2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
34 #include <asm/system.h>
37 #include "fw-transaction.h"
39 #define DESCRIPTOR_OUTPUT_MORE 0
40 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
41 #define DESCRIPTOR_INPUT_MORE (2 << 12)
42 #define DESCRIPTOR_INPUT_LAST (3 << 12)
43 #define DESCRIPTOR_STATUS (1 << 11)
44 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
45 #define DESCRIPTOR_PING (1 << 7)
46 #define DESCRIPTOR_YY (1 << 6)
47 #define DESCRIPTOR_NO_IRQ (0 << 4)
48 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
49 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
50 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
51 #define DESCRIPTOR_WAIT (3 << 0)
57 __le32 branch_address
;
59 __le16 transfer_status
;
60 } __attribute__((aligned(16)));
62 struct db_descriptor
{
65 __le16 second_req_count
;
66 __le16 first_req_count
;
67 __le32 branch_address
;
68 __le16 second_res_count
;
69 __le16 first_res_count
;
74 } __attribute__((aligned(16)));
76 #define CONTROL_SET(regs) (regs)
77 #define CONTROL_CLEAR(regs) ((regs) + 4)
78 #define COMMAND_PTR(regs) ((regs) + 12)
79 #define CONTEXT_MATCH(regs) ((regs) + 16)
82 struct descriptor descriptor
;
83 struct ar_buffer
*next
;
89 struct ar_buffer
*current_buffer
;
90 struct ar_buffer
*last_buffer
;
93 struct tasklet_struct tasklet
;
98 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
100 struct descriptor
*last
);
102 struct fw_ohci
*ohci
;
105 struct descriptor
*buffer
;
106 dma_addr_t buffer_bus
;
108 struct descriptor
*head_descriptor
;
109 struct descriptor
*tail_descriptor
;
110 struct descriptor
*tail_descriptor_last
;
111 struct descriptor
*prev_descriptor
;
113 descriptor_callback_t callback
;
115 struct tasklet_struct tasklet
;
118 #define IT_HEADER_SY(v) ((v) << 0)
119 #define IT_HEADER_TCODE(v) ((v) << 4)
120 #define IT_HEADER_CHANNEL(v) ((v) << 8)
121 #define IT_HEADER_TAG(v) ((v) << 14)
122 #define IT_HEADER_SPEED(v) ((v) << 16)
123 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
126 struct fw_iso_context base
;
127 struct context context
;
129 size_t header_length
;
132 #define CONFIG_ROM_SIZE 1024
138 __iomem
char *registers
;
139 dma_addr_t self_id_bus
;
141 struct tasklet_struct bus_reset_tasklet
;
144 int request_generation
;
148 * Spinlock for accessing fw_ohci data. Never call out of
149 * this driver with this lock held.
152 u32 self_id_buffer
[512];
154 /* Config rom buffers */
156 dma_addr_t config_rom_bus
;
157 __be32
*next_config_rom
;
158 dma_addr_t next_config_rom_bus
;
161 struct ar_context ar_request_ctx
;
162 struct ar_context ar_response_ctx
;
163 struct context at_request_ctx
;
164 struct context at_response_ctx
;
167 struct iso_context
*it_context_list
;
169 struct iso_context
*ir_context_list
;
172 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
174 return container_of(card
, struct fw_ohci
, card
);
177 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
178 #define IR_CONTEXT_BUFFER_FILL 0x80000000
179 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
180 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
181 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
182 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
184 #define CONTEXT_RUN 0x8000
185 #define CONTEXT_WAKE 0x1000
186 #define CONTEXT_DEAD 0x0800
187 #define CONTEXT_ACTIVE 0x0400
189 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
190 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
191 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
193 #define FW_OHCI_MAJOR 240
194 #define OHCI1394_REGISTER_SIZE 0x800
195 #define OHCI_LOOP_COUNT 500
196 #define OHCI1394_PCI_HCI_Control 0x40
197 #define SELF_ID_BUF_SIZE 0x800
198 #define OHCI_TCODE_PHY_PACKET 0x0e
199 #define OHCI_VERSION_1_1 0x010010
200 #define ISO_BUFFER_SIZE (64 * 1024)
201 #define AT_BUFFER_SIZE 4096
203 static char ohci_driver_name
[] = KBUILD_MODNAME
;
205 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
207 writel(data
, ohci
->registers
+ offset
);
210 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
212 return readl(ohci
->registers
+ offset
);
215 static inline void flush_writes(const struct fw_ohci
*ohci
)
217 /* Do a dummy read to flush writes. */
218 reg_read(ohci
, OHCI1394_Version
);
222 ohci_update_phy_reg(struct fw_card
*card
, int addr
,
223 int clear_bits
, int set_bits
)
225 struct fw_ohci
*ohci
= fw_ohci(card
);
228 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
231 val
= reg_read(ohci
, OHCI1394_PhyControl
);
232 if ((val
& OHCI1394_PhyControl_ReadDone
) == 0) {
233 fw_error("failed to set phy reg bits.\n");
237 old
= OHCI1394_PhyControl_ReadData(val
);
238 old
= (old
& ~clear_bits
) | set_bits
;
239 reg_write(ohci
, OHCI1394_PhyControl
,
240 OHCI1394_PhyControl_Write(addr
, old
));
245 static int ar_context_add_page(struct ar_context
*ctx
)
247 struct device
*dev
= ctx
->ohci
->card
.device
;
248 struct ar_buffer
*ab
;
252 ab
= (struct ar_buffer
*) __get_free_page(GFP_ATOMIC
);
256 ab_bus
= dma_map_single(dev
, ab
, PAGE_SIZE
, DMA_BIDIRECTIONAL
);
257 if (dma_mapping_error(ab_bus
)) {
258 free_page((unsigned long) ab
);
262 memset(&ab
->descriptor
, 0, sizeof(ab
->descriptor
));
263 ab
->descriptor
.control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
265 DESCRIPTOR_BRANCH_ALWAYS
);
266 offset
= offsetof(struct ar_buffer
, data
);
267 ab
->descriptor
.req_count
= cpu_to_le16(PAGE_SIZE
- offset
);
268 ab
->descriptor
.data_address
= cpu_to_le32(ab_bus
+ offset
);
269 ab
->descriptor
.res_count
= cpu_to_le16(PAGE_SIZE
- offset
);
270 ab
->descriptor
.branch_address
= 0;
272 dma_sync_single_for_device(dev
, ab_bus
, PAGE_SIZE
, DMA_BIDIRECTIONAL
);
274 ctx
->last_buffer
->descriptor
.branch_address
= cpu_to_le32(ab_bus
| 1);
275 ctx
->last_buffer
->next
= ab
;
276 ctx
->last_buffer
= ab
;
278 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
279 flush_writes(ctx
->ohci
);
