2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
25 * Pedro Roque : Fast Retransmit/Recovery.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
58 * J Hadi Salim: ECN support
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly
= 1;
76 int sysctl_tcp_window_scaling __read_mostly
= 1;
77 int sysctl_tcp_sack __read_mostly
= 1;
78 int sysctl_tcp_fack __read_mostly
= 1;
79 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
80 int sysctl_tcp_ecn __read_mostly
;
81 int sysctl_tcp_dsack __read_mostly
= 1;
82 int sysctl_tcp_app_win __read_mostly
= 31;
83 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
85 int sysctl_tcp_stdurg __read_mostly
;
86 int sysctl_tcp_rfc1337 __read_mostly
;
87 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
88 int sysctl_tcp_frto __read_mostly
;
89 int sysctl_tcp_nometrics_save __read_mostly
;
91 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
92 int sysctl_tcp_abc __read_mostly
;
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
115 /* Adapt the MSS value used to make delayed ack decision to the
118 static void tcp_measure_rcv_mss(struct sock
*sk
,
119 const struct sk_buff
*skb
)
121 struct inet_connection_sock
*icsk
= inet_csk(sk
);
122 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
125 icsk
->icsk_ack
.last_seg_size
= 0;
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
130 len
= skb_shinfo(skb
)->gso_size
?: skb
->len
;
131 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
132 icsk
->icsk_ack
.rcv_mss
= len
;
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
137 * "len" is invariant segment length, including TCP header.
139 len
+= skb
->data
- skb
->h
.raw
;
140 if (len
>= TCP_MIN_RCVMSS
+ sizeof(struct tcphdr
) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
146 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
147 !(tcp_flag_word(skb
->h
.th
)&TCP_REMNANT
))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
152 len
-= tcp_sk(sk
)->tcp_header_len
;
153 icsk
->icsk_ack
.last_seg_size
= len
;
155 icsk
->icsk_ack
.rcv_mss
= len
;
159 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
160 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
161 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
165 static void tcp_incr_quickack(struct sock
*sk
)
167 struct inet_connection_sock
*icsk
= inet_csk(sk
);
168 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
172 if (quickacks
> icsk
->icsk_ack
.quick
)
173 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
176 void tcp_enter_quickack_mode(struct sock
*sk
)
178 struct inet_connection_sock
*icsk
= inet_csk(sk
);
179 tcp_incr_quickack(sk
);
180 icsk
->icsk_ack
.pingpong
= 0;
181 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
184 /* Send ACKs quickly, if "quick" count is not exhausted
185 * and the session is not interactive.
188 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
190 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
191 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
194 /* Buffer size and advertised window tuning.
196 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
199 static void tcp_fixup_sndbuf(struct sock
*sk
)
201 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
202 sizeof(struct sk_buff
);
204 if (sk
->sk_sndbuf
< 3 * sndmem
)
205 sk
->sk_sndbuf
= min(3 * sndmem
, sysctl_tcp_wmem
[2]);
208 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
210 * All tcp_full_space() is split to two parts: "network" buffer, allocated
211 * forward and advertised in receiver window (tp->rcv_wnd) and
212 * "application buffer", required to isolate scheduling/application
213 * latencies from network.
214 * window_clamp is maximal advertised window. It can be less than
215 * tcp_full_space(), in this case tcp_full_space() - window_clamp
216 * is reserved for "application" buffer. The less window_clamp is
217 * the smoother our behaviour from viewpoint of network, but the lower
218 * throughput and the higher sensitivity of the connection to losses. 8)
220 * rcv_ssthresh is more strict window_clamp used at "slow start"
221 * phase to predict further behaviour of this connection.
222 * It is used for two goals:
223 * - to enforce header prediction at sender, even when application
224 * requires some significant "application buffer". It is check #1.
225 * - to prevent pruning of receive queue because of misprediction
226 * of receiver window. Check #2.
228 * The scheme does not work when sender sends good segments opening
229 * window and then starts to feed us spaghetti. But it should work
230 * in common situations. Otherwise, we have to rely on queue collapsing.
233 /* Slow part of check#2. */
234 static int __tcp_grow_window(const struct sock
*sk
, struct tcp_sock
*tp
,
235 const struct sk_buff
*skb
)
238 int truesize
= tcp_win_from_space(skb
->truesize
)/2;
239 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2])/2;
241 while (tp
->rcv_ssthresh
<= window
) {
242 if (truesize
<= skb
->len
)
243 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
251 static void tcp_grow_window(struct sock
*sk
, struct tcp_sock
*tp
,
255 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
256 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
257 !tcp_memory_pressure
) {
260 /* Check #2. Increase window, if skb with such overhead
261 * will fit to rcvbuf in future.
263 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
266 incr
= __tcp_grow_window(sk
, tp
, skb
);
269 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
, tp
->window_clamp
);
270 inet_csk(sk
)->icsk_ack
.quick
|= 1;
275 /* 3. Tuning rcvbuf, when connection enters established state. */
277 static void tcp_fixup_rcvbuf(struct sock
*sk
)
279 struct tcp_sock
*tp
= tcp_sk(sk
);
280 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
282 /* Try to select rcvbuf so that 4 mss-sized segments
283 * will fit to window and corresponding skbs will fit to our rcvbuf.
284 * (was 3; 4 is minimum to allow fast retransmit to work.)
286 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
288 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
289 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
292 /* 4. Try to fixup all. It is made immediately after connection enters
295 static void tcp_init_buffer_space(struct sock
*sk
)
297 struct tcp_sock
*tp
= tcp_sk(sk
);
300 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
301 tcp_fixup_rcvbuf(sk
);
302 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
303 tcp_fixup_sndbuf(sk
);
305 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
307 maxwin
= tcp_full_space(sk
);
309 if (tp
->window_clamp
>= maxwin
) {
310 tp
->window_clamp
= maxwin
;
312 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
313 tp
->window_clamp
= max(maxwin
-
314 (maxwin
>> sysctl_tcp_app_win
),
318 /* Force reservation of one segment. */
319 if (sysctl_tcp_app_win
&&
320 tp
->window_clamp
> 2 * tp
->advmss
&&
321 tp
->window_clamp
+ tp
->advmss
> maxwin
)
322 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
324 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
325 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
328 /* 5. Recalculate window clamp after socket hit its memory bounds. */
329 static void tcp_clamp_window(struct sock
*sk
, struct tcp_sock
*tp
)
331 struct inet_connection_sock
*icsk
= inet_csk(sk
);
333 icsk
->icsk_ack
.quick
= 0;
335 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
336 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
337 !tcp_memory_pressure
&&
338 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
339 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
342 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
343 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U*tp
->advmss
);
347 /* Initialize RCV_MSS value.
348 * RCV_MSS is an our guess about MSS used by the peer.
349 * We haven't any direct information about the MSS.
350 * It's better to underestimate the RCV_MSS rather than overestimate.
351 * Overestimations make us ACKing less frequently than needed.
352 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
354 void tcp_initialize_rcv_mss(struct sock
*sk
)
356 struct tcp_sock
*tp
= tcp_sk(sk
);
357 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
359 hint
= min(hint
, tp
->rcv_wnd
/2);
360 hint
= min(hint
, TCP_MIN_RCVMSS
);
361 hint
= max(hint
, TCP_MIN_MSS
);
363 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
366 /* Receiver "autotuning" code.
368 * The algorithm for RTT estimation w/o timestamps is based on
369 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
372 * More detail on this code can be found at
373 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374 * though this reference is out of date. A new paper
377 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
379 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
385 if (new_sample
!= 0) {
386 /* If we sample in larger samples in the non-timestamp
387 * case, we could grossly overestimate the RTT especially
388 * with chatty applications or bulk transfer apps which
389 * are stalled on filesystem I/O.
391 * Also, since we are only going for a minimum in the
392 * non-timestamp case, we do not smooth things out
393 * else with timestamps disabled convergence takes too
397 m
-= (new_sample
>> 3);
399 } else if (m
< new_sample
)
402 /* No previous measure. */
406 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
407 tp
->rcv_rtt_est
.rtt
= new_sample
;
410 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
412 if (tp
->rcv_rtt_est
.time
== 0)
414 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
416 tcp_rcv_rtt_update(tp
,
417 jiffies
- tp
->rcv_rtt_est
.time
,
421 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
422 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
425 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
, const struct sk_buff
*skb
)
427 struct tcp_sock
*tp
= tcp_sk(sk
);
428 if (tp
->rx_opt
.rcv_tsecr
&&
429 (TCP_SKB_CB(skb
)->end_seq
-
430 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
431 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
435 * This function should be called every time data is copied to user space.
436 * It calculates the appropriate TCP receive buffer space.
438 void tcp_rcv_space_adjust(struct sock
*sk
)
440 struct tcp_sock
*tp
= tcp_sk(sk
);
444 if (tp
->rcvq_space
.time
== 0)
447 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
448 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) ||
449 tp
->rcv_rtt_est
.rtt
== 0)
452 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
454 space
= max(tp
->rcvq_space
.space
, space
);
456 if (tp
->rcvq_space
.space
!= space
) {
459 tp
->rcvq_space
.space
= space
;
461 if (sysctl_tcp_moderate_rcvbuf
&&
462 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
463 int new_clamp
= space
;
465 /* Receive space grows, normalize in order to
466 * take into account packet headers and sk_buff
467 * structure overhead.
472 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
473 16 + sizeof(struct sk_buff
));
474 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
477 space
= min(space
, sysctl_tcp_rmem
[2]);
478 if (space
> sk
->sk_rcvbuf
) {
479 sk
->sk_rcvbuf
= space
;
481 /* Make the window clamp follow along. */
482 tp
->window_clamp
= new_clamp
;
488 tp
->rcvq_space
.seq
= tp
->copied_seq
;
489 tp
->rcvq_space
.time
= tcp_time_stamp
;
492 /* There is something which you must keep in mind when you analyze the
493 * behavior of the tp->ato delayed ack timeout interval. When a
494 * connection starts up, we want to ack as quickly as possible. The
495 * problem is that "good" TCP's do slow start at the beginning of data
496 * transmission. The means that until we send the first few ACK's the
497 * sender will sit on his end and only queue most of his data, because
498 * he can only send snd_cwnd unacked packets at any given time. For
499 * each ACK we send, he increments snd_cwnd and transmits more of his
502 static void tcp_event_data_recv(struct sock
*sk
, struct tcp_sock
*tp
, struct sk_buff
*skb
)
504 struct inet_connection_sock
*icsk
= inet_csk(sk
);
507 inet_csk_schedule_ack(sk
);
509 tcp_measure_rcv_mss(sk
, skb
);
511 tcp_rcv_rtt_measure(tp
);
513 now
= tcp_time_stamp
;
515 if (!icsk
->icsk_ack
.ato
) {
516 /* The _first_ data packet received, initialize
517 * delayed ACK engine.
519 tcp_incr_quickack(sk
);
520 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
522 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
524 if (m
<= TCP_ATO_MIN
/2) {
525 /* The fastest case is the first. */
526 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
527 } else if (m
< icsk
->icsk_ack
.ato
) {
528 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
529 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
530 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
531 } else if (m
> icsk
->icsk_rto
) {
532 /* Too long gap. Apparently sender failed to
533 * restart window, so that we send ACKs quickly.
535 tcp_incr_quickack(sk
);
536 sk_stream_mem_reclaim(sk
);
539 icsk
->icsk_ack
.lrcvtime
= now
;
541 TCP_ECN_check_ce(tp
, skb
);
544 tcp_grow_window(sk
, tp
, skb
);
547 /* Called to compute a smoothed rtt estimate. The data fed to this
548 * routine either comes from timestamps, or from segments that were
549 * known _not_ to have been retransmitted [see Karn/Partridge
550 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551 * piece by Van Jacobson.
552 * NOTE: the next three routines used to be one big routine.
553 * To save cycles in the RFC 1323 implementation it was better to break
554 * it up into three procedures. -- erics
556 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
558 struct tcp_sock
*tp
= tcp_sk(sk
);
559 long m
= mrtt
; /* RTT */
561 /* The following amusing code comes from Jacobson's
562 * article in SIGCOMM '88. Note that rtt and mdev
563 * are scaled versions of rtt and mean deviation.
564 * This is designed to be as fast as possible
565 * m stands for "measurement".
567 * On a 1990 paper the rto value is changed to:
568 * RTO = rtt + 4 * mdev
570 * Funny. This algorithm seems to be very broken.
571 * These formulae increase RTO, when it should be decreased, increase
572 * too slowly, when it should be increased quickly, decrease too quickly
573 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 * does not matter how to _calculate_ it. Seems, it was trap
575 * that VJ failed to avoid. 8)
580 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
581 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
583 m
= -m
; /* m is now abs(error) */
584 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
585 /* This is similar to one of Eifel findings.
586 * Eifel blocks mdev updates when rtt decreases.
587 * This solution is a bit different: we use finer gain
588 * for mdev in this case (alpha*beta).
589 * Like Eifel it also prevents growth of rto,
590 * but also it limits too fast rto decreases,
591 * happening in pure Eifel.
596 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
598 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
599 if (tp
->mdev
> tp
->mdev_max
) {
600 tp
->mdev_max
= tp
->mdev
;
601 if (tp
->mdev_max
> tp
->rttvar
)
602 tp
->rttvar
= tp
->mdev_max
;
604 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
605 if (tp
->mdev_max
< tp
->rttvar
)
606 tp
->rttvar
-= (tp
->rttvar
-tp
->mdev_max
)>>2;
607 tp
->rtt_seq
= tp
->snd_nxt
;
608 tp
->mdev_max
= TCP_RTO_MIN
;
611 /* no previous measure. */
612 tp
->srtt
= m
<<3; /* take the measured time to be rtt */
613 tp
->mdev
= m
<<1; /* make sure rto = 3*rtt */
614 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, TCP_RTO_MIN
);
615 tp
->rtt_seq
= tp
->snd_nxt
;
619 /* Calculate rto without backoff. This is the second half of Van Jacobson's
620 * routine referred to above.
622 static inline void tcp_set_rto(struct sock
*sk
)
624 const struct tcp_sock
*tp
= tcp_sk(sk
);
625 /* Old crap is replaced with new one. 8)
628 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 * It cannot be less due to utterly erratic ACK generation made
630 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 * to do with delayed acks, because at cwnd>2 true delack timeout
632 * is invisible. Actually, Linux-2.4 also generates erratic
633 * ACKs in some circumstances.
635 inet_csk(sk
)->icsk_rto
= (tp
->srtt
>> 3) + tp
->rttvar
;
637 /* 2. Fixups made earlier cannot be right.
638 * If we do not estimate RTO correctly without them,
639 * all the algo is pure shit and should be replaced
640 * with correct one. It is exactly, which we pretend to do.
644 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645 * guarantees that rto is higher.
647 static inline void tcp_bound_rto(struct sock
*sk
)
649 if (inet_csk(sk
)->icsk_rto
> TCP_RTO_MAX
)
650 inet_csk(sk
)->icsk_rto
= TCP_RTO_MAX
;
653 /* Save metrics learned by this TCP session.
654 This function is called only, when TCP finishes successfully
655 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
657 void tcp_update_metrics(struct sock
*sk
)
659 struct tcp_sock
*tp
= tcp_sk(sk
);
660 struct dst_entry
*dst
= __sk_dst_get(sk
);
662 if (sysctl_tcp_nometrics_save
)
667 if (dst
&& (dst
->flags
&DST_HOST
)) {
668 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
671 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
672 /* This session failed to estimate rtt. Why?
673 * Probably, no packets returned in time.
676 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
677 dst
->metrics
[RTAX_RTT
-1] = 0;
681 m
= dst_metric(dst
, RTAX_RTT
) - tp
->srtt
;
683 /* If newly calculated rtt larger than stored one,
684 * store new one. Otherwise, use EWMA. Remember,
685 * rtt overestimation is always better than underestimation.
