
Babel

Version 3.9o

2016/02/01

Original author

Johannes L. Braams

Current maintainer

Javier Bezos

The standard distribution of LATEX contains a number
of document classes that are meant to be used, but
also serve as examples for other users to create
their own document classes. These document
classes have become very popular among LATEX
users. But it should be kept in mind that they were
designed for American tastes and typography. At
one time they even contained a number of
hard-wired texts.

This manual describes babel, a package that makes
use of the capabilities of TEX version 3 and, to some
extent, xetex and luatex, to provide an environment
in which documents can be typeset in a language
other than US English, or in more than one language
or script.

However, no attempt has been done to take full
advantage of the features provided by the latter,
which would require a completely new core (as for
example polyglossia or as part of LATEX3).

Contents

I User guide 4

1 The user interface 4
1.1 Selecting languages . 5
1.2 More on selection . 7
1.3 Getting the current language name 8
1.4 Selecting scripts . 8
1.5 Shorthands . 9
1.6 Package options . 12
1.7 The base option . 14
1.8 Hooks . 14
1.9 Hyphenation tools . 16
1.10 Language attributes . 17
1.11 Languages supported by babel . 17
1.12 Tips, workarounds, know issues and notes 19
1.13 Future work . 20

2 Loading languages with language.dat 21
2.1 Format . 21

3 The interface between the core of babel and the language definition
files 22
3.1 Basic macros . 23
3.2 Skeleton . 24
3.3 Support for active characters . 25
3.4 Support for saving macro definitions 26
3.5 Support for extending macros . 26
3.6 Macros common to a number of languages 26
3.7 Encoding-dependent strings . 27

4 Compatibility and changes 31
4.1 Compatibility with german.sty . 31
4.2 Compatibility with ngerman.sty . 31
4.3 Compatibility with the french package 31
4.4 Changes in babel version 3.9 . 31
4.5 Changes in babel version 3.7 . 31
4.6 Changes in babel version 3.6 . 33
4.7 Changes in babel version 3.5 . 34

II The code 34

5 Identification and loading of required files 34
5.1 Multiple languages . 36

6 The Package File (LATEX) 37
6.1 base . 37
6.2 key=value options and other general option 37
6.3 Conditional loading of shorthands . 39
6.4 Language options . 40

1

7 The kernel of Babel (common) 43
7.1 Tools . 44
7.2 Hooks . 46
7.3 Setting up language files . 48
7.4 Shorthands . 50
7.5 Language attributes . 60
7.6 Support for saving macro definitions 62
7.7 Short tags . 63
7.8 Hyphens . 64
7.9 Multiencoding strings . 65
7.10 Macros common to a number of languages 72
7.11 Making glyphs available . 72

7.11.1 Quotation marks . 72
7.11.2 Letters . 73
7.11.3 Shorthands for quotation marks 74
7.11.4 Umlauts and tremas . 75

8 The kernel of Babel (only LATEX) 77
8.1 The redefinition of the style commands 77
8.2 Cross referencing macros . 77
8.3 Marks . 81
8.4 Preventing clashes with other packages 82

8.4.1 ifthen . 82
8.4.2 varioref . 83
8.4.3 hhline . 83
8.4.4 hyperref . 84
8.4.5 fancyhdr . 84

8.5 Encoding issues . 85
8.6 Local Language Configuration . 86

9 Internationalizing LATEX 2.09 87

10 Multiple languages 91
10.1 Selecting the language . 92
10.2 Errors . 99

11 Loading hyphenation patterns 101

12 The ‘nil’ language 106

13 Support for Plain TEX 106
13.1 Not renaming hyphen.tex . 106
13.2 Emulating some LATEX features . 108
13.3 General tools . 108
13.4 Encoding related macros . 112
13.5 Babel options . 115

14 Tentative font handling 115

15 Hooks for XeTeX and LuaTeX 116
15.1 XeTeX . 116
15.2 LuaTeX . 117

16 Conclusion 121

2

17 Acknowledgements 121

3

Part I

User guide

1 The user interface

The basic user interface of this package is quite simple. It consists of a set of
commands that switch from one language to another, and a set of commands that
deal with shorthands. It is also possible to find out what the current language is.
In most cases, a single language is required, and then all you need in LATEX is to
load the package using its standand mechanism for this purpose, namely, passing
that language as an optional argument.
In multilingual documents, just use several option. So, in LATEX2e the preamble of
the document:

\documentclass{article}
\usepackage[dutch,english]{babel}

would tell LATEX that the document would be written in two languages, Dutch and
English, and that English would be the first language in use, and the main one.
You can also set the main language explicitly:

\documentclass{article}
\usepackage[main=english,dutch]{babel}

Another approach is making dutch and english global options in order to let other
packages detect and use them:

\documentclass[dutch,english]{article}
\usepackage{babel}
\usepackage{varioref}

In this last example, the package varioref will also see the options and will be
able to use them.
Languages may be set as global and as package option at the same time, but in
such a case you should set explicitly the main language with the package option
main:

\documentclass[italian]{book}
\usepackage[ngerman,main=italian]{babel}

New 3.9c The basic behaviour of some languages can be modified when loading
babel by means of modifiers. They are set after the language name, and are
prefixed with a dot (only when the language is set as package option – neither
global options nor the main key accept them). An example is (spaces are not
significant and they can be added or removed):1

\usepackage[latin.medieval, spanish.notilde.lcroman, danish]{babel}

Attributes (described below) are considered modifiers, ie, you can set an attribute
by including it in the list of modifiers. However, modifiers is a more general
mechanism.

1No predefined “axis” for modifiers are provided because languages and their scripts have quite
different needs.

4

Because of the way babel has evolved, “language” can refer to (1) a set of
hyphenation patterns as preloaded into the format, (2) a package option, (3) an
ldf file, and (4) a name used in the document to select a language or dialect. So, a
package option refers to a language in a generic way – sometimes it is the actual
language name used to select it, sometimes it is a file name loading a language
with a different name, sometimes it is a file name loading several languages.
Please, read the documentation for specific languages for further info.
Loading directly sty files in LATEX (ie, \usepackage{〈language〉}) is deprecated
and you will get the error:2

! Package babel Error: You are loading directly a language style.
(babel) This syntax is deprecated and you must use
(babel) \usepackage[language]{babel}.

Another typical error when using babel is the following:3

! Package babel Error: Unknown language ‘LANG’. Either you have misspelled
(babel) its name, it has not been installed, or you requested
(babel) it in a previous run. Fix its name, install it or just
(babel) rerun the file, respectively

The most frequent reason is, by far, the latest (for example, you included spanish,
but you realized this language is not used after all, and therefore you removed it
from the option list). In most cases, the error vanishes when the document is
typeset again, but in more severe ones you will need to remove the aux file.
In Plain, load languages styles with \input and then use \begindocument (the
latter is defined by babel):

\input estonian.sty
\begindocument

Note not all languages provide a sty file and some of them are not compatible with
Plain.4

1.1 Selecting languages

This section describes the commands to be used in the document to switch the
language in multilingual document.
The main language is selected automatically when the document environment
begins. In the preamble it has not been selected, except hyphenation patterns and
the name assigned to \languagename (in particular, shorthands, captions and date
are not activated). If you need to define boxes and the like in the preamble, you
might want to use some of the following commands.

{〈language〉}\selectlanguage

When a user wants to switch from one language to another he can do so using the
macro \selectlanguage. This macro takes the language, defined previously by a
language definition file, as its argument. It calls several macros that should be
defined in the language definition files to activate the special definitions for the
language chosen. For “historical reasons”, a macro name is converted to a

2In former versions the error read “You have used an old interface to call babel”, not very helpful.
3In former versions the error read “You haven’t loaded the language LANG yet”.
4Even in the babel kernel there were some macros not compatible with plain. Hopefully these issues

will be fixed soon.

5

language name without the leading \; in other words, the two following
declarations are equivalent:

\selectlanguage{german}
\selectlanguage{\german}

Using a macro instead of a “real” name is deprecated.
If used inside braces there might be some non-local changes, as this would be
roughly equivalent to:

{\selectlanguage{<inner-language>} ...}\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this code with an
additional grouping level.
This command can be used as environment, too.

{〈language〉} . . . \end{otherlanguage}\begin{otherlanguage}

The environment otherlanguage does basically the same as \selectlanguage,
except the language change is (mostly) local to the environment.
Actually, there might be some non-local changes, as this environment is roughly
equivalent to:

\begingroup
\selectlanguage{<inner-language>}
...
\endgroup
\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this environment with
an additional grouping, like braces {}.
Spaces after the environment are ignored.

{〈language〉}{〈text〉}\foreignlanguage

The command \foreignlanguage takes two arguments; the second argument is a
phrase to be typeset according to the rules of the language named in its first
argument. This command (1) only switches the extra definitions and the
hyphenation rules for the language, not the names and dates, (2) does not send
information about the language to auxiliary files (i.e., the surrounding language is
still in force), and (3) it works even if the language has not been set as package
option (but in such a case it only sets the hyphenation patterns and a warning is
shown).

{〈language〉} . . . \end{otherlanguage*}\begin{otherlanguage*}

Same as \foreignlanguage but as environment. Spaces after the environment are
not ignored.
This environment (or in some cases otherlanguage) may be required for
intermixing left-to-right typesetting with right-to-left typesetting in engines not
supporting a change in the writing direction inside a line.