284 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
286 struct fw_ohci
*ohci
= ctx
->ohci
;
288 u32 status
, length
, tcode
;
290 p
.header
[0] = le32_to_cpu(buffer
[0]);
291 p
.header
[1] = le32_to_cpu(buffer
[1]);
292 p
.header
[2] = le32_to_cpu(buffer
[2]);
294 tcode
= (p
.header
[0] >> 4) & 0x0f;
296 case TCODE_WRITE_QUADLET_REQUEST
:
297 case TCODE_READ_QUADLET_RESPONSE
:
298 p
.header
[3] = (__force __u32
) buffer
[3];
299 p
.header_length
= 16;
300 p
.payload_length
= 0;
303 case TCODE_READ_BLOCK_REQUEST
:
304 p
.header
[3] = le32_to_cpu(buffer
[3]);
305 p
.header_length
= 16;
306 p
.payload_length
= 0;
309 case TCODE_WRITE_BLOCK_REQUEST
:
310 case TCODE_READ_BLOCK_RESPONSE
:
311 case TCODE_LOCK_REQUEST
:
312 case TCODE_LOCK_RESPONSE
:
313 p
.header
[3] = le32_to_cpu(buffer
[3]);
314 p
.header_length
= 16;
315 p
.payload_length
= p
.header
[3] >> 16;
318 case TCODE_WRITE_RESPONSE
:
319 case TCODE_READ_QUADLET_REQUEST
:
320 case OHCI_TCODE_PHY_PACKET
:
321 p
.header_length
= 12;
322 p
.payload_length
= 0;
326 p
.payload
= (void *) buffer
+ p
.header_length
;
328 /* FIXME: What to do about evt_* errors? */
329 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
330 status
= le32_to_cpu(buffer
[length
]);
332 p
.ack
= ((status
>> 16) & 0x1f) - 16;
333 p
.speed
= (status
>> 21) & 0x7;
334 p
.timestamp
= status
& 0xffff;
335 p
.generation
= ohci
->request_generation
;
338 * The OHCI bus reset handler synthesizes a phy packet with
339 * the new generation number when a bus reset happens (see
340 * section 8.4.2.3). This helps us determine when a request
341 * was received and make sure we send the response in the same
342 * generation. We only need this for requests; for responses
343 * we use the unique tlabel for finding the matching
347 if (p
.ack
+ 16 == 0x09)
348 ohci
->request_generation
= (buffer
[2] >> 16) & 0xff;
349 else if (ctx
== &ohci
->ar_request_ctx
)
350 fw_core_handle_request(&ohci
->card
, &p
);
352 fw_core_handle_response(&ohci
->card
, &p
);
354 return buffer
+ length
+ 1;
357 static void ar_context_tasklet(unsigned long data
)
359 struct ar_context
*ctx
= (struct ar_context
*)data
;
360 struct fw_ohci
*ohci
= ctx
->ohci
;
361 struct ar_buffer
*ab
;
362 struct descriptor
*d
;
365 ab
= ctx
->current_buffer
;
368 if (d
->res_count
== 0) {
369 size_t size
, rest
, offset
;
372 * This descriptor is finished and we may have a
373 * packet split across this and the next buffer. We
374 * reuse the page for reassembling the split packet.
377 offset
= offsetof(struct ar_buffer
, data
);
378 dma_unmap_single(ohci
->card
.device
,
379 le32_to_cpu(ab
->descriptor
.data_address
) - offset
,
380 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
385 size
= buffer
+ PAGE_SIZE
- ctx
->pointer
;
386 rest
= le16_to_cpu(d
->req_count
) - le16_to_cpu(d
->res_count
);
387 memmove(buffer
, ctx
->pointer
, size
);
388 memcpy(buffer
+ size
, ab
->data
, rest
);
389 ctx
->current_buffer
= ab
;
390 ctx
->pointer
= (void *) ab
->data
+ rest
;
391 end
= buffer
+ size
+ rest
;
394 buffer
= handle_ar_packet(ctx
, buffer
);
396 free_page((unsigned long)buffer
);
397 ar_context_add_page(ctx
);
399 buffer
= ctx
->pointer
;
401 (void *) ab
+ PAGE_SIZE
- le16_to_cpu(d
->res_count
);
404 buffer
= handle_ar_packet(ctx
, buffer
);
409 ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
, u32 regs
)
415 ctx
->last_buffer
= &ab
;
416 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
418 ar_context_add_page(ctx
);
419 ar_context_add_page(ctx
);
420 ctx
->current_buffer
= ab
.next
;
421 ctx
->pointer
= ctx
->current_buffer
->data
;
426 static void ar_context_run(struct ar_context
*ctx
)
428 struct ar_buffer
*ab
= ctx
->current_buffer
;
432 offset
= offsetof(struct ar_buffer
, data
);
433 ab_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
435 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ab_bus
| 1);
436 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
437 flush_writes(ctx
->ohci
);
440 static struct descriptor
*
441 find_branch_descriptor(struct descriptor
*d
, int z
)
445 b
= (le16_to_cpu(d
->control
) & DESCRIPTOR_BRANCH_ALWAYS
) >> 2;
446 key
= (le16_to_cpu(d
->control
) & DESCRIPTOR_KEY_IMMEDIATE
) >> 8;
448 /* figure out which descriptor the branch address goes in */
449 if (z
== 2 && (b
== 3 || key
== 2))
455 static void context_tasklet(unsigned long data
)
457 struct context
*ctx
= (struct context
*) data
;
458 struct fw_ohci
*ohci
= ctx
->ohci
;
459 struct descriptor
*d
, *last
;
463 dma_sync_single_for_cpu(ohci
->card
.device
, ctx
->buffer_bus
,
464 ctx
->buffer_size
, DMA_TO_DEVICE
);
466 d
= ctx
->tail_descriptor
;
467 last
= ctx
->tail_descriptor_last
;
469 while (last
->branch_address
!= 0) {
470 address
= le32_to_cpu(last
->branch_address
);
472 d
= ctx
->buffer
+ (address
- ctx
->buffer_bus
) / sizeof(*d
);
473 last
= find_branch_descriptor(d
, z
);
475 if (!ctx
->callback(ctx
, d
, last
))
478 ctx
->tail_descriptor
= d
;
479 ctx
->tail_descriptor_last
= last
;
484 context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
485 size_t buffer_size
, u32 regs
,
486 descriptor_callback_t callback
)
490 ctx
->buffer_size
= buffer_size
;
491 ctx
->buffer
= kmalloc(buffer_size
, GFP_KERNEL
);
492 if (ctx
->buffer
== NULL
)
495 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
496 ctx
->callback
= callback
;
499 dma_map_single(ohci
->card
.device
, ctx
->buffer
,
500 buffer_size
, DMA_TO_DEVICE
);
501 if (dma_mapping_error(ctx
->buffer_bus
)) {
506 ctx
->head_descriptor
= ctx
->buffer
;
507 ctx
->prev_descriptor
= ctx
->buffer
;
508 ctx
->tail_descriptor
= ctx
->buffer
;
509 ctx
->tail_descriptor_last
= ctx
->buffer
;
512 * We put a dummy descriptor in the buffer that has a NULL
513 * branch address and looks like it's been sent. That way we
514 * have a descriptor to append DMA programs to. Also, the
515 * ring buffer invariant is that it always has at least one
516 * element so that head == tail means buffer full.
