[IPV4]: ip_options_build() annotations
[hh.org.git] / crypto / sha512.c
blob2dfe7f170b4893bc6b5bdf5870c9ac3b77b89c9d
1 /* SHA-512 code by Jean-Luc Cooke <jlcooke@certainkey.com>
3 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
4 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
5 * Copyright (c) 2003 Kyle McMartin <kyle@debian.org>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/init.h>
19 #include <linux/crypto.h>
20 #include <linux/types.h>
22 #include <asm/scatterlist.h>
23 #include <asm/byteorder.h>
25 #define SHA384_DIGEST_SIZE 48
26 #define SHA512_DIGEST_SIZE 64
27 #define SHA384_HMAC_BLOCK_SIZE 96
28 #define SHA512_HMAC_BLOCK_SIZE 128
30 struct sha512_ctx {
31 u64 state[8];
32 u32 count[4];
33 u8 buf[128];
34 u64 W[80];
37 static inline u64 Ch(u64 x, u64 y, u64 z)
39 return z ^ (x & (y ^ z));
42 static inline u64 Maj(u64 x, u64 y, u64 z)
44 return (x & y) | (z & (x | y));
47 static inline u64 RORu64(u64 x, u64 y)
49 return (x >> y) | (x << (64 - y));
52 static const u64 sha512_K[80] = {
53 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
54 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
55 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
56 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
57 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
58 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
59 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
60 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
61 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
62 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
63 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
64 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
65 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
66 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
67 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
68 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
69 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
70 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
71 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
72 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
73 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
74 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
75 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
76 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
77 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
78 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
79 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL,
82 #define e0(x) (RORu64(x,28) ^ RORu64(x,34) ^ RORu64(x,39))
83 #define e1(x) (RORu64(x,14) ^ RORu64(x,18) ^ RORu64(x,41))
84 #define s0(x) (RORu64(x, 1) ^ RORu64(x, 8) ^ (x >> 7))
85 #define s1(x) (RORu64(x,19) ^ RORu64(x,61) ^ (x >> 6))
87 /* H* initial state for SHA-512 */
88 #define H0 0x6a09e667f3bcc908ULL
89 #define H1 0xbb67ae8584caa73bULL
90 #define H2 0x3c6ef372fe94f82bULL
91 #define H3 0xa54ff53a5f1d36f1ULL
92 #define H4 0x510e527fade682d1ULL
93 #define H5 0x9b05688c2b3e6c1fULL
94 #define H6 0x1f83d9abfb41bd6bULL
95 #define H7 0x5be0cd19137e2179ULL
97 /* H'* initial state for SHA-384 */
98 #define HP0 0xcbbb9d5dc1059ed8ULL
99 #define HP1 0x629a292a367cd507ULL
100 #define HP2 0x9159015a3070dd17ULL
101 #define HP3 0x152fecd8f70e5939ULL
102 #define HP4 0x67332667ffc00b31ULL
103 #define HP5 0x8eb44a8768581511ULL
104 #define HP6 0xdb0c2e0d64f98fa7ULL
105 #define HP7 0x47b5481dbefa4fa4ULL
107 static inline void LOAD_OP(int I, u64 *W, const u8 *input)
109 W[I] = __be64_to_cpu( ((__be64*)(input))[I] );
112 static inline void BLEND_OP(int I, u64 *W)
114 W[I] = s1(W[I-2]) + W[I-7] + s0(W[I-15]) + W[I-16];
117 static void
118 sha512_transform(u64 *state, u64 *W, const u8 *input)
120 u64 a, b, c, d, e, f, g, h, t1, t2;
122 int i;
124 /* load the input */
125 for (i = 0; i < 16; i++)
126 LOAD_OP(i, W, input);
128 for (i = 16; i < 80; i++) {
129 BLEND_OP(i, W);
132 /* load the state into our registers */
133 a=state[0]; b=state[1]; c=state[2]; d=state[3];
134 e=state[4]; f=state[5]; g=state[6]; h=state[7];
136 /* now iterate */
137 for (i=0; i<80; i+=8) {
138 t1 = h + e1(e) + Ch(e,f,g) + sha512_K[i ] + W[i ];
139 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
140 t1 = g + e1(d) + Ch(d,e,f) + sha512_K[i+1] + W[i+1];
141 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
142 t1 = f + e1(c) + Ch(c,d,e) + sha512_K[i+2] + W[i+2];
143 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
144 t1 = e + e1(b) + Ch(b,c,d) + sha512_K[i+3] + W[i+3];
145 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
146 t1 = d + e1(a) + Ch(a,b,c) + sha512_K[i+4] + W[i+4];
147 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
148 t1 = c + e1(h) + Ch(h,a,b) + sha512_K[i+5] + W[i+5];
