vfs: check userland buffers before reading them.
[haiku.git] / src / kits / media / SoundPlayNode.cpp
blob6587248a6dea162b7b8b78d11ee017bca0d1e8eb
1 /*
2 * Copyright 2002-2010, Haiku.
3 * Distributed under the terms of the MIT License.
5 * Authors:
6 * Marcus Overhagen
7 * Jérôme Duval
8 */
11 /*! This is the BBufferProducer used internally by BSoundPlayer.
15 #include "SoundPlayNode.h"
17 #include <string.h>
18 #include <stdlib.h>
19 #include <unistd.h>
21 #include <TimeSource.h>
22 #include <MediaRoster.h>
23 #include "debug.h"
26 #define SEND_NEW_BUFFER_EVENT (BTimedEventQueue::B_USER_EVENT + 1)
29 namespace BPrivate {
32 SoundPlayNode::SoundPlayNode(const char* name, BSoundPlayer* player)
34 BMediaNode(name),
35 BBufferProducer(B_MEDIA_RAW_AUDIO),
36 BMediaEventLooper(),
37 fPlayer(player),
38 fInitStatus(B_OK),
39 fOutputEnabled(true),
40 fBufferGroup(NULL),
41 fFramesSent(0),
42 fTooEarlyCount(0)
44 CALLED();
45 fOutput.format.type = B_MEDIA_RAW_AUDIO;
46 fOutput.format.u.raw_audio = media_multi_audio_format::wildcard;
50 SoundPlayNode::~SoundPlayNode()
52 CALLED();
53 Quit();
57 bool
58 SoundPlayNode::IsPlaying()
60 return RunState() == B_STARTED;
64 bigtime_t
65 SoundPlayNode::CurrentTime()
67 int frameRate = (int)fOutput.format.u.raw_audio.frame_rate;
68 return frameRate == 0 ? 0
69 : bigtime_t((1000000LL * fFramesSent) / frameRate);
73 media_multi_audio_format
74 SoundPlayNode::Format() const
76 return fOutput.format.u.raw_audio;
80 // #pragma mark - implementation of BMediaNode
83 BMediaAddOn*
84 SoundPlayNode::AddOn(int32* _internalID) const
86 CALLED();
87 // This only gets called if we are in an add-on.
88 return NULL;
92 void
93 SoundPlayNode::Preroll()
95 CALLED();
96 // TODO: Performance opportunity
97 BMediaNode::Preroll();
101 status_t
102 SoundPlayNode::HandleMessage(int32 message, const void* data, size_t size)
104 CALLED();
105 return B_ERROR;
109 void
110 SoundPlayNode::NodeRegistered()
112 CALLED();
114 if (fInitStatus != B_OK) {
115 ReportError(B_NODE_IN_DISTRESS);
116 return;
119 SetPriority(B_URGENT_PRIORITY);
121 fOutput.format.type = B_MEDIA_RAW_AUDIO;
122 fOutput.format.u.raw_audio = media_multi_audio_format::wildcard;
123 fOutput.destination = media_destination::null;
124 fOutput.source.port = ControlPort();
125 fOutput.source.id = 0;
126 fOutput.node = Node();
127 strcpy(fOutput.name, Name());
129 Run();
133 status_t
134 SoundPlayNode::RequestCompleted(const media_request_info& info)
136 CALLED();
137 return B_OK;
141 void
142 SoundPlayNode::SetTimeSource(BTimeSource* timeSource)
144 CALLED();
145 BMediaNode::SetTimeSource(timeSource);
149 void
150 SoundPlayNode::SetRunMode(run_mode mode)
152 TRACE("SoundPlayNode::SetRunMode mode:%i\n", mode);
153 BMediaNode::SetRunMode(mode);
157 // #pragma mark - implementation for BBufferProducer
160 status_t
161 SoundPlayNode::FormatSuggestionRequested(media_type type, int32 /*quality*/,
162 media_format* format)
164 // FormatSuggestionRequested() is not necessarily part of the format
165 // negotiation process; it's simply an interrogation -- the caller wants
166 // to see what the node's preferred data format is, given a suggestion by
167 // the caller.