687 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
689 dst
->metrics
[RTAX_RTT
-1] = tp
->srtt
;
691 dst
->metrics
[RTAX_RTT
-1] -= (m
>>3);
694 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
698 /* Scale deviation to rttvar fixed point */
703 if (m
>= dst_metric(dst
, RTAX_RTTVAR
))
704 dst
->metrics
[RTAX_RTTVAR
-1] = m
;
706 dst
->metrics
[RTAX_RTTVAR
-1] -=
707 (dst
->metrics
[RTAX_RTTVAR
-1] - m
)>>2;
710 if (tp
->snd_ssthresh
>= 0xFFFF) {
711 /* Slow start still did not finish. */
712 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
713 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
714 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
715 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_cwnd
>> 1;
716 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
717 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
718 dst
->metrics
[RTAX_CWND
-1] = tp
->snd_cwnd
;
719 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
720 icsk
->icsk_ca_state
== TCP_CA_Open
) {
721 /* Cong. avoidance phase, cwnd is reliable. */
722 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
723 dst
->metrics
[RTAX_SSTHRESH
-1] =
724 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
);
725 if (!dst_metric_locked(dst
, RTAX_CWND
))
726 dst
->metrics
[RTAX_CWND
-1] = (dst
->metrics
[RTAX_CWND
-1] + tp
->snd_cwnd
) >> 1;
728 /* Else slow start did not finish, cwnd is non-sense,
729 ssthresh may be also invalid.
731 if (!dst_metric_locked(dst
, RTAX_CWND
))
732 dst
->metrics
[RTAX_CWND
-1] = (dst
->metrics
[RTAX_CWND
-1] + tp
->snd_ssthresh
) >> 1;
733 if (dst
->metrics
[RTAX_SSTHRESH
-1] &&
734 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
735 tp
->snd_ssthresh
> dst
->metrics
[RTAX_SSTHRESH
-1])
736 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_ssthresh
;
739 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
740 if (dst
->metrics
[RTAX_REORDERING
-1] < tp
->reordering
&&
741 tp
->reordering
!= sysctl_tcp_reordering
)
742 dst
->metrics
[RTAX_REORDERING
-1] = tp
->reordering
;
747 /* Numbers are taken from RFC2414. */
748 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
750 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
753 if (tp
->mss_cache
> 1460)
756 cwnd
= (tp
->mss_cache
> 1095) ? 3 : 4;
758 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
761 /* Set slow start threshold and cwnd not falling to slow start */
762 void tcp_enter_cwr(struct sock
*sk
)
764 struct tcp_sock
*tp
= tcp_sk(sk
);
766 tp
->prior_ssthresh
= 0;
768 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
770 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
771 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
772 tcp_packets_in_flight(tp
) + 1U);
773 tp
->snd_cwnd_cnt
= 0;
774 tp
->high_seq
= tp
->snd_nxt
;
775 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
776 TCP_ECN_queue_cwr(tp
);
778 tcp_set_ca_state(sk
, TCP_CA_CWR
);
782 /* Initialize metrics on socket. */
784 static void tcp_init_metrics(struct sock
*sk
)
786 struct tcp_sock
*tp
= tcp_sk(sk
);
787 struct dst_entry
*dst
= __sk_dst_get(sk
);
794 if (dst_metric_locked(dst
, RTAX_CWND
))
795 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
796 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
797 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
798 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
799 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
801 if (dst_metric(dst
, RTAX_REORDERING
) &&
802 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
803 tp
->rx_opt
.sack_ok
&= ~2;
804 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
807 if (dst_metric(dst
, RTAX_RTT
) == 0)
810 if (!tp
->srtt
&& dst_metric(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
813 /* Initial rtt is determined from SYN,SYN-ACK.
814 * The segment is small and rtt may appear much
815 * less than real one. Use per-dst memory
816 * to make it more realistic.
818 * A bit of theory. RTT is time passed after "normal" sized packet
819 * is sent until it is ACKed. In normal circumstances sending small
820 * packets force peer to delay ACKs and calculation is correct too.
821 * The algorithm is adaptive and, provided we follow specs, it
822 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 * tricks sort of "quick acks" for time long enough to decrease RTT
824 * to low value, and then abruptly stops to do it and starts to delay
825 * ACKs, wait for troubles.
827 if (dst_metric(dst
, RTAX_RTT
) > tp
->srtt
) {
828 tp
->srtt
= dst_metric(dst
, RTAX_RTT
);
829 tp
->rtt_seq
= tp
->snd_nxt
;
831 if (dst_metric(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
832 tp
->mdev
= dst_metric(dst
, RTAX_RTTVAR
);
833 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, TCP_RTO_MIN
);
837 if (inet_csk(sk
)->icsk_rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
)
839 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
840 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
844 /* Play conservative. If timestamps are not
845 * supported, TCP will fail to recalculate correct
846 * rtt, if initial rto is too small. FORGET ALL AND RESET!
848 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
850 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
851 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
855 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
858 struct tcp_sock
*tp
= tcp_sk(sk
);
859 if (metric
> tp
->reordering
) {
860 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
862 /* This exciting event is worth to be remembered. 8) */
864 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER
);
866 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER
);
868 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER
);
870 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER
);
871 #if FASTRETRANS_DEBUG > 1
872 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
873 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
877 tp
->undo_marker
? tp
->undo_retrans
: 0);
879 /* Disable FACK yet. */
880 tp
->rx_opt
.sack_ok
&= ~2;
884 /* This procedure tags the retransmission queue when SACKs arrive.
886 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887 * Packets in queue with these bits set are counted in variables
888 * sacked_out, retrans_out and lost_out, correspondingly.
890 * Valid combinations are:
891 * Tag InFlight Description
892 * 0 1 - orig segment is in flight.
893 * S 0 - nothing flies, orig reached receiver.
894 * L 0 - nothing flies, orig lost by net.
895 * R 2 - both orig and retransmit are in flight.
896 * L|R 1 - orig is lost, retransmit is in flight.
897 * S|R 1 - orig reached receiver, retrans is still in flight.
898 * (L|S|R is logically valid, it could occur when L|R is sacked,
899 * but it is equivalent to plain S and code short-curcuits it to S.
900 * L|S is logically invalid, it would mean -1 packet in flight 8))
902 * These 6 states form finite state machine, controlled by the following events:
903 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905 * 3. Loss detection event of one of three flavors:
906 * A. Scoreboard estimator decided the packet is lost.
907 * A'. Reno "three dupacks" marks head of queue lost.
908 * A''. Its FACK modfication, head until snd.fack is lost.
909 * B. SACK arrives sacking data transmitted after never retransmitted
911 * C. SACK arrives sacking SND.NXT at the moment, when the
912 * segment was retransmitted.
913 * 4. D-SACK added new rule: D-SACK changes any tag to S.
915 * It is pleasant to note, that state diagram turns out to be commutative,
916 * so that we are allowed not to be bothered by order of our actions,
917 * when multiple events arrive simultaneously. (see the function below).
919 * Reordering detection.
920 * --------------------
921 * Reordering metric is maximal distance, which a packet can be displaced
922 * in packet stream. With SACKs we can estimate it:
924 * 1. SACK fills old hole and the corresponding segment was not
925 * ever retransmitted -> reordering. Alas, we cannot use it
926 * when segment was retransmitted.
927 * 2. The last flaw is solved with D-SACK. D-SACK arrives
928 * for retransmitted and already SACKed segment -> reordering..
929 * Both of these heuristics are not used in Loss state, when we cannot
930 * account for retransmits accurately.
933 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
, u32 prior_snd_una
)
935 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
936 struct tcp_sock
*tp
= tcp_sk(sk
);
937 unsigned char *ptr
= ack_skb
->h
.raw
+ TCP_SKB_CB(ack_skb
)->sacked
;
938 struct tcp_sack_block_wire
*sp
= (struct tcp_sack_block_wire
*)(ptr
+2);
939 int num_sacks
= (ptr
[1] - TCPOLEN_SACK_BASE
)>>3;
940 int reord
= tp
->packets_out
;
942 u32 lost_retrans
= 0;
949 prior_fackets
= tp
->fackets_out
;
952 * if the only SACK change is the increase of the end_seq of
953 * the first block then only apply that SACK block
954 * and use retrans queue hinting otherwise slowpath */
956 for (i
= 0; i
< num_sacks
; i
++) {
957 __u32 start_seq
= ntohl(sp
[i
].start_seq
);
958 __u32 end_seq
= ntohl(sp
[i
].end_seq
);
961 if (tp
->recv_sack_cache
[i
].start_seq
!= start_seq
)
964 if ((tp
->recv_sack_cache
[i
].start_seq
!= start_seq
) ||
965 (tp
->recv_sack_cache
[i
].end_seq
!= end_seq
))
968 tp
->recv_sack_cache
[i
].start_seq
= start_seq
;
969 tp
->recv_sack_cache
[i
].end_seq
= end_seq
;
971 /* Check for D-SACK. */
973 u32 ack
= TCP_SKB_CB(ack_skb
)->ack_seq
;
975 if (before(start_seq
, ack
)) {
977 tp
->rx_opt
.sack_ok
|= 4;
978 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV
);
979 } else if (num_sacks
> 1 &&
980 !after(end_seq
, ntohl(sp
[1].end_seq
)) &&
981 !before(start_seq
, ntohl(sp
[1].start_seq
))) {
983 tp
->rx_opt
.sack_ok
|= 4;
984 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV
);
987 /* D-SACK for already forgotten data...
988 * Do dumb counting. */
990 !after(end_seq
, prior_snd_una
) &&
991 after(end_seq
, tp
->undo_marker
))
994 /* Eliminate too old ACKs, but take into
995 * account more or less fresh ones, they can
996 * contain valid SACK info.
998 if (before(ack
, prior_snd_una
- tp
->max_window
))
1007 tp
->fastpath_skb_hint
= NULL
;
1009 /* order SACK blocks to allow in order walk of the retrans queue */
1010 for (i
= num_sacks
-1; i
> 0; i
--) {
1011 for (j
= 0; j
< i
; j
++){
1012 if (after(ntohl(sp
[j
].start_seq
),
1013 ntohl(sp
[j
+1].start_seq
))){
1014 sp
[j
].start_seq
= htonl(tp
->recv_sack_cache
[j
+1].start_seq
);
1015 sp
[j
].end_seq
= htonl(tp
->recv_sack_cache
[j
+1].end_seq
);
1016 sp
[j
+1].start_seq
= htonl(tp
->recv_sack_cache
[j
].start_seq
);
1017 sp
[j
+1].end_seq
= htonl(tp
->recv_sack_cache
[j
].end_seq
);
1024 /* clear flag as used for different purpose in following code */
1027 for (i
=0; i
<num_sacks
; i
++, sp
++) {
1028 struct sk_buff
*skb
;
1029 __u32 start_seq
= ntohl(sp
->start_seq
);
1030 __u32 end_seq
= ntohl(sp
->end_seq
);
1033 /* Use SACK fastpath hint if valid */
1034 if (tp
->fastpath_skb_hint
) {
1035 skb
= tp
->fastpath_skb_hint
;
1036 fack_count
= tp
->fastpath_cnt_hint
;
1038 skb
= sk
->sk_write_queue
.next
;
1042 /* Event "B" in the comment above. */
1043 if (after(end_seq
, tp
->high_seq
))
1044 flag
|= FLAG_DATA_LOST
;
1046 sk_stream_for_retrans_queue_from(skb
, sk
) {
1047 int in_sack
, pcount
;
1050 tp
->fastpath_skb_hint
= skb
;
1051 tp
->fastpath_cnt_hint
= fack_count
;
1053 /* The retransmission queue is always in order, so
1054 * we can short-circuit the walk early.
1056 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1059 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1060 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1062 pcount
= tcp_skb_pcount(skb
);
1064 if (pcount
> 1 && !in_sack
&&
1065 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1066 unsigned int pkt_len
;
1068 in_sack
= !after(start_seq
,
1069 TCP_SKB_CB(skb
)->seq
);
1072 pkt_len
= (start_seq
-
1073 TCP_SKB_CB(skb
)->seq
);
1075 pkt_len
= (end_seq
-
1076 TCP_SKB_CB(skb
)->seq
);
1077 if (tcp_fragment(sk
, skb
, pkt_len
, skb_shinfo(skb
)->gso_size
))
1079 pcount
= tcp_skb_pcount(skb
);
1082 fack_count
+= pcount
;
1084 sacked
= TCP_SKB_CB(skb
)->sacked
;
1086 /* Account D-SACK for retransmitted packet. */
1087 if ((dup_sack
&& in_sack
) &&
1088 (sacked
& TCPCB_RETRANS
) &&
1089 after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1092 /* The frame is ACKed. */
1093 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
)) {
1094 if (sacked
&TCPCB_RETRANS
) {
1095 if ((dup_sack
&& in_sack
) &&
1096 (sacked
&TCPCB_SACKED_ACKED
))
1097 reord
= min(fack_count
, reord
);
1099 /* If it was in a hole, we detected reordering. */
1100 if (fack_count
< prior_fackets
&&
1101 !(sacked
&TCPCB_SACKED_ACKED
))
1102 reord
= min(fack_count
, reord
);
1105 /* Nothing to do; acked frame is about to be dropped. */
1109 if ((sacked
&TCPCB_SACKED_RETRANS
) &&
1110 after(end_seq
, TCP_SKB_CB(skb
)->ack_seq
) &&
1111 (!lost_retrans
|| after(end_seq
, lost_retrans
)))
1112 lost_retrans
= end_seq
;
1117 if (!(sacked
&TCPCB_SACKED_ACKED
)) {
1118 if (sacked
& TCPCB_SACKED_RETRANS
) {
1119 /* If the segment is not tagged as lost,
1120 * we do not clear RETRANS, believing
1121 * that retransmission is still in flight.
1123 if (sacked
& TCPCB_LOST
) {
1124 TCP_SKB_CB(skb
)->sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1125 tp
->lost_out
-= tcp_skb_pcount(skb
);
1126 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1128 /* clear lost hint */
1129 tp
->retransmit_skb_hint
= NULL
;
1132 /* New sack for not retransmitted frame,
1133 * which was in hole. It is reordering.
1135 if (!(sacked
& TCPCB_RETRANS
) &&
1136 fack_count
< prior_fackets
)
1137 reord
= min(fack_count
, reord
);
1139 if (sacked
& TCPCB_LOST
) {
1140 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1141 tp
->lost_out
-= tcp_skb_pcount(skb
);
1143 /* clear lost hint */
1144 tp
->retransmit_skb_hint
= NULL
;
1148 TCP_SKB_CB(skb
)->sacked
|= TCPCB_SACKED_ACKED
;
1149 flag
|= FLAG_DATA_SACKED
;
1150 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1152 if (fack_count
> tp
->fackets_out
)
1153 tp
->fackets_out
= fack_count
;
1155 if (dup_sack
&& (sacked
&TCPCB_RETRANS
))
1156 reord
= min(fack_count
, reord
);
1159 /* D-SACK. We can detect redundant retransmission
1160 * in S|R and plain R frames and clear it.
1161 * undo_retrans is decreased above, L|R frames
1162 * are accounted above as well.
1165 (TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
)) {
1166 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1167 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1168 tp
->retransmit_skb_hint
= NULL
;
1173 /* Check for lost retransmit. This superb idea is
1174 * borrowed from "ratehalving". Event "C".