519 memset(ctx
->head_descriptor
, 0, sizeof(*ctx
->head_descriptor
));
520 ctx
->head_descriptor
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
521 ctx
->head_descriptor
->transfer_status
= cpu_to_le16(0x8011);
522 ctx
->head_descriptor
++;
528 context_release(struct context
*ctx
)
530 struct fw_card
*card
= &ctx
->ohci
->card
;
532 dma_unmap_single(card
->device
, ctx
->buffer_bus
,
533 ctx
->buffer_size
, DMA_TO_DEVICE
);
537 static struct descriptor
*
538 context_get_descriptors(struct context
*ctx
, int z
, dma_addr_t
*d_bus
)
540 struct descriptor
*d
, *tail
, *end
;
542 d
= ctx
->head_descriptor
;
543 tail
= ctx
->tail_descriptor
;
544 end
= ctx
->buffer
+ ctx
->buffer_size
/ sizeof(*d
);
548 } else if (d
> tail
&& d
+ z
<= end
) {
550 } else if (d
> tail
&& ctx
->buffer
+ z
<= tail
) {
558 memset(d
, 0, z
* sizeof(*d
));
559 *d_bus
= ctx
->buffer_bus
+ (d
- ctx
->buffer
) * sizeof(*d
);
564 static void context_run(struct context
*ctx
, u32 extra
)
566 struct fw_ohci
*ohci
= ctx
->ohci
;
568 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
569 le32_to_cpu(ctx
->tail_descriptor_last
->branch_address
));
570 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
571 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
575 static void context_append(struct context
*ctx
,
576 struct descriptor
*d
, int z
, int extra
)
580 d_bus
= ctx
->buffer_bus
+ (d
- ctx
->buffer
) * sizeof(*d
);
582 ctx
->head_descriptor
= d
+ z
+ extra
;
583 ctx
->prev_descriptor
->branch_address
= cpu_to_le32(d_bus
| z
);
584 ctx
->prev_descriptor
= find_branch_descriptor(d
, z
);
586 dma_sync_single_for_device(ctx
->ohci
->card
.device
, ctx
->buffer_bus
,
587 ctx
->buffer_size
, DMA_TO_DEVICE
);
589 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
590 flush_writes(ctx
->ohci
);
593 static void context_stop(struct context
*ctx
)
598 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
599 flush_writes(ctx
->ohci
);
601 for (i
= 0; i
< 10; i
++) {
602 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
603 if ((reg
& CONTEXT_ACTIVE
) == 0)
606 fw_notify("context_stop: still active (0x%08x)\n", reg
);
612 struct fw_packet
*packet
;
616 * This function apppends a packet to the DMA queue for transmission.
617 * Must always be called with the ochi->lock held to ensure proper
618 * generation handling and locking around packet queue manipulation.
621 at_context_queue_packet(struct context
*ctx
, struct fw_packet
*packet
)
623 struct fw_ohci
*ohci
= ctx
->ohci
;
624 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
625 struct driver_data
*driver_data
;
626 struct descriptor
*d
, *last
;
631 d
= context_get_descriptors(ctx
, 4, &d_bus
);
633 packet
->ack
= RCODE_SEND_ERROR
;
637 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
638 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
641 * The DMA format for asyncronous link packets is different
642 * from the IEEE1394 layout, so shift the fields around
643 * accordingly. If header_length is 8, it's a PHY packet, to
644 * which we need to prepend an extra quadlet.
647 header
= (__le32
*) &d
[1];
648 if (packet
->header_length
> 8) {
649 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
650 (packet
->speed
<< 16));
651 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
652 (packet
->header
[0] & 0xffff0000));
653 header
[2] = cpu_to_le32(packet
->header
[2]);
655 tcode
= (packet
->header
[0] >> 4) & 0x0f;
656 if (TCODE_IS_BLOCK_PACKET(tcode
))
657 header
[3] = cpu_to_le32(packet
->header
[3]);
659 header
[3] = (__force __le32
) packet
->header
[3];
661 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
663 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
664 (packet
->speed
<< 16));
665 header
[1] = cpu_to_le32(packet
->header
[0]);
666 header
[2] = cpu_to_le32(packet
->header
[1]);
667 d
[0].req_count
= cpu_to_le16(12);
670 driver_data
= (struct driver_data
*) &d
[3];
671 driver_data
->packet
= packet
;
672 packet
->driver_data
= driver_data
;
674 if (packet
->payload_length
> 0) {
676 dma_map_single(ohci
->card
.device
, packet
->payload
,
677 packet
->payload_length
, DMA_TO_DEVICE
);
678 if (dma_mapping_error(payload_bus
)) {
679 packet
->ack
= RCODE_SEND_ERROR
;
683 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
684 d
[2].data_address
= cpu_to_le32(payload_bus
);
692 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
693 DESCRIPTOR_IRQ_ALWAYS
|
694 DESCRIPTOR_BRANCH_ALWAYS
);
696 /* FIXME: Document how the locking works. */
697 if (ohci
->generation
!= packet
->generation
) {
698 if (packet
->payload_length
> 0)
699 dma_unmap_single(ohci
->card
.device
, payload_bus
,
700 packet
->payload_length
, DMA_TO_DEVICE
);
701 packet
->ack
= RCODE_GENERATION
;
705 context_append(ctx
, d
, z
, 4 - z
);
707 /* If the context isn't already running, start it up. */
708 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
709 if ((reg
& CONTEXT_RUN
) == 0)
715 static int handle_at_packet(struct context
*context
,
716 struct descriptor
*d
,
717 struct descriptor
*last
)
719 struct driver_data
*driver_data
;
720 struct fw_packet
*packet
;
721 struct fw_ohci
*ohci
= context
->ohci
;
722 dma_addr_t payload_bus
;
725 if (last
->transfer_status
== 0)
726 /* This descriptor isn't done yet, stop iteration. */
729 driver_data
= (struct driver_data
*) &d
[3];
730 packet
= driver_data
->packet
;
732 /* This packet was cancelled, just continue. */
735 payload_bus
= le32_to_cpu(last
->data_address
);
736 if (payload_bus
!= 0)
737 dma_unmap_single(ohci
->card
.device
, payload_bus
,
738 packet
->payload_length
, DMA_TO_DEVICE
);
740 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
741 packet
->timestamp
= le16_to_cpu(last
->res_count
);
744 case OHCI1394_evt_timeout
:
745 /* Async response transmit timed out. */
746 packet
->ack
= RCODE_CANCELLED
;
749 case OHCI1394_evt_flushed
:
751 * The packet was flushed should give same error as
752 * when we try to use a stale generation count.
754 packet
->ack
= RCODE_GENERATION
;
757 case OHCI1394_evt_missing_ack
:
759 * Using a valid (current) generation count, but the
760 * node is not on the bus or not sending acks.