168 CALLED();
170 // a wildcard type is okay; but we only support raw audio
171 if (type != B_MEDIA_RAW_AUDIO && type != B_MEDIA_UNKNOWN_TYPE)
172 return B_MEDIA_BAD_FORMAT;
174 // this is the format we'll be returning (our preferred format)
175 format->type = B_MEDIA_RAW_AUDIO;
176 format->u.raw_audio = media_multi_audio_format::wildcard;
178 return B_OK;
182 status_t
183 SoundPlayNode::FormatProposal(const media_source& output, media_format* format)
185 // FormatProposal() is the first stage in the BMediaRoster::Connect()
186 // process. We hand out a suggested format, with wildcards for any
187 // variations we support.
188 CALLED();
190 // is this a proposal for our one output?
191 if (output != fOutput.source) {
192 TRACE("SoundPlayNode::FormatProposal returning B_MEDIA_BAD_SOURCE\n");
193 return B_MEDIA_BAD_SOURCE;
196 // if wildcard, change it to raw audio
197 if (format->type == B_MEDIA_UNKNOWN_TYPE)
198 format->type = B_MEDIA_RAW_AUDIO;
200 // if not raw audio, we can't support it
201 if (format->type != B_MEDIA_RAW_AUDIO) {
202 TRACE("SoundPlayNode::FormatProposal returning B_MEDIA_BAD_FORMAT\n");
203 return B_MEDIA_BAD_FORMAT;
206 #if DEBUG >0
207 char buf[100];
208 string_for_format(*format, buf, sizeof(buf));
209 TRACE("SoundPlayNode::FormatProposal: format %s\n", buf);
210 #endif
212 return B_OK;
216 status_t
217 SoundPlayNode::FormatChangeRequested(const media_source& source,
218 const media_destination& destination, media_format* _format,
219 int32* /* deprecated */)
221 CALLED();
223 // we don't support any other formats, so we just reject any format changes.
224 return B_ERROR;
228 status_t
229 SoundPlayNode::GetNextOutput(int32* cookie, media_output* _output)
231 CALLED();
233 if (*cookie == 0) {
234 *_output = fOutput;
235 *cookie += 1;
236 return B_OK;
237 } else {
238 return B_BAD_INDEX;
243 status_t
244 SoundPlayNode::DisposeOutputCookie(int32 cookie)
246 CALLED();
247 // do nothing because we don't use the cookie for anything special
248 return B_OK;
252 status_t
253 SoundPlayNode::SetBufferGroup(const media_source& forSource,
254 BBufferGroup* newGroup)
256 CALLED();
258 // is this our output?
259 if (forSource != fOutput.source) {
260 TRACE("SoundPlayNode::SetBufferGroup returning B_MEDIA_BAD_SOURCE\n");
261 return B_MEDIA_BAD_SOURCE;
264 // Are we being passed the buffer group we're already using?
265 if (newGroup == fBufferGroup)
266 return B_OK;
268 // Ahh, someone wants us to use a different buffer group. At this point we
269 // delete the one we are using and use the specified one instead.
270 // If the specified group is NULL, we need to recreate one ourselves, and
271 // use *that*. Note that if we're caching a BBuffer that we requested
272 // earlier, we have to Recycle() that buffer *before* deleting the buffer
273 // group, otherwise we'll deadlock waiting for that buffer to be recycled!
274 delete fBufferGroup;
275 // waits for all buffers to recycle
277 if (newGroup != NULL) {
278 // we were given a valid group; just use that one from now on
279 fBufferGroup = newGroup;
280 return B_OK;
283 // we were passed a NULL group pointer; that means we construct
284 // our own buffer group to use from now on
285 return AllocateBuffers();
289 status_t
290 SoundPlayNode::GetLatency(bigtime_t* _latency)
292 CALLED();
294 // report our *total* latency: internal plus downstream plus scheduling
295 *_latency = EventLatency() + SchedulingLatency();
296 return B_OK;
300 status_t
301 SoundPlayNode::PrepareToConnect(const media_source& what,
302 const media_destination& where, media_format* format,
303 media_source* _source, char* _name)
305 // PrepareToConnect() is the second stage of format negotiations that
306 // happens inside BMediaRoster::Connect(). At this point, the consumer's
307 // AcceptFormat() method has been called, and that node has potentially
308 // changed the proposed format. It may also have left wildcards in the
309 // format. PrepareToConnect() *must* fully specialize the format before
310 // returning!
