sync hh.org
[hh.org.git] / arch / ia64 / sn / pci / pcibr / pcibr_dma.c
blob1ee977fb6ebb8ab3d33fdf7cd184994b41856522
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2001-2005 Silicon Graphics, Inc. All rights reserved.
7 */
9 #include <linux/types.h>
10 #include <linux/pci.h>
11 #include <asm/sn/addrs.h>
12 #include <asm/sn/geo.h>
13 #include <asm/sn/pcibr_provider.h>
14 #include <asm/sn/pcibus_provider_defs.h>
15 #include <asm/sn/pcidev.h>
16 #include <asm/sn/pic.h>
17 #include <asm/sn/sn_sal.h>
18 #include <asm/sn/tiocp.h>
19 #include "tio.h"
20 #include "xtalk/xwidgetdev.h"
21 #include "xtalk/hubdev.h"
23 extern int sn_ioif_inited;
25 /* =====================================================================
26 * DMA MANAGEMENT
28 * The Bridge ASIC provides three methods of doing DMA: via a "direct map"
29 * register available in 32-bit PCI space (which selects a contiguous 2G
30 * address space on some other widget), via "direct" addressing via 64-bit
31 * PCI space (all destination information comes from the PCI address,
32 * including transfer attributes), and via a "mapped" region that allows
33 * a bunch of different small mappings to be established with the PMU.
35 * For efficiency, we most prefer to use the 32bit direct mapping facility,
36 * since it requires no resource allocations. The advantage of using the
37 * PMU over the 64-bit direct is that single-cycle PCI addressing can be
38 * used; the advantage of using 64-bit direct over PMU addressing is that
39 * we do not have to allocate entries in the PMU.
42 static dma_addr_t
43 pcibr_dmamap_ate32(struct pcidev_info *info,
44 u64 paddr, size_t req_size, u64 flags, int dma_flags)
47 struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
48 struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
49 pdi_pcibus_info;
50 u8 internal_device = (PCI_SLOT(pcidev_info->pdi_host_pcidev_info->
51 pdi_linux_pcidev->devfn)) - 1;
52 int ate_count;
53 int ate_index;
54 u64 ate_flags = flags | PCI32_ATE_V;
55 u64 ate;
56 u64 pci_addr;
57 u64 xio_addr;
58 u64 offset;
60 /* PIC in PCI-X mode does not supports 32bit PageMap mode */
61 if (IS_PIC_SOFT(pcibus_info) && IS_PCIX(pcibus_info)) {
62 return 0;
65 /* Calculate the number of ATEs needed. */
66 if (!(MINIMAL_ATE_FLAG(paddr, req_size))) {
67 ate_count = IOPG((IOPGSIZE - 1) /* worst case start offset */
68 +req_size /* max mapping bytes */
69 - 1) + 1; /* round UP */
70 } else { /* assume requested target is page aligned */
71 ate_count = IOPG(req_size /* max mapping bytes */
72 - 1) + 1; /* round UP */
75 /* Get the number of ATEs required. */
76 ate_index = pcibr_ate_alloc(pcibus_info, ate_count);
77 if (ate_index < 0)
78 return 0;
80 /* In PCI-X mode, Prefetch not supported */
81 if (IS_PCIX(pcibus_info))
82 ate_flags &= ~(PCI32_ATE_PREF);
84 if (SN_DMA_ADDRTYPE(dma_flags == SN_DMA_ADDR_PHYS))
85 xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
86 PHYS_TO_TIODMA(paddr);
87 else
88 xio_addr = paddr;
90 offset = IOPGOFF(xio_addr);
91 ate = ate_flags | (xio_addr - offset);
93 /* If PIC, put the targetid in the ATE */
94 if (IS_PIC_SOFT(pcibus_info)) {
95 ate |= (pcibus_info->pbi_hub_xid << PIC_ATE_TARGETID_SHFT);
99 * If we're mapping for MSI, set the MSI bit in the ATE
101 if (dma_flags & SN_DMA_MSI)
102 ate |= PCI32_ATE_MSI;
104 ate_write(pcibus_info, ate_index, ate_count, ate);
107 * Set up the DMA mapped Address.
109 pci_addr = PCI32_MAPPED_BASE + offset + IOPGSIZE * ate_index;
112 * If swap was set in device in pcibr_endian_set()
113 * we need to turn swapping on.
115 if (pcibus_info->pbi_devreg[internal_device] & PCIBR_DEV_SWAP_DIR)
116 ATE_SWAP_ON(pci_addr);
119 return pci_addr;
122 static dma_addr_t
123 pcibr_dmatrans_direct64(struct pcidev_info * info, u64 paddr,
124 u64 dma_attributes, int dma_flags)
126 struct pcibus_info *pcibus_info = (struct pcibus_info *)
127 ((info->pdi_host_pcidev_info)->pdi_pcibus_info);
128 u64 pci_addr;
130 /* Translate to Crosstalk View of Physical Address */
131 if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
132 pci_addr = IS_PIC_SOFT(pcibus_info) ?