762 packet
->ack
= RCODE_NO_ACK
;
765 case ACK_COMPLETE
+ 0x10:
766 case ACK_PENDING
+ 0x10:
767 case ACK_BUSY_X
+ 0x10:
768 case ACK_BUSY_A
+ 0x10:
769 case ACK_BUSY_B
+ 0x10:
770 case ACK_DATA_ERROR
+ 0x10:
771 case ACK_TYPE_ERROR
+ 0x10:
772 packet
->ack
= evt
- 0x10;
776 packet
->ack
= RCODE_SEND_ERROR
;
780 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
785 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
786 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
787 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
788 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
789 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
792 handle_local_rom(struct fw_ohci
*ohci
, struct fw_packet
*packet
, u32 csr
)
794 struct fw_packet response
;
795 int tcode
, length
, i
;
797 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
798 if (TCODE_IS_BLOCK_PACKET(tcode
))
799 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
803 i
= csr
- CSR_CONFIG_ROM
;
804 if (i
+ length
> CONFIG_ROM_SIZE
) {
805 fw_fill_response(&response
, packet
->header
,
806 RCODE_ADDRESS_ERROR
, NULL
, 0);
807 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
808 fw_fill_response(&response
, packet
->header
,
809 RCODE_TYPE_ERROR
, NULL
, 0);
811 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
812 (void *) ohci
->config_rom
+ i
, length
);
815 fw_core_handle_response(&ohci
->card
, &response
);
819 handle_local_lock(struct fw_ohci
*ohci
, struct fw_packet
*packet
, u32 csr
)
821 struct fw_packet response
;
822 int tcode
, length
, ext_tcode
, sel
;
823 __be32
*payload
, lock_old
;
824 u32 lock_arg
, lock_data
;
826 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
827 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
828 payload
= packet
->payload
;
829 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
831 if (tcode
== TCODE_LOCK_REQUEST
&&
832 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
833 lock_arg
= be32_to_cpu(payload
[0]);
834 lock_data
= be32_to_cpu(payload
[1]);
835 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
839 fw_fill_response(&response
, packet
->header
,
840 RCODE_TYPE_ERROR
, NULL
, 0);
844 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
845 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
846 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
847 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
849 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000)
850 lock_old
= cpu_to_be32(reg_read(ohci
, OHCI1394_CSRData
));
852 fw_notify("swap not done yet\n");
854 fw_fill_response(&response
, packet
->header
,
855 RCODE_COMPLETE
, &lock_old
, sizeof(lock_old
));
857 fw_core_handle_response(&ohci
->card
, &response
);
861 handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
866 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
867 packet
->ack
= ACK_PENDING
;
868 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
872 ((unsigned long long)
873 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
875 csr
= offset
- CSR_REGISTER_BASE
;
877 /* Handle config rom reads. */
878 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
879 handle_local_rom(ctx
->ohci
, packet
, csr
);
881 case CSR_BUS_MANAGER_ID
:
882 case CSR_BANDWIDTH_AVAILABLE
:
883 case CSR_CHANNELS_AVAILABLE_HI
:
884 case CSR_CHANNELS_AVAILABLE_LO
:
885 handle_local_lock(ctx
->ohci
, packet
, csr
);
888 if (ctx
== &ctx
->ohci
->at_request_ctx
)
889 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
891 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
895 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
896 packet
->ack
= ACK_COMPLETE
;
897 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
902 at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
907 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
909 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
910 ctx
->ohci
->generation
== packet
->generation
) {
911 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
912 handle_local_request(ctx
, packet
);
916 retval
= at_context_queue_packet(ctx
, packet
);
917 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
920 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
924 static void bus_reset_tasklet(unsigned long data
)
926 struct fw_ohci
*ohci
= (struct fw_ohci
*)data
;
927 int self_id_count
, i
, j
, reg
;
928 int generation
, new_generation
;
930 void *free_rom
= NULL
;
931 dma_addr_t free_rom_bus
= 0;
933 reg
= reg_read(ohci
, OHCI1394_NodeID
);
934 if (!(reg
& OHCI1394_NodeID_idValid
)) {
935 fw_notify("node ID not valid, new bus reset in progress\n");
938 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
939 fw_notify("malconfigured bus\n");
942 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
943 OHCI1394_NodeID_nodeNumber
);
946 * The count in the SelfIDCount register is the number of
947 * bytes in the self ID receive buffer. Since we also receive
948 * the inverted quadlets and a header quadlet, we shift one
949 * bit extra to get the actual number of self IDs.
952 self_id_count
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 3) & 0x3ff;
953 generation
= (le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
956 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
957 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1])
958 fw_error("inconsistent self IDs\n");
959 ohci
->self_id_buffer
[j
] = le32_to_cpu(ohci
->self_id_cpu
[i
]);
964 * Check the consistency of the self IDs we just read. The
965 * problem we face is that a new bus reset can start while we
966 * read out the self IDs from the DMA buffer. If this happens,
967 * the DMA buffer will be overwritten with new self IDs and we
968 * will read out inconsistent data. The OHCI specification
969 * (section 11.2) recommends a technique similar to
970 * linux/seqlock.h, where we remember the generation of the
971 * self IDs in the buffer before reading them out and compare
972 * it to the current generation after reading them out. If
973 * the two generations match we know we have a consistent set
977 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
978 if (new_generation
!= generation
) {
979 fw_notify("recursive bus reset detected, "
980 "discarding self ids\n");
984 /* FIXME: Document how the locking works. */
985 spin_lock_irqsave(&ohci
->lock
, flags
);
987 ohci
->generation
= generation
;
988 context_stop(&ohci
->at_request_ctx
);
989 context_stop(&ohci
->at_response_ctx
);
990 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
993 * This next bit is unrelated to the AT context stuff but we
994 * have to do it under the spinlock also. If a new config rom
995 * was set up before this reset, the old one is now no longer
996 * in use and we can free it. Update the config rom pointers
997 * to point to the current config rom and clear the
998 * next_config_rom pointer so a new udpate can take place.
1001 if (ohci
->next_config_rom
!= NULL
) {
1002 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
1003 free_rom
= ohci
->config_rom
;
1004 free_rom_bus
= ohci
->config_rom_bus
;
1006 ohci
->config_rom
= ohci
->next_config_rom
;
1007 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
1008 ohci
->next_config_rom
= NULL
;
1011 * Restore config_rom image and manually update
1012 * config_rom registers. Writing the header quadlet
1013 * will indicate that the config rom is ready, so we
1016 reg_write(ohci
, OHCI1394_BusOptions
,
1017 be32_to_cpu(ohci
->config_rom
[2]));
1018 ohci
->config_rom
[0] = cpu_to_be32(ohci
->next_header
);
1019 reg_write(ohci
, OHCI1394_ConfigROMhdr
, ohci
->next_header
);
1022 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1025 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1026 free_rom
, free_rom_bus
);
1028 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
1029 self_id_count
, ohci
->self_id_buffer
);
1032 static irqreturn_t
irq_handler(int irq
, void *data
)
1034 struct fw_ohci
*ohci
= data
;
1035 u32 event
, iso_event
, cycle_time
;
1038 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
1040 if (!event
|| !~event
)
1043 reg_write(ohci
, OHCI1394_IntEventClear
, event
);
1045 if (event
& OHCI1394_selfIDComplete
)
1046 tasklet_schedule(&ohci
->bus_reset_tasklet
);
1048 if (event
& OHCI1394_RQPkt
)
1049 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
1051 if (event
& OHCI1394_RSPkt
)
1052 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
1054 if (event
& OHCI1394_reqTxComplete
)
1055 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
1057 if (event
& OHCI1394_respTxComplete
)
1058 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
1060 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
1061 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
1064 i
= ffs(iso_event
) - 1;
1065 tasklet_schedule(&ohci
->ir_context_list
[i
].context
.tasklet
);
1066 iso_event
&= ~(1 << i
);
1069 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
1070 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
1073 i
= ffs(iso_event
) - 1;
1074 tasklet_schedule(&ohci
->it_context_list
[i
].context
.tasklet
);
1075 iso_event
&= ~(1 << i
);
1078 if (unlikely(event
& OHCI1394_postedWriteErr
))
1079 fw_error("PCI posted write error\n");
1081 if (event
& OHCI1394_cycle64Seconds
) {
1082 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1083 if ((cycle_time
& 0x80000000) == 0)
1084 ohci
->bus_seconds
++;
1090 static int software_reset(struct fw_ohci
*ohci
)
1094 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
1096 for (i
= 0; i
< OHCI_LOOP_COUNT
; i
++) {
1097 if ((reg_read(ohci
, OHCI1394_HCControlSet
) &
1098 OHCI1394_HCControl_softReset
) == 0)
1106 static int ohci_enable(struct fw_card
*card
, u32
*config_rom
, size_t length
)
1108 struct fw_ohci
*ohci
= fw_ohci(card
);
1109 struct pci_dev
*dev
= to_pci_dev(card
->device
);
1111 if (software_reset(ohci
)) {
1112 fw_error("Failed to reset ohci card.\n");
1117 * Now enable LPS, which we need in order to start accessing
1118 * most of the registers. In fact, on some cards (ALI M5251),
1119 * accessing registers in the SClk domain without LPS enabled
1120 * will lock up the machine. Wait 50msec to make sure we have
1121 * full link enabled.
