[DCCP]: Introduce dccp_rx_hist_find_entry
[hh.org.git] / mm / swapfile.c
blobe70d6c6d6fee6f626a0c247c53f213413454cd0e
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <linux/swapops.h>
35 DEFINE_SPINLOCK(swap_lock);
36 unsigned int nr_swapfiles;
37 long total_swap_pages;
38 static int swap_overflow;
40 static const char Bad_file[] = "Bad swap file entry ";
41 static const char Unused_file[] = "Unused swap file entry ";
42 static const char Bad_offset[] = "Bad swap offset entry ";
43 static const char Unused_offset[] = "Unused swap offset entry ";
45 struct swap_list_t swap_list = {-1, -1};
47 static struct swap_info_struct swap_info[MAX_SWAPFILES];
49 static DEFINE_MUTEX(swapon_mutex);
52 * We need this because the bdev->unplug_fn can sleep and we cannot
53 * hold swap_lock while calling the unplug_fn. And swap_lock
54 * cannot be turned into a mutex.
56 static DECLARE_RWSEM(swap_unplug_sem);
58 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60 swp_entry_t entry;
62 down_read(&swap_unplug_sem);
63 entry.val = page_private(page);
64 if (PageSwapCache(page)) {
65 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
66 struct backing_dev_info *bdi;
69 * If the page is removed from swapcache from under us (with a
70 * racy try_to_unuse/swapoff) we need an additional reference
71 * count to avoid reading garbage from page_private(page) above.
72 * If the WARN_ON triggers during a swapoff it maybe the race
73 * condition and it's harmless. However if it triggers without
74 * swapoff it signals a problem.
76 WARN_ON(page_count(page) <= 1);
78 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
79 blk_run_backing_dev(bdi, page);
81 up_read(&swap_unplug_sem);
84 #define SWAPFILE_CLUSTER 256
85 #define LATENCY_LIMIT 256
87 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89 unsigned long offset, last_in_cluster;
90 int latency_ration = LATENCY_LIMIT;
92 /*
93 * We try to cluster swap pages by allocating them sequentially
94 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
95 * way, however, we resort to first-free allocation, starting
96 * a new cluster. This prevents us from scattering swap pages
97 * all over the entire swap partition, so that we reduce
98 * overall disk seek times between swap pages. -- sct
99 * But we do now try to find an empty cluster. -Andrea
102 si->flags += SWP_SCANNING;
103 if (unlikely(!si->cluster_nr)) {
104 si->cluster_nr = SWAPFILE_CLUSTER - 1;
105 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
106 goto lowest;
107 spin_unlock(&swap_lock);
109 offset = si->lowest_bit;
110 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112 /* Locate the first empty (unaligned) cluster */
113 for (; last_in_cluster <= si->highest_bit; offset++) {
114 if (si->swap_map[offset])
115 last_in_cluster = offset + SWAPFILE_CLUSTER;
116 else if (offset == last_in_cluster) {
117 spin_lock(&swap_lock);
118 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
119 goto cluster;
121 if (unlikely(--latency_ration < 0)) {
122 cond_resched();
123 latency_ration = LATENCY_LIMIT;
126 spin_lock(&swap_lock);
127 goto lowest;
130 si->cluster_nr--;
131 cluster:
132 offset = si->cluster_next;
133 if (offset > si->highest_bit)
134 lowest: offset = si->lowest_bit;
135 checks: if (!(si->flags & SWP_WRITEOK))
136 goto no_page;
137 if (!si->highest_bit)
138 goto no_page;
139 if (!si->swap_map[offset]) {
140 if (offset == si->lowest_bit)
141 si->lowest_bit++;
142 if (offset == si->highest_bit)
143 si->highest_bit--;
144 si->inuse_pages++;
145 if (si->inuse_pages == si->pages) {
146 si->lowest_bit = si->max;
147 si->highest_bit = 0;
149 si->swap_map[offset] = 1;
150 si->cluster_next = offset + 1;
151 si->flags -= SWP_SCANNING;
152 return offset;
155 spin_unlock(&swap_lock);
156 while (++offset <= si->highest_bit) {
157 if (!si->swap_map[offset]) {
158 spin_lock(&swap_lock);
159 goto checks;
161 if (unlikely(--latency_ration < 0)) {
162 cond_resched();
163 latency_ration = LATENCY_LIMIT;
166 spin_lock(&swap_lock);
167 goto lowest;
169 no_page:
170 si->flags -= SWP_SCANNING;
171 return 0;
174 swp_entry_t get_swap_page(void)
176 struct swap_info_struct *si;
177 pgoff_t offset;
178 int type, next;
179 int wrapped = 0;
181 spin_lock(&swap_lock);
182 if (nr_swap_pages <= 0)
183 goto noswap;
184 nr_swap_pages--;
186 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
187 si = swap_info + type;
188 next = si->next;
189 if (next < 0 ||
190 (!wrapped && si->prio != swap_info[next].prio)) {
191 next = swap_list.head;
192 wrapped++;
195 if (!si->highest_bit)
196 continue;
197 if (!(si->flags & SWP_WRITEOK))
198 continue;
200 swap_list.next = next;
201 offset = scan_swap_map(si);
202 if (offset) {
203 spin_unlock(&swap_lock);
204 return swp_entry(type, offset);
206 next = swap_list.next;
209 nr_swap_pages++;
210 noswap:
211 spin_unlock(&swap_lock);
212 return (swp_entry_t) {0};
215 swp_entry_t get_swap_page_of_type(int type)
217 struct swap_info_struct *si;
218 pgoff_t offset;
220 spin_lock(&swap_lock);
221 si = swap_info + type;
222 if (si->flags & SWP_WRITEOK) {
223 nr_swap_pages--;
224 offset = scan_swap_map(si);
225 if (offset) {
226 spin_unlock(&swap_lock);
227 return swp_entry(type, offset);
229 nr_swap_pages++;
231 spin_unlock(&swap_lock);
232 return (swp_entry_t) {0};
235 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
237 struct swap_info_struct * p;
238 unsigned long offset, type;
240 if (!entry.val)
241 goto out;
242 type = swp_type(entry);
243 if (type >= nr_swapfiles)
244 goto bad_nofile;
245 p = & swap_info[type];
246 if (!(p->flags & SWP_USED))
247 goto bad_device;
248 offset = swp_offset(entry);
249 if (offset >= p->max)
250 goto bad_offset;
251 if (!p->swap_map[offset])
252 goto bad_free;
253 spin_lock(&swap_lock);
254 return p;
256 bad_free:
257 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
258 goto out;
259 bad_offset:
260 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
261 goto out;
262 bad_device:
263 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
264 goto out;
265 bad_nofile:
266 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
267 out:
268 return NULL;
271 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
273 int count = p->swap_map[offset];
275 if (count < SWAP_MAP_MAX) {
276 count--;
277 p->swap_map[offset] = count;
278 if (!count) {
279 if (offset < p->lowest_bit)
280 p->lowest_bit = offset;
281 if (offset > p->highest_bit)
282 p->highest_bit = offset;
283 if (p->prio > swap_info[swap_list.next].prio)
284 swap_list.next = p - swap_info;
285 nr_swap_pages++;
286 p->inuse_pages--;
289 return count;
293 * Caller has made sure that the swapdevice corresponding to entry
294 * is still around or has not been recycled.