{〈language〉} . . . \end{hyphenrules}\begin{hyphenrules}

The environment hyphenrules can be used to select only the hyphenation rules to
be used (it can be used as command, too). This can for instance be used to select

6

‘nohyphenation’, provided that in language.dat the ‘language’ nohyphenation is
defined by loading zerohyph.tex. It deactivates language shorthands, too (but not
user shorthands).
Except for these simple uses, hyphenrules is discouraged and otherlanguage*
(the starred version) is preferred, as the former does not take into account
possible changes in encodings or characters like, say, ’ done by some languages
(eg, italian, frenchb, ukraineb). To set hyphenation exceptions, use
\babelhyphenation (see below).

1.2 More on selection

{〈tag1〉 = 〈language1〉, 〈tag2〉 = 〈language2〉, . . . }\babeltags

New 3.9i In multilingual documents with many language switches the commands
above can be cumbersome. With this tool shorter names can be defined. It adds
nothing really new – it is just syntactical sugar.
It defines \text〈tag1〉{〈text〉} to be \foreignlanguage{〈language1〉}{〈text〉},
and \begin{〈tag1〉} to be \begin{otherlanguage*}{〈language1〉}, and so on.
Note \〈tag1〉 is also allowed, but remember set it locally inside a group. So, with

\babeltags{de = german}

yo can write

text \textde{German text} text

and

text
\begin{de}
German text
\end{de}
text

[include=〈commands〉,exclude=〈commands〉,fontenc=〈encoding〉]{〈language〉}\babelensure

New 3.9i Except in a few languages, like Russian, captions and dates are just
strings, and do not switch the language. That means you should set it explicitly if
you want to use them, or hyphenation (and in some cases the text itself) will be
wrong. For example:

\foreignlanguage{russian}{text \foreignlanguage{polish}{\seename} text}

Of course, TEX can do it for you. To avoid switching the language all the while,
\babelensure redefines the captions for a given language to wrap them with a
selector. By default only the basic captions and \today are redefined, but you can
add further macros with the key include in the optional argument (without
commas). Macros not to be modified are listed in exclude. You can also enforce a
font encoding with fontenc.5 A couple of examples:

\babelensure[include=\Today]{spanish}
\babelensure[fontenc=T5]{vietnamese}

5With it encoded string may not work as expected.

7

They are activated when the language is selected (at the afterextras event), and
it makes some assumptions which could not be fulfilled in some languages. Note
also you should include only macros defined by the language, not global macros
(eg, \TeX of \dag).

1.3 Getting the current language name

The control sequence \languagename contains the name of the current language.\languagename
However, due to some internal inconsistencies in catcodes it should not be used to
test its value (use iflang, by Heiko Oberdiek).

{〈language〉}{〈true〉}{〈false〉}\iflanguage

If more than one language is used, it might be necessary to know which language
is active at a specific time. This can be checked by a call to \iflanguage, but note
here “language” is used in the TEX sense, as a set of hyphenation patterns, and not
as its babel name. This macro takes three arguments. The first argument is the
name of a language; the second and third arguments are the actions to take if the
result of the test is true or false respectively. The advice about \languagename also
applies here – use iflang instead of \iflanguage if possible.

1.4 Selecting scripts

Currently babel provides no standard interface to select scripts, because they are
best selected with either \fontencoding (low level) or a language name (high
level). Even the Latin script may require different encodings (ie, sets of glyphs)
depending on the language, and therefore such a switch would be in a sense
incomplete.6

Some languages sharing the same script define macros to switch it (eg,
\textcyrillic), but be aware they may also set the language to a certain default.
Even the babel core defined \textlatin, but is was somewhat buggy because in
some cases it messed up encodings and fonts (for example, if the main latin
encoding was LY1), and therefore it has been deprecated.7

{〈text〉}\ensureascii

New 3.9i This macro makes sure 〈text〉 is typeset with a LICR-savvy encoding in
the ASCII range. It is used to redefine \TeX and \LaTeX so that they are correctly
typeset even with LGR or X2 (the complete list is stored in \BabelNonASCII, which
by default is LGR, X2, OT2, OT3, OT6, LHE, LWN, LMA, LMC, LMS, LMU, but you can
modify it). So, in some sense it fixes the bug described in the previous paragraph.
If non-ASCII encodings are not loaded (or no encoding at all), it is no-op (also \TeX
and \LaTeX are not redefined); otherwise, \ensureascii switches to the encoding
at the beginning of the document if ASCII-savvy, or else the last ASCII-savvy
encoding loaded. For example, if you load LY1,LGR, then it is set to LY1, but if you
load LY1,T2A it is set to T2A. The symbol encodings TS1, T3, and TS3 are not taken
into account, since they are not used for “ordinary” text.

6The so-called Unicode fonts does not improve the situation either. So, a font suited for Vietnamese
is not necessarily suited for, say, romanization of Indic languages, and the fact it contains glyphs for
Modern Greek does not mean it includes them for Classic Greek. As to directionality, it poses special
challenges because it also affects individual characters and layout elements.

7But still defined for backwards compatibility.

8

The foregoing rules (which are applied “at begin document”) cover most of cases.
Note no asumption is made on characters above 127, which may not follow the
LICR conventions – the goal is just to ensure most of the ASCII letters and symbols
are the right ones.

1.5 Shorthands

A shorthand is a sequence of one or two characters that expands to arbitrary TEX
code.
Shorthands can be used for different kinds of things, as for example: (1) in some
languages shorthands such as "a are defined to be able to hyphenate the word if
the encoding is OT1; (2) in some languages shorthands such as ! are used to insert
the right amount of white space; (3) several kinds of discretionaries and breaks
can be inserted easily with "-, "=, etc.
The package inputenc as well as xetex an luatex have alleviated entering
non-ASCII characters, but minority languages and some kinds of text can still
require characters not directly available in the keyboards (and sometimes not even
as separated or precomposed Unicode characters). As to the point 2, now pdfTeX
provides \knbccode. Tools of point 3 can be still very useful in general.
There are three levels of shorthands: user, language, and system (by order of
precedence). Version 3.9 introduces the language user level on top of the user
level, as described below. In most cases, you will use only shorthands provided by
languages.
Please, note the following:

1. Activated chars used for two-char shorthands cannot be followed by a closing
brace } and the spaces following are gobbled. With one-char shorthands
(eg, :), they are preserved.

2. If on a certain level (system, language, user) there is a one-char shorthand,
two-char ones starting with that char and on the same level are ignored.

A typical error when using shorthands is the following:

! Argument of \language@active@arg" has an extra }.

It means there is a closing brace just after a shorthand, which is not allowed
(eg, "}). Just add {} after (eg, "{}}).

{〈shorthands-list〉}\shorthandon

*{〈shorthands-list〉}\shorthandoff

It is sometimes necessary to switch a shorthand character off temporarily, because
it must be used in an entirely different way. For this purpose, the user commands
\shorthandoff and \shorthandon are provided. They each take a list of
characters as their arguments.
The command \shorthandoff sets the \catcode for each of the characters in its
argument to other (12); the command \shorthandon sets the \catcode to active
(13). Both commands only work on ‘known’ shorthand characters. If a character is
not known to be a shorthand character its category code will be left unchanged.
New 3.9a Note however, \shorthandoff does not behave as you would expect

with characters like ~ or ^, because they usually are not “other”. For them
\shorthandoff* is provided, so that with

\shorthandoff*{~^}

9

~ is still active, very likely with the meaning of a non-breaking space, and ^ is the
superscript character. The catcodes used are those when the shorthands are
defined, usually when language files are loaded.

*{〈char〉}\useshorthands

The command \useshorthands initiates the definition of user-defined shorthand
sequences. It has one argument, the character that starts these personal
shorthands.
New 3.9a However, user shorthands are not always alive, as they may be

deactivated by languages (for example, if you use " for your user shorthands and
switch from german to french, they stop working). Therefore, a starred version
\useshorthands*{〈char〉} is provided, which makes sure shorthands are always
activated.
Currently, if the package option shorthands is used, you must include any
character to be activated with \useshorthands. This restriction will be lifted in a
future release.

[〈language〉,〈language〉,...]{〈shorthand〉}{〈code〉}\defineshorthand

The command \defineshorthand takes two arguments: the first is a one- or
two-character shorthand sequence, and the second is the code the shorthand
should expand to.
New 3.9a An optional argument allows to (re)define language and system

shorthands (some languages do not activate shorthands, so you may want to add
\languageshorthands{〈lang〉} to the corresponding \extras〈lang〉). By default,
user shorthands are (re)defined.
User shorthands override language ones, which in turn override system
shorthands. Language-dependent user shorthands (new in 3.9) take precedence
over “normal” user shorthands.
As an example of their applications, let’s assume you want a unified set of
shorthand for discretionaries (languages do not define shorthands consistently,
and "-, \-, "= have different meanings). You could start with, say:

\useshorthands*{"}
\defineshorthand{"*}{\babelhyphen{soft}}
\defineshorthand{"-}{\babelhyphen{hard}}

However, behaviour of hyphens is language dependent. For example, in languages
like Polish and Portugese, a hard hyphen inside compound words are repeated at
the beginning of the next line. You could then set:

\defineshorthand[*polish,*portugese]{"-}{\babelhyphen{repeat}}

Here, options with * set a language-dependent user shorthand, which means the
generic one above only applies for the rest of languages; without * they would
(re)define the language shorthands instead, which are overriden by user ones.
Now, you have a single unified shorthand ("-), with a content-based meaning
(‘compound word hyphen’) whose visual behavior is that expected in each context.