1123 reg_write(ohci
, OHCI1394_HCControlSet
,
1124 OHCI1394_HCControl_LPS
|
1125 OHCI1394_HCControl_postedWriteEnable
);
1129 reg_write(ohci
, OHCI1394_HCControlClear
,
1130 OHCI1394_HCControl_noByteSwapData
);
1132 reg_write(ohci
, OHCI1394_LinkControlSet
,
1133 OHCI1394_LinkControl_rcvSelfID
|
1134 OHCI1394_LinkControl_cycleTimerEnable
|
1135 OHCI1394_LinkControl_cycleMaster
);
1137 reg_write(ohci
, OHCI1394_ATRetries
,
1138 OHCI1394_MAX_AT_REQ_RETRIES
|
1139 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
1140 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8));
1142 ar_context_run(&ohci
->ar_request_ctx
);
1143 ar_context_run(&ohci
->ar_response_ctx
);
1145 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
1146 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
1147 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
1148 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
1149 reg_write(ohci
, OHCI1394_IntMaskSet
,
1150 OHCI1394_selfIDComplete
|
1151 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
1152 OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
1153 OHCI1394_isochRx
| OHCI1394_isochTx
|
1154 OHCI1394_postedWriteErr
| OHCI1394_cycle64Seconds
|
1155 OHCI1394_masterIntEnable
);
1157 /* Activate link_on bit and contender bit in our self ID packets.*/
1158 if (ohci_update_phy_reg(card
, 4, 0,
1159 PHY_LINK_ACTIVE
| PHY_CONTENDER
) < 0)
1163 * When the link is not yet enabled, the atomic config rom
1164 * update mechanism described below in ohci_set_config_rom()
1165 * is not active. We have to update ConfigRomHeader and
1166 * BusOptions manually, and the write to ConfigROMmap takes
1167 * effect immediately. We tie this to the enabling of the
1168 * link, so we have a valid config rom before enabling - the
1169 * OHCI requires that ConfigROMhdr and BusOptions have valid
1170 * values before enabling.
1172 * However, when the ConfigROMmap is written, some controllers
1173 * always read back quadlets 0 and 2 from the config rom to
1174 * the ConfigRomHeader and BusOptions registers on bus reset.
1175 * They shouldn't do that in this initial case where the link
1176 * isn't enabled. This means we have to use the same
1177 * workaround here, setting the bus header to 0 and then write
1178 * the right values in the bus reset tasklet.
1182 ohci
->next_config_rom
=
1183 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1184 &ohci
->next_config_rom_bus
,
1186 if (ohci
->next_config_rom
== NULL
)
1189 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1190 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
, length
* 4);
1193 * In the suspend case, config_rom is NULL, which
1194 * means that we just reuse the old config rom.
1196 ohci
->next_config_rom
= ohci
->config_rom
;
1197 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
1200 ohci
->next_header
= be32_to_cpu(ohci
->next_config_rom
[0]);
1201 ohci
->next_config_rom
[0] = 0;
1202 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
1203 reg_write(ohci
, OHCI1394_BusOptions
,
1204 be32_to_cpu(ohci
->next_config_rom
[2]));
1205 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
1207 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
1209 if (request_irq(dev
->irq
, irq_handler
,
1210 IRQF_SHARED
, ohci_driver_name
, ohci
)) {
1211 fw_error("Failed to allocate shared interrupt %d.\n",
1213 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1214 ohci
->config_rom
, ohci
->config_rom_bus
);
1218 reg_write(ohci
, OHCI1394_HCControlSet
,
1219 OHCI1394_HCControl_linkEnable
|
1220 OHCI1394_HCControl_BIBimageValid
);
1224 * We are ready to go, initiate bus reset to finish the
1228 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1234 ohci_set_config_rom(struct fw_card
*card
, u32
*config_rom
, size_t length
)
1236 struct fw_ohci
*ohci
;
1237 unsigned long flags
;
1238 int retval
= -EBUSY
;
1239 __be32
*next_config_rom
;
1240 dma_addr_t next_config_rom_bus
;
1242 ohci
= fw_ohci(card
);
1245 * When the OHCI controller is enabled, the config rom update
1246 * mechanism is a bit tricky, but easy enough to use. See
1247 * section 5.5.6 in the OHCI specification.
1249 * The OHCI controller caches the new config rom address in a
1250 * shadow register (ConfigROMmapNext) and needs a bus reset
1251 * for the changes to take place. When the bus reset is
1252 * detected, the controller loads the new values for the
1253 * ConfigRomHeader and BusOptions registers from the specified
1254 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1255 * shadow register. All automatically and atomically.
1257 * Now, there's a twist to this story. The automatic load of
1258 * ConfigRomHeader and BusOptions doesn't honor the
1259 * noByteSwapData bit, so with a be32 config rom, the
1260 * controller will load be32 values in to these registers
1261 * during the atomic update, even on litte endian
1262 * architectures. The workaround we use is to put a 0 in the
1263 * header quadlet; 0 is endian agnostic and means that the
1264 * config rom isn't ready yet. In the bus reset tasklet we
1265 * then set up the real values for the two registers.
1267 * We use ohci->lock to avoid racing with the code that sets
1268 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1272 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1273 &next_config_rom_bus
, GFP_KERNEL
);
1274 if (next_config_rom
== NULL
)
1277 spin_lock_irqsave(&ohci
->lock
, flags
);
1279 if (ohci
->next_config_rom
== NULL
) {
1280 ohci
->next_config_rom
= next_config_rom
;
1281 ohci
->next_config_rom_bus
= next_config_rom_bus
;
1283 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1284 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
,
1287 ohci
->next_header
= config_rom
[0];
1288 ohci
->next_config_rom
[0] = 0;
1290 reg_write(ohci
, OHCI1394_ConfigROMmap
,
1291 ohci
->next_config_rom_bus
);
1295 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1298 * Now initiate a bus reset to have the changes take
1299 * effect. We clean up the old config rom memory and DMA
1300 * mappings in the bus reset tasklet, since the OHCI
1301 * controller could need to access it before the bus reset
1305 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1307 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1308 next_config_rom
, next_config_rom_bus
);
1313 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
1315 struct fw_ohci
*ohci
= fw_ohci(card
);
1317 at_context_transmit(&ohci
->at_request_ctx
, packet
);
1320 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
1322 struct fw_ohci
*ohci
= fw_ohci(card
);
1324 at_context_transmit(&ohci
->at_response_ctx
, packet
);
1327 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
1329 struct fw_ohci
*ohci
= fw_ohci(card
);
1330 struct context
*ctx
= &ohci
->at_request_ctx
;
1331 struct driver_data
*driver_data
= packet
->driver_data
;
1332 int retval
= -ENOENT
;
1334 tasklet_disable(&ctx
->tasklet
);
1336 if (packet
->ack
!= 0)
1339 driver_data
->packet
= NULL
;
1340 packet
->ack
= RCODE_CANCELLED
;
1341 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1345 tasklet_enable(&ctx
->tasklet
);
1351 ohci_enable_phys_dma(struct fw_card
*card
, int node_id
, int generation
)
1353 struct fw_ohci
*ohci
= fw_ohci(card
);
1354 unsigned long flags
;
1358 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1359 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1362 spin_lock_irqsave(&ohci
->lock
, flags
);
1364 if (ohci
->generation
!= generation
) {
1370 * Note, if the node ID contains a non-local bus ID, physical DMA is
1371 * enabled for _all_ nodes on remote buses.