296 void swap_free(swp_entry_t entry)
298 struct swap_info_struct * p;
300 p = swap_info_get(entry);
301 if (p) {
302 swap_entry_free(p, swp_offset(entry));
303 spin_unlock(&swap_lock);
308 * How many references to page are currently swapped out?
310 static inline int page_swapcount(struct page *page)
312 int count = 0;
313 struct swap_info_struct *p;
314 swp_entry_t entry;
316 entry.val = page_private(page);
317 p = swap_info_get(entry);
318 if (p) {
319 /* Subtract the 1 for the swap cache itself */
320 count = p->swap_map[swp_offset(entry)] - 1;
321 spin_unlock(&swap_lock);
323 return count;
327 * We can use this swap cache entry directly
328 * if there are no other references to it.
330 int can_share_swap_page(struct page *page)
332 int count;
334 BUG_ON(!PageLocked(page));
335 count = page_mapcount(page);
336 if (count <= 1 && PageSwapCache(page))
337 count += page_swapcount(page);
338 return count == 1;
342 * Work out if there are any other processes sharing this
343 * swap cache page. Free it if you can. Return success.
345 int remove_exclusive_swap_page(struct page *page)
347 int retval;
348 struct swap_info_struct * p;
349 swp_entry_t entry;
351 BUG_ON(PagePrivate(page));
352 BUG_ON(!PageLocked(page));
354 if (!PageSwapCache(page))
355 return 0;
356 if (PageWriteback(page))
357 return 0;
358 if (page_count(page) != 2) /* 2: us + cache */
359 return 0;
361 entry.val = page_private(page);
362 p = swap_info_get(entry);
363 if (!p)
364 return 0;
366 /* Is the only swap cache user the cache itself? */
367 retval = 0;
368 if (p->swap_map[swp_offset(entry)] == 1) {
369 /* Recheck the page count with the swapcache lock held.. */
370 write_lock_irq(&swapper_space.tree_lock);
371 if ((page_count(page) == 2) && !PageWriteback(page)) {
372 __delete_from_swap_cache(page);
373 SetPageDirty(page);
374 retval = 1;
376 write_unlock_irq(&swapper_space.tree_lock);
378 spin_unlock(&swap_lock);
380 if (retval) {
381 swap_free(entry);
382 page_cache_release(page);
385 return retval;
389 * Free the swap entry like above, but also try to
390 * free the page cache entry if it is the last user.
392 void free_swap_and_cache(swp_entry_t entry)
394 struct swap_info_struct * p;
395 struct page *page = NULL;
397 if (is_migration_entry(entry))
398 return;
400 p = swap_info_get(entry);
401 if (p) {
402 if (swap_entry_free(p, swp_offset(entry)) == 1) {
403 page = find_get_page(&swapper_space, entry.val);
404 if (page && unlikely(TestSetPageLocked(page))) {
405 page_cache_release(page);
406 page = NULL;
409 spin_unlock(&swap_lock);
411 if (page) {
412 int one_user;
414 BUG_ON(PagePrivate(page));
415 one_user = (page_count(page) == 2);
416 /* Only cache user (+us), or swap space full? Free it! */
417 /* Also recheck PageSwapCache after page is locked (above) */
418 if (PageSwapCache(page) && !PageWriteback(page) &&
419 (one_user || vm_swap_full())) {
420 delete_from_swap_cache(page);
421 SetPageDirty(page);
423 unlock_page(page);
424 page_cache_release(page);
428 #ifdef CONFIG_SOFTWARE_SUSPEND
430 * Find the swap type that corresponds to given device (if any)
432 * This is needed for software suspend and is done in such a way that inode
433 * aliasing is allowed.
435 int swap_type_of(dev_t device)
437 int i;
439 spin_lock(&swap_lock);
440 for (i = 0; i < nr_swapfiles; i++) {
441 struct inode *inode;
443 if (!(swap_info[i].flags & SWP_WRITEOK))
444 continue;
445 if (!device) {
446 spin_unlock(&swap_lock);
447 return i;
449 inode = swap_info->swap_file->f_dentry->d_inode;
450 if (S_ISBLK(inode->i_mode) &&
451 device == MKDEV(imajor(inode), iminor(inode))) {
452 spin_unlock(&swap_lock);
453 return i;
456 spin_unlock(&swap_lock);
457 return -ENODEV;
461 * Return either the total number of swap pages of given type, or the number
462 * of free pages of that type (depending on @free)
464 * This is needed for software suspend
466 unsigned int count_swap_pages(int type, int free)
468 unsigned int n = 0;
470 if (type < nr_swapfiles) {
471 spin_lock(&swap_lock);
472 if (swap_info[type].flags & SWP_WRITEOK) {
473 n = swap_info[type].pages;
474 if (free)
475 n -= swap_info[type].inuse_pages;
477 spin_unlock(&swap_lock);
479 return n;
481 #endif
484 * No need to decide whether this PTE shares the swap entry with others,
485 * just let do_wp_page work it out if a write is requested later - to
486 * force COW, vm_page_prot omits write permission from any private vma.
