Update copyright year.
[gzip.git] / trees.c
blob071845cfc3251661e48670c41be24895ccdb2d76
1 /* trees.c -- output deflated data using Huffman coding
3 Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
4 Copyright (C) 1992-1993 Jean-loup Gailly
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software Foundation,
18 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
21 * PURPOSE
23 * Encode various sets of source values using variable-length
24 * binary code trees.
26 * DISCUSSION
28 * The PKZIP "deflation" process uses several Huffman trees. The more
29 * common source values are represented by shorter bit sequences.
31 * Each code tree is stored in the ZIP file in a compressed form
32 * which is itself a Huffman encoding of the lengths of
33 * all the code strings (in ascending order by source values).
34 * The actual code strings are reconstructed from the lengths in
35 * the UNZIP process, as described in the "application note"
36 * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
38 * REFERENCES
40 * Lynch, Thomas J.
41 * Data Compression: Techniques and Applications, pp. 53-55.
42 * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
44 * Storer, James A.
45 * Data Compression: Methods and Theory, pp. 49-50.
46 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
48 * Sedgewick, R.
49 * Algorithms, p290.
50 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
52 * INTERFACE
54 * void ct_init (ush *attr, int *methodp)
55 * Allocate the match buffer, initialize the various tables and save
56 * the location of the internal file attribute (ascii/binary) and
57 * method (DEFLATE/STORE)
59 * void ct_tally (int dist, int lc);
60 * Save the match info and tally the frequency counts.
62 * off_t flush_block (char *buf, ulg stored_len, int eof)
63 * Determine the best encoding for the current block: dynamic trees,
64 * static trees or store, and output the encoded block to the zip
65 * file. Returns the total compressed length for the file so far.
69 #include <config.h>
70 #include <ctype.h>
72 #include "tailor.h"
73 #include "gzip.h"
75 #ifdef RCSID
76 static char rcsid[] = "$Id$";
77 #endif
79 /* ===========================================================================
80 * Constants
83 #define MAX_BITS 15
84 /* All codes must not exceed MAX_BITS bits */
86 #define MAX_BL_BITS 7
87 /* Bit length codes must not exceed MAX_BL_BITS bits */
89 #define LENGTH_CODES 29
90 /* number of length codes, not counting the special END_BLOCK code */
92 #define LITERALS 256
93 /* number of literal bytes 0..255 */
95 #define END_BLOCK 256
96 /* end of block literal code */
98 #define L_CODES (LITERALS+1+LENGTH_CODES)
99 /* number of Literal or Length codes, including the END_BLOCK code */
101 #define D_CODES 30
102 /* number of distance codes */
104 #define BL_CODES 19
105 /* number of codes used to transfer the bit lengths */
108 local int near extra_lbits[LENGTH_CODES] /* extra bits for each length code */
109 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
111 local int near extra_dbits[D_CODES] /* extra bits for each distance code */
112 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
114 local int near extra_blbits[BL_CODES]/* extra bits for each bit length code */
115 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
117 #define STORED_BLOCK 0
118 #define STATIC_TREES 1
119 #define DYN_TREES 2
120 /* The three kinds of block type */
122 #ifndef LIT_BUFSIZE
123 # ifdef SMALL_MEM
124 # define LIT_BUFSIZE 0x2000
125 # else
126 # ifdef MEDIUM_MEM
127 # define LIT_BUFSIZE 0x4000
128 # else
129 # define LIT_BUFSIZE 0x8000
130 # endif
131 # endif
132 #endif
133 #ifndef DIST_BUFSIZE
134 # define DIST_BUFSIZE LIT_BUFSIZE
135 #endif
136 /* Sizes of match buffers for literals/lengths and distances. There are
137 * 4 reasons for limiting LIT_BUFSIZE to 64K:
138 * - frequencies can be kept in 16 bit counters
139 * - if compression is not successful for the first block, all input data is
140 * still in the window so we can still emit a stored block even when input
141 * comes from standard input. (This can also be done for all blocks if
142 * LIT_BUFSIZE is not greater than 32K.)
143 * - if compression is not successful for a file smaller than 64K, we can
144 * even emit a stored file instead of a stored block (saving 5 bytes).
145 * - creating new Huffman trees less frequently may not provide fast
146 * adaptation to changes in the input data statistics. (Take for
147 * example a binary file with poorly compressible code followed by
148 * a highly compressible string table.) Smaller buffer sizes give
149 * fast adaptation but have of course the overhead of transmitting trees
150 * more frequently.
