compilation fixes
[intricacy.git] / GraphColouring.hs
blobd4e24564eb82efabdc02a97665c3e7c8614ab655
1 -- This file is part of Intricacy
2 -- Copyright (C) 2013 Martin Bays <mbays@sdf.org>
3 --
4 -- This program is free software: you can redistribute it and/or modify
5 -- it under the terms of version 3 of the GNU General Public License as
6 -- published by the Free Software Foundation, or any later version.
7 --
8 -- You should have received a copy of the GNU General Public License
9 -- along with this program. If not, see http://www.gnu.org/licenses/.
11 module GraphColouring (fiveColour) where
13 import Data.List
14 import Data.Map (Map)
15 import qualified Data.Map as Map
16 import Data.Maybe
17 import Data.Set (Set)
18 import qualified Data.Set as Set
19 import qualified Data.Vector as Vector
21 type Colouring a = Map a Int
22 type Graph a = (Set a, Set (Set a))
23 type PlanarGraph a = Map a [a]
25 fiveColour :: Ord a => PlanarGraph a -> Colouring a -> Colouring a
26 -- ^algorithm based on that presented in
27 -- http://people.math.gatech.edu/~thomas/PAP/fcstoc.pdf
28 -- Key point: a planar graph can't have all vertices of degree >= 6
29 -- (Proof: suppose it does, so |E| >= 3|V|; WLOG the graph is triangulated,
30 -- so then |F| <= 2/3 |E|. So \xi = |V|-|E|+|F| <= (1/3 - 1 + 2/3)|E| = 0.
31 -- But a planar graph has Euler characteristic 1.)
32 -- Aims to minimise changes from given (partial) colouring lastCol.
33 fiveColour g lastCol =
34 if Map.keysSet lastCol == Map.keysSet g && isColouring g lastCol
35 then lastCol
36 else fiveColour' lastCol g
38 isColouring :: Ord a => PlanarGraph a -> Colouring a -> Bool
39 isColouring g mapping = and
40 [ Map.lookup s mapping /= Map.lookup e mapping
41 | s <- Map.keys g
42 , e <- g Map.! s ]
44 fiveColour' :: Ord a => Colouring a -> PlanarGraph a -> Colouring a
45 fiveColour' pref g | g == Map.empty = Map.empty
46 fiveColour' pref g =
47 let adjsOf v = nub (g Map.! v) \\ [v]
48 v0 = head $ filter ((<=5) . length . adjsOf) $ Map.keys g
49 adjs = adjsOf v0
50 addTo c =
51 let vc = head $ possCols pref v0 \\ map (c Map.!) adjs
52 in Map.insert v0 vc c
53 in if length adjs < 5
54 then addTo $ fiveColour' pref $ deleteNode v0 g
55 else let (v',v'') = if adjs!!2 `elem` (g Map.! head adjs)
56 then (adjs!!1,adjs!!3)
57 else (head adjs,adjs!!2)
58 in addTo $ demerge v' v'' $ fiveColour' pref $ merge v0 v' v'' g
60 possCols :: Ord a => Colouring a -> a -> [Int]
61 possCols pref v = maybe [0..4] (\lvc -> lvc:([0..4] \\ [lvc])) $ Map.lookup v pref
63 demerge :: Ord a => a -> a -> Colouring a -> Colouring a
64 demerge v v' c = Map.insert v' (c Map.! v) c
66 merge :: Ord a => a -> a -> a -> PlanarGraph a -> PlanarGraph a
67 merge v v' v'' g =
68 deleteNode v $ contractNodes v' v''
69 $ Map.adjust (concatAdjsOver v $ g Map.! v'') v' g
71 concatAdjsOver :: Ord a => a -> [a] -> [a] -> [a]
72 concatAdjsOver v adjs adjs' =
73 let (s,_:e) = splitAt (fromJust $ elemIndex v adjs) adjs
74 in s ++ adjs' ++ e
76 deleteNode :: Ord a => a -> PlanarGraph a -> PlanarGraph a
77 deleteNode v =
78 fmap (filter (/= v)) . Map.delete v
80 contractNodes :: Ord a => a -> a -> PlanarGraph a -> PlanarGraph a
81 contractNodes v v' =
82 fmap (map (\v'' -> if v'' == v' then v else v'')) . Map.delete v'