{〈original〉}{〈alias〉}\aliasshorthand

The command \aliasshorthand can be used to let another character perform the
same functions as the default shorthand character. If one prefers for example to
use the character / over " in typing Polish texts, this can be achieved by entering

10

\aliasshorthand{"}{/}. Please note the substitute character must not have been
declared before as shorthand (in such case, \aliashorthands is ignored).
The following example shows how to replace a shorthand by another

\aliasshorthand{~}{^}
\AtBeginDocument{\shorthandoff*{~}}

However, shorthands remember somehow the original character, and the fallback
value is that of the latter. So, in this example, if no shorthand if found, ^ expands
to a non-breaking space, because this is the value of ~ (internally, ^ calls
\active@char~ or \normal@char~). Furthermore, if you change the system value
of ^ with \defineshorthand nothing happens.

{〈language〉}\languageshorthands

The command \languageshorthands can be used to switch the shorthands on the
language level. It takes one argument, the name of a language or none (the latter
does what its name suggests).8 Note that for this to work the language should
have been specified as an option when loading the babel package. For example,
you can use in english the shorthands defined by ngerman with

\addto\extrasenglish{\languageshorthands{ngerman}}

(You may also need to activate them with, for example, \useshorthands.)
Very often, this is a more convenient way to deactivate shorthands than
\shorthandoff, as for example if you want to define a macro to easy typing
phonetic characters with tipa:

\newcommand{\myipa}[1]{{\languageshorthands{none}\tipaencoding#1}}

{〈shorthand〉}\babelshorthand

With this command you can use a shorthand even if (1) not activated in
shorthands (in this case only shorthands for the current language are taken into
account, ie, not user shorthands), (2) turned off with \shorthandoff or (3)
deactivated with the internal \bbl@deactivate; for example,
\babelshorthand{"u} or \babelshorthand{:}. (You can conveniently define your
own macros, or even you own user shorthands provided they do not ovelap.)
For your records, here is a list of shorthands, but you must check them, as they
may change:9

Languages with no shorthands Croatian, English (any variety), Indonesian,
Hebrew, Interlingua, Irish, Lower Sorbian, Malaysian, North Sami,
Romanian, Scottish, Welsh

Languages with only " as defined shorthand character Albanian, Bulgarian,
Danish, Dutch, Finnish, German (old and new orthography, also Austrian),
Icelandic, Italian, Norwegian, Polish, Portuguese (also Brazilian), Russian,
Serbian (with Latin script), Slovene, Swedish, Ukrainian, Upper Sorbian

Basque " ’ ~
Breton : ; ? !
Catalan " ’ ‘

8Actually, any name not corresponding to a language group does the same as none. However, follow
this convention because it might be enforced in future releases of babel to catch possible errors.

9Thanks to Enrico Gregorio

11

Czech " -
Esperanto ^
Estonian " ~
French (all varieties) : ; ? !
Galician " . ’ ~ < >
Greek ~
Hungarian ‘
Kurmanji ^
Latin " ^ =
Slovak " ^ ’ -
Spanish " . < > ’
Turkish : ! =

In addition, the babel core declares ~ as a one-char shorthand which is let, like the
standard ~, to a non breaking space.10

1.6 Package options

New 3.9a These package options are processed before language options, so that
they are taken into account irrespective of its order. The first three options have
been available in previous versions.

Tells babel not to deactivate shorthands after loading a language file, so that theyKeepShorthandsActive
are also availabe in the preamble.

For some languages babel supports this options to set ’ as a shorthand in case it isactiveacute
not done by default.

Same for ‘.activegrave

〈char〉〈char〉... | offshorthands=

The only language shorthands activated are those given, like, eg:

\usepackage[esperanto,frenchb,shorthands=:;!?]{babel}

If ’ is included, activeacute is set; if ‘ is included, activegrave is set. Active
characters (like ~) should be preceded by \string (otherwise they will be
expanded by LATEX before they are passed to the package and therefore they will
not be recognized); however, t is provided for the common case of ~ (as well as c
for not so common case of the comma).
With shorthands=off no language shorthands are defined, As some languages use
this mechanism for tools not available otherwise, a macro \babelshorthand is
defined, which allows using them; see above.

none | ref | bibsafe=

Some LATEX macros are redefined so that using shorthands is safe. With safe=bib
only \nocite, \bibcite and \bibitem are redefined. With safe=ref only
\newlabel, \ref and \pageref are redefined (as well as a few macros from
varioref and ifthen). With safe=none no macro is redefined. This option is strongly
recommended, because a good deal of incompatibilities and errors are related to

10This declaration serves to nothing, but it is preserved for backward compatibility.

12

these redefinitions – of course, in such a case you cannot use shorthands in these
macros, but this is not a real problem (just use “allowed” characters).

active | normalmath=

Shorthands are mainly intended for text, not for math. By setting this option with
the value normal they are deactivated in math mode (default is active) and things
like ${a’}$ (a closing brace after a shorthand) are not a source of trouble any
more.

〈file〉config=

Load 〈file〉.cfg instead of the default config file bblopts.cfg (the file is loaded
even with noconfigs).

〈language〉main=

Sets the main language, as explained above, ie, this language is always loaded
last. If it is not given as package or global option, it is added to the list of
requested languages.

〈language〉headfoot=

By default, headlines and footlines are not touched (only marks), and if they
contain language dependent macros (which is not usual) there may be unexpected
results. With this option you may set the language in heads and foots.

Global and language default config files are not loaded, so you can make sure yournoconfigs
document is not spoilt by an unexpected .cfg file. However, if the key config is
set, this file is loaded.

Prints to the log the list of languages loaded when the format was created: numbershowlanguages
(remember dialects can share it), name, hyphenation file and exceptions file.

New 3.9l Language settings for uppercase and lowercase mapping (as set bynocase
\SetCase) are ignored. Use only if there are incompatibilities with other packages.

New 3.9l No warnings and no infos are written to the log file.11silent

generic | unicode | encoded | 〈label〉 | 〈font encoding〉strings=

Selects the encoding of strings in languages supporting this feature. Predefined
labels are generic (for traditional TEX, LICR and ASCII strings), unicode (for
engines like xetex and luatex) and encoded (for special cases requiring mixed
encodings). Other allowed values are font encoding codes (T1, T2A, LGR, L7X...),
but only in languages supporting them. Be aware with encoded captions are
protected, but they work in \MakeUppercase and the like.

off | main | select | other | other*hyphenmap=

New 3.9g Sets the behaviour of case mapping for hyphenation, provided the

language defines it.12 It can take the following values:

11You can use alternatively the package silence.
12Turned off in plain.

13

off deactivates this feature and no case mapping is applied;
first sets it at the first switching commands in the current or parent scope

(typically, when the aux file is first read and at \begin{document}, but also
the first \selectlanguage in the preamble), and it’s the default if a single
language option has been stated;13

select sets it only at \selectlanguage;
other also sets it at otherlanguage;
other* also sets it at otherlanguage* as well as in heads and foots (if the option

headfoot is used) and in auxiliary files (ie, at \select@language), and it’s the
default if several language options have been stated. The option first can
be regarded as an optimized version of other* for monolingual documents.14

1.7 The base option

With this package option babel just loads some basic macros (those in
switch.def), defines \AfterBabelLanguage and exits. It also selects the
hyphenations patterns for the last language passed as option (by its name in
language.dat). There are two main uses: classes and packages, and as a last
resort in case there are, for some reason, incompatible languages. It can be used if
you just want to select the hyphenations patterns of a single language, too.

{〈option-name〉}{〈code〉}\AfterBabelLanguage

This command is currently the only provided by base. Executes 〈code〉 when the
file loaded by the corresponding package option is finished (at \ldf@finish). The
setting is global. So

\AfterBabelLanguage{frenchb}{...}

does ... at the end of frenchb.ldf. It can be used in ldf files, too, but in such a
case the code is executed only if 〈option-name〉 is the same as \CurrentOption
(which could not be the same as the option name as set in \usepackage!).
For example, consider two languages foo and bar defining the same \macro with
\newcommand. An error is raised if you attempt to load both. Here is a way to
overcome this problem:

\usepackage[base]{babel}
\AfterBabelLanguage{foo}{%

\let\macroFoo\macro
\let\macro\relax}

\usepackage[foo,bar]{babel}

1.8 Hooks

New 3.9a A hook is a piece of code to be executed at certain events. Some hooks
are predefined when luatex and xetex are used.

{〈name〉}{〈event〉}{〈code〉}\AddBabelHook

13Duplicated options count as several ones.
14Providing foreign is pointless, because the case mapping applied is that at the end of paragraph, but

if either xetex or luatex change this behaviour it might be added. On the other hand, other is provided
even if I [JBL] think it isn’t really useful, but who knows.