1374 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
1376 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
1378 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
1382 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1387 ohci_get_bus_time(struct fw_card
*card
)
1389 struct fw_ohci
*ohci
= fw_ohci(card
);
1393 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1394 bus_time
= ((u64
) ohci
->bus_seconds
<< 32) | cycle_time
;
1399 static int handle_ir_dualbuffer_packet(struct context
*context
,
1400 struct descriptor
*d
,
1401 struct descriptor
*last
)
1403 struct iso_context
*ctx
=
1404 container_of(context
, struct iso_context
, context
);
1405 struct db_descriptor
*db
= (struct db_descriptor
*) d
;
1407 size_t header_length
;
1411 if (db
->first_res_count
> 0 && db
->second_res_count
> 0)
1412 /* This descriptor isn't done yet, stop iteration. */
1415 header_length
= le16_to_cpu(db
->first_req_count
) -
1416 le16_to_cpu(db
->first_res_count
);
1418 i
= ctx
->header_length
;
1420 end
= p
+ header_length
;
1421 while (p
< end
&& i
+ ctx
->base
.header_size
<= PAGE_SIZE
) {
1423 * The iso header is byteswapped to little endian by
1424 * the controller, but the remaining header quadlets
1425 * are big endian. We want to present all the headers
1426 * as big endian, so we have to swap the first
1429 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
1430 memcpy(ctx
->header
+ i
+ 4, p
+ 8, ctx
->base
.header_size
- 4);
1431 i
+= ctx
->base
.header_size
;
1432 p
+= ctx
->base
.header_size
+ 4;
1435 ctx
->header_length
= i
;
1437 if (le16_to_cpu(db
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1438 ir_header
= (__le32
*) (db
+ 1);
1439 ctx
->base
.callback(&ctx
->base
,
1440 le32_to_cpu(ir_header
[0]) & 0xffff,
1441 ctx
->header_length
, ctx
->header
,
1442 ctx
->base
.callback_data
);
1443 ctx
->header_length
= 0;
1449 static int handle_ir_packet_per_buffer(struct context
*context
,
1450 struct descriptor
*d
,
1451 struct descriptor
*last
)
1453 struct iso_context
*ctx
=
1454 container_of(context
, struct iso_context
, context
);
1455 struct descriptor
*pd
= d
+ 1;
1457 size_t header_length
;
1461 if (pd
->res_count
== pd
->req_count
)
1462 /* Descriptor(s) not done yet, stop iteration */
1465 header_length
= le16_to_cpu(d
->req_count
);
1467 i
= ctx
->header_length
;
1468 z
= le32_to_cpu(pd
->branch_address
) & 0xf;
1470 end
= p
+ header_length
;
1472 while (p
< end
&& i
+ ctx
->base
.header_size
<= PAGE_SIZE
) {
1474 * The iso header is byteswapped to little endian by
1475 * the controller, but the remaining header quadlets
1476 * are big endian. We want to present all the headers
1477 * as big endian, so we have to swap the first quadlet.
1479 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
1480 memcpy(ctx
->header
+ i
+ 4, p
+ 8, ctx
->base
.header_size
- 4);
1481 i
+= ctx
->base
.header_size
;
1482 p
+= ctx
->base
.header_size
+ 4;
1485 ctx
->header_length
= i
;
1487 if (le16_to_cpu(pd
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1488 ir_header
= (__le32
*) (d
+ z
);
1489 ctx
->base
.callback(&ctx
->base
,
1490 le32_to_cpu(ir_header
[0]) & 0xffff,
1491 ctx
->header_length
, ctx
->header
,
1492 ctx
->base
.callback_data
);
1493 ctx
->header_length
= 0;
1500 static int handle_it_packet(struct context
*context
,
1501 struct descriptor
*d
,
1502 struct descriptor
*last
)
1504 struct iso_context
*ctx
=
1505 container_of(context
, struct iso_context
, context
);
1507 if (last
->transfer_status
== 0)
1508 /* This descriptor isn't done yet, stop iteration. */
1511 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
)
1512 ctx
->base
.callback(&ctx
->base
, le16_to_cpu(last
->res_count
),
1513 0, NULL
, ctx
->base
.callback_data
);
1518 static struct fw_iso_context
*
1519 ohci_allocate_iso_context(struct fw_card
*card
, int type
, size_t header_size
)
1521 struct fw_ohci
*ohci
= fw_ohci(card
);
1522 struct iso_context
*ctx
, *list
;
1523 descriptor_callback_t callback
;
1525 unsigned long flags
;
1526 int index
, retval
= -ENOMEM
;
1528 if (type
== FW_ISO_CONTEXT_TRANSMIT
) {
1529 mask
= &ohci
->it_context_mask
;
1530 list
= ohci
->it_context_list
;
1531 callback
= handle_it_packet
;
1533 mask
= &ohci
->ir_context_mask
;
1534 list
= ohci
->ir_context_list
;
1535 if (ohci
->version
>= OHCI_VERSION_1_1
)
1536 callback
= handle_ir_dualbuffer_packet
;
1538 callback
= handle_ir_packet_per_buffer
;
1541 spin_lock_irqsave(&ohci
->lock
, flags
);
1542 index
= ffs(*mask
) - 1;
1544 *mask
&= ~(1 << index
);
1545 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1548 return ERR_PTR(-EBUSY
);
1550 if (type
== FW_ISO_CONTEXT_TRANSMIT
)
1551 regs
= OHCI1394_IsoXmitContextBase(index
);
1553 regs
= OHCI1394_IsoRcvContextBase(index
);
1556 memset(ctx
, 0, sizeof(*ctx
));
1557 ctx
->header_length
= 0;
1558 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
1559 if (ctx
->header
== NULL
)
1562 retval
= context_init(&ctx
->context
, ohci
, ISO_BUFFER_SIZE
,
1565 goto out_with_header
;
1570 free_page((unsigned long)ctx
->header
);
1572 spin_lock_irqsave(&ohci
->lock
, flags
);
1573 *mask
|= 1 << index
;
1574 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1576 return ERR_PTR(retval
);
1579 static int ohci_start_iso(struct fw_iso_context
*base
,
1580 s32 cycle
, u32 sync
, u32 tags
)
1582 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1583 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
1587 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1588 index
= ctx
- ohci
->it_context_list
;
1591 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
1592 (cycle
& 0x7fff) << 16;
1594 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
1595 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
1596 context_run(&ctx
->context
, match
);
1598 index
= ctx
- ohci
->ir_context_list
;
1599 control
= IR_CONTEXT_ISOCH_HEADER
;
1600 if (ohci
->version
>= OHCI_VERSION_1_1
)
1601 control
|= IR_CONTEXT_DUAL_BUFFER_MODE
;
1602 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
1604 match
|= (cycle
& 0x07fff) << 12;
1605 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
1608 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
1609 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
1610 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
1611 context_run(&ctx
->context
, control
);
1617 static int ohci_stop_iso(struct fw_iso_context
*base
)
1619 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
1620 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1623 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1624 index
= ctx
- ohci
->it_context_list
;
1625 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
1627 index
= ctx
- ohci
->ir_context_list
;
1628 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
1631 context_stop(&ctx
->context
);
1636 static void ohci_free_iso_context(struct fw_iso_context
*base
)
1638 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
1639 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1640 unsigned long flags
;
1643 ohci_stop_iso(base
);
1644 context_release(&ctx
->context
);
1645 free_page((unsigned long)ctx
->header
);
1647 spin_lock_irqsave(&ohci
->lock
, flags
);
1649 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1650 index
= ctx
- ohci
->it_context_list
;
1651 ohci
->it_context_mask
|= 1 << index
;
1653 index
= ctx
- ohci
->ir_context_list
;
1654 ohci
->ir_context_mask
|= 1 << index
;
1657 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1661 ohci_queue_iso_transmit(struct fw_iso_context
*base
,
1662 struct fw_iso_packet
*packet
,
1663 struct fw_iso_buffer
*buffer
,
1664 unsigned long payload
)
1666 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1667 struct descriptor
*d
, *last
, *pd
;
1668 struct fw_iso_packet
*p
;
1670 dma_addr_t d_bus
, page_bus
;
1671 u32 z
, header_z
, payload_z
, irq
;
1672 u32 payload_index
, payload_end_index
, next_page_index
;
1673 int page
, end_page
, i
, length
, offset
;
1676 * FIXME: Cycle lost behavior should be configurable: lose
1677 * packet, retransmit or terminate..