151 * - I can't count above 4
152 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
153 * memory at the expense of compression). Some optimizations would be possible
154 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
156 #if LIT_BUFSIZE > INBUFSIZ
157 error cannot overlay l_buf and inbuf
158 #endif
160 #define REP_3_6 16
161 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
163 #define REPZ_3_10 17
164 /* repeat a zero length 3-10 times (3 bits of repeat count) */
166 #define REPZ_11_138 18
167 /* repeat a zero length 11-138 times (7 bits of repeat count) */
169 /* ===========================================================================
170 * Local data
173 /* Data structure describing a single value and its code string. */
174 typedef struct ct_data {
175 union {
176 ush freq; /* frequency count */
177 ush code; /* bit string */
178 } fc;
179 union {
180 ush dad; /* father node in Huffman tree */
181 ush len; /* length of bit string */
182 } dl;
183 } ct_data;
185 #define Freq fc.freq
186 #define Code fc.code
187 #define Dad dl.dad
188 #define Len dl.len
190 #define HEAP_SIZE (2*L_CODES+1)
191 /* maximum heap size */
193 local ct_data near dyn_ltree[HEAP_SIZE]; /* literal and length tree */
194 local ct_data near dyn_dtree[2*D_CODES+1]; /* distance tree */
196 local ct_data near static_ltree[L_CODES+2];
197 /* The static literal tree. Since the bit lengths are imposed, there is no
198 * need for the L_CODES extra codes used during heap construction. However
199 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
200 * below).
203 local ct_data near static_dtree[D_CODES];
204 /* The static distance tree. (Actually a trivial tree since all codes use
205 * 5 bits.)
208 local ct_data near bl_tree[2*BL_CODES+1];
209 /* Huffman tree for the bit lengths */
211 typedef struct tree_desc {
212 ct_data near *dyn_tree; /* the dynamic tree */
213 ct_data near *static_tree; /* corresponding static tree or NULL */
214 int near *extra_bits; /* extra bits for each code or NULL */
215 int extra_base; /* base index for extra_bits */
216 int elems; /* max number of elements in the tree */
217 int max_length; /* max bit length for the codes */
218 int max_code; /* largest code with non zero frequency */
219 } tree_desc;
221 local tree_desc near l_desc =
222 {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0};
224 local tree_desc near d_desc =
225 {dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0};
227 local tree_desc near bl_desc =
228 {bl_tree, (ct_data near *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0};
231 local ush near bl_count[MAX_BITS+1];
232 /* number of codes at each bit length for an optimal tree */
234 local uch near bl_order[BL_CODES]
235 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
236 /* The lengths of the bit length codes are sent in order of decreasing
237 * probability, to avoid transmitting the lengths for unused bit length codes.
240 local int near heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
241 local int heap_len; /* number of elements in the heap */
242 local int heap_max; /* element of largest frequency */
243 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
244 * The same heap array is used to build all trees.
247 local uch near depth[2*L_CODES+1];
248 /* Depth of each subtree used as tie breaker for trees of equal frequency */
250 local uch length_code[MAX_MATCH-MIN_MATCH+1];
251 /* length code for each normalized match length (0 == MIN_MATCH) */
253 local uch dist_code[512];
254 /* distance codes. The first 256 values correspond to the distances
255 * 3 .. 258, the last 256 values correspond to the top 8 bits of
256 * the 15 bit distances.
259 local int near base_length[LENGTH_CODES];
260 /* First normalized length for each code (0 = MIN_MATCH) */
262 local int near base_dist[D_CODES];
263 /* First normalized distance for each code (0 = distance of 1) */
265 #define l_buf inbuf
266 /* DECLARE(uch, l_buf, LIT_BUFSIZE); buffer for literals or lengths */
268 /* DECLARE(ush, d_buf, DIST_BUFSIZE); buffer for distances */
270 local uch near flag_buf[(LIT_BUFSIZE/8)];
271 /* flag_buf is a bit array distinguishing literals from lengths in
272 * l_buf, thus indicating the presence or absence of a distance.
275 local unsigned last_lit; /* running index in l_buf */
276 local unsigned last_dist; /* running index in d_buf */
277 local unsigned last_flags; /* running index in flag_buf */
278 local uch flags; /* current flags not yet saved in flag_buf */
279 local uch flag_bit; /* current bit used in flags */
280 /* bits are filled in flags starting at bit 0 (least significant).