133 PHYS_TO_DMA(paddr) :
134 PHYS_TO_TIODMA(paddr) | dma_attributes;
135 else
136 pci_addr = IS_PIC_SOFT(pcibus_info) ?
137 paddr :
138 paddr | dma_attributes;
140 /* Handle Bus mode */
141 if (IS_PCIX(pcibus_info))
142 pci_addr &= ~PCI64_ATTR_PREF;
144 /* Handle Bridge Chipset differences */
145 if (IS_PIC_SOFT(pcibus_info)) {
146 pci_addr |=
147 ((u64) pcibus_info->
148 pbi_hub_xid << PIC_PCI64_ATTR_TARG_SHFT);
149 } else
150 pci_addr |= (dma_flags & SN_DMA_MSI) ?
151 TIOCP_PCI64_CMDTYPE_MSI :
152 TIOCP_PCI64_CMDTYPE_MEM;
154 /* If PCI mode, func zero uses VCHAN0, every other func uses VCHAN1 */
155 if (!IS_PCIX(pcibus_info) && PCI_FUNC(info->pdi_linux_pcidev->devfn))
156 pci_addr |= PCI64_ATTR_VIRTUAL;
158 return pci_addr;
161 static dma_addr_t
162 pcibr_dmatrans_direct32(struct pcidev_info * info,
163 u64 paddr, size_t req_size, u64 flags, int dma_flags)
165 struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
166 struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
167 pdi_pcibus_info;
168 u64 xio_addr;
170 u64 xio_base;
171 u64 offset;
172 u64 endoff;
174 if (IS_PCIX(pcibus_info)) {
175 return 0;
178 if (dma_flags & SN_DMA_MSI)
179 return 0;
181 if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
182 xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
183 PHYS_TO_TIODMA(paddr);
184 else
185 xio_addr = paddr;
187 xio_base = pcibus_info->pbi_dir_xbase;
188 offset = xio_addr - xio_base;
189 endoff = req_size + offset;
190 if ((req_size > (1ULL << 31)) || /* Too Big */
191 (xio_addr < xio_base) || /* Out of range for mappings */
192 (endoff > (1ULL << 31))) { /* Too Big */
193 return 0;
196 return PCI32_DIRECT_BASE | offset;
200 * Wrapper routine for free'ing DMA maps
201 * DMA mappings for Direct 64 and 32 do not have any DMA maps.
203 void
204 pcibr_dma_unmap(struct pci_dev *hwdev, dma_addr_t dma_handle, int direction)
206 struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
207 struct pcibus_info *pcibus_info =
208 (struct pcibus_info *)pcidev_info->pdi_pcibus_info;
210 if (IS_PCI32_MAPPED(dma_handle)) {
211 int ate_index;
213 ate_index =
214 IOPG((ATE_SWAP_OFF(dma_handle) - PCI32_MAPPED_BASE));
215 pcibr_ate_free(pcibus_info, ate_index);
220 * On SN systems there is a race condition between a PIO read response and
221 * DMA's. In rare cases, the read response may beat the DMA, causing the
222 * driver to think that data in memory is complete and meaningful. This code
223 * eliminates that race. This routine is called by the PIO read routines
224 * after doing the read. For PIC this routine then forces a fake interrupt
225 * on another line, which is logically associated with the slot that the PIO
226 * is addressed to. It then spins while watching the memory location that
227 * the interrupt is targetted to. When the interrupt response arrives, we
228 * are sure that the DMA has landed in memory and it is safe for the driver
229 * to proceed. For TIOCP use the Device(x) Write Request Buffer Flush
230 * Bridge register since it ensures the data has entered the coherence domain,
231 * unlike the PIC Device(x) Write Request Buffer Flush register.