1175 * Later note: FACK people cheated me again 8),
1176 * we have to account for reordering! Ugly,
1179 if (lost_retrans
&& icsk
->icsk_ca_state
== TCP_CA_Recovery
) {
1180 struct sk_buff
*skb
;
1182 sk_stream_for_retrans_queue(skb
, sk
) {
1183 if (after(TCP_SKB_CB(skb
)->seq
, lost_retrans
))
1185 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1187 if ((TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
) &&
1188 after(lost_retrans
, TCP_SKB_CB(skb
)->ack_seq
) &&
1190 !before(lost_retrans
,
1191 TCP_SKB_CB(skb
)->ack_seq
+ tp
->reordering
*
1193 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1194 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1196 /* clear lost hint */
1197 tp
->retransmit_skb_hint
= NULL
;
1199 if (!(TCP_SKB_CB(skb
)->sacked
&(TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1200 tp
->lost_out
+= tcp_skb_pcount(skb
);
1201 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1202 flag
|= FLAG_DATA_SACKED
;
1203 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT
);
1209 tp
->left_out
= tp
->sacked_out
+ tp
->lost_out
;
1211 if ((reord
< tp
->fackets_out
) && icsk
->icsk_ca_state
!= TCP_CA_Loss
)
1212 tcp_update_reordering(sk
, ((tp
->fackets_out
+ 1) - reord
), 0);
1214 #if FASTRETRANS_DEBUG > 0
1215 BUG_TRAP((int)tp
->sacked_out
>= 0);
1216 BUG_TRAP((int)tp
->lost_out
>= 0);
1217 BUG_TRAP((int)tp
->retrans_out
>= 0);
1218 BUG_TRAP((int)tcp_packets_in_flight(tp
) >= 0);
1223 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1224 * segments to see from the next ACKs whether any data was really missing.
1225 * If the RTO was spurious, new ACKs should arrive.
1227 void tcp_enter_frto(struct sock
*sk
)
1229 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1230 struct tcp_sock
*tp
= tcp_sk(sk
);
1231 struct sk_buff
*skb
;
1233 tp
->frto_counter
= 1;
1235 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1236 tp
->snd_una
== tp
->high_seq
||
1237 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1238 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1239 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1240 tcp_ca_event(sk
, CA_EVENT_FRTO
);
1243 /* Have to clear retransmission markers here to keep the bookkeeping
1244 * in shape, even though we are not yet in Loss state.
1245 * If something was really lost, it is eventually caught up
1246 * in tcp_enter_frto_loss.
1248 tp
->retrans_out
= 0;
1249 tp
->undo_marker
= tp
->snd_una
;
1250 tp
->undo_retrans
= 0;
1252 sk_stream_for_retrans_queue(skb
, sk
) {
1253 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_RETRANS
;
1255 tcp_sync_left_out(tp
);
1257 tcp_set_ca_state(sk
, TCP_CA_Open
);
1258 tp
->frto_highmark
= tp
->snd_nxt
;
1261 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1262 * which indicates that we should follow the traditional RTO recovery,
1263 * i.e. mark everything lost and do go-back-N retransmission.
1265 static void tcp_enter_frto_loss(struct sock
*sk
)
1267 struct tcp_sock
*tp
= tcp_sk(sk
);
1268 struct sk_buff
*skb
;
1273 tp
->fackets_out
= 0;
1275 sk_stream_for_retrans_queue(skb
, sk
) {
1276 cnt
+= tcp_skb_pcount(skb
);
1277 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1278 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
)) {
1280 /* Do not mark those segments lost that were
1281 * forward transmitted after RTO
1283 if (!after(TCP_SKB_CB(skb
)->end_seq
,
1284 tp
->frto_highmark
)) {
1285 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1286 tp
->lost_out
+= tcp_skb_pcount(skb
);
1289 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1290 tp
->fackets_out
= cnt
;
1293 tcp_sync_left_out(tp
);
1295 tp
->snd_cwnd
= tp
->frto_counter
+ tcp_packets_in_flight(tp
)+1;
1296 tp
->snd_cwnd_cnt
= 0;
1297 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1298 tp
->undo_marker
= 0;
1299 tp
->frto_counter
= 0;
1301 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1302 sysctl_tcp_reordering
);
1303 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1304 tp
->high_seq
= tp
->frto_highmark
;
1305 TCP_ECN_queue_cwr(tp
);
1307 clear_all_retrans_hints(tp
);
1310 void tcp_clear_retrans(struct tcp_sock
*tp
)
1313 tp
->retrans_out
= 0;
1315 tp
->fackets_out
= 0;
1319 tp
->undo_marker
= 0;
1320 tp
->undo_retrans
= 0;
1323 /* Enter Loss state. If "how" is not zero, forget all SACK information
1324 * and reset tags completely, otherwise preserve SACKs. If receiver
1325 * dropped its ofo queue, we will know this due to reneging detection.
1327 void tcp_enter_loss(struct sock
*sk
, int how
)
1329 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1330 struct tcp_sock
*tp
= tcp_sk(sk
);
1331 struct sk_buff
*skb
;
1334 /* Reduce ssthresh if it has not yet been made inside this window. */
1335 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
1336 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1337 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1338 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1339 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1342 tp
->snd_cwnd_cnt
= 0;
1343 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1345 tp
->bytes_acked
= 0;
1346 tcp_clear_retrans(tp
);
1348 /* Push undo marker, if it was plain RTO and nothing
1349 * was retransmitted. */
1351 tp
->undo_marker
= tp
->snd_una
;
1353 sk_stream_for_retrans_queue(skb
, sk
) {
1354 cnt
+= tcp_skb_pcount(skb
);
1355 if (TCP_SKB_CB(skb
)->sacked
&TCPCB_RETRANS
)
1356 tp
->undo_marker
= 0;
1357 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1358 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
1359 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1360 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1361 tp
->lost_out
+= tcp_skb_pcount(skb
);
1363 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1364 tp
->fackets_out
= cnt
;
1367 tcp_sync_left_out(tp
);
1369 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1370 sysctl_tcp_reordering
);
1371 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1372 tp
->high_seq
= tp
->snd_nxt
;
1373 TCP_ECN_queue_cwr(tp
);
1375 clear_all_retrans_hints(tp
);
1378 static int tcp_check_sack_reneging(struct sock
*sk
)
1380 struct sk_buff
*skb
;
1382 /* If ACK arrived pointing to a remembered SACK,
1383 * it means that our remembered SACKs do not reflect
1384 * real state of receiver i.e.
1385 * receiver _host_ is heavily congested (or buggy).
1386 * Do processing similar to RTO timeout.
1388 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
&&
1389 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
1390 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1391 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING
);
1393 tcp_enter_loss(sk
, 1);
1394 icsk
->icsk_retransmits
++;
1395 tcp_retransmit_skb(sk
, skb_peek(&sk
->sk_write_queue
));
1396 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1397 icsk
->icsk_rto
, TCP_RTO_MAX
);
1403 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
1405 return IsReno(tp
) ? tp
->sacked_out
+1 : tp
->fackets_out
;
1408 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
1410 return (tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
);
1413 static inline int tcp_head_timedout(struct sock
*sk
, struct tcp_sock
*tp
)
1415 return tp
->packets_out
&&
1416 tcp_skb_timedout(sk
, skb_peek(&sk
->sk_write_queue
));
1419 /* Linux NewReno/SACK/FACK/ECN state machine.
1420 * --------------------------------------
1422 * "Open" Normal state, no dubious events, fast path.
1423 * "Disorder" In all the respects it is "Open",
1424 * but requires a bit more attention. It is entered when
1425 * we see some SACKs or dupacks. It is split of "Open"
1426 * mainly to move some processing from fast path to slow one.
1427 * "CWR" CWND was reduced due to some Congestion Notification event.
1428 * It can be ECN, ICMP source quench, local device congestion.
1429 * "Recovery" CWND was reduced, we are fast-retransmitting.
1430 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1432 * tcp_fastretrans_alert() is entered:
1433 * - each incoming ACK, if state is not "Open"
1434 * - when arrived ACK is unusual, namely:
1439 * Counting packets in flight is pretty simple.
1441 * in_flight = packets_out - left_out + retrans_out
1443 * packets_out is SND.NXT-SND.UNA counted in packets.
1445 * retrans_out is number of retransmitted segments.
1447 * left_out is number of segments left network, but not ACKed yet.
1449 * left_out = sacked_out + lost_out
1451 * sacked_out: Packets, which arrived to receiver out of order
1452 * and hence not ACKed. With SACKs this number is simply
1453 * amount of SACKed data. Even without SACKs
1454 * it is easy to give pretty reliable estimate of this number,
1455 * counting duplicate ACKs.
1457 * lost_out: Packets lost by network. TCP has no explicit
1458 * "loss notification" feedback from network (for now).
1459 * It means that this number can be only _guessed_.
1460 * Actually, it is the heuristics to predict lossage that
1461 * distinguishes different algorithms.
1463 * F.e. after RTO, when all the queue is considered as lost,
1464 * lost_out = packets_out and in_flight = retrans_out.
1466 * Essentially, we have now two algorithms counting
1469 * FACK: It is the simplest heuristics. As soon as we decided
1470 * that something is lost, we decide that _all_ not SACKed
1471 * packets until the most forward SACK are lost. I.e.
1472 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1473 * It is absolutely correct estimate, if network does not reorder
1474 * packets. And it loses any connection to reality when reordering
1475 * takes place. We use FACK by default until reordering
1476 * is suspected on the path to this destination.
1478 * NewReno: when Recovery is entered, we assume that one segment
1479 * is lost (classic Reno). While we are in Recovery and
1480 * a partial ACK arrives, we assume that one more packet
1481 * is lost (NewReno). This heuristics are the same in NewReno
1484 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1485 * deflation etc. CWND is real congestion window, never inflated, changes
1486 * only according to classic VJ rules.
1488 * Really tricky (and requiring careful tuning) part of algorithm
1489 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1490 * The first determines the moment _when_ we should reduce CWND and,
1491 * hence, slow down forward transmission. In fact, it determines the moment
1492 * when we decide that hole is caused by loss, rather than by a reorder.
1494 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1495 * holes, caused by lost packets.
1497 * And the most logically complicated part of algorithm is undo
1498 * heuristics. We detect false retransmits due to both too early
1499 * fast retransmit (reordering) and underestimated RTO, analyzing
1500 * timestamps and D-SACKs. When we detect that some segments were
1501 * retransmitted by mistake and CWND reduction was wrong, we undo
1502 * window reduction and abort recovery phase. This logic is hidden
1503 * inside several functions named tcp_try_undo_<something>.
1506 /* This function decides, when we should leave Disordered state
1507 * and enter Recovery phase, reducing congestion window.
1509 * Main question: may we further continue forward transmission
1510 * with the same cwnd?
1512 static int tcp_time_to_recover(struct sock
*sk
, struct tcp_sock
*tp
)
1516 /* Trick#1: The loss is proven. */
1520 /* Not-A-Trick#2 : Classic rule... */
1521 if (tcp_fackets_out(tp
) > tp
->reordering
)
1524 /* Trick#3 : when we use RFC2988 timer restart, fast
1525 * retransmit can be triggered by timeout of queue head.
1527 if (tcp_head_timedout(sk
, tp
))
1530 /* Trick#4: It is still not OK... But will it be useful to delay
1533 packets_out
= tp
->packets_out
;
1534 if (packets_out
<= tp
->reordering
&&
1535 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
1536 !tcp_may_send_now(sk
, tp
)) {
1537 /* We have nothing to send. This connection is limited
1538 * either by receiver window or by application.
1546 /* If we receive more dupacks than we expected counting segments
1547 * in assumption of absent reordering, interpret this as reordering.
1548 * The only another reason could be bug in receiver TCP.
1550 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1552 struct tcp_sock
*tp
= tcp_sk(sk
);
1555 holes
= max(tp
->lost_out
, 1U);
1556 holes
= min(holes
, tp
->packets_out
);
1558 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1559 tp
->sacked_out
= tp
->packets_out
- holes
;
1560 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1564 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1566 static void tcp_add_reno_sack(struct sock
*sk
)
1568 struct tcp_sock
*tp
= tcp_sk(sk
);
1570 tcp_check_reno_reordering(sk
, 0);
1571 tcp_sync_left_out(tp
);
1574 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1576 static void tcp_remove_reno_sacks(struct sock
*sk
, struct tcp_sock
*tp
, int acked
)
1579 /* One ACK acked hole. The rest eat duplicate ACKs. */
1580 if (acked
-1 >= tp
->sacked_out
)
1583 tp
->sacked_out
-= acked
-1;
1585 tcp_check_reno_reordering(sk
, acked
);
1586 tcp_sync_left_out(tp
);
1589 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1592 tp
->left_out
= tp
->lost_out
;
1595 /* Mark head of queue up as lost. */
1596 static void tcp_mark_head_lost(struct sock
*sk
, struct tcp_sock
*tp
,
1597 int packets
, u32 high_seq
)
1599 struct sk_buff
*skb
;
1602 BUG_TRAP(packets
<= tp
->packets_out
);
1603 if (tp
->lost_skb_hint
) {
1604 skb
= tp
->lost_skb_hint
;
1605 cnt
= tp
->lost_cnt_hint
;
1607 skb
= sk
->sk_write_queue
.next
;
1611 sk_stream_for_retrans_queue_from(skb
, sk
) {
1612 /* TODO: do this better */
1613 /* this is not the most efficient way to do this... */
1614 tp
->lost_skb_hint
= skb
;
1615 tp
->lost_cnt_hint
= cnt
;
1616 cnt
+= tcp_skb_pcount(skb
);
1617 if (cnt
> packets
|| after(TCP_SKB_CB(skb
)->end_seq
, high_seq
))
1619 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_TAGBITS
)) {
1620 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1621 tp
->lost_out
+= tcp_skb_pcount(skb
);
1623 /* clear xmit_retransmit_queue hints
1624 * if this is beyond hint */
1625 if(tp
->retransmit_skb_hint
!= NULL
&&
1626 before(TCP_SKB_CB(skb
)->seq
,
1627 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
)) {
1629 tp
->retransmit_skb_hint
= NULL
;
1633 tcp_sync_left_out(tp
);
1636 /* Account newly detected lost packet(s) */
1638 static void tcp_update_scoreboard(struct sock
*sk
, struct tcp_sock
*tp
)
1641 int lost
= tp
->fackets_out
- tp
->reordering
;
1644 tcp_mark_head_lost(sk
, tp
, lost
, tp
->high_seq
);
1646 tcp_mark_head_lost(sk
, tp
, 1, tp
->high_seq
);
1649 /* New heuristics: it is possible only after we switched
1650 * to restart timer each time when something is ACKed.
1651 * Hence, we can detect timed out packets during fast
1652 * retransmit without falling to slow start.
1654 if (!IsReno(tp
) && tcp_head_timedout(sk
, tp
)) {
1655 struct sk_buff
*skb
;
1657 skb
= tp
->scoreboard_skb_hint
? tp
->scoreboard_skb_hint
1658 : sk
->sk_write_queue
.next
;
1660 sk_stream_for_retrans_queue_from(skb
, sk
) {
1661 if (!tcp_skb_timedout(sk
, skb
))
1664 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_TAGBITS
)) {
1665 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1666 tp
->lost_out
+= tcp_skb_pcount(skb
);
1668 /* clear xmit_retrans hint */
1669 if (tp
->retransmit_skb_hint
&&
1670 before(TCP_SKB_CB(skb
)->seq
,
1671 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
1673 tp
->retransmit_skb_hint
= NULL
;
1677 tp
->scoreboard_skb_hint
= skb
;
1679 tcp_sync_left_out(tp
);
1683 /* CWND moderation, preventing bursts due to too big ACKs
1684 * in dubious situations.
1686 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
1688 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
1689 tcp_packets_in_flight(tp
)+tcp_max_burst(tp
));
1690 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1693 /* Lower bound on congestion window is slow start threshold
1694 * unless congestion avoidance choice decides to overide it.