488 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
489 unsigned long addr, swp_entry_t entry, struct page *page)
491 inc_mm_counter(vma->vm_mm, anon_rss);
492 get_page(page);
493 set_pte_at(vma->vm_mm, addr, pte,
494 pte_mkold(mk_pte(page, vma->vm_page_prot)));
495 page_add_anon_rmap(page, vma, addr);
496 swap_free(entry);
498 * Move the page to the active list so it is not
499 * immediately swapped out again after swapon.
501 activate_page(page);
504 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
505 unsigned long addr, unsigned long end,
506 swp_entry_t entry, struct page *page)
508 pte_t swp_pte = swp_entry_to_pte(entry);
509 pte_t *pte;
510 spinlock_t *ptl;
511 int found = 0;
513 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
514 do {
516 * swapoff spends a _lot_ of time in this loop!
517 * Test inline before going to call unuse_pte.
519 if (unlikely(pte_same(*pte, swp_pte))) {
520 unuse_pte(vma, pte++, addr, entry, page);
521 found = 1;
522 break;
524 } while (pte++, addr += PAGE_SIZE, addr != end);
525 pte_unmap_unlock(pte - 1, ptl);
526 return found;
529 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
530 unsigned long addr, unsigned long end,
531 swp_entry_t entry, struct page *page)
533 pmd_t *pmd;
534 unsigned long next;
536 pmd = pmd_offset(pud, addr);
537 do {
538 next = pmd_addr_end(addr, end);
539 if (pmd_none_or_clear_bad(pmd))
540 continue;
541 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
542 return 1;
543 } while (pmd++, addr = next, addr != end);
544 return 0;
547 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
548 unsigned long addr, unsigned long end,
549 swp_entry_t entry, struct page *page)
551 pud_t *pud;
552 unsigned long next;
554 pud = pud_offset(pgd, addr);
555 do {
556 next = pud_addr_end(addr, end);
557 if (pud_none_or_clear_bad(pud))
558 continue;
559 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
560 return 1;
561 } while (pud++, addr = next, addr != end);
562 return 0;
565 static int unuse_vma(struct vm_area_struct *vma,
566 swp_entry_t entry, struct page *page)
568 pgd_t *pgd;
569 unsigned long addr, end, next;
571 if (page->mapping) {
572 addr = page_address_in_vma(page, vma);
573 if (addr == -EFAULT)
574 return 0;
575 else
576 end = addr + PAGE_SIZE;
577 } else {
578 addr = vma->vm_start;
579 end = vma->vm_end;
582 pgd = pgd_offset(vma->vm_mm, addr);
583 do {
584 next = pgd_addr_end(addr, end);
585 if (pgd_none_or_clear_bad(pgd))
586 continue;
587 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
588 return 1;
589 } while (pgd++, addr = next, addr != end);
590 return 0;
593 static int unuse_mm(struct mm_struct *mm,
594 swp_entry_t entry, struct page *page)
596 struct vm_area_struct *vma;
598 if (!down_read_trylock(&mm->mmap_sem)) {
600 * Activate page so shrink_cache is unlikely to unmap its
601 * ptes while lock is dropped, so swapoff can make progress.
603 activate_page(page);
604 unlock_page(page);
605 down_read(&mm->mmap_sem);
606 lock_page(page);
608 for (vma = mm->mmap; vma; vma = vma->vm_next) {
609 if (vma->anon_vma && unuse_vma(vma, entry, page))
610 break;
612 up_read(&mm->mmap_sem);
614 * Currently unuse_mm cannot fail, but leave error handling
615 * at call sites for now, since we change it from time to time.
617 return 0;
621 * Scan swap_map from current position to next entry still in use.
622 * Recycle to start on reaching the end, returning 0 when empty.
624 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
625 unsigned int prev)
627 unsigned int max = si->max;
628 unsigned int i = prev;
629 int count;
632 * No need for swap_lock here: we're just looking
633 * for whether an entry is in use, not modifying it; false
634 * hits are okay, and sys_swapoff() has already prevented new
635 * allocations from this area (while holding swap_lock).
637 for (;;) {
638 if (++i >= max) {
639 if (!prev) {
640 i = 0;
641 break;
644 * No entries in use at top of swap_map,
645 * loop back to start and recheck there.
647 max = prev + 1;
648 prev = 0;
649 i = 1;
651 count = si->swap_map[i];
652 if (count && count != SWAP_MAP_BAD)
653 break;
655 return i;
659 * We completely avoid races by reading each swap page in advance,
660 * and then search for the process using it. All the necessary
661 * page table adjustments can then be made atomically.
663 static int try_to_unuse(unsigned int type)
665 struct swap_info_struct * si = &swap_info[type];
666 struct mm_struct *start_mm;
667 unsigned short *swap_map;
668 unsigned short swcount;
669 struct page *page;
670 swp_entry_t entry;
671 unsigned int i = 0;
672 int retval = 0;
673 int reset_overflow = 0;
674 int shmem;
677 * When searching mms for an entry, a good strategy is to
678 * start at the first mm we freed the previous entry from
679 * (though actually we don't notice whether we or coincidence
680 * freed the entry). Initialize this start_mm with a hold.
682 * A simpler strategy would be to start at the last mm we
683 * freed the previous entry from; but that would take less
684 * advantage of mmlist ordering, which clusters forked mms
685 * together, child after parent. If we race with dup_mmap(), we
686 * prefer to resolve parent before child, lest we miss entries
687 * duplicated after we scanned child: using last mm would invert
688 * that. Though it's only a serious concern when an overflowed
689 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
691 start_mm = &init_mm;
692 atomic_inc(&init_mm.mm_users);
695 * Keep on scanning until all entries have gone. Usually,
696 * one pass through swap_map is enough, but not necessarily:
697 * there are races when an instance of an entry might be missed.
699 while ((i = find_next_to_unuse(si, i)) != 0) {
700 if (signal_pending(current)) {
701 retval = -EINTR;
702 break;
706 * Get a page for the entry, using the existing swap
707 * cache page if there is one. Otherwise, get a clean
708 * page and read the swap into it.