311 CALLED();
313 // is this our output?
314 if (what != fOutput.source) {
315 TRACE("SoundPlayNode::PrepareToConnect returning "
316 "B_MEDIA_BAD_SOURCE\n");
317 return B_MEDIA_BAD_SOURCE;
320 // are we already connected?
321 if (fOutput.destination != media_destination::null)
322 return B_MEDIA_ALREADY_CONNECTED;
324 // the format may not yet be fully specialized (the consumer might have
325 // passed back some wildcards). Finish specializing it now, and return an
326 // error if we don't support the requested format.
328 #if DEBUG > 0
329 char buf[100];
330 string_for_format(*format, buf, sizeof(buf));
331 TRACE("SoundPlayNode::PrepareToConnect: input format %s\n", buf);
332 #endif
334 // if not raw audio, we can't support it
335 if (format->type != B_MEDIA_UNKNOWN_TYPE
336 && format->type != B_MEDIA_RAW_AUDIO) {
337 TRACE("SoundPlayNode::PrepareToConnect: non raw format, returning "
338 "B_MEDIA_BAD_FORMAT\n");
339 return B_MEDIA_BAD_FORMAT;
342 // the haiku mixer might have a hint
343 // for us, so check for it
344 #define FORMAT_USER_DATA_TYPE 0x7294a8f3
345 #define FORMAT_USER_DATA_MAGIC_1 0xc84173bd
346 #define FORMAT_USER_DATA_MAGIC_2 0x4af62b7d
347 uint32 channel_count = 0;
348 float frame_rate = 0;
349 if (format->user_data_type == FORMAT_USER_DATA_TYPE
350 && *(uint32 *)&format->user_data[0] == FORMAT_USER_DATA_MAGIC_1
351 && *(uint32 *)&format->user_data[44] == FORMAT_USER_DATA_MAGIC_2) {
352 channel_count = *(uint32 *)&format->user_data[4];
353 frame_rate = *(float *)&format->user_data[20];
354 TRACE("SoundPlayNode::PrepareToConnect: found mixer info: "
355 "channel_count %" B_PRId32 " , frame_rate %.1f\n", channel_count, frame_rate);
358 media_format default_format;
359 default_format.type = B_MEDIA_RAW_AUDIO;
360 default_format.u.raw_audio.frame_rate = frame_rate > 0 ? frame_rate : 44100;
361 default_format.u.raw_audio.channel_count = channel_count > 0
362 ? channel_count : 2;
363 default_format.u.raw_audio.format = media_raw_audio_format::B_AUDIO_FLOAT;
364 default_format.u.raw_audio.byte_order = B_MEDIA_HOST_ENDIAN;
365 default_format.u.raw_audio.buffer_size = 0;
366 format->SpecializeTo(&default_format);
368 if (format->u.raw_audio.buffer_size == 0) {
369 format->u.raw_audio.buffer_size
370 = BMediaRoster::Roster()->AudioBufferSizeFor(
371 format->u.raw_audio.channel_count, format->u.raw_audio.format,
372 format->u.raw_audio.frame_rate);
375 #if DEBUG > 0
376 string_for_format(*format, buf, sizeof(buf));
377 TRACE("SoundPlayNode::PrepareToConnect: output format %s\n", buf);
378 #endif
380 // Now reserve the connection, and return information about it
381 fOutput.destination = where;
382 fOutput.format = *format;
383 *_source = fOutput.source;
384 strcpy(_name, Name());
385 return B_OK;
389 void
390 SoundPlayNode::Connect(status_t error, const media_source& source,
391 const media_destination& destination, const media_format& format,
392 char* name)
394 CALLED();
396 // is this our output?