1696 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
1698 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
1700 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
1703 /* Decrease cwnd each second ack. */
1704 static void tcp_cwnd_down(struct sock
*sk
)
1706 struct tcp_sock
*tp
= tcp_sk(sk
);
1707 int decr
= tp
->snd_cwnd_cnt
+ 1;
1709 tp
->snd_cwnd_cnt
= decr
&1;
1712 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
1713 tp
->snd_cwnd
-= decr
;
1715 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
)+1);
1716 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1719 /* Nothing was retransmitted or returned timestamp is less
1720 * than timestamp of the first retransmission.
1722 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
1724 return !tp
->retrans_stamp
||
1725 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
1726 (__s32
)(tp
->rx_opt
.rcv_tsecr
- tp
->retrans_stamp
) < 0);
1729 /* Undo procedures. */
1731 #if FASTRETRANS_DEBUG > 1
1732 static void DBGUNDO(struct sock
*sk
, struct tcp_sock
*tp
, const char *msg
)
1734 struct inet_sock
*inet
= inet_sk(sk
);
1735 printk(KERN_DEBUG
"Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1737 NIPQUAD(inet
->daddr
), ntohs(inet
->dport
),
1738 tp
->snd_cwnd
, tp
->left_out
,
1739 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
1743 #define DBGUNDO(x...) do { } while (0)
1746 static void tcp_undo_cwr(struct sock
*sk
, const int undo
)
1748 struct tcp_sock
*tp
= tcp_sk(sk
);
1750 if (tp
->prior_ssthresh
) {
1751 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1753 if (icsk
->icsk_ca_ops
->undo_cwnd
)
1754 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
1756 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<<1);
1758 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
1759 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
1760 TCP_ECN_withdraw_cwr(tp
);
1763 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
1765 tcp_moderate_cwnd(tp
);
1766 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1768 /* There is something screwy going on with the retrans hints after
1770 clear_all_retrans_hints(tp
);
1773 static inline int tcp_may_undo(struct tcp_sock
*tp
)
1775 return tp
->undo_marker
&&
1776 (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
1779 /* People celebrate: "We love our President!" */
1780 static int tcp_try_undo_recovery(struct sock
*sk
, struct tcp_sock
*tp
)
1782 if (tcp_may_undo(tp
)) {
1783 /* Happy end! We did not retransmit anything
1784 * or our original transmission succeeded.
1786 DBGUNDO(sk
, tp
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
1787 tcp_undo_cwr(sk
, 1);
1788 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
1789 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
1791 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO
);
1792 tp
->undo_marker
= 0;
1794 if (tp
->snd_una
== tp
->high_seq
&& IsReno(tp
)) {
1795 /* Hold old state until something *above* high_seq
1796 * is ACKed. For Reno it is MUST to prevent false
1797 * fast retransmits (RFC2582). SACK TCP is safe. */
1798 tcp_moderate_cwnd(tp
);
1801 tcp_set_ca_state(sk
, TCP_CA_Open
);
1805 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1806 static void tcp_try_undo_dsack(struct sock
*sk
, struct tcp_sock
*tp
)
1808 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
1809 DBGUNDO(sk
, tp
, "D-SACK");
1810 tcp_undo_cwr(sk
, 1);
1811 tp
->undo_marker
= 0;
1812 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO
);
1816 /* Undo during fast recovery after partial ACK. */
1818 static int tcp_try_undo_partial(struct sock
*sk
, struct tcp_sock
*tp
,
1821 /* Partial ACK arrived. Force Hoe's retransmit. */
1822 int failed
= IsReno(tp
) || tp
->fackets_out
>tp
->reordering
;
1824 if (tcp_may_undo(tp
)) {
1825 /* Plain luck! Hole if filled with delayed
1826 * packet, rather than with a retransmit.
1828 if (tp
->retrans_out
== 0)
1829 tp
->retrans_stamp
= 0;
1831 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
1833 DBGUNDO(sk
, tp
, "Hoe");
1834 tcp_undo_cwr(sk
, 0);
1835 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO
);
1837 /* So... Do not make Hoe's retransmit yet.
1838 * If the first packet was delayed, the rest
1839 * ones are most probably delayed as well.
1846 /* Undo during loss recovery after partial ACK. */
1847 static int tcp_try_undo_loss(struct sock
*sk
, struct tcp_sock
*tp
)
1849 if (tcp_may_undo(tp
)) {
1850 struct sk_buff
*skb
;
1851 sk_stream_for_retrans_queue(skb
, sk
) {
1852 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1855 clear_all_retrans_hints(tp
);
1857 DBGUNDO(sk
, tp
, "partial loss");
1859 tp
->left_out
= tp
->sacked_out
;
1860 tcp_undo_cwr(sk
, 1);
1861 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
1862 inet_csk(sk
)->icsk_retransmits
= 0;
1863 tp
->undo_marker
= 0;
1865 tcp_set_ca_state(sk
, TCP_CA_Open
);
1871 static inline void tcp_complete_cwr(struct sock
*sk
)
1873 struct tcp_sock
*tp
= tcp_sk(sk
);
1874 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
1875 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1876 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
1879 static void tcp_try_to_open(struct sock
*sk
, struct tcp_sock
*tp
, int flag
)
1881 tp
->left_out
= tp
->sacked_out
;
1883 if (tp
->retrans_out
== 0)
1884 tp
->retrans_stamp
= 0;
1889 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
1890 int state
= TCP_CA_Open
;
1892 if (tp
->left_out
|| tp
->retrans_out
|| tp
->undo_marker
)
1893 state
= TCP_CA_Disorder
;
1895 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
1896 tcp_set_ca_state(sk
, state
);
1897 tp
->high_seq
= tp
->snd_nxt
;
1899 tcp_moderate_cwnd(tp
);
1905 static void tcp_mtup_probe_failed(struct sock
*sk
)
1907 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1909 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
1910 icsk
->icsk_mtup
.probe_size
= 0;
1913 static void tcp_mtup_probe_success(struct sock
*sk
, struct sk_buff
*skb
)
1915 struct tcp_sock
*tp
= tcp_sk(sk
);
1916 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1918 /* FIXME: breaks with very large cwnd */
1919 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1920 tp
->snd_cwnd
= tp
->snd_cwnd
*
1921 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
1922 icsk
->icsk_mtup
.probe_size
;
1923 tp
->snd_cwnd_cnt
= 0;
1924 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1925 tp
->rcv_ssthresh
= tcp_current_ssthresh(sk
);
1927 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
1928 icsk
->icsk_mtup
.probe_size
= 0;
1929 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
1933 /* Process an event, which can update packets-in-flight not trivially.
1934 * Main goal of this function is to calculate new estimate for left_out,
1935 * taking into account both packets sitting in receiver's buffer and
1936 * packets lost by network.
1938 * Besides that it does CWND reduction, when packet loss is detected
1939 * and changes state of machine.
1941 * It does _not_ decide what to send, it is made in function
1942 * tcp_xmit_retransmit_queue().
1945 tcp_fastretrans_alert(struct sock
*sk
, u32 prior_snd_una
,
1946 int prior_packets
, int flag
)
1948 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1949 struct tcp_sock
*tp
= tcp_sk(sk
);
1950 int is_dupack
= (tp
->snd_una
== prior_snd_una
&& !(flag
&FLAG_NOT_DUP
));
1952 /* Some technical things:
1953 * 1. Reno does not count dupacks (sacked_out) automatically. */
1954 if (!tp
->packets_out
)
1956 /* 2. SACK counts snd_fack in packets inaccurately. */
1957 if (tp
->sacked_out
== 0)
1958 tp
->fackets_out
= 0;
1960 /* Now state machine starts.
1961 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1963 tp
->prior_ssthresh
= 0;
1965 /* B. In all the states check for reneging SACKs. */
1966 if (tp
->sacked_out
&& tcp_check_sack_reneging(sk
))
1969 /* C. Process data loss notification, provided it is valid. */
1970 if ((flag
&FLAG_DATA_LOST
) &&
1971 before(tp
->snd_una
, tp
->high_seq
) &&
1972 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
1973 tp
->fackets_out
> tp
->reordering
) {
1974 tcp_mark_head_lost(sk
, tp
, tp
->fackets_out
-tp
->reordering
, tp
->high_seq
);
1975 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS
);
1978 /* D. Synchronize left_out to current state. */
1979 tcp_sync_left_out(tp
);
1981 /* E. Check state exit conditions. State can be terminated
1982 * when high_seq is ACKed. */
1983 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
1984 if (!sysctl_tcp_frto
)
1985 BUG_TRAP(tp
->retrans_out
== 0);
1986 tp
->retrans_stamp
= 0;
1987 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
1988 switch (icsk
->icsk_ca_state
) {
1990 icsk
->icsk_retransmits
= 0;
1991 if (tcp_try_undo_recovery(sk
, tp
))
1996 /* CWR is to be held something *above* high_seq
1997 * is ACKed for CWR bit to reach receiver. */
1998 if (tp
->snd_una
!= tp
->high_seq
) {
1999 tcp_complete_cwr(sk
);
2000 tcp_set_ca_state(sk
, TCP_CA_Open
);
2004 case TCP_CA_Disorder
:
2005 tcp_try_undo_dsack(sk
, tp
);
2006 if (!tp
->undo_marker
||
2007 /* For SACK case do not Open to allow to undo
2008 * catching for all duplicate ACKs. */
2009 IsReno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
2010 tp
->undo_marker
= 0;
2011 tcp_set_ca_state(sk
, TCP_CA_Open
);
2015 case TCP_CA_Recovery
:
2017 tcp_reset_reno_sack(tp
);
2018 if (tcp_try_undo_recovery(sk
, tp
))
2020 tcp_complete_cwr(sk
);
2025 /* F. Process state. */
2026 switch (icsk
->icsk_ca_state
) {
2027 case TCP_CA_Recovery
:
2028 if (prior_snd_una
== tp
->snd_una
) {
2029 if (IsReno(tp
) && is_dupack
)
2030 tcp_add_reno_sack(sk
);
2032 int acked
= prior_packets
- tp
->packets_out
;
2034 tcp_remove_reno_sacks(sk
, tp
, acked
);
2035 is_dupack
= tcp_try_undo_partial(sk
, tp
, acked
);
2039 if (flag
&FLAG_DATA_ACKED
)
2040 icsk
->icsk_retransmits
= 0;
2041 if (!tcp_try_undo_loss(sk
, tp
)) {
2042 tcp_moderate_cwnd(tp
);
2043 tcp_xmit_retransmit_queue(sk
);
2046 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
2048 /* Loss is undone; fall through to processing in Open state. */
2051 if (tp
->snd_una
!= prior_snd_una
)
2052 tcp_reset_reno_sack(tp
);
2054 tcp_add_reno_sack(sk
);
2057 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
2058 tcp_try_undo_dsack(sk
, tp
);
2060 if (!tcp_time_to_recover(sk
, tp
)) {
2061 tcp_try_to_open(sk
, tp
, flag
);
2065 /* MTU probe failure: don't reduce cwnd */
2066 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2067 icsk
->icsk_mtup
.probe_size
&&
2068 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2069 tcp_mtup_probe_failed(sk
);
2070 /* Restores the reduction we did in tcp_mtup_probe() */
2072 tcp_simple_retransmit(sk
);
2076 /* Otherwise enter Recovery state */
2079 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY
);
2081 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY
);
2083 tp
->high_seq
= tp
->snd_nxt
;
2084 tp
->prior_ssthresh
= 0;
2085 tp
->undo_marker
= tp
->snd_una
;
2086 tp
->undo_retrans
= tp
->retrans_out
;
2088 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
2089 if (!(flag
&FLAG_ECE
))
2090 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2091 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2092 TCP_ECN_queue_cwr(tp
);
2095 tp
->bytes_acked
= 0;
2096 tp
->snd_cwnd_cnt
= 0;
2097 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2100 if (is_dupack
|| tcp_head_timedout(sk
, tp
))
2101 tcp_update_scoreboard(sk
, tp
);
2103 tcp_xmit_retransmit_queue(sk
);
2106 /* Read draft-ietf-tcplw-high-performance before mucking
2107 * with this code. (Supersedes RFC1323)
2109 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
2111 /* RTTM Rule: A TSecr value received in a segment is used to
2112 * update the averaged RTT measurement only if the segment
2113 * acknowledges some new data, i.e., only if it advances the
2114 * left edge of the send window.
2116 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2117 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2119 * Changed: reset backoff as soon as we see the first valid sample.
2120 * If we do not, we get strongly overestimated rto. With timestamps
2121 * samples are accepted even from very old segments: f.e., when rtt=1
2122 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2123 * answer arrives rto becomes 120 seconds! If at least one of segments
2124 * in window is lost... Voila. --ANK (010210)
2126 struct tcp_sock
*tp
= tcp_sk(sk
);
2127 const __u32 seq_rtt
= tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
;
2128 tcp_rtt_estimator(sk
, seq_rtt
);
2130 inet_csk(sk
)->icsk_backoff
= 0;
2134 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
2136 /* We don't have a timestamp. Can only use
2137 * packets that are not retransmitted to determine
2138 * rtt estimates. Also, we must not reset the
2139 * backoff for rto until we get a non-retransmitted
2140 * packet. This allows us to deal with a situation
2141 * where the network delay has increased suddenly.
2142 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2145 if (flag
& FLAG_RETRANS_DATA_ACKED
)
2148 tcp_rtt_estimator(sk
, seq_rtt
);
2150 inet_csk(sk
)->icsk_backoff
= 0;
2154 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2157 const struct tcp_sock
*tp
= tcp_sk(sk
);
2158 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2159 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
2160 tcp_ack_saw_tstamp(sk
, flag
);
2161 else if (seq_rtt
>= 0)
2162 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
2165 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 rtt
,
2166 u32 in_flight
, int good
)
2168 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2169 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, rtt
, in_flight
, good
);
2170 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
2173 /* Restart timer after forward progress on connection.
2174 * RFC2988 recommends to restart timer to now+rto.