710 swap_map = &si->swap_map[i];
711 entry = swp_entry(type, i);
712 page = read_swap_cache_async(entry, NULL, 0);
713 if (!page) {
715 * Either swap_duplicate() failed because entry
716 * has been freed independently, and will not be
717 * reused since sys_swapoff() already disabled
718 * allocation from here, or alloc_page() failed.
720 if (!*swap_map)
721 continue;
722 retval = -ENOMEM;
723 break;
727 * Don't hold on to start_mm if it looks like exiting.
729 if (atomic_read(&start_mm->mm_users) == 1) {
730 mmput(start_mm);
731 start_mm = &init_mm;
732 atomic_inc(&init_mm.mm_users);
736 * Wait for and lock page. When do_swap_page races with
737 * try_to_unuse, do_swap_page can handle the fault much
738 * faster than try_to_unuse can locate the entry. This
739 * apparently redundant "wait_on_page_locked" lets try_to_unuse
740 * defer to do_swap_page in such a case - in some tests,
741 * do_swap_page and try_to_unuse repeatedly compete.
743 wait_on_page_locked(page);
744 wait_on_page_writeback(page);
745 lock_page(page);
746 wait_on_page_writeback(page);
749 * Remove all references to entry.
750 * Whenever we reach init_mm, there's no address space
751 * to search, but use it as a reminder to search shmem.
753 shmem = 0;
754 swcount = *swap_map;
755 if (swcount > 1) {
756 if (start_mm == &init_mm)
757 shmem = shmem_unuse(entry, page);
758 else
759 retval = unuse_mm(start_mm, entry, page);
761 if (*swap_map > 1) {
762 int set_start_mm = (*swap_map >= swcount);
763 struct list_head *p = &start_mm->mmlist;
764 struct mm_struct *new_start_mm = start_mm;
765 struct mm_struct *prev_mm = start_mm;
766 struct mm_struct *mm;
768 atomic_inc(&new_start_mm->mm_users);
769 atomic_inc(&prev_mm->mm_users);
770 spin_lock(&mmlist_lock);
771 while (*swap_map > 1 && !retval &&
772 (p = p->next) != &start_mm->mmlist) {
773 mm = list_entry(p, struct mm_struct, mmlist);
774 if (!atomic_inc_not_zero(&mm->mm_users))
775 continue;
776 spin_unlock(&mmlist_lock);
777 mmput(prev_mm);
778 prev_mm = mm;
780 cond_resched();
782 swcount = *swap_map;
783 if (swcount <= 1)
785 else if (mm == &init_mm) {
786 set_start_mm = 1;
787 shmem = shmem_unuse(entry, page);
788 } else
789 retval = unuse_mm(mm, entry, page);
790 if (set_start_mm && *swap_map < swcount) {
791 mmput(new_start_mm);
792 atomic_inc(&mm->mm_users);
793 new_start_mm = mm;
794 set_start_mm = 0;
796 spin_lock(&mmlist_lock);
798 spin_unlock(&mmlist_lock);
799 mmput(prev_mm);
800 mmput(start_mm);
801 start_mm = new_start_mm;
803 if (retval) {
804 unlock_page(page);
805 page_cache_release(page);
806 break;
810 * How could swap count reach 0x7fff when the maximum
811 * pid is 0x7fff, and there's no way to repeat a swap
812 * page within an mm (except in shmem, where it's the
813 * shared object which takes the reference count)?
814 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
816 * If that's wrong, then we should worry more about
817 * exit_mmap() and do_munmap() cases described above:
818 * we might be resetting SWAP_MAP_MAX too early here.
819 * We know "Undead"s can happen, they're okay, so don't
820 * report them; but do report if we reset SWAP_MAP_MAX.
822 if (*swap_map == SWAP_MAP_MAX) {
823 spin_lock(&swap_lock);
824 *swap_map = 1;
825 spin_unlock(&swap_lock);
826 reset_overflow = 1;
830 * If a reference remains (rare), we would like to leave
831 * the page in the swap cache; but try_to_unmap could
832 * then re-duplicate the entry once we drop page lock,
833 * so we might loop indefinitely; also, that page could
834 * not be swapped out to other storage meanwhile. So:
835 * delete from cache even if there's another reference,
836 * after ensuring that the data has been saved to disk -
837 * since if the reference remains (rarer), it will be
838 * read from disk into another page. Splitting into two
839 * pages would be incorrect if swap supported "shared
840 * private" pages, but they are handled by tmpfs files.
842 * Note shmem_unuse already deleted a swappage from
843 * the swap cache, unless the move to filepage failed:
844 * in which case it left swappage in cache, lowered its
845 * swap count to pass quickly through the loops above,
846 * and now we must reincrement count to try again later.
848 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
849 struct writeback_control wbc = {
850 .sync_mode = WB_SYNC_NONE,
853 swap_writepage(page, &wbc);
854 lock_page(page);
855 wait_on_page_writeback(page);
857 if (PageSwapCache(page)) {
858 if (shmem)
859 swap_duplicate(entry);
860 else
861 delete_from_swap_cache(page);
865 * So we could skip searching mms once swap count went
866 * to 1, we did not mark any present ptes as dirty: must
867 * mark page dirty so shrink_list will preserve it.
869 SetPageDirty(page);
870 unlock_page(page);
871 page_cache_release(page);
874 * Make sure that we aren't completely killing
875 * interactive performance.
877 cond_resched();
880 mmput(start_mm);
881 if (reset_overflow) {
882 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
883 swap_overflow = 0;
885 return retval;
889 * After a successful try_to_unuse, if no swap is now in use, we know
890 * we can empty the mmlist. swap_lock must be held on entry and exit.
891 * Note that mmlist_lock nests inside swap_lock, and an mm must be
892 * added to the mmlist just after page_duplicate - before would be racy.