281 * Note: these flags are overkill in the current code since we don't
282 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
285 local ulg opt_len; /* bit length of current block with optimal trees */
286 local ulg static_len; /* bit length of current block with static trees */
288 local off_t compressed_len; /* total bit length of compressed file */
290 local off_t input_len; /* total byte length of input file */
291 /* input_len is for debugging only since we can get it by other means. */
293 ush *file_type; /* pointer to UNKNOWN, BINARY or ASCII */
294 int *file_method; /* pointer to DEFLATE or STORE */
296 #ifdef DEBUG
297 extern off_t bits_sent; /* bit length of the compressed data */
298 #endif
300 extern long block_start; /* window offset of current block */
301 extern unsigned near strstart; /* window offset of current string */
303 /* ===========================================================================
304 * Local (static) routines in this file.
307 local void init_block OF((void));
308 local void pqdownheap OF((ct_data near *tree, int k));
309 local void gen_bitlen OF((tree_desc near *desc));
310 local void gen_codes OF((ct_data near *tree, int max_code));
311 local void build_tree OF((tree_desc near *desc));
312 local void scan_tree OF((ct_data near *tree, int max_code));
313 local void send_tree OF((ct_data near *tree, int max_code));
314 local int build_bl_tree OF((void));
315 local void send_all_trees OF((int lcodes, int dcodes, int blcodes));
316 local void compress_block OF((ct_data near *ltree, ct_data near *dtree));
317 local void set_file_type OF((void));
320 #ifndef DEBUG
321 # define send_code(c, tree) send_bits(tree[c].Code, tree[c].Len)
322 /* Send a code of the given tree. c and tree must not have side effects */
324 #else /* DEBUG */
325 # define send_code(c, tree) \
326 { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
327 send_bits(tree[c].Code, tree[c].Len); }
328 #endif
330 #define d_code(dist) \
331 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
332 /* Mapping from a distance to a distance code. dist is the distance - 1 and
333 * must not have side effects. dist_code[256] and dist_code[257] are never
334 * used.
337 #define MAX(a,b) (a >= b ? a : b)
338 /* the arguments must not have side effects */
340 /* ===========================================================================
341 * Allocate the match buffer, initialize the various tables and save the
342 * location of the internal file attribute (ascii/binary) and method
343 * (DEFLATE/STORE).
345 void ct_init(attr, methodp)
346 ush *attr; /* pointer to internal file attribute */
347 int *methodp; /* pointer to compression method */
349 int n; /* iterates over tree elements */
350 int bits; /* bit counter */
351 int length; /* length value */
352 int code; /* code value */
353 int dist; /* distance index */
355 file_type = attr;
356 file_method = methodp;
357 compressed_len = input_len = 0L;
359 if (static_dtree[0].Len != 0) return; /* ct_init already called */
361 /* Initialize the mapping length (0..255) -> length code (0..28) */
362 length = 0;
363 for (code = 0; code < LENGTH_CODES-1; code++) {
364 base_length[code] = length;
365 for (n = 0; n < (1<<extra_lbits[code]); n++) {
366 length_code[length++] = (uch)code;
369 Assert (length == 256, "ct_init: length != 256");
370 /* Note that the length 255 (match length 258) can be represented
371 * in two different ways: code 284 + 5 bits or code 285, so we
372 * overwrite length_code[255] to use the best encoding:
374 length_code[length-1] = (uch)code;
376 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
377 dist = 0;
378 for (code = 0 ; code < 16; code++) {
379 base_dist[code] = dist;
380 for (n = 0; n < (1<<extra_dbits[code]); n++) {
381 dist_code[dist++] = (uch)code;
384 Assert (dist == 256, "ct_init: dist != 256");
385 dist >>= 7; /* from now on, all distances are divided by 128 */
386 for ( ; code < D_CODES; code++) {
387 base_dist[code] = dist << 7;
388 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
389 dist_code[256 + dist++] = (uch)code;
392 Assert (dist == 256, "ct_init: 256+dist != 512");
394 /* Construct the codes of the static literal tree */
395 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
396 n = 0;
397 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
398 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
399 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
400 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
401 /* Codes 286 and 287 do not exist, but we must include them in the
402 * tree construction to get a canonical Huffman tree (longest code
403 * all ones)
405 gen_codes((ct_data near *)static_ltree, L_CODES+1);
407 /* The static distance tree is trivial: */
408 for (n = 0; n < D_CODES; n++) {
409 static_dtree[n].Len = 5;
410 static_dtree[n].Code = bi_reverse(n, 5);
413 /* Initialize the first block of the first file: */
414 init_block();
417 /* ===========================================================================
418 * Initialize a new block.