14

The same name can be applied to several events. Hooks may be enabled and
disabled for all defined events with \EnableBabelHook{〈name〉},
\DisableBabelHook{〈name〉}. Names containing the string babel are reserved
(they are used, for example, by \useshortands* to add a hook for the event
afterextras).
Current events are the following; in some of them you can use one to three TEX
parameters (#1, #2, #3), with the meaning given:

adddialect (language name, dialect name) Used by luababel.def to load the
patterns if not preloaded.

patterns (language name, language with encoding) Executed just after the
\language has been set. The second argument has the patterns name
actually selected (in the form of either lang:ENC or lang).

hyphenation (language name, language with encoding) Executed locally just
before exceptions given in \babelhyphenation are actually set.

defaultcommands Used (locally) in \StartBabelCommands.
encodedcommands (input, font encodings) Used (locally) in \StartBabelCommands.

Both xetex and luatex make sure the encoded text is read correctly.
stopcommands Used to reset the the above, if necessary.
write This event comes just after the switching commands are written to the aux

file.
beforeextras Just before executing \extras〈language〉. This event and the next

one should not contain language-dependent code (for that, add it to
\extras〈language〉).

afterextras Just after executing \extras〈language〉. For example, the following
deactivates shorthands in all languages:

\AddBabelHook{noshort}{afterextras}{\languageshorthands{none}}

stringprocess Instead of a parameter, you can manipulate the macro
\BabelString containing the string to be defined with \SetString. For
example, to use an expanded version of the string in the definition, write:

\AddBabelHook{myhook}{stringprocess}{%
\protected@edef\BabelString{\BabelString}}

initiateactive (char as active, char as other, original char) New 3.9i Executed
just after a shorthand has been ‘initiated’. The three parameters are the
same character with different catcodes: active, other (\string’ed) and the
original one.

afterreset New 3.9i Executed when selecting a language just after
\originalTeX is run and reset to its base value, before executing
\captions〈language〉 and \date〈language〉.

Four events are used in hyphen.cfg, which are handled in a quite different way for
efficiency reasons – unlike the precedent ones, they only have a single hook and
replace a default definition.

everylanguage (language) Executed before every language patterns are loaded.
loadkernel (file) By default loads switch.def. It can be used to load a different

version of this files or to load nothing.
loadpatterns (patterns file) Loads the patterns file. Used by luababel.def.
loadexceptions (exceptions file) Loads the exceptions file. Used by

luababel.def.

15

New 3.9a This macro contains a list of “toc” types which require a command to\BabelContentsFiles
switch the language. Its default value is toc,lof,lot, but you may redefine it with
\renewcommand (it’s up to you to make sure no toc type is duplicated).

1.9 Hyphenation tools

*{〈type〉}\babelhyphen

*{〈text〉}\babelhyphen

New 3.9a It is customary to classify hyphens in two types: (1) explicit or hard
hyphens, which in TEX are entered as -, and (2) optional or soft hyphens, which
are entered as \-. Strictly, a soft hyphen is not a hyphen, but just a breaking
oportunity or, in TEX terms, a “discretionary”; a hard hyphen is a hyphen with a
breaking oportunity after it. A further type is a non-breaking hyphen, a hyphen
without a breaking oportunity.
In TEX, - and \- forbid further breaking oportunities in the word. This is the
desired behaviour very often, but not always, and therefore many languages
provide shorthands for these cases. Unfortunately, this has not been done
consistently: for example, in Dutch, Portugese, Catalan or Danish, "- is a hard
hyphen, while in German, Spanish, Norwegian, Slovak or Russian, it is a soft
hyphen. Furthermore, some of them even redefine \-, so that you cannot insert a
soft hyphen without breaking oportunities in the rest of the word.
Therefore, some macros are provide with a set of basic “hyphens” which can be
used by themselves, to define a user shorthand, or even in language files.

• \babelhyphen{soft} and \babelhyphen{hard} are self explanatory.

• \babelhyphen{repeat} inserts a hard hyphen which is repeated at the
beginning of the next line, as done in languages like Polish, Portugese and
Spanish.

• \babelhyphen{nobreak} inserts a hard hyphen without a break after it (even
if a space follows).

• \babelhyphen{empty} inserts a break oportunity without a hyphen at all.

• \babelhyphen{〈text〉} is a hard “hyphen” using 〈text〉 instead. A typical case
is \babelhyphen{/}.

With all of them hyphenation in the rest of the word is enabled. If you don’t want
enabling it, there is a starred counterpart: \babelhyphen*{soft} (which in most
cases is equivalent to the original \-), \babelhyphen*{hard}, etc.
Note hard is also good for isolated prefixes (eg, anti-) and nobreak for isolated
suffixes (eg, -ism), but in both cases \babelhyphen*{nobreak} is usually better.
There are also some differences with LATEX: (1) the character used is that set for
the current font, while in LATEX it is hardwired to - (a typical value); (2) the hyphen
to be used in fonts with a negative \hyphenchar is -, like in LATEX, but it can be
changed to another value by redefining \babelnullhyphen; (3) a break after the
hyphen is forbidden if preceded by a glue >0 pt (at the beginning of a word,
provided it is not immediately preceded by, say, a parenthesis).

16

[〈language〉,〈language〉,...]{〈exceptions〉}\babelhyphenation

New 3.9a Sets hyphenation exceptions for the languages given or, without the
optional argument, for all languages (eg, proper nouns or common loan words,
and of course monolingual documents). Language exceptions take precedence
over global ones.
It can be used only in the preamble, and exceptions are set when the language is
first selected, thus taking into account changes of \lccodes’s done in
\extras〈lang〉 as well as the language specific encoding (not set in the preamble
by default). Multiple \babelhyphenation’s are allowed. For example:

\babelhyphenation{Wal-hal-la Dar-bhan-ga}

Listed words are saved expanded and therefore it relies on the LICR. Of course, it
also works without the LICR if the input and the font encodings are the same, like
in Unicode based engines.

[〈language〉,〈language〉,...]{〈patterns〉}\babelpatterns

New 3.9m In luatex only,15 adds or replaces patterns for the languages given or,
without the optional argument, for all languages. If a pattern for a certain
combination already exists, it gets replaced by the new one.
It can be used only in the preamble, and patterns are added when the language is
first selected, thus taking into account changes of \lccodes’s done in
\extras〈lang〉 as well as the language specific encoding (not set in the preamble
by default). Multiple \babelpatterns’s are allowed.
Listed patterns are saved expanded and therefore it relies on the LICR. Of course,
it also works without the LICR if the input and the font encodings are the same,
like in Unicode based engines.

1.10 Language attributes

This is a user-level command, to be used in the preamble of a document (after\languageattribute
\usepackage[...]{babel}), that declares which attributes are to be used for a
given language. It takes two arguments: the first is the name of the language; the
second, a (list of) attribute(s) to be used. Attributes must be set in the preamble
and only once – they cannot be turned on and off. The command checks whether
the language is known in this document and whether the attribute(s) are known
for this language.
Very often, using a modifier in a package option is better.
Several language definition files use their own methods to set options. For
example, frenchb uses \frenchbsetup, magyar (1.5) uses \magyarOptions;
modifiers provided by spanish have no attribute counterparts. Macros settting
options are also used (eg, \ProsodicMarksOn in latin).

1.11 Languages supported by babel

In the following table most of the languages supported by babel are listed,
together with the names of the options which you can load babel with for each
language. Note this list is open and the current options may be different.

Afrikaans afrikaans

15With luatex exceptions and patterns can be modified almost freely. However, this is very likely a task
for a separate package and babel only provides the most basic tools.

17

Bahasa bahasa, indonesian, indon, bahasai, bahasam, malay, melayu
Basque basque
Breton breton
Bulgarian bulgarian
Catalan catalan
Croatian croatian
Czech czech
Danish danish
Dutch dutch
English english, USenglish, american, UKenglish, british, canadian, australian,

newzealand
Esperanto esperanto
Estonian estonian
Finnish finnish
French french, francais, canadien, acadian
Galician galician
German austrian, german, germanb, ngerman, naustrian
Greek greek, polutonikogreek
Hebrew hebrew
Icelandic icelandic
Interlingua interlingua
Irish Gaelic irish
Italian italian
Latin latin
Lower Sorbian lowersorbian
North Sami samin
Norwegian norsk, nynorsk
Polish polish
Portuguese portuges, portuguese, brazilian, brazil
Romanian romanian
Russian russian
Scottish Gaelic scottish
Spanish spanish
Slovakian slovak
Slovenian slovene
Swedish swedish
Serbian serbian
Turkish turkish
Ukrainian ukrainian
Upper Sorbian uppersorbian
Welsh welsh

There are more languages not listed above, including hindi, thai, thaicjk, latvian,
turkmen, magyar, mongolian, romansh, lithuanian, spanglish, vietnamese,
japanese, pinyin, arabic, farsi, ibygreek, bgreek, serbianc, frenchle, ethiop and
friulan.
Most of them work out of the box, but some may require extra fonts, encoding
files, a preprocessor or even a complete framework (like CJK). For example, if you
have got the velthuis/devnag package, you can create a file with extension .dn:

\documentclass{article}
\usepackage[hindi]{babel}
\begin{document}

18

{\dn devaanaa.m priya.h}
\end{document}

Then you preprocess it with devnag 〈file〉, which creates 〈file〉.tex; you can then
typeset the latter with LATEX.