894 static void drain_mmlist(void)
896 struct list_head *p, *next;
897 unsigned int i;
899 for (i = 0; i < nr_swapfiles; i++)
900 if (swap_info[i].inuse_pages)
901 return;
902 spin_lock(&mmlist_lock);
903 list_for_each_safe(p, next, &init_mm.mmlist)
904 list_del_init(p);
905 spin_unlock(&mmlist_lock);
909 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
910 * corresponds to page offset `offset'.
912 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
914 struct swap_extent *se = sis->curr_swap_extent;
915 struct swap_extent *start_se = se;
917 for ( ; ; ) {
918 struct list_head *lh;
920 if (se->start_page <= offset &&
921 offset < (se->start_page + se->nr_pages)) {
922 return se->start_block + (offset - se->start_page);
924 lh = se->list.next;
925 if (lh == &sis->extent_list)
926 lh = lh->next;
927 se = list_entry(lh, struct swap_extent, list);
928 sis->curr_swap_extent = se;
929 BUG_ON(se == start_se); /* It *must* be present */
934 * Free all of a swapdev's extent information
936 static void destroy_swap_extents(struct swap_info_struct *sis)
938 while (!list_empty(&sis->extent_list)) {
939 struct swap_extent *se;
941 se = list_entry(sis->extent_list.next,
942 struct swap_extent, list);
943 list_del(&se->list);
944 kfree(se);
949 * Add a block range (and the corresponding page range) into this swapdev's
950 * extent list. The extent list is kept sorted in page order.
952 * This function rather assumes that it is called in ascending page order.
954 static int
955 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
956 unsigned long nr_pages, sector_t start_block)
958 struct swap_extent *se;
959 struct swap_extent *new_se;
960 struct list_head *lh;
962 lh = sis->extent_list.prev; /* The highest page extent */
963 if (lh != &sis->extent_list) {
964 se = list_entry(lh, struct swap_extent, list);
965 BUG_ON(se->start_page + se->nr_pages != start_page);
966 if (se->start_block + se->nr_pages == start_block) {
967 /* Merge it */
968 se->nr_pages += nr_pages;
969 return 0;
974 * No merge. Insert a new extent, preserving ordering.
976 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
977 if (new_se == NULL)
978 return -ENOMEM;
979 new_se->start_page = start_page;
980 new_se->nr_pages = nr_pages;
981 new_se->start_block = start_block;
983 list_add_tail(&new_se->list, &sis->extent_list);
984 return 1;
988 * A `swap extent' is a simple thing which maps a contiguous range of pages
989 * onto a contiguous range of disk blocks. An ordered list of swap extents
990 * is built at swapon time and is then used at swap_writepage/swap_readpage
991 * time for locating where on disk a page belongs.
993 * If the swapfile is an S_ISBLK block device, a single extent is installed.
994 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
995 * swap files identically.
997 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
998 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
999 * swapfiles are handled *identically* after swapon time.
1001 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1002 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1003 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1004 * requirements, they are simply tossed out - we will never use those blocks
1005 * for swapping.
1007 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1008 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1009 * which will scribble on the fs.
1011 * The amount of disk space which a single swap extent represents varies.
1012 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1013 * extents in the list. To avoid much list walking, we cache the previous
1014 * search location in `curr_swap_extent', and start new searches from there.
1015 * This is extremely effective. The average number of iterations in
1016 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1018 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1020 struct inode *inode;
1021 unsigned blocks_per_page;
1022 unsigned long page_no;
1023 unsigned blkbits;
1024 sector_t probe_block;
1025 sector_t last_block;
1026 sector_t lowest_block = -1;
1027 sector_t highest_block = 0;
1028 int nr_extents = 0;
1029 int ret;
1031 inode = sis->swap_file->f_mapping->host;
1032 if (S_ISBLK(inode->i_mode)) {
1033 ret = add_swap_extent(sis, 0, sis->max, 0);
1034 *span = sis->pages;
1035 goto done;
1038 blkbits = inode->i_blkbits;
1039 blocks_per_page = PAGE_SIZE >> blkbits;
1042 * Map all the blocks into the extent list. This code doesn't try
1043 * to be very smart.
1045 probe_block = 0;
1046 page_no = 0;
1047 last_block = i_size_read(inode) >> blkbits;
1048 while ((probe_block + blocks_per_page) <= last_block &&
1049 page_no < sis->max) {
1050 unsigned block_in_page;
1051 sector_t first_block;
1053 first_block = bmap(inode, probe_block);
1054 if (first_block == 0)
1055 goto bad_bmap;
1058 * It must be PAGE_SIZE aligned on-disk
1060 if (first_block & (blocks_per_page - 1)) {
1061 probe_block++;
1062 goto reprobe;
1065 for (block_in_page = 1; block_in_page < blocks_per_page;
1066 block_in_page++) {
1067 sector_t block;
1069 block = bmap(inode, probe_block + block_in_page);
1070 if (block == 0)
1071 goto bad_bmap;
1072 if (block != first_block + block_in_page) {
1073 /* Discontiguity */
1074 probe_block++;
1075 goto reprobe;
1079 first_block >>= (PAGE_SHIFT - blkbits);
1080 if (page_no) { /* exclude the header page */
1081 if (first_block < lowest_block)
1082 lowest_block = first_block;
1083 if (first_block > highest_block)
1084 highest_block = first_block;
1088 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1090 ret = add_swap_extent(sis, page_no, 1, first_block);
