][YY]);
771 dest[ZZ][YY]=-c*(src[XX][XX]*src[ZZ][YY]-src[ZZ][XX]*src[XX][YY]);
772 dest[ZZ][ZZ]= c*(src[XX][XX]*src[YY][YY]-src[YY][XX]*src[XX][YY]);
775 static inline void mvmul(matrix a,const rvec src,rvec dest)
777 dest[XX]=a[XX][XX]*src[XX]+a[XX][YY]*src[YY]+a[XX][ZZ]*src[ZZ];
778 dest[YY]=a[YY][XX]*src[XX]+a[YY][YY]*src[YY]+a[YY][ZZ]*src[ZZ];
779 dest[ZZ]=a[ZZ][XX]*src[XX]+a[ZZ][YY]*src[YY]+a[ZZ][ZZ]*src[ZZ];
782 static inline void mvmul_ur0(matrix a,const rvec src,rvec dest)
784 dest[ZZ]=a[ZZ][XX]*src[XX]+a[ZZ][YY]*src[YY]+a[ZZ][ZZ]*src[ZZ];
785 dest[YY]=a[YY][XX]*src[XX]+a[YY][YY];
786 dest[XX]=a[XX][XX]*src[XX];
789 static inline void tmvmul_ur0(matrix a,const rvec src,rvec dest)
791 dest[XX]=a[XX][XX]*src[XX]+a[YY][XX]*src[YY]+a[ZZ][XX]*src[ZZ];
792 dest[YY]= a[YY][YY]*src[YY]+a[ZZ][YY]*src[ZZ];
793 dest[ZZ]= a[ZZ][ZZ]*src[ZZ];
796 static inline void unitv(const rvec src,rvec dest)
798 real linv;
800 linv=gmx_invsqrt(norm2(src));
801 dest[XX]=linv*src[XX];
802 dest[YY]=linv*src[YY];
803 dest[ZZ]=linv*src[ZZ];
806 static inline void unitv_no_table(const rvec src,rvec dest)
808 real linv;
810 linv=1.0/sqrt(norm2(src));
811 dest[XX]=linv*src[XX];
812 dest[YY]=linv*src[YY];
813 dest[ZZ]=linv*src[ZZ];
816 static void calc_lll(rvec box,rvec lll)
818 lll[XX] = 2.0*M_PI/box[XX];
819 lll[YY] = 2.0*M_PI/box[YY];
820 lll[ZZ] = 2.0*M_PI/box[ZZ];
823 static inline real trace(matrix m)
825 return (m[XX][XX]+m[YY][YY]+m[ZZ][ZZ]);
828 static inline real _divide(real a,real b,const char *file,int line)
830 if (fabs(b) <= GMX_REAL_MIN)
831 gmx_fatal(FARGS,"Dividing by zero, file %s, line %d",file,line);
832 return a/b;
835 static inline int _mod(int a,int b,char *file,int line)
837 if(b==0)
838 gmx_fatal(FARGS,"Modulo zero, file %s, line %d",file,line);
839 return a % b;
842 /* Operations on multidimensional rvecs, used e.g. in edsam.c */
843 static void m_rveccopy(int dim, rvec *a, rvec *b)
845 /* b = a */
846 int i;
848 for (i=0; i<dim; i++)
849 copy_rvec(a[i],b[i]);
852 /*computer matrix vectors from base vectors and angles */
853 static void matrix_convert(matrix box, rvec vec, rvec angle)
855 svmul(DEG2RAD,angle,angle);
856 box[XX][XX] = vec[XX];
857 box[YY][XX] = vec[YY]*cos(angle[ZZ]);
858 box[YY][YY] = vec[YY]*sin(angle[ZZ]);
859 box[ZZ][XX] = vec[ZZ]*cos(angle[YY]);
860 box[ZZ][YY] = vec[ZZ]
861 *(cos(angle[XX])-cos(angle[YY])*cos(angle[ZZ]))/sin(angle[ZZ]);
862 box[ZZ][ZZ] = sqrt(sqr(vec[ZZ])
863 -box[ZZ][XX]*box[ZZ][XX]-box[ZZ][YY]*box[ZZ][YY]);
866 #define divide(a,b) _divide((a),(b),__FILE__,__LINE__)
867 #define mod(a,b) _mod((a),(b),__FILE__,__LINE__)
869 #ifdef __cplusplus
871 #endif
874 #endif /* _vec_h */