2177 static void tcp_ack_packets_out(struct sock
*sk
, struct tcp_sock
*tp
)
2179 if (!tp
->packets_out
) {
2180 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
2182 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
2186 static int tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
,
2187 __u32 now
, __s32
*seq_rtt
)
2189 struct tcp_sock
*tp
= tcp_sk(sk
);
2190 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
2191 __u32 seq
= tp
->snd_una
;
2192 __u32 packets_acked
;
2195 /* If we get here, the whole TSO packet has not been
2198 BUG_ON(!after(scb
->end_seq
, seq
));
2200 packets_acked
= tcp_skb_pcount(skb
);
2201 if (tcp_trim_head(sk
, skb
, seq
- scb
->seq
))
2203 packets_acked
-= tcp_skb_pcount(skb
);
2205 if (packets_acked
) {
2206 __u8 sacked
= scb
->sacked
;
2208 acked
|= FLAG_DATA_ACKED
;
2210 if (sacked
& TCPCB_RETRANS
) {
2211 if (sacked
& TCPCB_SACKED_RETRANS
)
2212 tp
->retrans_out
-= packets_acked
;
2213 acked
|= FLAG_RETRANS_DATA_ACKED
;
2215 } else if (*seq_rtt
< 0)
2216 *seq_rtt
= now
- scb
->when
;
2217 if (sacked
& TCPCB_SACKED_ACKED
)
2218 tp
->sacked_out
-= packets_acked
;
2219 if (sacked
& TCPCB_LOST
)
2220 tp
->lost_out
-= packets_acked
;
2221 if (sacked
& TCPCB_URG
) {
2223 !before(seq
, tp
->snd_up
))
2226 } else if (*seq_rtt
< 0)
2227 *seq_rtt
= now
- scb
->when
;
2229 if (tp
->fackets_out
) {
2230 __u32 dval
= min(tp
->fackets_out
, packets_acked
);
2231 tp
->fackets_out
-= dval
;
2233 tp
->packets_out
-= packets_acked
;
2235 BUG_ON(tcp_skb_pcount(skb
) == 0);
2236 BUG_ON(!before(scb
->seq
, scb
->end_seq
));
2242 static u32
tcp_usrtt(struct timeval
*tv
)
2246 do_gettimeofday(&now
);
2247 return (now
.tv_sec
- tv
->tv_sec
) * 1000000 + (now
.tv_usec
- tv
->tv_usec
);
2250 /* Remove acknowledged frames from the retransmission queue. */
2251 static int tcp_clean_rtx_queue(struct sock
*sk
, __s32
*seq_rtt_p
)
2253 struct tcp_sock
*tp
= tcp_sk(sk
);
2254 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2255 struct sk_buff
*skb
;
2256 __u32 now
= tcp_time_stamp
;
2260 void (*rtt_sample
)(struct sock
*sk
, u32 usrtt
)
2261 = icsk
->icsk_ca_ops
->rtt_sample
;
2262 struct timeval tv
= { .tv_sec
= 0, .tv_usec
= 0 };
2264 while ((skb
= skb_peek(&sk
->sk_write_queue
)) &&
2265 skb
!= sk
->sk_send_head
) {
2266 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
2267 __u8 sacked
= scb
->sacked
;
2269 /* If our packet is before the ack sequence we can
2270 * discard it as it's confirmed to have arrived at
2273 if (after(scb
->end_seq
, tp
->snd_una
)) {
2274 if (tcp_skb_pcount(skb
) > 1 &&
2275 after(tp
->snd_una
, scb
->seq
))
2276 acked
|= tcp_tso_acked(sk
, skb
,
2281 /* Initial outgoing SYN's get put onto the write_queue
2282 * just like anything else we transmit. It is not
2283 * true data, and if we misinform our callers that
2284 * this ACK acks real data, we will erroneously exit
2285 * connection startup slow start one packet too
2286 * quickly. This is severely frowned upon behavior.
2288 if (!(scb
->flags
& TCPCB_FLAG_SYN
)) {
2289 acked
|= FLAG_DATA_ACKED
;
2292 acked
|= FLAG_SYN_ACKED
;
2293 tp
->retrans_stamp
= 0;
2296 /* MTU probing checks */
2297 if (icsk
->icsk_mtup
.probe_size
) {
2298 if (!after(tp
->mtu_probe
.probe_seq_end
, TCP_SKB_CB(skb
)->end_seq
)) {
2299 tcp_mtup_probe_success(sk
, skb
);
2304 if (sacked
& TCPCB_RETRANS
) {
2305 if(sacked
& TCPCB_SACKED_RETRANS
)
2306 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2307 acked
|= FLAG_RETRANS_DATA_ACKED
;
2309 } else if (seq_rtt
< 0) {
2310 seq_rtt
= now
- scb
->when
;
2311 skb_get_timestamp(skb
, &tv
);
2313 if (sacked
& TCPCB_SACKED_ACKED
)
2314 tp
->sacked_out
-= tcp_skb_pcount(skb
);
2315 if (sacked
& TCPCB_LOST
)
2316 tp
->lost_out
-= tcp_skb_pcount(skb
);
2317 if (sacked
& TCPCB_URG
) {
2319 !before(scb
->end_seq
, tp
->snd_up
))
2322 } else if (seq_rtt
< 0) {
2323 seq_rtt
= now
- scb
->when
;
2324 skb_get_timestamp(skb
, &tv
);
2326 tcp_dec_pcount_approx(&tp
->fackets_out
, skb
);
2327 tcp_packets_out_dec(tp
, skb
);
2328 __skb_unlink(skb
, &sk
->sk_write_queue
);
2329 sk_stream_free_skb(sk
, skb
);
2330 clear_all_retrans_hints(tp
);
2333 if (acked
&FLAG_ACKED
) {
2334 tcp_ack_update_rtt(sk
, acked
, seq_rtt
);
2335 tcp_ack_packets_out(sk
, tp
);
2336 if (rtt_sample
&& !(acked
& FLAG_RETRANS_DATA_ACKED
))
2337 (*rtt_sample
)(sk
, tcp_usrtt(&tv
));
2339 if (icsk
->icsk_ca_ops
->pkts_acked
)
2340 icsk
->icsk_ca_ops
->pkts_acked(sk
, pkts_acked
);
2343 #if FASTRETRANS_DEBUG > 0
2344 BUG_TRAP((int)tp
->sacked_out
>= 0);
2345 BUG_TRAP((int)tp
->lost_out
>= 0);
2346 BUG_TRAP((int)tp
->retrans_out
>= 0);
2347 if (!tp
->packets_out
&& tp
->rx_opt
.sack_ok
) {
2348 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2350 printk(KERN_DEBUG
"Leak l=%u %d\n",
2351 tp
->lost_out
, icsk
->icsk_ca_state
);
2354 if (tp
->sacked_out
) {
2355 printk(KERN_DEBUG
"Leak s=%u %d\n",
2356 tp
->sacked_out
, icsk
->icsk_ca_state
);
2359 if (tp
->retrans_out
) {
2360 printk(KERN_DEBUG
"Leak r=%u %d\n",
2361 tp
->retrans_out
, icsk
->icsk_ca_state
);
2362 tp
->retrans_out
= 0;
2366 *seq_rtt_p
= seq_rtt
;
2370 static void tcp_ack_probe(struct sock
*sk
)
2372 const struct tcp_sock
*tp
= tcp_sk(sk
);
2373 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2375 /* Was it a usable window open? */
2377 if (!after(TCP_SKB_CB(sk
->sk_send_head
)->end_seq
,
2378 tp
->snd_una
+ tp
->snd_wnd
)) {
2379 icsk
->icsk_backoff
= 0;
2380 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
2381 /* Socket must be waked up by subsequent tcp_data_snd_check().
2382 * This function is not for random using!
2385 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2386 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
2391 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
2393 return (!(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
2394 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
);
2397 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
2399 const struct tcp_sock
*tp
= tcp_sk(sk
);
2400 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
2401 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
2404 /* Check that window update is acceptable.
2405 * The function assumes that snd_una<=ack<=snd_next.
2407 static inline int tcp_may_update_window(const struct tcp_sock
*tp
, const u32 ack
,
2408 const u32 ack_seq
, const u32 nwin
)
2410 return (after(ack
, tp
->snd_una
) ||
2411 after(ack_seq
, tp
->snd_wl1
) ||
2412 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
));
2415 /* Update our send window.
2417 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2418 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2420 static int tcp_ack_update_window(struct sock
*sk
, struct tcp_sock
*tp
,
2421 struct sk_buff
*skb
, u32 ack
, u32 ack_seq
)
2424 u32 nwin
= ntohs(skb
->h
.th
->window
);
2426 if (likely(!skb
->h
.th
->syn
))
2427 nwin
<<= tp
->rx_opt
.snd_wscale
;
2429 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
2430 flag
|= FLAG_WIN_UPDATE
;
2431 tcp_update_wl(tp
, ack
, ack_seq
);
2433 if (tp
->snd_wnd
!= nwin
) {
2436 /* Note, it is the only place, where
2437 * fast path is recovered for sending TCP.
2440 tcp_fast_path_check(sk
, tp
);
2442 if (nwin
> tp
->max_window
) {
2443 tp
->max_window
= nwin
;
2444 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
2454 static void tcp_process_frto(struct sock
*sk
, u32 prior_snd_una
)
2456 struct tcp_sock
*tp
= tcp_sk(sk
);
2458 tcp_sync_left_out(tp
);
2460 if (tp
->snd_una
== prior_snd_una
||
2461 !before(tp
->snd_una
, tp
->frto_highmark
)) {
2462 /* RTO was caused by loss, start retransmitting in
2463 * go-back-N slow start
2465 tcp_enter_frto_loss(sk
);
2469 if (tp
->frto_counter
== 1) {
2470 /* First ACK after RTO advances the window: allow two new
2473 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
2475 /* Also the second ACK after RTO advances the window.
2476 * The RTO was likely spurious. Reduce cwnd and continue
2477 * in congestion avoidance
2479 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2480 tcp_moderate_cwnd(tp
);
2483 /* F-RTO affects on two new ACKs following RTO.
2484 * At latest on third ACK the TCP behavior is back to normal.
2486 tp
->frto_counter
= (tp
->frto_counter
+ 1) % 3;
2489 /* This routine deals with incoming acks, but not outgoing ones. */
2490 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
2492 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2493 struct tcp_sock
*tp
= tcp_sk(sk
);
2494 u32 prior_snd_una
= tp
->snd_una
;
2495 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
2496 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
2497 u32 prior_in_flight
;
2501 /* If the ack is newer than sent or older than previous acks
2502 * then we can probably ignore it.
2504 if (after(ack
, tp
->snd_nxt
))
2505 goto uninteresting_ack
;
2507 if (before(ack
, prior_snd_una
))
2510 if (sysctl_tcp_abc
) {
2511 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
2512 tp
->bytes_acked
+= ack
- prior_snd_una
;
2513 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
2514 /* we assume just one segment left network */
2515 tp
->bytes_acked
+= min(ack
- prior_snd_una
, tp
->mss_cache
);
2518 if (!(flag
&FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
2519 /* Window is constant, pure forward advance.
2520 * No more checks are required.
2521 * Note, we use the fact that SND.UNA>=SND.WL2.
2523 tcp_update_wl(tp
, ack
, ack_seq
);
2525 flag
|= FLAG_WIN_UPDATE
;
2527 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
2529 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS
);
2531 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
2534 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS
);
2536 flag
|= tcp_ack_update_window(sk
, tp
, skb
, ack
, ack_seq
);
2538 if (TCP_SKB_CB(skb
)->sacked
)
2539 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
2541 if (TCP_ECN_rcv_ecn_echo(tp
, skb
->h
.th
))
2544 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
2547 /* We passed data and got it acked, remove any soft error
2548 * log. Something worked...
2550 sk
->sk_err_soft
= 0;
2551 tp
->rcv_tstamp
= tcp_time_stamp
;
2552 prior_packets
= tp
->packets_out
;
2556 prior_in_flight
= tcp_packets_in_flight(tp
);
2558 /* See if we can take anything off of the retransmit queue. */
2559 flag
|= tcp_clean_rtx_queue(sk
, &seq_rtt
);
2561 if (tp
->frto_counter
)
2562 tcp_process_frto(sk
, prior_snd_una
);
2564 if (tcp_ack_is_dubious(sk
, flag
)) {
2565 /* Advance CWND, if state allows this. */
2566 if ((flag
& FLAG_DATA_ACKED
) && tcp_may_raise_cwnd(sk
, flag
))
2567 tcp_cong_avoid(sk
, ack
, seq_rtt
, prior_in_flight
, 0);
2568 tcp_fastretrans_alert(sk
, prior_snd_una
, prior_packets
, flag
);
2570 if ((flag
& FLAG_DATA_ACKED
))
2571 tcp_cong_avoid(sk
, ack
, seq_rtt
, prior_in_flight
, 1);
2574 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
&FLAG_NOT_DUP
))
2575 dst_confirm(sk
->sk_dst_cache
);
2580 icsk
->icsk_probes_out
= 0;
2582 /* If this ack opens up a zero window, clear backoff. It was
2583 * being used to time the probes, and is probably far higher than
2584 * it needs to be for normal retransmission.
2586 if (sk
->sk_send_head
)
2591 if (TCP_SKB_CB(skb
)->sacked
)
2592 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
2595 SOCK_DEBUG(sk
, "Ack %u out of %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
2600 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2601 * But, this can also be called on packets in the established flow when
2602 * the fast version below fails.
2604 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
, int estab
)
2607 struct tcphdr
*th
= skb
->h
.th
;
2608 int length
=(th
->doff
*4)-sizeof(struct tcphdr
);
2610 ptr
= (unsigned char *)(th
+ 1);
2611 opt_rx
->saw_tstamp
= 0;
2620 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
2625 if (opsize
< 2) /* "silly options" */
2627 if (opsize
> length
)
2628 return; /* don't parse partial options */
2631 if(opsize
==TCPOLEN_MSS
&& th
->syn
&& !estab
) {
2632 u16 in_mss
= ntohs(get_unaligned((__be16
*)ptr
));
2634 if (opt_rx
->user_mss
&& opt_rx
->user_mss
< in_mss
)
2635 in_mss
= opt_rx
->user_mss
;
2636 opt_rx
->mss_clamp
= in_mss
;
2641 if(opsize
==TCPOLEN_WINDOW
&& th
->syn
&& !estab
)
2642 if (sysctl_tcp_window_scaling
) {
2643 __u8 snd_wscale
= *(__u8
*) ptr
;
2644 opt_rx
->wscale_ok
= 1;
2645 if (snd_wscale
> 14) {
2647 printk(KERN_INFO
"tcp_parse_options: Illegal window "
2648 "scaling value %d >14 received.\n",
2652 opt_rx
->snd_wscale
= snd_wscale
;
2655 case TCPOPT_TIMESTAMP
:
2656 if(opsize
==TCPOLEN_TIMESTAMP
) {
2657 if ((estab
&& opt_rx
->tstamp_ok
) ||
2658 (!estab
&& sysctl_tcp_timestamps
)) {
2659 opt_rx
->saw_tstamp
= 1;
2660 opt_rx
->rcv_tsval
= ntohl(get_unaligned((__be32
*)ptr
));
2661 opt_rx
->rcv_tsecr
= ntohl(get_unaligned((__be32
*)(ptr
+4)));
2665 case TCPOPT_SACK_PERM
:
2666 if(opsize
==TCPOLEN_SACK_PERM
&& th
->syn
&& !estab
) {
2667 if (sysctl_tcp_sack
) {
2668 opt_rx
->sack_ok
= 1;
2669 tcp_sack_reset(opt_rx
);
2675 if((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
2676 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
2678 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
2680 #ifdef CONFIG_TCP_MD5SIG
2683 * The MD5 Hash has already been
2684 * checked (see tcp_v{4,6}_do_rcv()).
2695 /* Fast parse options. This hopes to only see timestamps.
2696 * If it is wrong it falls back on tcp_parse_options().
2698 static int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
2699 struct tcp_sock
*tp
)
2701 if (th
->doff
== sizeof(struct tcphdr
)>>2) {
2702 tp
->rx_opt
.saw_tstamp
= 0;
2704 } else if (tp
->rx_opt
.tstamp_ok
&&
2705 th
->doff
== (sizeof(struct tcphdr
)>>2)+(TCPOLEN_TSTAMP_ALIGNED
>>2)) {
2706 __be32
*ptr
= (__be32
*)(th
+ 1);
2707 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
2708 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
2709 tp
->rx_opt
.saw_tstamp
= 1;
2711 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
2713 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
2717 tcp_parse_options(skb
, &tp
->rx_opt
, 1);
2721 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
2723 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
2724 tp
->rx_opt
.ts_recent_stamp
= xtime
.tv_sec
;
2727 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
2729 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
2730 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2731 * extra check below makes sure this can only happen
2732 * for pure ACK frames. -DaveM
2734 * Not only, also it occurs for expired timestamps.
2737 if((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) >= 0 ||
2738 xtime
.tv_sec
>= tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
)
2739 tcp_store_ts_recent(tp
);
2743 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2745 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2746 * it can pass through stack. So, the following predicate verifies that
2747 * this segment is not used for anything but congestion avoidance or
2748 * fast retransmit. Moreover, we even are able to eliminate most of such
2749 * second order effects, if we apply some small "replay" window (~RTO)
2750 * to timestamp space.
2752 * All these measures still do not guarantee that we reject wrapped ACKs
2753 * on networks with high bandwidth, when sequence space is recycled fastly,
2754 * but it guarantees that such events will be very rare and do not affect
2755 * connection seriously. This doesn't look nice, but alas, PAWS is really
2758 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2759 * states that events when retransmit arrives after original data are rare.