1091 if (ret < 0)
1092 goto out;
1093 nr_extents += ret;
1094 page_no++;
1095 probe_block += blocks_per_page;
1096 reprobe:
1097 continue;
1099 ret = nr_extents;
1100 *span = 1 + highest_block - lowest_block;
1101 if (page_no == 0)
1102 page_no = 1; /* force Empty message */
1103 sis->max = page_no;
1104 sis->pages = page_no - 1;
1105 sis->highest_bit = page_no - 1;
1106 done:
1107 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1108 struct swap_extent, list);
1109 goto out;
1110 bad_bmap:
1111 printk(KERN_ERR "swapon: swapfile has holes\n");
1112 ret = -EINVAL;
1113 out:
1114 return ret;
1117 #if 0 /* We don't need this yet */
1118 #include <linux/backing-dev.h>
1119 int page_queue_congested(struct page *page)
1121 struct backing_dev_info *bdi;
1123 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1125 if (PageSwapCache(page)) {
1126 swp_entry_t entry = { .val = page_private(page) };
1127 struct swap_info_struct *sis;
1129 sis = get_swap_info_struct(swp_type(entry));
1130 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1131 } else
1132 bdi = page->mapping->backing_dev_info;
1133 return bdi_write_congested(bdi);
1135 #endif
1137 asmlinkage long sys_swapoff(const char __user * specialfile)
1139 struct swap_info_struct * p = NULL;
1140 unsigned short *swap_map;
1141 struct file *swap_file, *victim;
1142 struct address_space *mapping;
1143 struct inode *inode;
1144 char * pathname;
1145 int i, type, prev;
1146 int err;
1148 if (!capable(CAP_SYS_ADMIN))
1149 return -EPERM;
1151 pathname = getname(specialfile);
1152 err = PTR_ERR(pathname);
1153 if (IS_ERR(pathname))
1154 goto out;
1156 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1157 putname(pathname);
1158 err = PTR_ERR(victim);
1159 if (IS_ERR(victim))
1160 goto out;
1162 mapping = victim->f_mapping;
1163 prev = -1;
1164 spin_lock(&swap_lock);
1165 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1166 p = swap_info + type;
1167 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1168 if (p->swap_file->f_mapping == mapping)
1169 break;
1171 prev = type;
1173 if (type < 0) {
1174 err = -EINVAL;
1175 spin_unlock(&swap_lock);
1176 goto out_dput;
1178 if (!security_vm_enough_memory(p->pages))
1179 vm_unacct_memory(p->pages);
1180 else {
1181 err = -ENOMEM;
1182 spin_unlock(&swap_lock);
1183 goto out_dput;
1185 if (prev < 0) {
1186 swap_list.head = p->next;
1187 } else {
1188 swap_info[prev].next = p->next;
1190 if (type == swap_list.next) {
1191 /* just pick something that's safe... */
1192 swap_list.next = swap_list.head;
1194 nr_swap_pages -= p->pages;
1195 total_swap_pages -= p->pages;
1196 p->flags &= ~SWP_WRITEOK;
1197 spin_unlock(&swap_lock);
1199 current->flags |= PF_SWAPOFF;
1200 err = try_to_unuse(type);
1201 current->flags &= ~PF_SWAPOFF;
1203 if (err) {
1204 /* re-insert swap space back into swap_list */
1205 spin_lock(&swap_lock);
1206 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1207 if (p->prio >= swap_info[i].prio)
1208 break;
1209 p->next = i;
1210 if (prev < 0)
1211 swap_list.head = swap_list.next = p - swap_info;
1212 else
1213 swap_info[prev].next = p - swap_info;
1214 nr_swap_pages += p->pages;
1215 total_swap_pages += p->pages;
1216 p->flags |= SWP_WRITEOK;
1217 spin_unlock(&swap_lock);
1218 goto out_dput;
1221 /* wait for any unplug function to finish */
1222 down_write(&swap_unplug_sem);
1223 up_write(&swap_unplug_sem);
1225 destroy_swap_extents(p);
1226 mutex_lock(&swapon_mutex);
1227 spin_lock(&swap_lock);
1228 drain_mmlist();
1230 /* wait for anyone still in scan_swap_map */
1231 p->highest_bit = 0; /* cuts scans short */
1232 while (p->flags >= SWP_SCANNING) {
1233 spin_unlock(&swap_lock);
1234 schedule_timeout_uninterruptible(1);
1235 spin_lock(&swap_lock);
1238 swap_file = p->swap_file;
1239 p->swap_file = NULL;
1240 p->max = 0;
1241 swap_map = p->swap_map;
1242 p->swap_map = NULL;
1243 p->flags = 0;
1244 spin_unlock(&swap_lock);
1245 mutex_unlock(&swapon_mutex);
1246 vfree(swap_map);
1247 inode = mapping->host;
1248 if (S_ISBLK(inode->i_mode)) {
1249 struct block_device *bdev = I_BDEV(inode);
1250 set_blocksize(bdev, p->old_block_size);
1251 bd_release(bdev);
1252 } else {
1253 mutex_lock(&inode->i_mutex);
1254 inode->i_flags &= ~S_SWAPFILE;
1255 mutex_unlock(&inode->i_mutex);
1257 filp_close(swap_file, NULL);
1258 err = 0;
1260 out_dput:
1261 filp_close(victim, NULL);
1262 out:
1263 return err;
1266 #ifdef CONFIG_PROC_FS
1267 /* iterator */
1268 static void *swap_start(struct seq_file *swap, loff_t *pos)
1270 struct swap_info_struct *ptr = swap_info;
1271 int i;
1272 loff_t l = *pos;
1274 mutex_lock(&swapon_mutex);
1276 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1277 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1278 continue;
1279 if (!l--)
1280 return ptr;
1283 return NULL;
1286 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1288 struct swap_info_struct *ptr = v;
1289 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1291 for (++ptr; ptr < endptr; ptr++) {
1292 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1293 continue;
1294 ++*pos;
1295 return ptr;
1298 return NULL;
1301 static void swap_stop(struct seq_file *swap, void *v)
1303 mutex_unlock(&swapon_mutex);
1306 static int swap_show(struct seq_file *swap, void *v)
1308 struct swap_info_struct *ptr = v;
1309 struct file *file;
1310 int len;
1312 if (v == swap_info)
1313 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1315 file = ptr->swap_file;
1316 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1317 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1318 len < 40 ? 40 - len : 1, " ",