1.12 Tips, workarounds, know issues and notes

• If you use the document class book and you use \ref inside the argument of
\chapter (or just use \ref inside \MakeUppercase), LATEX will keep
complaining about an undefined label. To prevent such problems, you could
revert to using uppercase labels, you can use \lowercase{\ref{foo}} inside
the argument of \chapter, or, if you will not use shorthands in labels, set the
safe option to none or bib.

• Both ltxdoc and babel use \AtBeginDocument to change some catcodes, and
babel reloads hhline to make sure : has the right one, so if you want to
change the catcode of | it has to be done using the same method at the
proper place, with

\AtBeginDocument{\DeleteShortVerb{\|}}

before loading babel. This way, when the document begins the sequence is
(1) make | active (ltxdoc); (2) make it unactive (your settings); (3) make
babel shorthands active (babel); (4) reload hhline (babel, now with the
correct catcodes for | and :).

• Documents with several input encodings are not frequent, but sometimes are
useful. You can set different encodings for different languages as the
following example shows:

\addto\extrasfrench{\inputencoding{latin1}}
\addto\extrasrussian{\inputencoding{koi8-r}}

(A recent version of inputenc is required.)

• For the hyphenation to work correctly, lccodes cannot change, because TEX
only takes into account the values when the paragraph is hyphenated, i.e.,
when it has been finished.16 So, if you write a chunk of French text with
\foreinglanguage, the apostrophes might not be taken into account. This is
a limitation of TEX, not of babel. Alternatively, you may use \useshorthands
to activate ’ and \defineshorthand, or redefine \textquoteright (the latter
is called by the non-ASCII right quote).

• \bibitem is out of sync with \selectlanguage in the .aux file. The reason is
\bibitem uses \immediate (and others, in fact), while \selectlanguage
doesn’t. There is no known workaround.

• Babel does not take into account \normalsfcodes and (non-)French spacing
is not always properly (un)set by languages. However, problems are unlikely
to happen and therefore this part remains untouched in version 3.9 (but it is
in the ‘to do’ list).

16This explains why LATEX assumes the lowercase mapping of T1 and does not provide a tool for multiple
mappings. Unfortunately, \savinghyphcodes is not a solution either, because lccodes for hyphenation
are frozen in the format and cannot be changed.

19

• Using a character mathematically active (ie, with math code "8000) as a
shorthand can make TEX enter in an infinite loop in some rare cases.
(Another issue in the ‘to do’ list, although there is a partial solution.)

• Plain luatex does not load patterns on the fly. Since this format is not based
on babel but on etex.src further investigation is required. This is another
task in the ‘to do’ list.

The following packages can be useful, too (the list is still far from complete):

csquotes Logical markup for quotes.
iflang Tests correctly the current language.
hyphsubst Selects a different set of patterns for a language.
translator An open platform for packages that need to be localized.
siunitx Typesetting of numbers and physical quantities.
biblatex Programmable bibliographies and citations.
bicaption Bilingual captions.
babelbib Multilingual bibliographies.
microtype Adjusts the typesetting according to some languages (kerning and

spacing). Ligatures can be disabled.
substitutefont Combines fonts in several encodings.
mkpattern Generates hyphenation patterns.
tracklang Tracks which languages have been requested.

1.13 Future work

Useful additions would be, for example, time, currency, addresses and personal
names.17. But that is the easy part, because they don’t require modifying the LATEX
internals.
More interesting are differences in the sentence structure or related to it. For
example, in Basque the number precedes the name (including chapters), in
Hungarian “from (1)” is “(1)-ből”, but “from (3)” is “(3)-ból”, in Spanish an item
labelled “3.o” may be referred to as either “ítem 3.o” or “3.er ítem”, and so on.
Even more interesting is right-to-left, vertical and bidi typesetting. Babel provided
a basic support for bidi text as part of the style for Hebrew, but it is somewhat
unsatisfactory and internally replaces some hardwired commands by other
hardwired commands (generic changes would be much better).
Handling of “Unicode” fonts is also problematic. There is fontspec, but special
macros are required (not only the NFSS ones) and it doesn’t provide “orthogonal
axis” for features, including those related to the language (mainly language and
script). A couple of tentative macros, which solve the two main cases, are provided
by babel (≥3.9g) with a partial solution (only xetex and luatex, for obvious
reasons), but use them at your own risk, as they might be removed in the future.
For this very reason, they are described here:

• \babelFSstore{〈babel-language〉} sets the current three basic families (rm,
sf, tt) as the default for the language given. In most cases, this macro will be
enough.

• \babelFSdefault{〈babel-language〉}{〈fontspec-features〉} patches
\fontspec so that the given features are always passed as the optional
argument or added to it (not an ideal solution). Use it only if you select some
fonts in the document with \fontspec.

17See for example POSIX, ISO 14652 and the Unicode Common Locale Data Repository (CLDR).

20

So, for example:

\setmainfont[Language=Turkish]{Minion Pro}
\setsansfont[Language=Turkish]{Myriad Pro}
\babelFSstore{turkish}
\setmainfont{Minion Pro}
\setsansfont{Myriad Pro}
\babelFSfeatures{turkish}{Language=Turkish}

Note you can set any feature required for the language – not only Language, but
also Script or a local .fea. This makes those macros a bit more verbose, but also
more powerful.

2 Loading languages with language.dat

TEX and most engines based on it (pdfTEX, xetex, ε-TEX, the main exception being
luatex) require hyphenation patterns to be preloaded when a format is created (eg,
LATEX, XeLATEX, pdfLATEX). babel provides a tool which has become standand in
many distributions and based on a “configuration file” named language.dat. The
exact way this file is used depends on the distribution, so please, read the
documentation for the latter (note also some distributions generate the file with
some tool).
New 3.9o With luatex, however, patterns are loaded on the fly when requested by

the language (except the “0th” language, english, which is preloaded always).
Until 3.9n, this task was delegated to the package luatex-hyphen, by Khaled
Hosny, Élie Roux, and Manuel Pégourié-Gonnard, and required an extra file named
language.dat.lua, but now a new mechanism has been devised based solely on
language.dat. You must rebuild the formats if upgrading from a previous
version. You may want to have a local language.dat for a particular project (for
example, a book on Chemistry).

2.1 Format

In that file the person who maintains a TEX environment has to record for which
languages he has hyphenation patterns and in which files these are stored18.
When hyphenation exceptions are stored in a separate file this can be indicated by
naming that file after the file with the hyphenation patterns.
The file can contain empty lines and comments, as well as lines which start with an
equals (=) sign. Such a line will instruct LATEX that the hyphenation patterns just
processed have to be known under an alternative name. Here is an example:

% File : language.dat
% Purpose : tell iniTeX what files with patterns to load.
english english.hyphenations
=british

dutch hyphen.dutch exceptions.dutch % Nederlands
german hyphen.ger

You may also set the font encoding the patterns are intended for by following the
language name by a colon and the encoding code.19 For example:

18This is because different operating systems sometimes use very different file-naming conventions.
19This in not a new feature, but in former versions it didn’t work correctly.

21

german:T1 hyphenT1.ger
german hyphen.ger

With the previous settings, if the enconding when the language is selected is T1
then the patterns in hyphenT1.ger are used, but otherwise use those in
hyphen.ger (note the encoding could be set in \extras〈lang〉).
A typical error when using babel is the following:

No hyphenation patterns were preloaded for
the language ‘<lang>’ into the format.
Please, configure your TeX system to add them and
rebuild the format. Now I will use the patterns
preloaded for english instead}}

It simply means you must reconfigure language.dat, either by hand or with the
tools provided by your distribution.

3 The interface between the core of babel and the
language definition files

The language definition files (ldf) must conform to a number of conventions,
because these files have to fill in the gaps left by the common code in babel.def,
i. e., the definitions of the macros that produce texts. Also the language-switching
possibility which has been built into the babel system has its implications.
The following assumptions are made:

• Some of the language-specific definitions might be used by plain TEX users,
so the files have to be coded so that they can be read by both LATEX and plain
TEX. The current format can be checked by looking at the value of the macro
\fmtname.

• The common part of the babel system redefines a number of macros and
environments (defined previously in the document style) to put in the names
of macros that replace the previously hard-wired texts. These macros have to
be defined in the language definition files.

• The language definition files must define five macros, used to activate and
deactivate the language-specific definitions. These macros are
\〈lang〉hyphenmins, \captions〈lang〉, \date〈lang〉, \extras〈lang〉 and
\noextras〈lang〉(the last two may be left empty); where 〈lang〉 is either the
name of the language definition file or the name of the LATEX option that is to
be used. These macros and their functions are discussed below. You must
define all or none for a language (or a dialect); defining, say, \date〈lang〉 but
not \captions〈lang〉 does not raise an error but can lead to unexpected
results.

• When a language definition file is loaded, it can define \l@〈lang〉 to be a
dialect of \language0 when \l@〈lang〉 is undefined.

• Language names must be all lowercase. If an unknow language is selected,
babel will attempt setting it after lowercasing its name.

22

• The semantics of modifiers is not defined (on purpose). In most cases, they
will just be simple separated options (eg., spanish), but a language might
require, say, a set of options organized as a tree with suboptions (in such a
case, the recommended separator is /).