234 void sn_dma_flush(u64 addr)
236 nasid_t nasid;
237 int is_tio;
238 int wid_num;
239 int i, j;
240 unsigned long flags;
241 u64 itte;
242 struct hubdev_info *hubinfo;
243 struct sn_flush_device_kernel *p;
244 struct sn_flush_device_common *common;
245 struct sn_flush_nasid_entry *flush_nasid_list;
247 if (!sn_ioif_inited)
248 return;
250 nasid = NASID_GET(addr);
251 if (-1 == nasid_to_cnodeid(nasid))
252 return;
254 hubinfo = (NODEPDA(nasid_to_cnodeid(nasid)))->pdinfo;
256 if (!hubinfo) {
257 BUG();
260 flush_nasid_list = &hubinfo->hdi_flush_nasid_list;
261 if (flush_nasid_list->widget_p == NULL)
262 return;
264 is_tio = (nasid & 1);
265 if (is_tio) {
266 int itte_index;
268 if (TIO_HWIN(addr))
269 itte_index = 0;
270 else if (TIO_BWIN_WINDOWNUM(addr))
271 itte_index = TIO_BWIN_WINDOWNUM(addr);
272 else
273 itte_index = -1;
275 if (itte_index >= 0) {
276 itte = flush_nasid_list->iio_itte[itte_index];
277 if (! TIO_ITTE_VALID(itte))
278 return;
279 wid_num = TIO_ITTE_WIDGET(itte);
280 } else
281 wid_num = TIO_SWIN_WIDGETNUM(addr);
282 } else {
283 if (BWIN_WINDOWNUM(addr)) {
284 itte = flush_nasid_list->iio_itte[BWIN_WINDOWNUM(addr)];
285 wid_num = IIO_ITTE_WIDGET(itte);
286 } else
287 wid_num = SWIN_WIDGETNUM(addr);
289 if (flush_nasid_list->widget_p[wid_num] == NULL)
290 return;
291 p = &flush_nasid_list->widget_p[wid_num][0];
293 /* find a matching BAR */
294 for (i = 0; i < DEV_PER_WIDGET; i++,p++) {
295 common = p->common;
296 for (j = 0; j < PCI_ROM_RESOURCE; j++) {
297 if (common->sfdl_bar_list[j].start == 0)
298 break;
299 if (addr >= common->sfdl_bar_list[j].start
300 && addr <= common->sfdl_bar_list[j].end)
301 break;
303 if (j < PCI_ROM_RESOURCE && common->sfdl_bar_list[j].start != 0)
304 break;
307 /* if no matching BAR, return without doing anything. */
308 if (i == DEV_PER_WIDGET)
309 return;
312 * For TIOCP use the Device(x) Write Request Buffer Flush Bridge
313 * register since it ensures the data has entered the coherence
314 * domain, unlike PIC.
316 if (is_tio) {
318 * Note: devices behind TIOCE should never be matched in the
319 * above code, and so the following code is PIC/CP centric.
320 * If CE ever needs the sn_dma_flush mechanism, we will have
321 * to account for that here and in tioce_bus_fixup().
323 u32 tio_id = HUB_L(TIO_IOSPACE_ADDR(nasid, TIO_NODE_ID));
324 u32 revnum = XWIDGET_PART_REV_NUM(tio_id);
326 /* TIOCP BRINGUP WAR (PV907516): Don't write buffer flush reg */
327 if ((1 << XWIDGET_PART_REV_NUM_REV(revnum)) & PV907516) {
328 return;
329 } else {
330 pcireg_wrb_flush_get(common->sfdl_pcibus_info,
331 (common->sfdl_slot - 1));
333 } else {
334 spin_lock_irqsave(&p->sfdl_flush_lock, flags);
335 *common->sfdl_flush_addr = 0;
337 /* force an interrupt. */
338 *(volatile u32 *)(common->sfdl_force_int_addr) = 1;
340 /* wait for the interrupt to come back. */
341 while (*(common->sfdl_flush_addr) != 0x10f)
342 cpu_relax();
344 /* okay, everything is synched up. */
345 spin_unlock_irqrestore(&p->sfdl_flush_lock, flags);
347 return;
351 * DMA interfaces. Called from pci_dma.c routines.
354 dma_addr_t
355 pcibr_dma_map(struct pci_dev * hwdev, unsigned long phys_addr, size_t size, int dma_flags)
357 dma_addr_t dma_handle;
358 struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
360 /* SN cannot support DMA addresses smaller than 32 bits. */
361 if (hwdev->dma_mask < 0x7fffffff) {
362 return 0;
365 if (hwdev->dma_mask == ~0UL) {
367 * Handle the most common case: 64 bit cards. This
368 * call should always succeed.
371 dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr,
372 PCI64_ATTR_PREF, dma_flags);
373 } else {
374 /* Handle 32-63 bit cards via direct mapping */
375 dma_handle = pcibr_dmatrans_direct32(pcidev_info, phys_addr,
376 size, 0, dma_flags);
377 if (!dma_handle) {
379 * It is a 32 bit card and we cannot do direct mapping,
380 * so we use an ATE.
383 dma_handle = pcibr_dmamap_ate32(pcidev_info, phys_addr,
384 size, PCI32_ATE_PREF,
385 dma_flags);
389 return dma_handle;
392 dma_addr_t
393 pcibr_dma_map_consistent(struct pci_dev * hwdev, unsigned long phys_addr,
394 size_t size, int dma_flags)
396 dma_addr_t dma_handle;
397 struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
399 if (hwdev->dev.coherent_dma_mask == ~0UL) {
400 dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr,
401 PCI64_ATTR_BAR, dma_flags);
402 } else {
403 dma_handle = (dma_addr_t) pcibr_dmamap_ate32(pcidev_info,
404 phys_addr, size,
405 PCI32_ATE_BAR, dma_flags);
408 return dma_handle;
411 EXPORT_SYMBOL(sn_dma_flush);