1319 S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1320 "partition" : "file\t",
1321 ptr->pages << (PAGE_SHIFT - 10),
1322 ptr->inuse_pages << (PAGE_SHIFT - 10),
1323 ptr->prio);
1324 return 0;
1327 static struct seq_operations swaps_op = {
1328 .start = swap_start,
1329 .next = swap_next,
1330 .stop = swap_stop,
1331 .show = swap_show
1334 static int swaps_open(struct inode *inode, struct file *file)
1336 return seq_open(file, &swaps_op);
1339 static struct file_operations proc_swaps_operations = {
1340 .open = swaps_open,
1341 .read = seq_read,
1342 .llseek = seq_lseek,
1343 .release = seq_release,
1346 static int __init procswaps_init(void)
1348 struct proc_dir_entry *entry;
1350 entry = create_proc_entry("swaps", 0, NULL);
1351 if (entry)
1352 entry->proc_fops = &proc_swaps_operations;
1353 return 0;
1355 __initcall(procswaps_init);
1356 #endif /* CONFIG_PROC_FS */
1359 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1361 * The swapon system call
1363 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1365 struct swap_info_struct * p;
1366 char *name = NULL;
1367 struct block_device *bdev = NULL;
1368 struct file *swap_file = NULL;
1369 struct address_space *mapping;
1370 unsigned int type;
1371 int i, prev;
1372 int error;
1373 static int least_priority;
1374 union swap_header *swap_header = NULL;
1375 int swap_header_version;
1376 unsigned int nr_good_pages = 0;
1377 int nr_extents = 0;
1378 sector_t span;
1379 unsigned long maxpages = 1;
1380 int swapfilesize;
1381 unsigned short *swap_map;
1382 struct page *page = NULL;
1383 struct inode *inode = NULL;
1384 int did_down = 0;
1386 if (!capable(CAP_SYS_ADMIN))
1387 return -EPERM;
1388 spin_lock(&swap_lock);
1389 p = swap_info;
1390 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1391 if (!(p->flags & SWP_USED))
1392 break;
1393 error = -EPERM;
1394 if (type >= MAX_SWAPFILES) {
1395 spin_unlock(&swap_lock);
1396 goto out;
1398 if (type >= nr_swapfiles)
1399 nr_swapfiles = type+1;
1400 INIT_LIST_HEAD(&p->extent_list);
1401 p->flags = SWP_USED;
1402 p->swap_file = NULL;
1403 p->old_block_size = 0;
1404 p->swap_map = NULL;
1405 p->lowest_bit = 0;
1406 p->highest_bit = 0;
1407 p->cluster_nr = 0;
1408 p->inuse_pages = 0;
1409 p->next = -1;
1410 if (swap_flags & SWAP_FLAG_PREFER) {
1411 p->prio =
1412 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1413 } else {
1414 p->prio = --least_priority;
1416 spin_unlock(&swap_lock);
1417 name = getname(specialfile);
1418 error = PTR_ERR(name);
1419 if (IS_ERR(name)) {
1420 name = NULL;
1421 goto bad_swap_2;
1423 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1424 error = PTR_ERR(swap_file);
1425 if (IS_ERR(swap_file)) {
1426 swap_file = NULL;
1427 goto bad_swap_2;
1430 p->swap_file = swap_file;
1431 mapping = swap_file->f_mapping;
1432 inode = mapping->host;
1434 error = -EBUSY;
1435 for (i = 0; i < nr_swapfiles; i++) {
1436 struct swap_info_struct *q = &swap_info[i];
1438 if (i == type || !q->swap_file)
1439 continue;
1440 if (mapping == q->swap_file->f_mapping)
1441 goto bad_swap;
1444 error = -EINVAL;
1445 if (S_ISBLK(inode->i_mode)) {
1446 bdev = I_BDEV(inode);
1447 error = bd_claim(bdev, sys_swapon);
1448 if (error < 0) {
1449 bdev = NULL;
1450 error = -EINVAL;
1451 goto bad_swap;
1453 p->old_block_size = block_size(bdev);
1454 error = set_blocksize(bdev, PAGE_SIZE);
1455 if (error < 0)
1456 goto bad_swap;
1457 p->bdev = bdev;
1458 } else if (S_ISREG(inode->i_mode)) {
1459 p->bdev = inode->i_sb->s_bdev;
1460 mutex_lock(&inode->i_mutex);
1461 did_down = 1;
1462 if (IS_SWAPFILE(inode)) {
1463 error = -EBUSY;
1464 goto bad_swap;
1466 } else {
1467 goto bad_swap;
1470 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1473 * Read the swap header.
1475 if (!mapping->a_ops->readpage) {
1476 error = -EINVAL;
1477 goto bad_swap;
1479 page = read_mapping_page(mapping, 0, swap_file);
1480 if (IS_ERR(page)) {
1481 error = PTR_ERR(page);
1482 goto bad_swap;
1484 wait_on_page_locked(page);
1485 if (!PageUptodate(page))
1486 goto bad_swap;
1487 kmap(page);
1488 swap_header = page_address(page);
1490 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1491 swap_header_version = 1;
1492 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1493 swap_header_version = 2;
1494 else {
1495 printk(KERN_ERR "Unable to find swap-space signature\n");
1496 error = -EINVAL;
1497 goto bad_swap;
1500 switch (swap_header_version) {
1501 case 1:
1502 printk(KERN_ERR "version 0 swap is no longer supported. "
1503 "Use mkswap -v1 %s\n", name);
1504 error = -EINVAL;
1505 goto bad_swap;
1506 case 2:
1507 /* Check the swap header's sub-version and the size of
1508 the swap file and bad block lists */
1509 if (swap_header->info.version != 1) {
1510 printk(KERN_WARNING
1511 "Unable to handle swap header version %d\n",
1512 swap_header->info.version);
1513 error = -EINVAL;
1514 goto bad_swap;
1517 p->lowest_bit = 1;
1518 p->cluster_next = 1;
1521 * Find out how many pages are allowed for a single swap
1522 * device. There are two limiting factors: 1) the number of
1523 * bits for the swap offset in the swp_entry_t type and
1524 * 2) the number of bits in the a swap pte as defined by
1525 * the different architectures. In order to find the
1526 * largest possible bit mask a swap entry with swap type 0
1527 * and swap offset ~0UL is created, encoded to a swap pte,
1528 * decoded to a swp_entry_t again and finally the swap
1529 * offset is extracted. This will mask all the bits from
1530 * the initial ~0UL mask that can't be encoded in either
1531 * the swp_entry_t or the architecture definition of a
1532 * swap pte.