420 local void init_block()
422 int n; /* iterates over tree elements */
424 /* Initialize the trees. */
425 for (n = 0; n < L_CODES; n++) dyn_ltree[n].Freq = 0;
426 for (n = 0; n < D_CODES; n++) dyn_dtree[n].Freq = 0;
427 for (n = 0; n < BL_CODES; n++) bl_tree[n].Freq = 0;
429 dyn_ltree[END_BLOCK].Freq = 1;
430 opt_len = static_len = 0L;
431 last_lit = last_dist = last_flags = 0;
432 flags = 0; flag_bit = 1;
435 #define SMALLEST 1
436 /* Index within the heap array of least frequent node in the Huffman tree */
439 /* ===========================================================================
440 * Remove the smallest element from the heap and recreate the heap with
441 * one less element. Updates heap and heap_len.
443 #define pqremove(tree, top) \
445 top = heap[SMALLEST]; \
446 heap[SMALLEST] = heap[heap_len--]; \
447 pqdownheap(tree, SMALLEST); \
450 /* ===========================================================================
451 * Compares to subtrees, using the tree depth as tie breaker when
452 * the subtrees have equal frequency. This minimizes the worst case length.
454 #define smaller(tree, n, m) \
455 (tree[n].Freq < tree[m].Freq || \
456 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
458 /* ===========================================================================
459 * Restore the heap property by moving down the tree starting at node k,
460 * exchanging a node with the smallest of its two sons if necessary, stopping
461 * when the heap property is re-established (each father smaller than its
462 * two sons).
464 local void pqdownheap(tree, k)
465 ct_data near *tree; /* the tree to restore */
466 int k; /* node to move down */
468 int v = heap[k];
469 int j = k << 1; /* left son of k */
470 while (j <= heap_len) {
471 /* Set j to the smallest of the two sons: */
472 if (j < heap_len && smaller(tree, heap[j+1], heap[j])) j++;
474 /* Exit if v is smaller than both sons */
475 if (smaller(tree, v, heap[j])) break;
477 /* Exchange v with the smallest son */
478 heap[k] = heap[j]; k = j;
480 /* And continue down the tree, setting j to the left son of k */
481 j <<= 1;
483 heap[k] = v;
486 /* ===========================================================================
487 * Compute the optimal bit lengths for a tree and update the total bit length
488 * for the current block.
489 * IN assertion: the fields freq and dad are set, heap[heap_max] and
490 * above are the tree nodes sorted by increasing frequency.
491 * OUT assertions: the field len is set to the optimal bit length, the
492 * array bl_count contains the frequencies for each bit length.
493 * The length opt_len is updated; static_len is also updated if stree is
494 * not null.
496 local void gen_bitlen(desc)
497 tree_desc near *desc; /* the tree descriptor */
499 ct_data near *tree = desc->dyn_tree;
500 int near *extra = desc->extra_bits;
501 int base = desc->extra_base;
502 int max_code = desc->max_code;
503 int max_length = desc->max_length;
504 ct_data near *stree = desc->static_tree;
505 int h; /* heap index */
506 int n, m; /* iterate over the tree elements */
507 int bits; /* bit length */
508 int xbits; /* extra bits */
509 ush f; /* frequency */
510 int overflow = 0; /* number of elements with bit length too large */
512 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
514 /* In a first pass, compute the optimal bit lengths (which may
515 * overflow in the case of the bit length tree).
517 tree[heap[heap_max]].Len = 0; /* root of the heap */
519 for (h = heap_max+1; h < HEAP_SIZE; h++) {
520 n = heap[h];
521 bits = tree[tree[n].Dad].Len + 1;
522 if (bits > max_length) bits = max_length, overflow++;
523 tree[n].Len = (ush)bits;
524 /* We overwrite tree[n].Dad which is no longer needed */
526 if (n > max_code) continue; /* not a leaf node */
528 bl_count[bits]++;
529 xbits = 0;
530 if (n >= base) xbits = extra[n-base];
531 f = tree[n].Freq;
532 opt_len += (ulg)f * (bits + xbits);
533 if (stree) static_len += (ulg)f * (stree[n].Len + xbits);
535 if (overflow == 0) return;
537 Trace((stderr,"\nbit length overflow\n"));
538 /* This happens for example on obj2 and pic of the Calgary corpus */
540 /* Find the first bit length which could increase: */
541 do {
542 bits = max_length-1;
543 while (bl_count[bits] == 0) bits--;
544 bl_count[bits]--; /* move one leaf down the tree */
545 bl_count[bits+1] += 2; /* move one overflow item as its brother */
546 bl_count[max_length]--;
547 /* The brother of the overflow item also moves one step up,
548 * but this does not affect bl_count[max_length]
550 overflow -= 2;
551 } while (overflow > 0);
553 /* Now recompute all bit lengths, scanning in increasing frequency.
554 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
555 * lengths instead of fixing only the wrong ones. This idea is taken
556 * from 'ar' written by Haruhiko Okumura.)