2760 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2761 * the biggest problem on large power networks even with minor reordering.
2762 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2763 * up to bandwidth of 18Gigabit/sec. 8) ]
2766 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
2768 struct tcp_sock
*tp
= tcp_sk(sk
);
2769 struct tcphdr
*th
= skb
->h
.th
;
2770 u32 seq
= TCP_SKB_CB(skb
)->seq
;
2771 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
2773 return (/* 1. Pure ACK with correct sequence number. */
2774 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
2776 /* 2. ... and duplicate ACK. */
2777 ack
== tp
->snd_una
&&
2779 /* 3. ... and does not update window. */
2780 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
2782 /* 4. ... and sits in replay window. */
2783 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
2786 static inline int tcp_paws_discard(const struct sock
*sk
, const struct sk_buff
*skb
)
2788 const struct tcp_sock
*tp
= tcp_sk(sk
);
2789 return ((s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) > TCP_PAWS_WINDOW
&&
2790 xtime
.tv_sec
< tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
&&
2791 !tcp_disordered_ack(sk
, skb
));
2794 /* Check segment sequence number for validity.
2796 * Segment controls are considered valid, if the segment
2797 * fits to the window after truncation to the window. Acceptability
2798 * of data (and SYN, FIN, of course) is checked separately.
2799 * See tcp_data_queue(), for example.
2801 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2802 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2803 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2804 * (borrowed from freebsd)
2807 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
2809 return !before(end_seq
, tp
->rcv_wup
) &&
2810 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
2813 /* When we get a reset we do this. */
2814 static void tcp_reset(struct sock
*sk
)
2816 /* We want the right error as BSD sees it (and indeed as we do). */
2817 switch (sk
->sk_state
) {
2819 sk
->sk_err
= ECONNREFUSED
;
2821 case TCP_CLOSE_WAIT
:
2827 sk
->sk_err
= ECONNRESET
;
2830 if (!sock_flag(sk
, SOCK_DEAD
))
2831 sk
->sk_error_report(sk
);
2837 * Process the FIN bit. This now behaves as it is supposed to work
2838 * and the FIN takes effect when it is validly part of sequence
2839 * space. Not before when we get holes.
2841 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2842 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2845 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2846 * close and we go into CLOSING (and later onto TIME-WAIT)
2848 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2850 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
2852 struct tcp_sock
*tp
= tcp_sk(sk
);
2854 inet_csk_schedule_ack(sk
);
2856 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
2857 sock_set_flag(sk
, SOCK_DONE
);
2859 switch (sk
->sk_state
) {
2861 case TCP_ESTABLISHED
:
2862 /* Move to CLOSE_WAIT */
2863 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
2864 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
2867 case TCP_CLOSE_WAIT
:
2869 /* Received a retransmission of the FIN, do
2874 /* RFC793: Remain in the LAST-ACK state. */
2878 /* This case occurs when a simultaneous close
2879 * happens, we must ack the received FIN and
2880 * enter the CLOSING state.
2883 tcp_set_state(sk
, TCP_CLOSING
);
2886 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2888 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
2891 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2892 * cases we should never reach this piece of code.
2894 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
2895 __FUNCTION__
, sk
->sk_state
);
2899 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2900 * Probably, we should reset in this case. For now drop them.
2902 __skb_queue_purge(&tp
->out_of_order_queue
);
2903 if (tp
->rx_opt
.sack_ok
)
2904 tcp_sack_reset(&tp
->rx_opt
);
2905 sk_stream_mem_reclaim(sk
);
2907 if (!sock_flag(sk
, SOCK_DEAD
)) {
2908 sk
->sk_state_change(sk
);
2910 /* Do not send POLL_HUP for half duplex close. */
2911 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
2912 sk
->sk_state
== TCP_CLOSE
)
2913 sk_wake_async(sk
, 1, POLL_HUP
);
2915 sk_wake_async(sk
, 1, POLL_IN
);
2919 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
, u32 end_seq
)
2921 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
2922 if (before(seq
, sp
->start_seq
))
2923 sp
->start_seq
= seq
;
2924 if (after(end_seq
, sp
->end_seq
))
2925 sp
->end_seq
= end_seq
;
2931 static void tcp_dsack_set(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
2933 if (tp
->rx_opt
.sack_ok
&& sysctl_tcp_dsack
) {
2934 if (before(seq
, tp
->rcv_nxt
))
2935 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT
);
2937 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT
);
2939 tp
->rx_opt
.dsack
= 1;
2940 tp
->duplicate_sack
[0].start_seq
= seq
;
2941 tp
->duplicate_sack
[0].end_seq
= end_seq
;
2942 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ 1, 4 - tp
->rx_opt
.tstamp_ok
);
2946 static void tcp_dsack_extend(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
2948 if (!tp
->rx_opt
.dsack
)
2949 tcp_dsack_set(tp
, seq
, end_seq
);
2951 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
2954 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
2956 struct tcp_sock
*tp
= tcp_sk(sk
);
2958 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
2959 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
2960 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
2961 tcp_enter_quickack_mode(sk
);
2963 if (tp
->rx_opt
.sack_ok
&& sysctl_tcp_dsack
) {
2964 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
2966 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
2967 end_seq
= tp
->rcv_nxt
;
2968 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, end_seq
);
2975 /* These routines update the SACK block as out-of-order packets arrive or
2976 * in-order packets close up the sequence space.
2978 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
2981 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
2982 struct tcp_sack_block
*swalk
= sp
+1;
2984 /* See if the recent change to the first SACK eats into
2985 * or hits the sequence space of other SACK blocks, if so coalesce.
2987 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
; ) {
2988 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
2991 /* Zap SWALK, by moving every further SACK up by one slot.
2992 * Decrease num_sacks.
2994 tp
->rx_opt
.num_sacks
--;
2995 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
2996 for(i
=this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
3000 this_sack
++, swalk
++;
3004 static inline void tcp_sack_swap(struct tcp_sack_block
*sack1
, struct tcp_sack_block
*sack2
)
3008 tmp
= sack1
->start_seq
;
3009 sack1
->start_seq
= sack2
->start_seq
;
3010 sack2
->start_seq
= tmp
;
3012 tmp
= sack1
->end_seq
;
3013 sack1
->end_seq
= sack2
->end_seq
;
3014 sack2
->end_seq
= tmp
;
3017 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
3019 struct tcp_sock
*tp
= tcp_sk(sk
);
3020 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3021 int cur_sacks
= tp
->rx_opt
.num_sacks
;
3027 for (this_sack
=0; this_sack
<cur_sacks
; this_sack
++, sp
++) {
3028 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
3029 /* Rotate this_sack to the first one. */
3030 for (; this_sack
>0; this_sack
--, sp
--)
3031 tcp_sack_swap(sp
, sp
-1);
3033 tcp_sack_maybe_coalesce(tp
);
3038 /* Could not find an adjacent existing SACK, build a new one,
3039 * put it at the front, and shift everyone else down. We
3040 * always know there is at least one SACK present already here.
3042 * If the sack array is full, forget about the last one.
3044 if (this_sack
>= 4) {
3046 tp
->rx_opt
.num_sacks
--;
3049 for(; this_sack
> 0; this_sack
--, sp
--)
3053 /* Build the new head SACK, and we're done. */
3054 sp
->start_seq
= seq
;
3055 sp
->end_seq
= end_seq
;
3056 tp
->rx_opt
.num_sacks
++;
3057 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
3060 /* RCV.NXT advances, some SACKs should be eaten. */
3062 static void tcp_sack_remove(struct tcp_sock
*tp
)
3064 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3065 int num_sacks
= tp
->rx_opt
.num_sacks
;
3068 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3069 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
3070 tp
->rx_opt
.num_sacks
= 0;
3071 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.dsack
;
3075 for(this_sack
= 0; this_sack
< num_sacks
; ) {
3076 /* Check if the start of the sack is covered by RCV.NXT. */
3077 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
3080 /* RCV.NXT must cover all the block! */
3081 BUG_TRAP(!before(tp
->rcv_nxt
, sp
->end_seq
));
3083 /* Zap this SACK, by moving forward any other SACKS. */
3084 for (i
=this_sack
+1; i
< num_sacks
; i
++)
3085 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
3092 if (num_sacks
!= tp
->rx_opt
.num_sacks
) {
3093 tp
->rx_opt
.num_sacks
= num_sacks
;
3094 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
3098 /* This one checks to see if we can put data from the
3099 * out_of_order queue into the receive_queue.
3101 static void tcp_ofo_queue(struct sock
*sk
)
3103 struct tcp_sock
*tp
= tcp_sk(sk
);
3104 __u32 dsack_high
= tp
->rcv_nxt
;
3105 struct sk_buff
*skb
;
3107 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
3108 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
3111 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
3112 __u32 dsack
= dsack_high
;
3113 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
3114 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
3115 tcp_dsack_extend(tp
, TCP_SKB_CB(skb
)->seq
, dsack
);
3118 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
3119 SOCK_DEBUG(sk
, "ofo packet was already received \n");
3120 __skb_unlink(skb
, &tp
->out_of_order_queue
);
3124 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
3125 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
3126 TCP_SKB_CB(skb
)->end_seq
);
3128 __skb_unlink(skb
, &tp
->out_of_order_queue
);
3129 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
3130 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3132 tcp_fin(skb
, sk
, skb
->h
.th
);
3136 static int tcp_prune_queue(struct sock
*sk
);
3138 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
3140 struct tcphdr
*th
= skb
->h
.th
;
3141 struct tcp_sock
*tp
= tcp_sk(sk
);
3144 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
3147 __skb_pull(skb
, th
->doff
*4);
3149 TCP_ECN_accept_cwr(tp
, skb
);
3151 if (tp
->rx_opt
.dsack
) {
3152 tp
->rx_opt
.dsack
= 0;
3153 tp
->rx_opt
.eff_sacks
= min_t(unsigned int, tp
->rx_opt
.num_sacks
,
3154 4 - tp
->rx_opt
.tstamp_ok
);
3157 /* Queue data for delivery to the user.
3158 * Packets in sequence go to the receive queue.
3159 * Out of sequence packets to the out_of_order_queue.
3161 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
3162 if (tcp_receive_window(tp
) == 0)
3165 /* Ok. In sequence. In window. */
3166 if (tp
->ucopy
.task
== current
&&
3167 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
3168 sock_owned_by_user(sk
) && !tp
->urg_data
) {
3169 int chunk
= min_t(unsigned int, skb
->len
,
3172 __set_current_state(TASK_RUNNING
);
3175 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
3176 tp
->ucopy
.len
-= chunk
;
3177 tp
->copied_seq
+= chunk
;
3178 eaten
= (chunk
== skb
->len
&& !th
->fin
);
3179 tcp_rcv_space_adjust(sk
);
3187 (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
3188 !sk_stream_rmem_schedule(sk
, skb
))) {
3189 if (tcp_prune_queue(sk
) < 0 ||
3190 !sk_stream_rmem_schedule(sk
, skb
))
3193 sk_stream_set_owner_r(skb
, sk
);
3194 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
3196 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3198 tcp_event_data_recv(sk
, tp
, skb
);
3200 tcp_fin(skb
, sk
, th
);
3202 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
3205 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3206 * gap in queue is filled.
3208 if (skb_queue_empty(&tp
->out_of_order_queue
))
3209 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
3212 if (tp
->rx_opt
.num_sacks
)
3213 tcp_sack_remove(tp
);
3215 tcp_fast_path_check(sk
, tp
);
3219 else if (!sock_flag(sk
, SOCK_DEAD
))
3220 sk
->sk_data_ready(sk
, 0);
3224 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
3225 /* A retransmit, 2nd most common case. Force an immediate ack. */
3226 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
3227 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
3230 tcp_enter_quickack_mode(sk
);
3231 inet_csk_schedule_ack(sk
);
3237 /* Out of window. F.e. zero window probe. */
3238 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
3241 tcp_enter_quickack_mode(sk
);
3243 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
3244 /* Partial packet, seq < rcv_next < end_seq */
3245 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
3246 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
3247 TCP_SKB_CB(skb
)->end_seq
);
3249 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
3251 /* If window is closed, drop tail of packet. But after
3252 * remembering D-SACK for its head made in previous line.
3254 if (!tcp_receive_window(tp
))
3259 TCP_ECN_check_ce(tp
, skb
);
3261 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
3262 !sk_stream_rmem_schedule(sk
, skb
)) {
3263 if (tcp_prune_queue(sk
) < 0 ||
3264 !sk_stream_rmem_schedule(sk
, skb
))
3268 /* Disable header prediction. */
3270 inet_csk_schedule_ack(sk
);
3272 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
3273 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
3275 sk_stream_set_owner_r(skb
, sk
);
3277 if (!skb_peek(&tp
->out_of_order_queue
)) {
3278 /* Initial out of order segment, build 1 SACK. */
3279 if (tp
->rx_opt
.sack_ok
) {
3280 tp
->rx_opt
.num_sacks
= 1;
3281 tp
->rx_opt
.dsack
= 0;
3282 tp
->rx_opt
.eff_sacks
= 1;
3283 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
3284 tp
->selective_acks
[0].end_seq
=
3285 TCP_SKB_CB(skb
)->end_seq
;
3287 __skb_queue_head(&tp
->out_of_order_queue
,skb
);
3289 struct sk_buff
*skb1
= tp
->out_of_order_queue
.prev
;
3290 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3291 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
3293 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
3294 __skb_append(skb1
, skb
, &tp
->out_of_order_queue
);
3296 if (!tp
->rx_opt
.num_sacks
||
3297 tp
->selective_acks
[0].end_seq
!= seq
)
3300 /* Common case: data arrive in order after hole. */
3301 tp
->selective_acks
[0].end_seq
= end_seq
;
3305 /* Find place to insert this segment. */
3307 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
3309 } while ((skb1
= skb1
->prev
) !=
3310 (struct sk_buff
*)&tp
->out_of_order_queue
);
3312 /* Do skb overlap to previous one? */
3313 if (skb1
!= (struct sk_buff
*)&tp
->out_of_order_queue
&&
3314 before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3315 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3316 /* All the bits are present. Drop. */
3318 tcp_dsack_set(tp
, seq
, end_seq
);
3321 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
3322 /* Partial overlap. */
3323 tcp_dsack_set(tp
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
3328 __skb_insert(skb
, skb1
, skb1
->next
, &tp
->out_of_order_queue
);
3330 /* And clean segments covered by new one as whole. */
3331 while ((skb1
= skb
->next
) !=
3332 (struct sk_buff
*)&tp
->out_of_order_queue
&&
3333 after(end_seq
, TCP_SKB_CB(skb1
)->seq
)) {
3334 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3335 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
, end_seq
);
3338 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
3339 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
, TCP_SKB_CB(skb1
)->end_seq
);
3344 if (tp
->rx_opt
.sack_ok
)
3345 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
3349 /* Collapse contiguous sequence of skbs head..tail with
3350 * sequence numbers start..end.
3351 * Segments with FIN/SYN are not collapsed (only because this
3355 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
3356 struct sk_buff
*head
, struct sk_buff
*tail
,
3359 struct sk_buff
*skb
;
3361 /* First, check that queue is collapsible and find
3362 * the point where collapsing can be useful. */
3363 for (skb
= head
; skb
!= tail
; ) {
3364 /* No new bits? It is possible on ofo queue. */
3365 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
3366 struct sk_buff
*next
= skb
->next
;
3367 __skb_unlink(skb
, list
);
3369 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
3374 /* The first skb to collapse is:
3376 * - bloated or contains data before "start" or
3377 * overlaps to the next one.