Some recommendations:

• The preferred shorthand is ", which is not used in LATEX (quotes are entered
as ‘‘ and ’’). Other good choices are characters which are not used in a
certain context (eg, = in an ancient language). Note however =, <, >, : and
the like can be dangerous, because they may be used as part of the syntax of
some elements (numeric expressions, key/value pairs, etc.).

• Captions should not contain shorthands or encoding dependent commands
(the latter is not always possible, but should be clearly documented). They
should be defined using the LICR. You may also use the new tools for
encoded strings, described below.

• Avoid adding things to \noextras〈lang〉 except for umlauthigh and friends,
\bbl@deactivate, \bbl@(non)frenchspacing, and language specific macros.
Use always, if possible, \bbl@save and \bbl@savevariable (except if you
still want to have access to the previous value). Do not reset a macro or a
setting to a hardcoded value. Never. Instead save its value in \extras〈lang〉.

• Do not switch scripts. If you want to make sure a set of glyphs is used, switch
either the font encoding (low level) or the language (high level, which in turn
may switch the font encoding). Usage of things like \latintext is
deprecated.20

There are no special requirements for documenting your language files. Now they
are not included in the base babel manual, so provide a standalone document
suited for your needs (and the corresponding PDF, if you like), as well as other files
you think can be useful (eg, samples, readme).

3.1 Basic macros

In the core of the babel system, several macros are defined for use in language
definition files. Their purpose is to make a new language known. The first two are
related to hyphenation patterns.
The macro \addlanguage is a non-outer version of the macro \newlanguage,\addlanguage
defined in plain.tex version 3.x. For older versions of plain.tex and lplain.tex
a substitute definition is used. Here “language” is used in the TEX sense of set of
hyphenation patterns.
The macro \adddialect can be used when two languages can (or must) use the\adddialect
same hyphenation patterns. This can also be useful for languages for which no
patterns are preloaded in the format. In such cases the default behaviour of the
babel system is to define this language as a ‘dialect’ of the language for which the
patterns were loaded as \language0. Here “language” is used in the TEX sense of
set of hyphenation patterns.
The macro \〈lang〉hyphenmins is used to store the values of the \lefthyphenmin\<lang>hyphenmins
and \righthyphenmin. Redefine this macro to set your own values, with two
numbers corresponding to these two parameters. For example:

20But not removed, for backward compatibility.

23

\renewcommand\spanishhyphenmins{34}

(Assigning \lefthyphenmin and \righthyphenmin directly in \extras<lang> has
no effect.)
The macro \providehyphenmins should be used in the language definition files to\providehyphenmins
set \lefthyphenmin and \righthyphenmin. This macro will check whether these
parameters were provided by the hyphenation file before it takes any action. If
these values have been already set, this command is ignored (currenty, default
pattern files do not set them).
The macro \captions〈lang〉 defines the macros that hold the texts to replace the\captions〈lang〉
original hard-wired texts.
The macro \date〈lang〉 defines \today.\date〈lang〉
The macro \extras〈lang〉 contains all the extra definitions needed for a specific\extras〈lang〉
language. This macro, like the following, is a hook – you can add things to it, but it
must not be used directly.
Because we want to let the user switch between languages, but we do not know\noextras〈lang〉
what state TEX might be in after the execution of \extras〈lang〉, a macro that
brings TEX into a predefined state is needed. It will be no surprise that the name of
this macro is \noextras〈lang〉.
This is a command to be used in the language definition files for declaring a\bbl@declare@ttribute
language attribute. It takes three arguments: the name of the language, the
attribute to be defined, and the code to be executed when the attribute is to be
used.
To postpone the activation of the definitions needed for a language until the\main@language
beginning of a document, all language definition files should use \main@language
instead of \selectlanguage. This will just store the name of the language, and the
proper language will be activated at the start of the document.
The macro \ProvidesLanguage should be used to identify the language definition\ProvidesLanguage
files. Its syntax is similar to the syntax of the LATEX command \ProvidesPackage.
The macro \LdfInit performs a couple of standard checks that must be made at\LdfInit
the beginning of a language definition file, such as checking the category code of
the @-sign, preventing the .ldf file from being processed twice, etc.
The macro \ldf@quit does work needed if a .ldf file was processed earlier. This\ldf@quit
includes resetting the category code of the @-sign, preparing the language to be
activated at \begin{document} time, and ending the input stream.
The macro \ldf@finish does work needed at the end of each .ldf file. This\ldf@finish
includes resetting the category code of the @-sign, loading a local configuration
file, and preparing the language to be activated at \begin{document} time.
After processing a language definition file, LATEX can be instructed to load a local\loadlocalcfg
configuration file. This file can, for instance, be used to add strings to
\captions〈lang〉 to support local document classes. The user will be informed that
this configuration file has been loaded. This macro is called by \ldf@finish.
(Deprecated.) This command takes three arguments, a font encoding and two font\substitutefontfamily
family names. It creates a font description file for the first font in the given
encoding. This .fd file will instruct LATEX to use a font from the second family
when a font from the first family in the given encoding seems to be needed.

3.2 Skeleton

Here is the basic structure of an ldf file, with a language, a dialect and an
attribute. Strings are best defined using the method explained in in sec. 3.7 (babel

24

3.9 and later).

\ProvidesLanguage{<language>}
[0000/00/00 v0.0 <Language> support from the babel system]

\LdfInit{<language>}{captions<language>}

\ifx\undefined\l@<language>
\@nopatterns{<Language>}
\adddialect\l@<language>0

\fi

\adddialect\l@<dialect>\l@<language>

\bbl@declare@ttribute{<language>}{<attrib>}{%
\expandafter\addto\expandafter\extras<language>
\expandafter{\extras<attrib><language>}%
\let\captions<language>\captions<attrib><language>}

\providehyphenmins{<language>}{\tw@\thr@@}

\StartBabelCommands*{<language>}{captions}
\SetString\chaptername{<chapter name>}
% More strings

\StartBabelCommands*{<language>}{date}
\SetString\monthiname{<name of first month>}
% More strings

\StartBabelCommands*{<dialect>}{captions}
\SetString\chaptername{<chapter name>}
% More strings

\StartBabelCommands*{<dialect>}{date}
\SetString\monthiname{<name of first month>}
% More strings

\EndBabelCommands

\addto\extras<language>{}
\addto\noextras<language>{}
\let\extras<dialect>\extras<language>
\let\noextras<dialect>\noextras<language>

\ldf@finish{<language>}

3.3 Support for active characters

In quite a number of language definition files, active characters are introduced. To
facilitate this, some support macros are provided.
The internal macro \initiate@active@char is used in language definition files to\initiate@active@char
instruct LATEX to give a character the category code ‘active’. When a character has
been made active it will remain that way until the end of the document. Its
definition may vary.
The command \bbl@activate is used to change the way an active character\bbl@activate

\bbl@deactivate expands. \bbl@activate ‘switches on’ the active behaviour of the character.

25

\bbl@deactivate lets the active character expand to its former (mostly)
non-active self.
The macro \declare@shorthand is used to define the various shorthands. It takes\declare@shorthand
three arguments: the name for the collection of shorthands this definition belongs
to; the character (sequence) that makes up the shorthand, i.e. ~ or "a; and the
code to be executed when the shorthand is encountered. (It does not raise an
error if the shorthand character has not been “initiated”.)
The TEXbook states: “Plain TEX includes a macro called \dospecials that is\bbl@add@special

\bbl@remove@special essentially a set macro, representing the set of all characters that have a special
category code.” [1, p. 380] It is used to set text ‘verbatim’. To make this work if
more characters get a special category code, you have to add this character to the
macro \dospecial. LATEX adds another macro called \@sanitize representing the
same character set, but without the curly braces. The macros
\bbl@add@special〈char〉 and \bbl@remove@special〈char〉 add and remove the
character 〈char〉 to these two sets.

3.4 Support for saving macro definitions

Language definition files may want to redefine macros that already exist.
Therefore a mechanism for saving (and restoring) the original definition of those
macros is provided. We provide two macros for this21.
To save the current meaning of any control sequence, the macro \babel@save is\babel@save
provided. It takes one argument, 〈csname〉, the control sequence for which the
meaning has to be saved.
A second macro is provided to save the current value of a variable. In this context,\babel@savevariable
anything that is allowed after the \the primitive is considered to be a variable.
The macro takes one argument, the 〈variable〉.
The effect of the preceding macros is to append a piece of code to the current
definition of \originalTeX. When \originalTeX is expanded, this code restores
the previous definition of the control sequence or the previous value of the
variable.

3.5 Support for extending macros

The macro \addto{〈control sequence〉}{〈TEX code〉} can be used to extend the\addto
definition of a macro. The macro need not be defined (ie, it can be undefined or
\relax). This macro can, for instance, be used in adding instructions to a macro
like \extrasenglish.
Be careful when using this macro, because depending on the case the assignment
could be either global (usually) or local (sometimes). That does not seem very
consistent, but this behaviour is preserved for backward compatibility. If you are
using etoolbox, by Philipp Lehman, consider using the tools provided by this
package instead of \addto.