558 for (bits = max_length; bits != 0; bits--) {
559 n = bl_count[bits];
560 while (n != 0) {
561 m = heap[--h];
562 if (m > max_code) continue;
563 if (tree[m].Len != (unsigned) bits) {
564 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
565 opt_len += ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq;
566 tree[m].Len = (ush)bits;
568 n--;
573 /* ===========================================================================
574 * Generate the codes for a given tree and bit counts (which need not be
575 * optimal).
576 * IN assertion: the array bl_count contains the bit length statistics for
577 * the given tree and the field len is set for all tree elements.
578 * OUT assertion: the field code is set for all tree elements of non
579 * zero code length.
581 local void gen_codes (tree, max_code)
582 ct_data near *tree; /* the tree to decorate */
583 int max_code; /* largest code with non zero frequency */
585 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
586 ush code = 0; /* running code value */
587 int bits; /* bit index */
588 int n; /* code index */
590 /* The distribution counts are first used to generate the code values
591 * without bit reversal.
593 for (bits = 1; bits <= MAX_BITS; bits++) {
594 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
596 /* Check that the bit counts in bl_count are consistent. The last code
597 * must be all ones.
599 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
600 "inconsistent bit counts");
601 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
603 for (n = 0; n <= max_code; n++) {
604 int len = tree[n].Len;
605 if (len == 0) continue;
606 /* Now reverse the bits */
607 tree[n].Code = bi_reverse(next_code[len]++, len);
609 Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
610 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
614 /* ===========================================================================
615 * Construct one Huffman tree and assigns the code bit strings and lengths.
616 * Update the total bit length for the current block.
617 * IN assertion: the field freq is set for all tree elements.
618 * OUT assertions: the fields len and code are set to the optimal bit length
619 * and corresponding code. The length opt_len is updated; static_len is
620 * also updated if stree is not null. The field max_code is set.
622 local void build_tree(desc)
623 tree_desc near *desc; /* the tree descriptor */
625 ct_data near *tree = desc->dyn_tree;
626 ct_data near *stree = desc->static_tree;
627 int elems = desc->elems;
628 int n, m; /* iterate over heap elements */
629 int max_code = -1; /* largest code with non zero frequency */
630 int node = elems; /* next internal node of the tree */
632 /* Construct the initial heap, with least frequent element in
633 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
634 * heap[0] is not used.
636 heap_len = 0, heap_max = HEAP_SIZE;
638 for (n = 0; n < elems; n++) {
639 if (tree[n].Freq != 0) {
640 heap[++heap_len] = max_code = n;
641 depth[n] = 0;
642 } else {
643 tree[n].Len = 0;
647 /* The pkzip format requires that at least one distance code exists,
648 * and that at least one bit should be sent even if there is only one
649 * possible code. So to avoid special checks later on we force at least
650 * two codes of non zero frequency.
652 while (heap_len < 2) {
653 int new = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
654 tree[new].Freq = 1;
655 depth[new] = 0;
656 opt_len--; if (stree) static_len -= stree[new].Len;
657 /* new is 0 or 1 so it does not have extra bits */
659 desc->max_code = max_code;
661 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
662 * establish sub-heaps of increasing lengths:
664 for (n = heap_len/2; n >= 1; n--) pqdownheap(tree, n);
666 /* Construct the Huffman tree by repeatedly combining the least two
667 * frequent nodes.
669 do {
670 pqremove(tree, n); /* n = node of least frequency */
671 m = heap[SMALLEST]; /* m = node of next least frequency */
673 heap[--heap_max] = n; /* keep the nodes sorted by frequency */
674 heap[--heap_max] = m;
676 /* Create a new node father of n and m */
677 tree[node].Freq = tree[n].Freq + tree[m].Freq;
678 depth[node] = (uch) (MAX(depth[n], depth[m]) + 1);
679 tree[n].Dad = tree[m].Dad = (ush)node;
680 #ifdef DUMP_BL_TREE
681 if (tree == bl_tree) {
682 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
683 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
685 #endif
686 /* and insert the new node in the heap */
687 heap[SMALLEST] = node++;
688 pqdownheap(tree, SMALLEST);
690 } while (heap_len >= 2);
692 heap[--heap_max] = heap[SMALLEST];
694 /* At this point, the fields freq and dad are set. We can now
695 * generate the bit lengths.
697 gen_bitlen((tree_desc near *)desc);
699 /* The field len is now set, we can generate the bit codes */
700 gen_codes ((ct_data near *)tree, max_code);
703 /* ===========================================================================
704 * Scan a literal or distance tree to determine the frequencies of the codes
705 * in the bit length tree. Updates opt_len to take into account the repeat
706 * counts. (The contribution of the bit length codes will be added later
707 * during the construction of bl_tree.)