1534 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1535 if (maxpages > swap_header->info.last_page)
1536 maxpages = swap_header->info.last_page;
1537 p->highest_bit = maxpages - 1;
1539 error = -EINVAL;
1540 if (!maxpages)
1541 goto bad_swap;
1542 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1543 goto bad_swap;
1544 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1545 goto bad_swap;
1547 /* OK, set up the swap map and apply the bad block list */
1548 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1549 error = -ENOMEM;
1550 goto bad_swap;
1553 error = 0;
1554 memset(p->swap_map, 0, maxpages * sizeof(short));
1555 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1556 int page_nr = swap_header->info.badpages[i];
1557 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1558 error = -EINVAL;
1559 else
1560 p->swap_map[page_nr] = SWAP_MAP_BAD;
1562 nr_good_pages = swap_header->info.last_page -
1563 swap_header->info.nr_badpages -
1564 1 /* header page */;
1565 if (error)
1566 goto bad_swap;
1569 if (swapfilesize && maxpages > swapfilesize) {
1570 printk(KERN_WARNING
1571 "Swap area shorter than signature indicates\n");
1572 error = -EINVAL;
1573 goto bad_swap;
1575 if (nr_good_pages) {
1576 p->swap_map[0] = SWAP_MAP_BAD;
1577 p->max = maxpages;
1578 p->pages = nr_good_pages;
1579 nr_extents = setup_swap_extents(p, &span);
1580 if (nr_extents < 0) {
1581 error = nr_extents;
1582 goto bad_swap;
1584 nr_good_pages = p->pages;
1586 if (!nr_good_pages) {
1587 printk(KERN_WARNING "Empty swap-file\n");
1588 error = -EINVAL;
1589 goto bad_swap;
1592 mutex_lock(&swapon_mutex);
1593 spin_lock(&swap_lock);
1594 p->flags = SWP_ACTIVE;
1595 nr_swap_pages += nr_good_pages;
1596 total_swap_pages += nr_good_pages;
1598 printk(KERN_INFO "Adding %uk swap on %s. "
1599 "Priority:%d extents:%d across:%lluk\n",
1600 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1601 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1603 /* insert swap space into swap_list: */
1604 prev = -1;
1605 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1606 if (p->prio >= swap_info[i].prio) {
1607 break;
1609 prev = i;
1611 p->next = i;
1612 if (prev < 0) {
1613 swap_list.head = swap_list.next = p - swap_info;
1614 } else {
1615 swap_info[prev].next = p - swap_info;
1617 spin_unlock(&swap_lock);
1618 mutex_unlock(&swapon_mutex);
1619 error = 0;
1620 goto out;
1621 bad_swap:
1622 if (bdev) {
1623 set_blocksize(bdev, p->old_block_size);
1624 bd_release(bdev);
1626 destroy_swap_extents(p);
1627 bad_swap_2:
1628 spin_lock(&swap_lock);
1629 swap_map = p->swap_map;
1630 p->swap_file = NULL;
1631 p->swap_map = NULL;
1632 p->flags = 0;
1633 if (!(swap_flags & SWAP_FLAG_PREFER))
1634 ++least_priority;
1635 spin_unlock(&swap_lock);
1636 vfree(swap_map);
1637 if (swap_file)
1638 filp_close(swap_file, NULL);
1639 out:
1640 if (page && !IS_ERR(page)) {
1641 kunmap(page);
1642 page_cache_release(page);
1644 if (name)
1645 putname(name);
1646 if (did_down) {
1647 if (!error)
1648 inode->i_flags |= S_SWAPFILE;
1649 mutex_unlock(&inode->i_mutex);
1651 return error;
1654 void si_swapinfo(struct sysinfo *val)
1656 unsigned int i;
1657 unsigned long nr_to_be_unused = 0;
1659 spin_lock(&swap_lock);
1660 for (i = 0; i < nr_swapfiles; i++) {
1661 if (!(swap_info[i].flags & SWP_USED) ||
1662 (swap_info[i].flags & SWP_WRITEOK))
1663 continue;
1664 nr_to_be_unused += swap_info[i].inuse_pages;
1666 val->freeswap = nr_swap_pages + nr_to_be_unused;
1667 val->totalswap = total_swap_pages + nr_to_be_unused;
1668 spin_unlock(&swap_lock);
1672 * Verify that a swap entry is valid and increment its swap map count.
1674 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1675 * "permanent", but will be reclaimed by the next swapoff.
1677 int swap_duplicate(swp_entry_t entry)
1679 struct swap_info_struct * p;
1680 unsigned long offset, type;
1681 int result = 0;
1683 if (is_migration_entry(entry))
1684 return 1;
1686 type = swp_type(entry);
1687 if (type >= nr_swapfiles)
1688 goto bad_file;
1689 p = type + swap_info;
1690 offset = swp_offset(entry);
1692 spin_lock(&swap_lock);
1693 if (offset < p->max && p->swap_map[offset]) {
1694 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1695 p->swap_map[offset]++;
1696 result = 1;
1697 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1698 if (swap_overflow++ < 5)
1699 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1700 p->swap_map[offset] = SWAP_MAP_MAX;
1701 result = 1;
1704 spin_unlock(&swap_lock);
1705 out:
1706 return result;
1708 bad_file:
1709 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1710 goto out;
1713 struct swap_info_struct *
1714 get_swap_info_struct(unsigned type)
1716 return &swap_info[type];
1720 * swap_lock prevents swap_map being freed. Don't grab an extra
1721 * reference on the swaphandle, it doesn't matter if it becomes unused.
1723 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1725 int ret = 0, i = 1 << page_cluster;
1726 unsigned long toff;
1727 struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1729 if (!page_cluster) /* no readahead */
1730 return 0;
1731 toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1732 if (!toff) /* first page is swap header */
1733 toff++, i--;
1734 *offset = toff;
1736 spin_lock(&swap_lock);
1737 do {
1738 /* Don't read-ahead past the end of the swap area */
1739 if (toff >= swapdev->max)
1740 break;
1741 /* Don't read in free or bad pages */
1742 if (!swapdev->swap_map[toff])
1743 break;
1744 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1745 break;
1746 toff++;
1747 ret++;
1748 } while (--i);
1749 spin_unlock(&swap_lock);
1750 return ret;