149 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
150 t1 = b + e1(g) + Ch(g,h,a) + sha512_K[i+6] + W[i+6];
151 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
152 t1 = a + e1(f) + Ch(f,g,h) + sha512_K[i+7] + W[i+7];
153 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
156 state[0] += a; state[1] += b; state[2] += c; state[3] += d;
157 state[4] += e; state[5] += f; state[6] += g; state[7] += h;
159 /* erase our data */
160 a = b = c = d = e = f = g = h = t1 = t2 = 0;
163 static void
164 sha512_init(struct crypto_tfm *tfm)
166 struct sha512_ctx *sctx = crypto_tfm_ctx(tfm);
167 sctx->state[0] = H0;
168 sctx->state[1] = H1;
169 sctx->state[2] = H2;
170 sctx->state[3] = H3;
171 sctx->state[4] = H4;
172 sctx->state[5] = H5;
173 sctx->state[6] = H6;
174 sctx->state[7] = H7;
175 sctx->count[0] = sctx->count[1] = sctx->count[2] = sctx->count[3] = 0;
178 static void
179 sha384_init(struct crypto_tfm *tfm)
181 struct sha512_ctx *sctx = crypto_tfm_ctx(tfm);
182 sctx->state[0] = HP0;
183 sctx->state[1] = HP1;
184 sctx->state[2] = HP2;
185 sctx->state[3] = HP3;
186 sctx->state[4] = HP4;
187 sctx->state[5] = HP5;
188 sctx->state[6] = HP6;
189 sctx->state[7] = HP7;
190 sctx->count[0] = sctx->count[1] = sctx->count[2] = sctx->count[3] = 0;
193 static void
194 sha512_update(struct crypto_tfm *tfm, const u8 *data, unsigned int len)
196 struct sha512_ctx *sctx = crypto_tfm_ctx(tfm);
198 unsigned int i, index, part_len;
200 /* Compute number of bytes mod 128 */
201 index = (unsigned int)((sctx->count[0] >> 3) & 0x7F);
203 /* Update number of bits */
204 if ((sctx->count[0] += (len << 3)) < (len << 3)) {
205 if ((sctx->count[1] += 1) < 1)
206 if ((sctx->count[2] += 1) < 1)
207 sctx->count[3]++;
208 sctx->count[1] += (len >> 29);
211 part_len = 128 - index;
213 /* Transform as many times as possible. */
214 if (len >= part_len) {
215 memcpy(&sctx->buf[index], data, part_len);
216 sha512_transform(sctx->state, sctx->W, sctx->buf);
218 for (i = part_len; i + 127 < len; i+=128)
219 sha512_transform(sctx->state, sctx->W, &data[i]);
221 index = 0;
222 } else {
223 i = 0;
226 /* Buffer remaining input */
227 memcpy(&sctx->buf[index], &data[i], len - i);
229 /* erase our data */
230 memset(sctx->W, 0, sizeof(sctx->W));
233 static void
234 sha512_final(struct crypto_tfm *tfm, u8 *hash)
236 struct sha512_ctx *sctx = crypto_tfm_ctx(tfm);
237 static u8 padding[128] = { 0x80, };
238 __be64 *dst = (__be64 *)hash;
239 __be32 bits[4];
240 unsigned int index, pad_len;
241 int i;
243 /* Save number of bits */
244 bits[3] = cpu_to_be32(sctx->count[0]);
245 bits[2] = cpu_to_be32(sctx->count[1]);
246 bits[1] = cpu_to_be32(sctx->count[2]);
247 bits[0] = cpu_to_be32(sctx->count[3]);
249 /* Pad out to 112 mod 128. */
250 index = (sctx->count[0] >> 3) & 0x7f;
251 pad_len = (index < 112) ? (112 - index) : ((128+112) - index);
252 sha512_update(tfm, padding, pad_len);
254 /* Append length (before padding) */
255 sha512_update(tfm, (const u8 *)bits, sizeof(bits));
257 /* Store state in digest */
258 for (i = 0; i < 8; i++)
259 dst[i] = cpu_to_be64(sctx->state[i]);
261 /* Zeroize sensitive information. */
262 memset(sctx, 0, sizeof(struct sha512_ctx));
265 static void sha384_final(struct crypto_tfm *tfm, u8 *hash)
267 u8 D[64];
269 sha512_final(tfm, D);
271 memcpy(hash, D, 48);
272 memset(D, 0, 64);
275 static struct crypto_alg sha512 = {
276 .cra_name = "sha512",
277 .cra_flags = CRYPTO_ALG_TYPE_DIGEST,
278 .cra_blocksize = SHA512_HMAC_BLOCK_SIZE,
279 .cra_ctxsize = sizeof(struct sha512_ctx),
280 .cra_module = THIS_MODULE,
281 .cra_alignmask = 3,
282 .cra_list = LIST_HEAD_INIT(sha512.cra_list),
283 .cra_u = { .digest = {
284 .dia_digestsize = SHA512_DIGEST_SIZE,
285 .dia_init = sha512_init,
286 .dia_update = sha512_update,
287 .dia_final = sha512_final }
291 static struct crypto_alg sha384 = {
292 .cra_name = "sha384",
293 .cra_flags = CRYPTO_ALG_TYPE_DIGEST,
294 .cra_blocksize = SHA384_HMAC_BLOCK_SIZE,
295 .cra_ctxsize = sizeof(struct sha512_ctx),
296 .cra_alignmask = 3,
297 .cra_module = THIS_MODULE,
298 .cra_list = LIST_HEAD_INIT(sha384.cra_list),
299 .cra_u = { .digest = {
300 .dia_digestsize = SHA384_DIGEST_SIZE,
301 .dia_init = sha384_init,
302 .dia_update = sha512_update,
303 .dia_final = sha384_final }
307 MODULE_ALIAS("sha384");
309 static int __init init(void)
311 int ret = 0;
313 if ((ret = crypto_register_alg(&sha384)) < 0)
314 goto out;
315 if ((ret = crypto_register_alg(&sha512)) < 0)
316 crypto_unregister_alg(&sha384);
317 out:
318 return ret;
321 static void __exit fini(void)
323 crypto_unregister_alg(&sha384);
324 crypto_unregister_alg(&sha512);
327 module_init(init);
328 module_exit(fini);
330 MODULE_LICENSE("GPL");
331 MODULE_DESCRIPTION("SHA-512 and SHA-384 Secure Hash Algorithms");