3379 if (!skb
->h
.th
->syn
&& !skb
->h
.th
->fin
&&
3380 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
3381 before(TCP_SKB_CB(skb
)->seq
, start
) ||
3382 (skb
->next
!= tail
&&
3383 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
->next
)->seq
)))
3386 /* Decided to skip this, advance start seq. */
3387 start
= TCP_SKB_CB(skb
)->end_seq
;
3390 if (skb
== tail
|| skb
->h
.th
->syn
|| skb
->h
.th
->fin
)
3393 while (before(start
, end
)) {
3394 struct sk_buff
*nskb
;
3395 int header
= skb_headroom(skb
);
3396 int copy
= SKB_MAX_ORDER(header
, 0);
3398 /* Too big header? This can happen with IPv6. */
3401 if (end
-start
< copy
)
3403 nskb
= alloc_skb(copy
+header
, GFP_ATOMIC
);
3406 skb_reserve(nskb
, header
);
3407 memcpy(nskb
->head
, skb
->head
, header
);
3408 nskb
->nh
.raw
= nskb
->head
+ (skb
->nh
.raw
-skb
->head
);
3409 nskb
->h
.raw
= nskb
->head
+ (skb
->h
.raw
-skb
->head
);
3410 nskb
->mac
.raw
= nskb
->head
+ (skb
->mac
.raw
-skb
->head
);
3411 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
3412 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
3413 __skb_insert(nskb
, skb
->prev
, skb
, list
);
3414 sk_stream_set_owner_r(nskb
, sk
);
3416 /* Copy data, releasing collapsed skbs. */
3418 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
3419 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
3423 size
= min(copy
, size
);
3424 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
3426 TCP_SKB_CB(nskb
)->end_seq
+= size
;
3430 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
3431 struct sk_buff
*next
= skb
->next
;
3432 __skb_unlink(skb
, list
);
3434 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
3436 if (skb
== tail
|| skb
->h
.th
->syn
|| skb
->h
.th
->fin
)
3443 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3444 * and tcp_collapse() them until all the queue is collapsed.
3446 static void tcp_collapse_ofo_queue(struct sock
*sk
)
3448 struct tcp_sock
*tp
= tcp_sk(sk
);
3449 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
3450 struct sk_buff
*head
;
3456 start
= TCP_SKB_CB(skb
)->seq
;
3457 end
= TCP_SKB_CB(skb
)->end_seq
;
3463 /* Segment is terminated when we see gap or when
3464 * we are at the end of all the queue. */
3465 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
||
3466 after(TCP_SKB_CB(skb
)->seq
, end
) ||
3467 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
3468 tcp_collapse(sk
, &tp
->out_of_order_queue
,
3469 head
, skb
, start
, end
);
3471 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
)
3473 /* Start new segment */
3474 start
= TCP_SKB_CB(skb
)->seq
;
3475 end
= TCP_SKB_CB(skb
)->end_seq
;
3477 if (before(TCP_SKB_CB(skb
)->seq
, start
))
3478 start
= TCP_SKB_CB(skb
)->seq
;
3479 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
3480 end
= TCP_SKB_CB(skb
)->end_seq
;
3485 /* Reduce allocated memory if we can, trying to get
3486 * the socket within its memory limits again.
3488 * Return less than zero if we should start dropping frames
3489 * until the socket owning process reads some of the data
3490 * to stabilize the situation.
3492 static int tcp_prune_queue(struct sock
*sk
)
3494 struct tcp_sock
*tp
= tcp_sk(sk
);
3496 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
3498 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED
);
3500 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
3501 tcp_clamp_window(sk
, tp
);
3502 else if (tcp_memory_pressure
)
3503 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
3505 tcp_collapse_ofo_queue(sk
);
3506 tcp_collapse(sk
, &sk
->sk_receive_queue
,
3507 sk
->sk_receive_queue
.next
,
3508 (struct sk_buff
*)&sk
->sk_receive_queue
,
3509 tp
->copied_seq
, tp
->rcv_nxt
);
3510 sk_stream_mem_reclaim(sk
);
3512 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
3515 /* Collapsing did not help, destructive actions follow.
3516 * This must not ever occur. */
3518 /* First, purge the out_of_order queue. */
3519 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
3520 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED
);
3521 __skb_queue_purge(&tp
->out_of_order_queue
);
3523 /* Reset SACK state. A conforming SACK implementation will
3524 * do the same at a timeout based retransmit. When a connection
3525 * is in a sad state like this, we care only about integrity
3526 * of the connection not performance.
3528 if (tp
->rx_opt
.sack_ok
)
3529 tcp_sack_reset(&tp
->rx_opt
);
3530 sk_stream_mem_reclaim(sk
);
3533 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
3536 /* If we are really being abused, tell the caller to silently
3537 * drop receive data on the floor. It will get retransmitted
3538 * and hopefully then we'll have sufficient space.
3540 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED
);
3542 /* Massive buffer overcommit. */
3548 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3549 * As additional protections, we do not touch cwnd in retransmission phases,
3550 * and if application hit its sndbuf limit recently.
3552 void tcp_cwnd_application_limited(struct sock
*sk
)
3554 struct tcp_sock
*tp
= tcp_sk(sk
);
3556 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
3557 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
3558 /* Limited by application or receiver window. */
3559 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
3560 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
3561 if (win_used
< tp
->snd_cwnd
) {
3562 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
3563 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
3565 tp
->snd_cwnd_used
= 0;
3567 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
3570 static int tcp_should_expand_sndbuf(struct sock
*sk
, struct tcp_sock
*tp
)
3572 /* If the user specified a specific send buffer setting, do
3575 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
3578 /* If we are under global TCP memory pressure, do not expand. */
3579 if (tcp_memory_pressure
)
3582 /* If we are under soft global TCP memory pressure, do not expand. */
3583 if (atomic_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
3586 /* If we filled the congestion window, do not expand. */
3587 if (tp
->packets_out
>= tp
->snd_cwnd
)
3593 /* When incoming ACK allowed to free some skb from write_queue,
3594 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3595 * on the exit from tcp input handler.
3597 * PROBLEM: sndbuf expansion does not work well with largesend.
3599 static void tcp_new_space(struct sock
*sk
)
3601 struct tcp_sock
*tp
= tcp_sk(sk
);
3603 if (tcp_should_expand_sndbuf(sk
, tp
)) {
3604 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
3605 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
),
3606 demanded
= max_t(unsigned int, tp
->snd_cwnd
,
3607 tp
->reordering
+ 1);
3608 sndmem
*= 2*demanded
;
3609 if (sndmem
> sk
->sk_sndbuf
)
3610 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
3611 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
3614 sk
->sk_write_space(sk
);
3617 static void tcp_check_space(struct sock
*sk
)
3619 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
3620 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
3621 if (sk
->sk_socket
&&
3622 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
3627 static inline void tcp_data_snd_check(struct sock
*sk
, struct tcp_sock
*tp
)
3629 tcp_push_pending_frames(sk
, tp
);
3630 tcp_check_space(sk
);
3634 * Check if sending an ack is needed.
3636 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
3638 struct tcp_sock
*tp
= tcp_sk(sk
);
3640 /* More than one full frame received... */
3641 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
3642 /* ... and right edge of window advances far enough.
3643 * (tcp_recvmsg() will send ACK otherwise). Or...
3645 && __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
3646 /* We ACK each frame or... */
3647 tcp_in_quickack_mode(sk
) ||
3648 /* We have out of order data. */
3650 skb_peek(&tp
->out_of_order_queue
))) {
3651 /* Then ack it now */
3654 /* Else, send delayed ack. */
3655 tcp_send_delayed_ack(sk
);
3659 static inline void tcp_ack_snd_check(struct sock
*sk
)
3661 if (!inet_csk_ack_scheduled(sk
)) {
3662 /* We sent a data segment already. */
3665 __tcp_ack_snd_check(sk
, 1);
3669 * This routine is only called when we have urgent data
3670 * signaled. Its the 'slow' part of tcp_urg. It could be
3671 * moved inline now as tcp_urg is only called from one
3672 * place. We handle URGent data wrong. We have to - as
3673 * BSD still doesn't use the correction from RFC961.
3674 * For 1003.1g we should support a new option TCP_STDURG to permit
3675 * either form (or just set the sysctl tcp_stdurg).
3678 static void tcp_check_urg(struct sock
* sk
, struct tcphdr
* th
)
3680 struct tcp_sock
*tp
= tcp_sk(sk
);
3681 u32 ptr
= ntohs(th
->urg_ptr
);
3683 if (ptr
&& !sysctl_tcp_stdurg
)
3685 ptr
+= ntohl(th
->seq
);
3687 /* Ignore urgent data that we've already seen and read. */
3688 if (after(tp
->copied_seq
, ptr
))
3691 /* Do not replay urg ptr.
3693 * NOTE: interesting situation not covered by specs.
3694 * Misbehaving sender may send urg ptr, pointing to segment,
3695 * which we already have in ofo queue. We are not able to fetch
3696 * such data and will stay in TCP_URG_NOTYET until will be eaten
3697 * by recvmsg(). Seems, we are not obliged to handle such wicked
3698 * situations. But it is worth to think about possibility of some
3699 * DoSes using some hypothetical application level deadlock.
3701 if (before(ptr
, tp
->rcv_nxt
))
3704 /* Do we already have a newer (or duplicate) urgent pointer? */
3705 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
3708 /* Tell the world about our new urgent pointer. */
3711 /* We may be adding urgent data when the last byte read was
3712 * urgent. To do this requires some care. We cannot just ignore
3713 * tp->copied_seq since we would read the last urgent byte again
3714 * as data, nor can we alter copied_seq until this data arrives
3715 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3717 * NOTE. Double Dutch. Rendering to plain English: author of comment
3718 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3719 * and expect that both A and B disappear from stream. This is _wrong_.
3720 * Though this happens in BSD with high probability, this is occasional.
3721 * Any application relying on this is buggy. Note also, that fix "works"
3722 * only in this artificial test. Insert some normal data between A and B and we will
3723 * decline of BSD again. Verdict: it is better to remove to trap
3726 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
3727 !sock_flag(sk
, SOCK_URGINLINE
) &&
3728 tp
->copied_seq
!= tp
->rcv_nxt
) {
3729 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
3731 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
3732 __skb_unlink(skb
, &sk
->sk_receive_queue
);
3737 tp
->urg_data
= TCP_URG_NOTYET
;
3740 /* Disable header prediction. */
3744 /* This is the 'fast' part of urgent handling. */
3745 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
3747 struct tcp_sock
*tp
= tcp_sk(sk
);
3749 /* Check if we get a new urgent pointer - normally not. */
3751 tcp_check_urg(sk
,th
);
3753 /* Do we wait for any urgent data? - normally not... */
3754 if (tp
->urg_data
== TCP_URG_NOTYET
) {
3755 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
3758 /* Is the urgent pointer pointing into this packet? */
3759 if (ptr
< skb
->len
) {
3761 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
3763 tp
->urg_data
= TCP_URG_VALID
| tmp
;
3764 if (!sock_flag(sk
, SOCK_DEAD
))
3765 sk
->sk_data_ready(sk
, 0);
3770 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
3772 struct tcp_sock
*tp
= tcp_sk(sk
);
3773 int chunk
= skb
->len
- hlen
;
3777 if (skb
->ip_summed
==CHECKSUM_UNNECESSARY
)
3778 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
3780 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
3784 tp
->ucopy
.len
-= chunk
;
3785 tp
->copied_seq
+= chunk
;
3786 tcp_rcv_space_adjust(sk
);
3793 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
, struct sk_buff
*skb
)
3797 if (sock_owned_by_user(sk
)) {
3799 result
= __tcp_checksum_complete(skb
);
3802 result
= __tcp_checksum_complete(skb
);
3807 static inline int tcp_checksum_complete_user(struct sock
*sk
, struct sk_buff
*skb
)
3809 return skb
->ip_summed
!= CHECKSUM_UNNECESSARY
&&
3810 __tcp_checksum_complete_user(sk
, skb
);
3813 #ifdef CONFIG_NET_DMA
3814 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
3816 struct tcp_sock
*tp
= tcp_sk(sk
);
3817 int chunk
= skb
->len
- hlen
;
3819 int copied_early
= 0;
3821 if (tp
->ucopy
.wakeup
)
3824 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
3825 tp
->ucopy
.dma_chan
= get_softnet_dma();
3827 if (tp
->ucopy
.dma_chan
&& skb
->ip_summed
== CHECKSUM_UNNECESSARY
) {
3829 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
3830 skb
, hlen
, tp
->ucopy
.iov
, chunk
, tp
->ucopy
.pinned_list
);
3835 tp
->ucopy
.dma_cookie
= dma_cookie
;
3838 tp
->ucopy
.len
-= chunk
;
3839 tp
->copied_seq
+= chunk
;
3840 tcp_rcv_space_adjust(sk
);
3842 if ((tp
->ucopy
.len
== 0) ||
3843 (tcp_flag_word(skb
->h
.th
) & TCP_FLAG_PSH
) ||
3844 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
3845 tp
->ucopy
.wakeup
= 1;
3846 sk
->sk_data_ready(sk
, 0);
3848 } else if (chunk
> 0) {
3849 tp
->ucopy
.wakeup
= 1;
3850 sk
->sk_data_ready(sk
, 0);
3853 return copied_early
;
3855 #endif /* CONFIG_NET_DMA */
3858 * TCP receive function for the ESTABLISHED state.
3860 * It is split into a fast path and a slow path. The fast path is
3862 * - A zero window was announced from us - zero window probing
3863 * is only handled properly in the slow path.
3864 * - Out of order segments arrived.
3865 * - Urgent data is expected.
3866 * - There is no buffer space left
3867 * - Unexpected TCP flags/window values/header lengths are received
3868 * (detected by checking the TCP header against pred_flags)
3869 * - Data is sent in both directions. Fast path only supports pure senders
3870 * or pure receivers (this means either the sequence number or the ack
3871 * value must stay constant)
3872 * - Unexpected TCP option.
3874 * When these conditions are not satisfied it drops into a standard
3875 * receive procedure patterned after RFC793 to handle all cases.
3876 * The first three cases are guaranteed by proper pred_flags setting,
3877 * the rest is checked inline. Fast processing is turned on in
3878 * tcp_data_queue when everything is OK.
3880 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
3881 struct tcphdr
*th
, unsigned len
)
3883 struct tcp_sock
*tp
= tcp_sk(sk
);
3886 * Header prediction.
3887 * The code loosely follows the one in the famous
3888 * "30 instruction TCP receive" Van Jacobson mail.
3890 * Van's trick is to deposit buffers into socket queue
3891 * on a device interrupt, to call tcp_recv function
3892 * on the receive process context and checksum and copy
3893 * the buffer to user space. smart...
3895 * Our current scheme is not silly either but we take the
3896 * extra cost of the net_bh soft interrupt processing...
3897 * We do checksum and copy also but from device to kernel.
3900 tp
->rx_opt
.saw_tstamp
= 0;
3902 /* pred_flags is 0xS?10 << 16 + snd_wnd
3903 * if header_prediction is to be made
3904 * 'S' will always be tp->tcp_header_len >> 2
3905 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3906 * turn it off (when there are holes in the receive
3907 * space for instance)
3908 * PSH flag is ignored.
3911 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
3912 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
3913 int tcp_header_len
= tp
->tcp_header_len
;
3915 /* Timestamp header prediction: tcp_header_len
3916 * is automatically equal to th->doff*4 due to pred_flags
3920 /* Check timestamp */
3921 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
3922 __be32
*ptr
= (__be32
*)(th
+ 1);
3924 /* No? Slow path! */
3925 if (*ptr
!= htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3926 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
))
3929 tp
->rx_opt
.saw_tstamp
= 1;
3931 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3933 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3935 /* If PAWS failed, check it more carefully in slow path */
3936 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
3939 /* DO NOT update ts_recent here, if checksum fails
3940 * and timestamp was corrupted part, it will result
3941 * in a hung connection since we will drop all
3942 * future packets due to the PAWS test.