397 if (source != fOutput.source) {
398 TRACE("SoundPlayNode::Connect returning\n");
399 return;
402 // If something earlier failed, Connect() might still be called, but with
403 // a non-zero error code. When that happens we simply unreserve the
404 // connection and do nothing else.
405 if (error) {
406 fOutput.destination = media_destination::null;
407 fOutput.format.type = B_MEDIA_RAW_AUDIO;
408 fOutput.format.u.raw_audio = media_multi_audio_format::wildcard;
409 return;
412 // Okay, the connection has been confirmed. Record the destination and
413 // format that we agreed on, and report our connection name again.
414 fOutput.destination = destination;
415 fOutput.format = format;
416 strcpy(name, Name());
418 // Now that we're connected, we can determine our downstream latency.
419 // Do so, then make sure we get our events early enough.
420 media_node_id id;
421 FindLatencyFor(fOutput.destination, &fLatency, &id);
422 TRACE("SoundPlayNode::Connect: downstream latency = %" B_PRId64 "\n",
423 fLatency);
425 // reset our buffer duration, etc. to avoid later calculations
426 bigtime_t duration = ((fOutput.format.u.raw_audio.buffer_size * 1000000LL)
427 / ((fOutput.format.u.raw_audio.format
428 & media_raw_audio_format::B_AUDIO_SIZE_MASK)
429 * fOutput.format.u.raw_audio.channel_count))
430 / (int32)fOutput.format.u.raw_audio.frame_rate;
431 SetBufferDuration(duration);
432 TRACE("SoundPlayNode::Connect: buffer duration is %" B_PRId64 "\n",
433 duration);
435 fInternalLatency = (3 * BufferDuration()) / 4;
436 TRACE("SoundPlayNode::Connect: using %" B_PRId64 " as internal latency\n",
437 fInternalLatency);
438 SetEventLatency(fLatency + fInternalLatency);
440 // Set up the buffer group for our connection, as long as nobody handed us
441 // a buffer group (via SetBufferGroup()) prior to this.
442 // That can happen, for example, if the consumer calls SetOutputBuffersFor()
443 // on us from within its Connected() method.
444 if (!fBufferGroup)
445 AllocateBuffers();
449 void
450 SoundPlayNode::Disconnect(const media_source& what,
451 const media_destination& where)
453 CALLED();
455 // is this our output?
456 if (what != fOutput.source) {
457 TRACE("SoundPlayNode::Disconnect returning\n");
458 return;
461 // Make sure that our connection is the one being disconnected
462 if (where == fOutput.destination && what == fOutput.source) {
463 fOutput.destination = media_destination::null;
464 fOutput.format.type = B_MEDIA_RAW_AUDIO;
465 fOutput.format.u.raw_audio = media_multi_audio_format::wildcard;
466 delete fBufferGroup;
467 fBufferGroup = NULL;
468 } else {
469 fprintf(stderr, "\tDisconnect() called with wrong source/destination "
470 "(%" B_PRId32 "/%" B_PRId32 "), ours is (%" B_PRId32 "/%" B_PRId32
471 ")\n", what.id, where.id, fOutput.source.id,
472 fOutput.destination.id);
477 void
478 SoundPlayNode::LateNoticeReceived(const media_source& what, bigtime_t howMuch,
479 bigtime_t performanceTime)
481 CALLED();
483 TRACE("SoundPlayNode::LateNoticeReceived, %" B_PRId64 " too late at %"
484 B_PRId64 "\n", howMuch, performanceTime);
486 // is this our output?
487 if (what != fOutput.source) {
488 TRACE("SoundPlayNode::LateNoticeReceived returning\n");
489 return;
492 if (RunMode() != B_DROP_DATA) {
493 // We're late, and our run mode dictates that we try to produce buffers
494 // earlier in order to catch up. This argues that the downstream nodes are
495 // not properly reporting their latency, but there's not much we can do about
496 // that at the moment, so we try to start producing buffers earlier to
497 // compensate.