709 local void scan_tree (tree, max_code)
710 ct_data near *tree; /* the tree to be scanned */
711 int max_code; /* and its largest code of non zero frequency */
713 int n; /* iterates over all tree elements */
714 int prevlen = -1; /* last emitted length */
715 int curlen; /* length of current code */
716 int nextlen = tree[0].Len; /* length of next code */
717 int count = 0; /* repeat count of the current code */
718 int max_count = 7; /* max repeat count */
719 int min_count = 4; /* min repeat count */
721 if (nextlen == 0) max_count = 138, min_count = 3;
722 tree[max_code+1].Len = (ush)0xffff; /* guard */
724 for (n = 0; n <= max_code; n++) {
725 curlen = nextlen; nextlen = tree[n+1].Len;
726 if (++count < max_count && curlen == nextlen) {
727 continue;
728 } else if (count < min_count) {
729 bl_tree[curlen].Freq += count;
730 } else if (curlen != 0) {
731 if (curlen != prevlen) bl_tree[curlen].Freq++;
732 bl_tree[REP_3_6].Freq++;
733 } else if (count <= 10) {
734 bl_tree[REPZ_3_10].Freq++;
735 } else {
736 bl_tree[REPZ_11_138].Freq++;
738 count = 0; prevlen = curlen;
739 if (nextlen == 0) {
740 max_count = 138, min_count = 3;
741 } else if (curlen == nextlen) {
742 max_count = 6, min_count = 3;
743 } else {
744 max_count = 7, min_count = 4;
749 /* ===========================================================================
750 * Send a literal or distance tree in compressed form, using the codes in
751 * bl_tree.
753 local void send_tree (tree, max_code)
754 ct_data near *tree; /* the tree to be scanned */
755 int max_code; /* and its largest code of non zero frequency */
757 int n; /* iterates over all tree elements */
758 int prevlen = -1; /* last emitted length */
759 int curlen; /* length of current code */
760 int nextlen = tree[0].Len; /* length of next code */
761 int count = 0; /* repeat count of the current code */
762 int max_count = 7; /* max repeat count */
763 int min_count = 4; /* min repeat count */
765 /* tree[max_code+1].Len = -1; */ /* guard already set */
766 if (nextlen == 0) max_count = 138, min_count = 3;
768 for (n = 0; n <= max_code; n++) {
769 curlen = nextlen; nextlen = tree[n+1].Len;
770 if (++count < max_count && curlen == nextlen) {
771 continue;
772 } else if (count < min_count) {
773 do { send_code(curlen, bl_tree); } while (--count != 0);
775 } else if (curlen != 0) {
776 if (curlen != prevlen) {
777 send_code(curlen, bl_tree); count--;
779 Assert(count >= 3 && count <= 6, " 3_6?");
780 send_code(REP_3_6, bl_tree); send_bits(count-3, 2);
782 } else if (count <= 10) {
783 send_code(REPZ_3_10, bl_tree); send_bits(count-3, 3);
785 } else {
786 send_code(REPZ_11_138, bl_tree); send_bits(count-11, 7);
788 count = 0; prevlen = curlen;
789 if (nextlen == 0) {
790 max_count = 138, min_count = 3;
791 } else if (curlen == nextlen) {
792 max_count = 6, min_count = 3;
793 } else {
794 max_count = 7, min_count = 4;
799 /* ===========================================================================
800 * Construct the Huffman tree for the bit lengths and return the index in
801 * bl_order of the last bit length code to send.
803 local int build_bl_tree()
805 int max_blindex; /* index of last bit length code of non zero freq */
807 /* Determine the bit length frequencies for literal and distance trees */
808 scan_tree((ct_data near *)dyn_ltree, l_desc.max_code);
809 scan_tree((ct_data near *)dyn_dtree, d_desc.max_code);
811 /* Build the bit length tree: */
812 build_tree((tree_desc near *)(&bl_desc));
813 /* opt_len now includes the length of the tree representations, except
814 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
817 /* Determine the number of bit length codes to send. The pkzip format
818 * requires that at least 4 bit length codes be sent. (appnote.txt says
819 * 3 but the actual value used is 4.)
821 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
822 if (bl_tree[bl_order[max_blindex]].Len != 0) break;
824 /* Update opt_len to include the bit length tree and counts */
825 opt_len += 3*(max_blindex+1) + 5+5+4;
826 Tracev((stderr, "\ndyn trees: dyn %lu, stat %lu", opt_len, static_len));
828 return max_blindex;
831 /* ===========================================================================
832 * Send the header for a block using dynamic Huffman trees: the counts, the
833 * lengths of the bit length codes, the literal tree and the distance tree.