3.6 Macros common to a number of languages

In several languages compound words are used. This means that when TEX has to\bbl@allowhyphens
hyphenate such a compound word, it only does so at the ‘-’ that is used in such
words. To allow hyphenation in the rest of such a compound word, the macro
\bbl@allowhyphens can be used.

21This mechanism was introduced by Bernd Raichle.

26

Same as \bbl@allowhyphens, but does nothing if the encoding is T1. It is intended\allowhyphens
mainly for characters provided as real glyphs by this encoding but constructed
with \accent in OT1.
Note the previous command (\bbl@allowhyphens) has different applications
(hyphens and discretionaries) than this one (composite chars). Note also prior to
version 3.7, \allowhyphens had the behaviour of \bbl@allowhyphens.
For some languages, quotes need to be lowered to the baseline. For this purpose\set@low@box
the macro \set@low@box is available. It takes one argument and puts that
argument in an \hbox, at the baseline. The result is available in \box0 for further
processing.
Sometimes it is necessary to preserve the \spacefactor. For this purpose the\save@sf@q
macro \save@sf@q is available. It takes one argument, saves the current
spacefactor, executes the argument, and restores the spacefactor.
The commands \bbl@frenchspacing and \bbl@nonfrenchspacing can be used to\bbl@frenchspacing

\bbl@nonfrenchspacing properly switch French spacing on and off.

3.7 Encoding-dependent strings

New 3.9a Babel 3.9 provides a way of defining strings in several encodings,
intended mainly for luatex and xetex. This is the only new feature requiring
changes in language files if you want to make use of it.
Furthermore, it must be activated explicitly, with the package option strings. If
there is no strings, these blocks are ignored, except \SetCases (and except if
forced as described below). In other words, the old way of defining/switching
strings still works and it’s used by default.
It consist is a series of blocks started with \StartBabelCommands. The last block is
closed with \EndBabelCommands. Each block is a single group (ie, local
declarations apply until the next \StartBabelCommands or \EndBabelCommands).
An ldf may contain several series of this kind.
Thanks to this new feature, string values and string language switching are not
mixed any more. No need of \addto. If the language is french, just redefine
\frenchchaptername.

{〈language-list〉}{〈category〉}[〈selector〉]\StartBabelCommands

The 〈language-list〉 specifies which languages the block is intended for. A block is
taken into account only if the \CurrentOption is listed here. Alternatively, you can
define \BabelLanguages to a comma-separated list of languages to be defined (if
undefined, \StartBabelCommands sets it to \CurrentOption). You may write
\CurrentOption as the language, but this is discouraged – a explicit name (or
names) is much better and clearer.
A “selector” is a name to be used as value in package option strings, optionally
followed by extra info about the encodings to be used. The name unicode must be
used for xetex and luatex (the key strings has also other two special values:
generic and encoded).
If a string is set several times (because several blocks are read), the first one take
precedence (ie, it works much like \providecommand).
Encoding info is charset= followed by a charset, which if given sets how the
strings should be traslated to the internal representation used by the engine,
typically utf8, which is the only value supported currently (default is no
traslations). Note charset is applied by luatex and xetex when reading the file, not
when the macro or string is used in the document.

27

A list of font encodings which the strings are expected to work with can be given
after fontenc= (separated with spaces, if two or more) – recommended, but not
mandatory, although blocks without this key are not taken into account if you have
requested strings=encoded.
Blocks without a selector are read always if the key strings has been used. They
provide fallback values, and therefore must be the last blocks; they should be
provided always if possible and all strings should be defined somehow inside it;
they can be the only blocks (mainly LGC scripts using the LICR). Blocks without a
selector can be activated explicitly with strings=generic (no block is taken into
account except those). With strings=encoded, strings in those blocks are set as
default (internally, ?). With strings=encoded strings are protected, but they are
correctly expanded in \MakeUppercase and the like. If there is no key strings,
string definitions are ignored, but \SetCases are still honoured (in a encoded way).
The 〈category〉 is either captions, date or extras. You must stick to these three
categories, even if no error is raised when using other name.22 It may be empty,
too, but in such a case using \SetString is an error (but not \SetCase).

\StartBabelCommands{language}{captions}
[unicode, fontenc=EU1 EU2, charset=utf8]

\SetString{\chaptername}{utf8-string}

\StartBabelCommands{language}{captions}
\SetString{\chaptername}{ascii-maybe-LICR-string}

\EndBabelCommands

A real example is:

\StartBabelCommands{austrian}{date}
[unicode, fontenc=EU1 EU2, charset=utf8]
\SetString\monthiname{Jänner}

\StartBabelCommands{german,austrian}{date}
[unicode, fontenc=EU1 EU2, charset=utf8]
\SetString\monthiiiname{März}

\StartBabelCommands{austrian}{date}
\SetString\monthiname{J\"{a}nner}

\StartBabelCommands{german}{date}
\SetString\monthiname{Januar}

\StartBabelCommands{german,austrian}{date}
\SetString\monthiiname{Februar}
\SetString\monthiiiname{M\"{a}rz}
\SetString\monthivname{April}
\SetString\monthvname{Mai}
\SetString\monthviname{Juni}
\SetString\monthviiname{Juli}
\SetString\monthviiiname{August}
\SetString\monthixname{September}
\SetString\monthxname{Oktober}
\SetString\monthxiname{November}
\SetString\monthxiiname{Dezenber}

22In future releases further categories may be added.

28

\SetString\today{\number\day.~%
\csname month\romannumeral\month name\endcsname\space
\number\year}

\StartBabelCommands{german,austrian}{captions}
\SetString\prefacename{Vorwort}
[etc.]

\EndBabelCommands

When used in ldf files, previous values of \〈category〉〈language〉 are overriden,
which means the old way to define strings still works and used by default (to be
precise, is first set to undefined and then strings are added). However, when used
in the preamble or in a package, new settings are added to the previous ones, if
the language exists (in the babel sense, ie, if \date〈language〉 exists).

*{〈language-list〉}{〈category〉}[〈selector〉]\StartBabelCommands

The starred version just forces strings to take a value – if not set as package
option, then the default for the engine is used. This is not done by default to
prevent backward incompatibilities, but if you are creating a new language this
version is better. It’s up to the maintainers of the current languages to decide if
using it is appropiate.23

Marks the end of the series of blocks.\EndBabelCommands

{〈code〉}\AfterBabelCommands

The code is delayed and executed at the global scope just after
\EndBabelCommands.

{〈macro-name〉}{〈string〉}\SetString

Adds 〈macro-name〉 to the current category, and defines globally
〈lang-macro-name〉 to 〈code〉 (after applying the transformation corresponding to
the current charset or defined with the hook stringprocess).
Use this command to define strings, without including any “logic” if possible,
which should be a separated macro. See the example above for the date.

{〈macro-name〉}{〈string-list〉}\SetStringLoop

A convenient way to define several ordered names at once. For example, to define
\abmoniname, \abmoniiname, etc. (and similarly with abday):

\SetStringLoop{abmon#1name}{en,fb,mr,ab,my,jn,jl,ag,sp,oc,nv,dc}
\SetStringLoop{abday#1name}{lu,ma,mi,ju,vi,sa,do}

#1 is replaced by the roman numeral.

[〈map-list〉]{〈toupper-code〉}{〈tolower-code〉}\SetCase

Sets globally code to be executed at \MakeUppercase and \MakeLowercase. The
code would be typically things like \let\BB\bb and \uccode or \lccode (although
for the reasons explained above, changes in lc/uc codes may not work). A

23This replaces in 3.9g a short-lived \UseStrings which has been removed because it did not work.

29

〈map-list〉 is a series of macros using the internal format of \@uclclist (eg,
\bb\BB\cc\CC). The mandatory arguments take precedence over the optional one.
This command, unlike \SetString, is executed always (even without strings),
and it is intented for minor readjustments only.
For example, as T1 is the default case mapping in LATEX, we could set for Turkish:

\StartBabelCommands{turkish}{}[ot1enc, fontenc=OT1]
\SetCase

{\uccode"10=‘I\relax}
{\lccode‘I="10\relax}

\StartBabelCommands{turkish}{}[unicode, fontenc=EU1 EU2, charset=utf8]
\SetCase

{\uccode‘i=‘İ\relax
\uccode‘ı=‘I\relax}

{\lccode‘İ=‘i\relax
\lccode‘I=‘ı\relax}

\StartBabelCommands{turkish}{}
\SetCase

{\uccode‘i="9D\relax
\uccode"19=‘I\relax}

{\lccode"9D=‘i\relax
\lccode‘I="19\relax}

\EndBabelCommands

(Note the mapping for OT1 is not complete.)

{〈to-lower-macros〉}\SetHyphenMap

New 3.9g Case mapping serves in TEX for two unrelated purposes: case
transforms (upper/lower) and hyphenation. \SetCase handles the former, while
hyphenation is handled by \SetHyphenMap and controlled with the package option
hyphenmap. So, even if internally they are based on the same TEX primitive
(\lccode), babel sets them separately.
There are three helper macros to be used inside \SetHyphenMap:

• \BabelLower{〈uccode〉}{〈lccode〉} is similar to \lccode but it’s ignored if
the char has been set and saves the original lccode to restore it when
switching the language (except with hyphenmap=first).