499 fInternalLatency += howMuch;
501 if (fInternalLatency > 30000) // avoid getting a too high latency
502 fInternalLatency = 30000;
504 SetEventLatency(fLatency + fInternalLatency);
505 TRACE("SoundPlayNode::LateNoticeReceived: increasing latency to %"
506 B_PRId64 "\n", fLatency + fInternalLatency);
507 } else {
508 // The other run modes dictate various strategies for sacrificing data quality
509 // in the interests of timely data delivery. The way *we* do this is to skip
510 // a buffer, which catches us up in time by one buffer duration.
512 size_t nFrames = fOutput.format.u.raw_audio.buffer_size
513 / ((fOutput.format.u.raw_audio.format & media_raw_audio_format::B_AUDIO_SIZE_MASK)
514 * fOutput.format.u.raw_audio.channel_count);
516 fFramesSent += nFrames;
518 TRACE("SoundPlayNode::LateNoticeReceived: skipping a buffer to try to catch up\n");
523 void
524 SoundPlayNode::EnableOutput(const media_source& what, bool enabled,
525 int32* /* deprecated */)
527 CALLED();
529 // If I had more than one output, I'd have to walk my list of output
530 // records to see which one matched the given source, and then
531 // enable/disable that one.
532 // But this node only has one output, so I just make sure the given source
533 // matches, then set the enable state accordingly.
535 // is this our output?
536 if (what != fOutput.source) {
537 fprintf(stderr, "SoundPlayNode::EnableOutput returning\n");
538 return;
541 fOutputEnabled = enabled;
545 void
546 SoundPlayNode::AdditionalBufferRequested(const media_source& source,
547 media_buffer_id previousBuffer, bigtime_t previousTime,
548 const media_seek_tag* previousTag)
550 CALLED();
551 // we don't support offline mode
552 return;
556 void
557 SoundPlayNode::LatencyChanged(const media_source& source,
558 const media_destination& destination, bigtime_t newLatency, uint32 flags)
560 CALLED();
562 TRACE("SoundPlayNode::LatencyChanged: new_latency %" B_PRId64 "\n",
563 newLatency);
565 // something downstream changed latency, so we need to start producing
566 // buffers earlier (or later) than we were previously. Make sure that the
567 // connection that changed is ours, and adjust to the new downstream
568 // latency if so.
569 if (source == fOutput.source && destination == fOutput.destination) {
570 fLatency = newLatency;
571 SetEventLatency(fLatency + fInternalLatency);
572 } else {
573 TRACE("SoundPlayNode::LatencyChanged: ignored\n");
578 // #pragma mark - implementation for BMediaEventLooper
581 void
582 SoundPlayNode::HandleEvent(const media_timed_event* event, bigtime_t lateness,
583 bool realTimeEvent)
585 CALLED();
586 switch (event->type) {
587 case BTimedEventQueue::B_START:
588 HandleStart(event,lateness,realTimeEvent);
589 break;
590 case BTimedEventQueue::B_SEEK:
591 HandleSeek(event,lateness,realTimeEvent);
592 break;
593 case BTimedEventQueue::B_WARP:
594 HandleWarp(event,lateness,realTimeEvent);
595 break;
596 case BTimedEventQueue::B_STOP:
597 HandleStop(event,lateness,realTimeEvent);
598 break;
599 case BTimedEventQueue::B_HANDLE_BUFFER:
600 // we don't get any buffers
601 break;
602 case SEND_NEW_BUFFER_EVENT:
603 if (RunState() == BMediaEventLooper::B_STARTED)
604 SendNewBuffer(event, lateness, realTimeEvent);
605 break;
606 case BTimedEventQueue::B_DATA_STATUS:
607 HandleDataStatus(event,lateness,realTimeEvent);
608 break;
609 case BTimedEventQueue::B_PARAMETER:
610 HandleParameter(event,lateness,realTimeEvent);
611 break;
612 default:
613 fprintf(stderr," unknown event type: %" B_PRId32 "\n", event->type);
614 break;
619 // #pragma mark - protected methods
622 // how should we handle late buffers? drop them?
623 // notify the producer?