1681 payload_index
= payload
;
1687 if (p
->header_length
> 0)
1690 /* Determine the first page the payload isn't contained in. */
1691 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
1692 if (p
->payload_length
> 0)
1693 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
1699 /* Get header size in number of descriptors. */
1700 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
1702 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
1707 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1708 d
[0].req_count
= cpu_to_le16(8);
1710 header
= (__le32
*) &d
[1];
1711 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
1712 IT_HEADER_TAG(p
->tag
) |
1713 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
1714 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
1715 IT_HEADER_SPEED(ctx
->base
.speed
));
1717 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
1718 p
->payload_length
));
1721 if (p
->header_length
> 0) {
1722 d
[2].req_count
= cpu_to_le16(p
->header_length
);
1723 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
1724 memcpy(&d
[z
], p
->header
, p
->header_length
);
1727 pd
= d
+ z
- payload_z
;
1728 payload_end_index
= payload_index
+ p
->payload_length
;
1729 for (i
= 0; i
< payload_z
; i
++) {
1730 page
= payload_index
>> PAGE_SHIFT
;
1731 offset
= payload_index
& ~PAGE_MASK
;
1732 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
1734 min(next_page_index
, payload_end_index
) - payload_index
;
1735 pd
[i
].req_count
= cpu_to_le16(length
);
1737 page_bus
= page_private(buffer
->pages
[page
]);
1738 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
1740 payload_index
+= length
;
1744 irq
= DESCRIPTOR_IRQ_ALWAYS
;
1746 irq
= DESCRIPTOR_NO_IRQ
;
1748 last
= z
== 2 ? d
: d
+ z
- 1;
1749 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1751 DESCRIPTOR_BRANCH_ALWAYS
|
1754 context_append(&ctx
->context
, d
, z
, header_z
);
1760 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context
*base
,
1761 struct fw_iso_packet
*packet
,
1762 struct fw_iso_buffer
*buffer
,
1763 unsigned long payload
)
1765 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1766 struct db_descriptor
*db
= NULL
;
1767 struct descriptor
*d
;
1768 struct fw_iso_packet
*p
;
1769 dma_addr_t d_bus
, page_bus
;
1770 u32 z
, header_z
, length
, rest
;
1771 int page
, offset
, packet_count
, header_size
;
1774 * FIXME: Cycle lost behavior should be configurable: lose
1775 * packet, retransmit or terminate..
1779 d
= context_get_descriptors(&ctx
->context
, 2, &d_bus
);
1783 db
= (struct db_descriptor
*) d
;
1784 db
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
1785 DESCRIPTOR_BRANCH_ALWAYS
|
1787 db
->first_size
= cpu_to_le16(ctx
->base
.header_size
+ 4);
1788 context_append(&ctx
->context
, d
, 2, 0);
1795 * The OHCI controller puts the status word in the header
1796 * buffer too, so we need 4 extra bytes per packet.
1798 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
1799 header_size
= packet_count
* (ctx
->base
.header_size
+ 4);
1801 /* Get header size in number of descriptors. */
1802 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
1803 page
= payload
>> PAGE_SHIFT
;
1804 offset
= payload
& ~PAGE_MASK
;
1805 rest
= p
->payload_length
;
1807 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1809 d
= context_get_descriptors(&ctx
->context
,
1810 z
+ header_z
, &d_bus
);
1814 db
= (struct db_descriptor
*) d
;
1815 db
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
1816 DESCRIPTOR_BRANCH_ALWAYS
);
1817 db
->first_size
= cpu_to_le16(ctx
->base
.header_size
+ 4);
1818 db
->first_req_count
= cpu_to_le16(header_size
);
1819 db
->first_res_count
= db
->first_req_count
;
1820 db
->first_buffer
= cpu_to_le32(d_bus
+ sizeof(*db
));
1822 if (offset
+ rest
< PAGE_SIZE
)
1825 length
= PAGE_SIZE
- offset
;
1827 db
->second_req_count
= cpu_to_le16(length
);
1828 db
->second_res_count
= db
->second_req_count
;
1829 page_bus
= page_private(buffer
->pages
[page
]);
1830 db
->second_buffer
= cpu_to_le32(page_bus
+ offset
);
1832 if (p
->interrupt
&& length
== rest
)
1833 db
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
1835 context_append(&ctx
->context
, d
, z
, header_z
);
1836 offset
= (offset
+ length
) & ~PAGE_MASK
;
1845 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context
*base
,
1846 struct fw_iso_packet
*packet
,
1847 struct fw_iso_buffer
*buffer
,
1848 unsigned long payload
)
1850 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1851 struct descriptor
*d
= NULL
, *pd
= NULL
;
1852 struct fw_iso_packet
*p
;
1853 dma_addr_t d_bus
, page_bus
;
1854 u32 z
, header_z
, rest
;
1855 int i
, page
, offset
, packet_count
, header_size
;
1858 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
1862 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
1863 DESCRIPTOR_INPUT_LAST
|
1864 DESCRIPTOR_BRANCH_ALWAYS
|
1866 context_append(&ctx
->context
, d
, 1, 0);
1869 /* one descriptor for header, one for payload */
1870 /* FIXME: handle cases where we need multiple desc. for payload */
1875 * The OHCI controller puts the status word in the
1876 * buffer too, so we need 4 extra bytes per packet.