834 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
836 local void send_all_trees(lcodes, dcodes, blcodes)
837 int lcodes, dcodes, blcodes; /* number of codes for each tree */
839 int rank; /* index in bl_order */
841 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
842 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
843 "too many codes");
844 Tracev((stderr, "\nbl counts: "));
845 send_bits(lcodes-257, 5); /* not +255 as stated in appnote.txt */
846 send_bits(dcodes-1, 5);
847 send_bits(blcodes-4, 4); /* not -3 as stated in appnote.txt */
848 for (rank = 0; rank < blcodes; rank++) {
849 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
850 send_bits(bl_tree[bl_order[rank]].Len, 3);
853 send_tree((ct_data near *)dyn_ltree, lcodes-1); /* send the literal tree */
855 send_tree((ct_data near *)dyn_dtree, dcodes-1); /* send the distance tree */
858 /* ===========================================================================
859 * Determine the best encoding for the current block: dynamic trees, static
860 * trees or store, and output the encoded block to the zip file. This function
861 * returns the total compressed length for the file so far.
863 off_t flush_block(buf, stored_len, eof)
864 char *buf; /* input block, or NULL if too old */
865 ulg stored_len; /* length of input block */
866 int eof; /* true if this is the last block for a file */
868 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
869 int max_blindex; /* index of last bit length code of non zero freq */
871 flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
873 /* Check if the file is ascii or binary */
874 if (*file_type == (ush)UNKNOWN) set_file_type();
876 /* Construct the literal and distance trees */
877 build_tree((tree_desc near *)(&l_desc));
878 Tracev((stderr, "\nlit data: dyn %lu, stat %lu", opt_len, static_len));
880 build_tree((tree_desc near *)(&d_desc));
881 Tracev((stderr, "\ndist data: dyn %lu, stat %lu", opt_len, static_len));
882 /* At this point, opt_len and static_len are the total bit lengths of
883 * the compressed block data, excluding the tree representations.
886 /* Build the bit length tree for the above two trees, and get the index
887 * in bl_order of the last bit length code to send.
889 max_blindex = build_bl_tree();
891 /* Determine the best encoding. Compute first the block length in bytes */
892 opt_lenb = (opt_len+3+7)>>3;
893 static_lenb = (static_len+3+7)>>3;
894 input_len += stored_len; /* for debugging only */
896 Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
897 opt_lenb, opt_len, static_lenb, static_len, stored_len,
898 last_lit, last_dist));
900 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
902 /* If compression failed and this is the first and last block,
903 * and if the zip file can be seeked (to rewrite the local header),
904 * the whole file is transformed into a stored file:
906 #ifdef FORCE_METHOD
907 if (level == 1 && eof && compressed_len == 0L) { /* force stored file */
908 #else
909 if (stored_len <= opt_lenb && eof && compressed_len == 0L && seekable()) {
910 #endif
911 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
912 if (!buf)
913 gzip_error ("block vanished");
915 copy_block(buf, (unsigned)stored_len, 0); /* without header */
916 compressed_len = stored_len << 3;
917 *file_method = STORED;
919 #ifdef FORCE_METHOD
920 } else if (level == 2 && buf != (char*)0) { /* force stored block */
921 #else
922 } else if (stored_len+4 <= opt_lenb && buf != (char*)0) {
923 /* 4: two words for the lengths */
924 #endif
925 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
926 * Otherwise we can't have processed more than WSIZE input bytes since
927 * the last block flush, because compression would have been
928 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
929 * transform a block into a stored block.
931 send_bits((STORED_BLOCK<<1)+eof, 3); /* send block type */
932 compressed_len = (compressed_len + 3 + 7) & ~7L;
933 compressed_len += (stored_len + 4) << 3;
935 copy_block(buf, (unsigned)stored_len, 1); /* with header */
937 #ifdef FORCE_METHOD
938 } else if (level == 3) { /* force static trees */
939 #else
940 } else if (static_lenb == opt_lenb) {
941 #endif
942 send_bits((STATIC_TREES<<1)+eof, 3);
943 compress_block((ct_data near *)static_ltree, (ct_data near *)static_dtree);
944 compressed_len += 3 + static_len;
945 } else {
946 send_bits((DYN_TREES<<1)+eof, 3);
947 send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
948 compress_block((ct_data near *)dyn_ltree, (ct_data near *)dyn_dtree);
949 compressed_len += 3 + opt_len;
951 Assert (compressed_len == bits_sent, "bad compressed size");
952 init_block();
954 if (eof) {
955 Assert (input_len == bytes_in, "bad input size");
956 bi_windup();
957 compressed_len += 7; /* align on byte boundary */
960 return compressed_len >> 3;
963 /* ===========================================================================
964 * Save the match info and tally the frequency counts. Return true if
965 * the current block must be flushed.