3946 if (len
<= tcp_header_len
) {
3947 /* Bulk data transfer: sender */
3948 if (len
== tcp_header_len
) {
3949 /* Predicted packet is in window by definition.
3950 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3951 * Hence, check seq<=rcv_wup reduces to:
3953 if (tcp_header_len
==
3954 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
3955 tp
->rcv_nxt
== tp
->rcv_wup
)
3956 tcp_store_ts_recent(tp
);
3958 /* We know that such packets are checksummed
3961 tcp_ack(sk
, skb
, 0);
3963 tcp_data_snd_check(sk
, tp
);
3965 } else { /* Header too small */
3966 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
3971 int copied_early
= 0;
3973 if (tp
->copied_seq
== tp
->rcv_nxt
&&
3974 len
- tcp_header_len
<= tp
->ucopy
.len
) {
3975 #ifdef CONFIG_NET_DMA
3976 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
3981 if (tp
->ucopy
.task
== current
&& sock_owned_by_user(sk
) && !copied_early
) {
3982 __set_current_state(TASK_RUNNING
);
3984 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
3988 /* Predicted packet is in window by definition.
3989 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3990 * Hence, check seq<=rcv_wup reduces to:
3992 if (tcp_header_len
==
3993 (sizeof(struct tcphdr
) +
3994 TCPOLEN_TSTAMP_ALIGNED
) &&
3995 tp
->rcv_nxt
== tp
->rcv_wup
)
3996 tcp_store_ts_recent(tp
);
3998 tcp_rcv_rtt_measure_ts(sk
, skb
);
4000 __skb_pull(skb
, tcp_header_len
);
4001 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4002 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER
);
4005 tcp_cleanup_rbuf(sk
, skb
->len
);
4008 if (tcp_checksum_complete_user(sk
, skb
))
4011 /* Predicted packet is in window by definition.
4012 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4013 * Hence, check seq<=rcv_wup reduces to:
4015 if (tcp_header_len
==
4016 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
4017 tp
->rcv_nxt
== tp
->rcv_wup
)
4018 tcp_store_ts_recent(tp
);
4020 tcp_rcv_rtt_measure_ts(sk
, skb
);
4022 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
4025 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS
);
4027 /* Bulk data transfer: receiver */
4028 __skb_pull(skb
,tcp_header_len
);
4029 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4030 sk_stream_set_owner_r(skb
, sk
);
4031 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4034 tcp_event_data_recv(sk
, tp
, skb
);
4036 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
4037 /* Well, only one small jumplet in fast path... */
4038 tcp_ack(sk
, skb
, FLAG_DATA
);
4039 tcp_data_snd_check(sk
, tp
);
4040 if (!inet_csk_ack_scheduled(sk
))
4044 __tcp_ack_snd_check(sk
, 0);
4046 #ifdef CONFIG_NET_DMA
4048 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
4054 sk
->sk_data_ready(sk
, 0);
4060 if (len
< (th
->doff
<<2) || tcp_checksum_complete_user(sk
, skb
))
4064 * RFC1323: H1. Apply PAWS check first.
4066 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
4067 tcp_paws_discard(sk
, skb
)) {
4069 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
4070 tcp_send_dupack(sk
, skb
);
4073 /* Resets are accepted even if PAWS failed.
4075 ts_recent update must be made after we are sure
4076 that the packet is in window.
4081 * Standard slow path.
4084 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4085 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4086 * (RST) segments are validated by checking their SEQ-fields."
4087 * And page 69: "If an incoming segment is not acceptable,
4088 * an acknowledgment should be sent in reply (unless the RST bit
4089 * is set, if so drop the segment and return)".
4092 tcp_send_dupack(sk
, skb
);
4101 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
4103 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4104 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4105 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
4112 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4114 tcp_rcv_rtt_measure_ts(sk
, skb
);
4116 /* Process urgent data. */
4117 tcp_urg(sk
, skb
, th
);
4119 /* step 7: process the segment text */
4120 tcp_data_queue(sk
, skb
);
4122 tcp_data_snd_check(sk
, tp
);
4123 tcp_ack_snd_check(sk
);
4127 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4134 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
4135 struct tcphdr
*th
, unsigned len
)
4137 struct tcp_sock
*tp
= tcp_sk(sk
);
4138 struct inet_connection_sock
*icsk
= inet_csk(sk
);
4139 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
4141 tcp_parse_options(skb
, &tp
->rx_opt
, 0);
4145 * "If the state is SYN-SENT then
4146 * first check the ACK bit
4147 * If the ACK bit is set
4148 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4149 * a reset (unless the RST bit is set, if so drop
4150 * the segment and return)"
4152 * We do not send data with SYN, so that RFC-correct
4155 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
4156 goto reset_and_undo
;
4158 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
4159 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
4161 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED
);
4162 goto reset_and_undo
;
4165 /* Now ACK is acceptable.
4167 * "If the RST bit is set
4168 * If the ACK was acceptable then signal the user "error:
4169 * connection reset", drop the segment, enter CLOSED state,
4170 * delete TCB, and return."
4179 * "fifth, if neither of the SYN or RST bits is set then
4180 * drop the segment and return."
4186 goto discard_and_undo
;
4189 * "If the SYN bit is on ...
4190 * are acceptable then ...
4191 * (our SYN has been ACKed), change the connection
4192 * state to ESTABLISHED..."
4195 TCP_ECN_rcv_synack(tp
, th
);
4197 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
4198 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4200 /* Ok.. it's good. Set up sequence numbers and
4201 * move to established.
4203 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
4204 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
4206 /* RFC1323: The window in SYN & SYN/ACK segments is
4209 tp
->snd_wnd
= ntohs(th
->window
);
4210 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
, TCP_SKB_CB(skb
)->seq
);
4212 if (!tp
->rx_opt
.wscale_ok
) {
4213 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
4214 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
4217 if (tp
->rx_opt
.saw_tstamp
) {
4218 tp
->rx_opt
.tstamp_ok
= 1;
4219 tp
->tcp_header_len
=
4220 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
4221 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
4222 tcp_store_ts_recent(tp
);
4224 tp
->tcp_header_len
= sizeof(struct tcphdr
);
4227 if (tp
->rx_opt
.sack_ok
&& sysctl_tcp_fack
)
4228 tp
->rx_opt
.sack_ok
|= 2;
4231 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
4232 tcp_initialize_rcv_mss(sk
);
4234 /* Remember, tcp_poll() does not lock socket!
4235 * Change state from SYN-SENT only after copied_seq
4236 * is initialized. */
4237 tp
->copied_seq
= tp
->rcv_nxt
;
4239 tcp_set_state(sk
, TCP_ESTABLISHED
);
4241 security_inet_conn_established(sk
, skb
);
4243 /* Make sure socket is routed, for correct metrics. */
4244 icsk
->icsk_af_ops
->rebuild_header(sk
);
4246 tcp_init_metrics(sk
);
4248 tcp_init_congestion_control(sk
);
4250 /* Prevent spurious tcp_cwnd_restart() on first data
4253 tp
->lsndtime
= tcp_time_stamp
;
4255 tcp_init_buffer_space(sk
);
4257 if (sock_flag(sk
, SOCK_KEEPOPEN
))
4258 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
4260 if (!tp
->rx_opt
.snd_wscale
)
4261 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
4265 if (!sock_flag(sk
, SOCK_DEAD
)) {
4266 sk
->sk_state_change(sk
);
4267 sk_wake_async(sk
, 0, POLL_OUT
);
4270 if (sk
->sk_write_pending
||
4271 icsk
->icsk_accept_queue
.rskq_defer_accept
||
4272 icsk
->icsk_ack
.pingpong
) {
4273 /* Save one ACK. Data will be ready after
4274 * several ticks, if write_pending is set.
4276 * It may be deleted, but with this feature tcpdumps
4277 * look so _wonderfully_ clever, that I was not able
4278 * to stand against the temptation 8) --ANK
4280 inet_csk_schedule_ack(sk
);
4281 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
4282 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
4283 tcp_incr_quickack(sk
);
4284 tcp_enter_quickack_mode(sk
);
4285 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
4286 TCP_DELACK_MAX
, TCP_RTO_MAX
);
4297 /* No ACK in the segment */
4301 * "If the RST bit is set
4303 * Otherwise (no ACK) drop the segment and return."
4306 goto discard_and_undo
;
4310 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&& tcp_paws_check(&tp
->rx_opt
, 0))
4311 goto discard_and_undo
;
4314 /* We see SYN without ACK. It is attempt of
4315 * simultaneous connect with crossed SYNs.
4316 * Particularly, it can be connect to self.
4318 tcp_set_state(sk
, TCP_SYN_RECV
);
4320 if (tp
->rx_opt
.saw_tstamp
) {
4321 tp
->rx_opt
.tstamp_ok
= 1;
4322 tcp_store_ts_recent(tp
);
4323 tp
->tcp_header_len
=
4324 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
4326 tp
->tcp_header_len
= sizeof(struct tcphdr
);
4329 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
4330 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
4332 /* RFC1323: The window in SYN & SYN/ACK segments is
4335 tp
->snd_wnd
= ntohs(th
->window
);
4336 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
4337 tp
->max_window
= tp
->snd_wnd
;
4339 TCP_ECN_rcv_syn(tp
, th
);
4342 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
4343 tcp_initialize_rcv_mss(sk
);
4346 tcp_send_synack(sk
);
4348 /* Note, we could accept data and URG from this segment.
4349 * There are no obstacles to make this.
4351 * However, if we ignore data in ACKless segments sometimes,
4352 * we have no reasons to accept it sometimes.
4353 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4354 * is not flawless. So, discard packet for sanity.
4355 * Uncomment this return to process the data.
4362 /* "fifth, if neither of the SYN or RST bits is set then
4363 * drop the segment and return."
4367 tcp_clear_options(&tp
->rx_opt
);
4368 tp
->rx_opt
.mss_clamp
= saved_clamp
;
4372 tcp_clear_options(&tp
->rx_opt
);
4373 tp
->rx_opt
.mss_clamp
= saved_clamp
;
4379 * This function implements the receiving procedure of RFC 793 for
4380 * all states except ESTABLISHED and TIME_WAIT.
4381 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4382 * address independent.
4385 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
4386 struct tcphdr
*th
, unsigned len
)
4388 struct tcp_sock
*tp
= tcp_sk(sk
);
4389 struct inet_connection_sock
*icsk
= inet_csk(sk
);
4392 tp
->rx_opt
.saw_tstamp
= 0;
4394 switch (sk
->sk_state
) {
4406 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
4409 /* Now we have several options: In theory there is
4410 * nothing else in the frame. KA9Q has an option to
4411 * send data with the syn, BSD accepts data with the
4412 * syn up to the [to be] advertised window and
4413 * Solaris 2.1 gives you a protocol error. For now
4414 * we just ignore it, that fits the spec precisely
4415 * and avoids incompatibilities. It would be nice in
4416 * future to drop through and process the data.
4418 * Now that TTCP is starting to be used we ought to
4420 * But, this leaves one open to an easy denial of
4421 * service attack, and SYN cookies can't defend
4422 * against this problem. So, we drop the data
4423 * in the interest of security over speed.
4430 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
4434 /* Do step6 onward by hand. */
4435 tcp_urg(sk
, skb
, th
);
4437 tcp_data_snd_check(sk
, tp
);
4441 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
4442 tcp_paws_discard(sk
, skb
)) {
4444 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
4445 tcp_send_dupack(sk
, skb
);
4448 /* Reset is accepted even if it did not pass PAWS. */
4451 /* step 1: check sequence number */
4452 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4454 tcp_send_dupack(sk
, skb
);
4458 /* step 2: check RST bit */
4464 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
4466 /* step 3: check security and precedence [ignored] */
4470 * Check for a SYN in window.
4472 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4473 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
4478 /* step 5: check the ACK field */
4480 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4482 switch(sk
->sk_state
) {
4485 tp
->copied_seq
= tp
->rcv_nxt
;
4487 tcp_set_state(sk
, TCP_ESTABLISHED
);
4488 sk
->sk_state_change(sk
);
4490 /* Note, that this wakeup is only for marginal
4491 * crossed SYN case. Passively open sockets
4492 * are not waked up, because sk->sk_sleep ==
4493 * NULL and sk->sk_socket == NULL.
4495 if (sk
->sk_socket
) {
4496 sk_wake_async(sk
,0,POLL_OUT
);
4499 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
4500 tp
->snd_wnd
= ntohs(th
->window
) <<
4501 tp
->rx_opt
.snd_wscale
;
4502 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
,
4503 TCP_SKB_CB(skb
)->seq
);
4505 /* tcp_ack considers this ACK as duplicate
4506 * and does not calculate rtt.
4507 * Fix it at least with timestamps.
4509 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
4511 tcp_ack_saw_tstamp(sk
, 0);
4513 if (tp
->rx_opt
.tstamp_ok
)
4514 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
4516 /* Make sure socket is routed, for
4519 icsk
->icsk_af_ops
->rebuild_header(sk
);
4521 tcp_init_metrics(sk
);
4523 tcp_init_congestion_control(sk
);
4525 /* Prevent spurious tcp_cwnd_restart() on
4526 * first data packet.
4528 tp
->lsndtime
= tcp_time_stamp
;
4531 tcp_initialize_rcv_mss(sk
);
4532 tcp_init_buffer_space(sk
);
4533 tcp_fast_path_on(tp
);
4540 if (tp
->snd_una
== tp
->write_seq
) {
4541 tcp_set_state(sk
, TCP_FIN_WAIT2
);
4542 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
4543 dst_confirm(sk
->sk_dst_cache
);
4545 if (!sock_flag(sk
, SOCK_DEAD
))
4546 /* Wake up lingering close() */
4547 sk
->sk_state_change(sk
);
4551 if (tp
->linger2
< 0 ||
4552 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4553 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
4555 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
4559 tmo
= tcp_fin_time(sk
);
4560 if (tmo
> TCP_TIMEWAIT_LEN
) {
4561 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
4562 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
4563 /* Bad case. We could lose such FIN otherwise.
4564 * It is not a big problem, but it looks confusing
4565 * and not so rare event. We still can lose it now,
4566 * if it spins in bh_lock_sock(), but it is really
4569 inet_csk_reset_keepalive_timer(sk
, tmo
);
4571 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
4579 if (tp
->snd_una
== tp
->write_seq
) {
4580 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4586 if (tp
->snd_una
== tp
->write_seq
) {
4587 tcp_update_metrics(sk
);
4596 /* step 6: check the URG bit */
4597 tcp_urg(sk
, skb
, th
);
4599 /* step 7: process the segment text */
4600 switch (sk
->sk_state
) {
4601 case TCP_CLOSE_WAIT
:
4604 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4608 /* RFC 793 says to queue data in these states,
4609 * RFC 1122 says we MUST send a reset.
4610 * BSD 4.4 also does reset.
4612 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
4613 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4614 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
4615 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
4621 case TCP_ESTABLISHED
:
4622 tcp_data_queue(sk
, skb
);
4627 /* tcp_data could move socket to TIME-WAIT */
4628 if (sk
->sk_state
!= TCP_CLOSE
) {
4629 tcp_data_snd_check(sk
, tp
);
4630 tcp_ack_snd_check(sk
);
4640 EXPORT_SYMBOL(sysctl_tcp_ecn
);
4641 EXPORT_SYMBOL(sysctl_tcp_reordering
);
4642 EXPORT_SYMBOL(tcp_parse_options
);
4643 EXPORT_SYMBOL(tcp_rcv_established
);
4644 EXPORT_SYMBOL(tcp_rcv_state_process
);
4645 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);