624 status_t
625 SoundPlayNode::SendNewBuffer(const media_timed_event* event,
626 bigtime_t lateness, bool realTimeEvent)
628 CALLED();
629 // TRACE("latency = %12Ld, event = %12Ld, sched = %5Ld, arrive at %12Ld, now %12Ld, current lateness %12Ld\n", EventLatency() + SchedulingLatency(), EventLatency(), SchedulingLatency(), event->event_time, TimeSource()->Now(), lateness);
631 // make sure we're both started *and* connected before delivering a buffer
632 if (RunState() != BMediaEventLooper::B_STARTED
633 || fOutput.destination == media_destination::null)
634 return B_OK;
636 // The event->event_time is the time at which the buffer we are preparing
637 // here should arrive at it's destination. The MediaEventLooper should have
638 // scheduled us early enough (based on EventLatency() and the
639 // SchedulingLatency()) to make this possible.
640 // lateness is independent of EventLatency()!
642 if (lateness > (BufferDuration() / 3) ) {
643 TRACE("SoundPlayNode::SendNewBuffer, event scheduled much too late, "
644 "lateness is %" B_PRId64 "\n", lateness);
647 // skip buffer creation if output not enabled
648 if (fOutputEnabled) {
650 // Get the next buffer of data
651 BBuffer* buffer = FillNextBuffer(event->event_time);
653 if (buffer) {
655 // If we are ready way too early, decrase internal latency
657 bigtime_t how_early = event->event_time - TimeSource()->Now() - fLatency - fInternalLatency;
658 if (how_early > 5000) {
660 TRACE("SoundPlayNode::SendNewBuffer, event scheduled too early, how_early is %Ld\n", how_early);
662 if (fTooEarlyCount++ == 5) {
663 fInternalLatency -= how_early;
664 if (fInternalLatency < 500)
665 fInternalLatency = 500;
666 TRACE("SoundPlayNode::SendNewBuffer setting internal latency to %Ld\n", fInternalLatency);
667 SetEventLatency(fLatency + fInternalLatency);
668 fTooEarlyCount = 0;
672 // send the buffer downstream if and only if output is enabled
673 if (SendBuffer(buffer, fOutput.source, fOutput.destination)
674 != B_OK) {
675 // we need to recycle the buffer
676 // if the call to SendBuffer() fails
677 TRACE("SoundPlayNode::SendNewBuffer: Buffer sending "
678 "failed\n");
679 buffer->Recycle();
684 // track how much media we've delivered so far
685 size_t nFrames = fOutput.format.u.raw_audio.buffer_size
686 / ((fOutput.format.u.raw_audio.format
687 & media_raw_audio_format::B_AUDIO_SIZE_MASK)
688 * fOutput.format.u.raw_audio.channel_count);
689 fFramesSent += nFrames;
691 // The buffer is on its way; now schedule the next one to go
692 // nextEvent is the time at which the buffer should arrive at it's
693 // destination
694 bigtime_t nextEvent = fStartTime + bigtime_t((1000000LL * fFramesSent)
695 / (int32)fOutput.format.u.raw_audio.frame_rate);
696 media_timed_event nextBufferEvent(nextEvent, SEND_NEW_BUFFER_EVENT);
697 EventQueue()->AddEvent(nextBufferEvent);
699 return B_OK;
703 status_t
704 SoundPlayNode::HandleDataStatus(const media_timed_event* event,
705 bigtime_t lateness, bool realTimeEvent)
707 TRACE("SoundPlayNode::HandleDataStatus status: %" B_PRId32 ", lateness: %"
708 B_PRId64 "\n", event->data, lateness);
710 switch (event->data) {
711 case B_DATA_NOT_AVAILABLE:
712 break;
713 case B_DATA_AVAILABLE:
714 break;
715 case B_PRODUCER_STOPPED:
716 break;
717 default:
718 break;
720 return B_OK;
724 status_t
725 SoundPlayNode::HandleStart(const media_timed_event* event, bigtime_t lateness,
726 bool realTimeEvent)
728 CALLED();
729 // don't do anything if we're already running
730 if (RunState() != B_STARTED) {
731 // We want to start sending buffers now, so we set up the buffer-sending
732 // bookkeeping and fire off the first "produce a buffer" event.