967 int ct_tally (dist, lc)
968 int dist; /* distance of matched string */
969 int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
971 l_buf[last_lit++] = (uch)lc;
972 if (dist == 0) {
973 /* lc is the unmatched char */
974 dyn_ltree[lc].Freq++;
975 } else {
976 /* Here, lc is the match length - MIN_MATCH */
977 dist--; /* dist = match distance - 1 */
978 Assert((ush)dist < (ush)MAX_DIST &&
979 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
980 (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
982 dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
983 dyn_dtree[d_code(dist)].Freq++;
985 d_buf[last_dist++] = (ush)dist;
986 flags |= flag_bit;
988 flag_bit <<= 1;
990 /* Output the flags if they fill a byte: */
991 if ((last_lit & 7) == 0) {
992 flag_buf[last_flags++] = flags;
993 flags = 0, flag_bit = 1;
995 /* Try to guess if it is profitable to stop the current block here */
996 if (level > 2 && (last_lit & 0xfff) == 0) {
997 /* Compute an upper bound for the compressed length */
998 ulg out_length = (ulg)last_lit*8L;
999 ulg in_length = (ulg)strstart-block_start;
1000 int dcode;
1001 for (dcode = 0; dcode < D_CODES; dcode++) {
1002 out_length += (ulg)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]);
1004 out_length >>= 3;
1005 Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1006 last_lit, last_dist, in_length, out_length,
1007 100L - out_length*100L/in_length));
1008 if (last_dist < last_lit/2 && out_length < in_length/2) return 1;
1010 return (last_lit == LIT_BUFSIZE-1 || last_dist == DIST_BUFSIZE);
1011 /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1012 * on 16 bit machines and because stored blocks are restricted to
1013 * 64K-1 bytes.
1017 /* ===========================================================================
1018 * Send the block data compressed using the given Huffman trees
1020 local void compress_block(ltree, dtree)
1021 ct_data near *ltree; /* literal tree */
1022 ct_data near *dtree; /* distance tree */
1024 unsigned dist; /* distance of matched string */
1025 int lc; /* match length or unmatched char (if dist == 0) */
1026 unsigned lx = 0; /* running index in l_buf */
1027 unsigned dx = 0; /* running index in d_buf */
1028 unsigned fx = 0; /* running index in flag_buf */
1029 uch flag = 0; /* current flags */
1030 unsigned code; /* the code to send */
1031 int extra; /* number of extra bits to send */
1033 if (last_lit != 0) do {
1034 if ((lx & 7) == 0) flag = flag_buf[fx++];
1035 lc = l_buf[lx++];
1036 if ((flag & 1) == 0) {
1037 send_code(lc, ltree); /* send a literal byte */
1038 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1039 } else {
1040 /* Here, lc is the match length - MIN_MATCH */
1041 code = length_code[lc];
1042 send_code(code+LITERALS+1, ltree); /* send the length code */
1043 extra = extra_lbits[code];
1044 if (extra != 0) {
1045 lc -= base_length[code];
1046 send_bits(lc, extra); /* send the extra length bits */
1048 dist = d_buf[dx++];
1049 /* Here, dist is the match distance - 1 */
1050 code = d_code(dist);
1051 Assert (code < D_CODES, "bad d_code");
1053 send_code(code, dtree); /* send the distance code */
1054 extra = extra_dbits[code];
1055 if (extra != 0) {
1056 dist -= base_dist[code];
1057 send_bits(dist, extra); /* send the extra distance bits */
1059 } /* literal or match pair ? */
1060 flag >>= 1;
1061 } while (lx < last_lit);
1063 send_code(END_BLOCK, ltree);
1066 /* ===========================================================================
1067 * Set the file type to ASCII or BINARY, using a crude approximation:
1068 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1069 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1070 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1072 local void set_file_type()
1074 int n = 0;
1075 unsigned ascii_freq = 0;
1076 unsigned bin_freq = 0;
1077 while (n < 7) bin_freq += dyn_ltree[n++].Freq;
1078 while (n < 128) ascii_freq += dyn_ltree[n++].Freq;
1079 while (n < LITERALS) bin_freq += dyn_ltree[n++].Freq;
1080 *file_type = bin_freq > (ascii_freq >> 2) ? BINARY : ASCII;
1081 if (*file_type == BINARY && translate_eol) {
1082 warning ("-l used on binary file");