1878 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
1879 header_size
= packet_count
* (ctx
->base
.header_size
+ 4);
1881 /* Get header size in number of descriptors. */
1882 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
1883 page
= payload
>> PAGE_SHIFT
;
1884 offset
= payload
& ~PAGE_MASK
;
1885 rest
= p
->payload_length
;
1887 for (i
= 0; i
< packet_count
; i
++) {
1888 /* d points to the header descriptor */
1889 d
= context_get_descriptors(&ctx
->context
,
1890 z
+ header_z
, &d_bus
);
1894 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
);
1895 d
->req_count
= cpu_to_le16(header_size
);
1896 d
->res_count
= d
->req_count
;
1897 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
1899 /* pd points to the payload descriptor */
1901 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
1902 DESCRIPTOR_INPUT_LAST
|
1903 DESCRIPTOR_BRANCH_ALWAYS
);
1905 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
1907 pd
->req_count
= cpu_to_le16(rest
);
1908 pd
->res_count
= pd
->req_count
;
1910 page_bus
= page_private(buffer
->pages
[page
]);
1911 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
1913 context_append(&ctx
->context
, d
, z
, header_z
);
1920 ohci_queue_iso(struct fw_iso_context
*base
,
1921 struct fw_iso_packet
*packet
,
1922 struct fw_iso_buffer
*buffer
,
1923 unsigned long payload
)
1925 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1927 if (base
->type
== FW_ISO_CONTEXT_TRANSMIT
)
1928 return ohci_queue_iso_transmit(base
, packet
, buffer
, payload
);
1929 else if (ctx
->context
.ohci
->version
>= OHCI_VERSION_1_1
)
1930 return ohci_queue_iso_receive_dualbuffer(base
, packet
,
1933 return ohci_queue_iso_receive_packet_per_buffer(base
, packet
,
1938 static const struct fw_card_driver ohci_driver
= {
1939 .name
= ohci_driver_name
,
1940 .enable
= ohci_enable
,
1941 .update_phy_reg
= ohci_update_phy_reg
,
1942 .set_config_rom
= ohci_set_config_rom
,
1943 .send_request
= ohci_send_request
,
1944 .send_response
= ohci_send_response
,
1945 .cancel_packet
= ohci_cancel_packet
,
1946 .enable_phys_dma
= ohci_enable_phys_dma
,
1947 .get_bus_time
= ohci_get_bus_time
,
1949 .allocate_iso_context
= ohci_allocate_iso_context
,
1950 .free_iso_context
= ohci_free_iso_context
,
1951 .queue_iso
= ohci_queue_iso
,
1952 .start_iso
= ohci_start_iso
,
1953 .stop_iso
= ohci_stop_iso
,
1956 static int __devinit
1957 pci_probe(struct pci_dev
*dev
, const struct pci_device_id
*ent
)
1959 struct fw_ohci
*ohci
;
1960 u32 bus_options
, max_receive
, link_speed
;
1965 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
1967 fw_error("Could not malloc fw_ohci data.\n");
1971 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
1973 err
= pci_enable_device(dev
);
1975 fw_error("Failed to enable OHCI hardware.\n");
1979 pci_set_master(dev
);
1980 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
1981 pci_set_drvdata(dev
, ohci
);
1983 spin_lock_init(&ohci
->lock
);
1985 tasklet_init(&ohci
->bus_reset_tasklet
,
1986 bus_reset_tasklet
, (unsigned long)ohci
);
1988 err
= pci_request_region(dev
, 0, ohci_driver_name
);
1990 fw_error("MMIO resource unavailable\n");
1994 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
1995 if (ohci
->registers
== NULL
) {
1996 fw_error("Failed to remap registers\n");
2001 ar_context_init(&ohci
->ar_request_ctx
, ohci
,
2002 OHCI1394_AsReqRcvContextControlSet
);
2004 ar_context_init(&ohci
->ar_response_ctx
, ohci
,
2005 OHCI1394_AsRspRcvContextControlSet
);
2007 context_init(&ohci
->at_request_ctx
, ohci
, AT_BUFFER_SIZE
,
2008 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
2010 context_init(&ohci
->at_response_ctx
, ohci
, AT_BUFFER_SIZE
,
2011 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
2013 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
2014 ohci
->it_context_mask
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
2015 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
2016 size
= sizeof(struct iso_context
) * hweight32(ohci
->it_context_mask
);
2017 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
2019 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
2020 ohci
->ir_context_mask
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
2021 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
2022 size
= sizeof(struct iso_context
) * hweight32(ohci
->ir_context_mask
);
2023 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
2025 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
2026 fw_error("Out of memory for it/ir contexts.\n");
2028 goto fail_registers
;
2031 /* self-id dma buffer allocation */
2032 ohci
->self_id_cpu
= dma_alloc_coherent(ohci
->card
.device
,
2036 if (ohci
->self_id_cpu
== NULL
) {
2037 fw_error("Out of memory for self ID buffer.\n");
2039 goto fail_registers
;
2042 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
2043 max_receive
= (bus_options
>> 12) & 0xf;
2044 link_speed
= bus_options
& 0x7;
2045 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
2046 reg_read(ohci
, OHCI1394_GUIDLo
);
2048 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
2052 ohci
->version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2053 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2054 dev
->dev
.bus_id
, ohci
->version
>> 16, ohci
->version
& 0xff);
2058 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2059 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2061 kfree(ohci
->it_context_list
);
2062 kfree(ohci
->ir_context_list
);
2063 pci_iounmap(dev
, ohci
->registers
);
2065 pci_release_region(dev
, 0);
2067 pci_disable_device(dev
);
2069 fw_card_put(&ohci
->card
);
2074 static void pci_remove(struct pci_dev
*dev
)
2076 struct fw_ohci
*ohci
;
2078 ohci
= pci_get_drvdata(dev
);
2079 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2081 fw_core_remove_card(&ohci
->card
);
2084 * FIXME: Fail all pending packets here, now that the upper
2085 * layers can't queue any more.
2088 software_reset(ohci
);
2089 free_irq(dev
->irq
, ohci
);
2090 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2091 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2092 kfree(ohci
->it_context_list
);
2093 kfree(ohci
->ir_context_list
);
2094 pci_iounmap(dev
, ohci
->registers
);
2095 pci_release_region(dev
, 0);
2096 pci_disable_device(dev
);
2097 fw_card_put(&ohci
->card
);
2099 fw_notify("Removed fw-ohci device.\n");
2103 static int pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2105 struct fw_ohci
*ohci
= pci_get_drvdata(pdev
);
2108 software_reset(ohci
);
2109 free_irq(pdev
->irq
, ohci
);
2110 err
= pci_save_state(pdev
);
2112 fw_error("pci_save_state failed\n");
2115 err
= pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
2117 fw_error("pci_set_power_state failed with %d\n", err
);
2122 static int pci_resume(struct pci_dev
*pdev
)
2124 struct fw_ohci
*ohci
= pci_get_drvdata(pdev
);
2127 pci_set_power_state(pdev
, PCI_D0
);
2128 pci_restore_state(pdev
);
2129 err
= pci_enable_device(pdev
);
2131 fw_error("pci_enable_device failed\n");
2135 return ohci_enable(&ohci
->card
, NULL
, 0);
2139 static struct pci_device_id pci_table
[] = {
2140 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
2144 MODULE_DEVICE_TABLE(pci
, pci_table
);
2146 static struct pci_driver fw_ohci_pci_driver
= {
2147 .name
= ohci_driver_name
,
2148 .id_table
= pci_table
,
2150 .remove
= pci_remove
,
2152 .resume
= pci_resume
,
2153 .suspend
= pci_suspend
,
2157 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2158 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2159 MODULE_LICENSE("GPL");
2161 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2162 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2163 MODULE_ALIAS("ohci1394");
2166 static int __init
fw_ohci_init(void)
2168 return pci_register_driver(&fw_ohci_pci_driver
);
2171 static void __exit
fw_ohci_cleanup(void)
2173 pci_unregister_driver(&fw_ohci_pci_driver
);
2176 module_init(fw_ohci_init
);
2177 module_exit(fw_ohci_cleanup
);