734 fFramesSent = 0;
735 fStartTime = event->event_time;
736 media_timed_event firstBufferEvent(event->event_time,
737 SEND_NEW_BUFFER_EVENT);
739 // Alternatively, we could call HandleEvent() directly with this event,
740 // to avoid a trip through the event queue, like this:
742 // this->HandleEvent(&firstBufferEvent, 0, false);
744 EventQueue()->AddEvent(firstBufferEvent);
746 return B_OK;
750 status_t
751 SoundPlayNode::HandleSeek(const media_timed_event* event, bigtime_t lateness,
752 bool realTimeEvent)
754 CALLED();
755 TRACE("SoundPlayNode::HandleSeek(t=%" B_PRId64 ", d=%" B_PRId32 ", bd=%"
756 B_PRId64 ")\n", event->event_time, event->data, event->bigdata);
757 return B_OK;
761 status_t
762 SoundPlayNode::HandleWarp(const media_timed_event* event, bigtime_t lateness,
763 bool realTimeEvent)
765 CALLED();
766 return B_OK;
770 status_t
771 SoundPlayNode::HandleStop(const media_timed_event* event, bigtime_t lateness,
772 bool realTimeEvent)
774 CALLED();
775 // flush the queue so downstreamers don't get any more
776 EventQueue()->FlushEvents(0, BTimedEventQueue::B_ALWAYS, true,
777 SEND_NEW_BUFFER_EVENT);
779 return B_OK;
783 status_t
784 SoundPlayNode::HandleParameter(const media_timed_event* event,
785 bigtime_t lateness, bool realTimeEvent)
787 CALLED();
788 return B_OK;
792 status_t
793 SoundPlayNode::AllocateBuffers()
795 CALLED();
797 // allocate enough buffers to span our downstream latency, plus one
798 size_t size = fOutput.format.u.raw_audio.buffer_size;
799 int32 count = int32(fLatency / BufferDuration() + 1 + 1);
801 TRACE("SoundPlayNode::AllocateBuffers: latency = %" B_PRId64 ", buffer "
802 "duration = %" B_PRId64 ", count %" B_PRId32 "\n", fLatency,
803 BufferDuration(), count);
805 if (count < 3)
806 count = 3;
808 TRACE("SoundPlayNode::AllocateBuffers: creating group of %" B_PRId32
809 " buffers, size = %" B_PRIuSIZE "\n", count, size);
811 fBufferGroup = new BBufferGroup(size, count);
812 if (fBufferGroup->InitCheck() != B_OK) {
813 ERROR("SoundPlayNode::AllocateBuffers: BufferGroup::InitCheck() "
814 "failed\n");
817 return fBufferGroup->InitCheck();
821 BBuffer*
822 SoundPlayNode::FillNextBuffer(bigtime_t eventTime)
824 CALLED();
826 // get a buffer from our buffer group
827 BBuffer* buffer = fBufferGroup->RequestBuffer(
828 fOutput.format.u.raw_audio.buffer_size, BufferDuration() / 2);
830 // If we fail to get a buffer (for example, if the request times out), we
831 // skip this buffer and go on to the next, to avoid locking up the control
832 // thread
833 if (buffer == NULL) {
834 ERROR("SoundPlayNode::FillNextBuffer: RequestBuffer failed\n");
835 return NULL;
838 if (fPlayer->HasData()) {
839 fPlayer->PlayBuffer(buffer->Data(),
840 fOutput.format.u.raw_audio.buffer_size, fOutput.format.u.raw_audio);
841 } else
842 memset(buffer->Data(), 0, fOutput.format.u.raw_audio.buffer_size);
844 // fill in the buffer header
845 media_header* header = buffer->Header();
846 header->type = B_MEDIA_RAW_AUDIO;
847 header->size_used = fOutput.format.u.raw_audio.buffer_size;
848 header->time_source = TimeSource()->ID();
849 header->start_time = eventTime;
851 return buffer;
855 } // namespace BPrivate