• \BabelLowerMM{〈uccode-from〉}{〈uccode-to〉}{〈step〉}{〈lccode-from〉} loops
though the given uppercase codes, using the step, and assigns them the
lccode, which is also increased (MM stands for many-to-many).

• \BabelLowerMO{〈uccode-from〉}{〈uccode-to〉}{〈step〉}{〈lccode〉} loops
though the given uppercase codes, using the step, and assigns them the
lccode, which is fixed (MO stands for many-to-one).

An example is (which is redundant, because these assignments are done by both
luatex and xetex):

\SetHyphenMap{\BabelLowerMM{"100}{"11F}{2}{"101}}

This macro is not intended to fix wrong mappings done by Unicode (which are the
default in both xetex and luatex) – if an assignment is wrong, fix it directly.

30

4 Compatibility and changes

4.1 Compatibility with german.sty

The file german.sty has been one of the sources of inspiration for the babel
system. Because of this I wanted to include german.sty in the babel system. To be
able to do that I had to allow for one incompatibility: in the definition of the macro
\selectlanguage in german.sty the argument is used as the 〈number〉 for an
\ifcase. So in this case a call to \selectlanguage might look like
\selectlanguage{\german}.
In the definition of the macro \selectlanguage in babel.def the argument is used
as a part of other macronames, so a call to \selectlanguage now looks like
\selectlanguage{german}. Notice the absence of the escape character. As of
version 3.1a of babel both syntaxes are allowed.
All other features of the original german.sty have been copied into a new file,
called germanb.sty24.
Although the babel system was developed to be used with LATEX, some of the
features implemented in the language definition files might be needed by plain TEX
users. Care has been taken that all files in the system can be processed by plain
TEX.

4.2 Compatibility with ngerman.sty

When used with the options ngerman or naustrian, babel will provide all features
of the package ngerman. There is however one exception: The commands for
special hyphenation of double consonants ("ff etc.) and ck ("ck), which are no
longer required with the new German orthography, are undefined. With the
ngerman package, however, these commands will generate appropriate warning
messages only.

4.3 Compatibility with the french package

It has been reported to me that the package french by Bernard Gaulle
(gaulle@idris.fr) works together with babel. On the other hand, it seems not to
work well together with a lot of other packages. Therefore I have decided to no
longer load french.ldf by default. Instead, when you want to use the package by
Bernard Gaulle, you will have to request it specifically, by passing either frenchle
or frenchpro as an option to babel.

4.4 Changes in babel version 3.9

Most of changes in version 3.9 are related to bugs, either to fix them (there were
lots), or to provide some alternatives. Even new features like \babelhyphen are
intended to solve a certain problem (in this case, the lacking of a uniform syntax
and behaviour for shorthands across languages). These changes are described in
this manual in the correspondin place.

4.5 Changes in babel version 3.7

In babel version 3.7 a number of bugs that were found in version 3.6 are fixed.
Also a number of changes and additions have occurred:

24The ‘b’ is added to the name to distinguish the file from Partls’ file.

31

• Shorthands are expandable again. The disadvantage is that one has to type
’{}a when the acute accent is used as a shorthand character. The advantage
is that a number of other problems (such as the breaking of ligatures, etc.)
have vanished.

• Two new commands, \shorthandon and \shorthandoff have been
introduced to enable to temporarily switch off one or more shorthands.

• Support for typesetting Greek has been enhanced. Code from the kdgreek
package (suggested by the author) was added and \greeknumeral has been
added.

• Support for typesetting Basque is now available thanks to Juan
Aguirregabiria.

• Support for typesetting Serbian with Latin script is now available thanks to
Dejan Muhamedagić and Jankovic Slobodan.

• Support for typesetting Hebrew (and potential support for typesetting other
right-to-left written languages) is now available thanks to Rama Porrat and
Boris Lavva.

• Support for typesetting Bulgarian is now available thanks to Georgi
Boshnakov.

• Support for typesetting Latin is now available, thanks to Claudio Beccari and
Krzysztof Konrad Żelechowski.

• Support for typesetting North Sami is now available, thanks to Regnor
Jernsletten.

• The options canadian, canadien and acadien have been added for Canadian
English and French use.

• A language attribute has been added to the \mark... commands in order to
make sure that a Greek header line comes out right on the last page before a
language switch.

• Hyphenation pattern files are now read inside a group; therefore any
changes a pattern file needs to make to lowercase codes, uppercase codes,
and category codes are kept local to that group. If they are needed for the
language, these changes will need to be repeated and stored in \extras...

• The concept of language attributes is introduced. It is intended to give the
user some control over the features a language-definition file provides. Its
first use is for the Greek language, where the user can choose the πoλυτoνκó
(“Polutoniko” or multi-accented) Greek way of typesetting texts. These
attributes will possibly find wider use in future releases.

• The environment hyphenrules is introduced.

• The syntax of the file language.dat has been extended to allow (optionally)
specifying the font encoding to be used while processing the patterns file.

• The command \providehyphenmins should now be used in language
definition files in order to be able to keep any settings provided by the
pattern file.

32

4.6 Changes in babel version 3.6

In babel version 3.6 a number of bugs that were found in version 3.5 are fixed.
Also a number of changes and additions have occurred:

• A new environment otherlanguage* is introduced. it only switches the
‘specials’, but leaves the ‘captions’ untouched.

• The shorthands are no longer fully expandable. Some problems could only be
solved by peeking at the token following an active character. The advantage
is that ’{}a works as expected for languages that have the ’ active.

• Support for typesetting french texts is much enhanced; the file francais.ldf
is now replaced by frenchb.ldf which is maintained by Daniel Flipo.

• Support for typesetting the russian language is again available. The
language definition file was originally developed by Olga Lapko from
CyrTUG. The fonts needed to typeset the russian language are now part of
the babel distribution. The support is not yet up to the level which is needed
according to Olga, but this is a start.

• Support for typesetting greek texts is now also available. What is offered in
this release is a first attempt; it will be enhanced later on by Yannis
Haralambous.

• in babel 3.6j some hooks have been added for the development of support for
Hebrew typesetting.

• Support for typesetting texts in Afrikaans (a variant of Dutch, spoken in
South Africa) has been added to dutch.ldf.

• Support for typesetting Welsh texts is now available.

• A new command \aliasshorthand is introduced. It seems that in Poland
various conventions are used to type the necessary Polish letters. It is now
possible to use the character / as a shorthand character instead of the
character ", by issuing the command \aliasshorthand{"}{/}.

• The shorthand mechanism now deals correctly with characters that are
already active.

• Shorthand characters are made active at \begin{document}, not earlier. This
is to prevent problems with other packages.

• A preambleonly command \substitutefontfamily has been added to create
.fd files on the fly when the font families of the Latin text differ from the
families used for the Cyrillic or Greek parts of the text.

• Three new commands \LdfInit, \ldf@quit and \ldf@finish are introduced
that perform a number of standard tasks.

• In babel 3.6k the language Ukrainian has been added and the support for
Russian typesetting has been adapted to the package ’cyrillic’ to be released
with the December 1998 release of LATEX2ε.

33

4.7 Changes in babel version 3.5

In babel version 3.5 a lot of changes have been made when compared with the
previous release. Here is a list of the most important ones:

• the selection of the language is delayed until \begin{document}, which
means you must add appropriate \selectlanguage commands if you include
\hyphenation lists in the preamble of your document.

• babel now has a language environment and a new command
\foreignlanguage;

• the way active characters are dealt with is completely changed. They are
called ‘shorthands’; one can have three levels of shorthands: on the user
level, the language level, and on ‘system level’. A consequence of the new
way of handling active characters is that they are now written to auxiliary
files ‘verbatim’;

• A language change now also writes information in the .aux file, as the
change might also affect typesetting the table of contents. The consequence
is that an .aux file generated by a LATEXformat with babel preloaded gives
errors when read with a LATEXformat without babel; but I think this probably
doesn’t occur;

• babel is now compatible with the inputenc and fontenc packages;

• the language definition files now have a new extension, ldf;

• the syntax of the file language.dat is extended to be compatible with the
french package by Bernard Gaulle;

• each language definition file looks for a configuration file which has the same
name, but the extension .cfg. It can contain any valid LATEX code.

Part II

The code

5 Identification and loading of required files

Code documentation is still under revision.
The babel package after unpacking it consists of the following files:

switch.def defines macros to set and switch languages.
babel.def defines the rest of macros. It has tow parts: a generic one and a second

one only for LaTeX.
babel.sty is the LATEX package, which set options and load language styles.
plain.def defines some LATEX macros required by babel.def and provides a few

tools for Plain.
hyphen.cfg is the file to be used when generating the formats to load

hyphenation patterns. By default it also loads switch.def.

The babel installer extends docstrip with a few “pseudo-guards” to set “variables”
used at installation time. They are used with <@name@> at the appropiated places

34

in the source code and shown below with 〈〈name〉〉. That brings a little bit of
literate programming.

1 〈〈version=3.9o〉〉
2 〈〈date=2016/02/01〉〉

We define some basic macros which just make the code cleaner. \bbl@add is now
used internally instead of \addto because of the unpredictable behaviour of the
latter. Used in babel.def and in babel.sty, which means in LATEX is executed
twice, but we need them when defining options and babel.def cannot be load
until options have been defined.

3 〈〈∗Basic macros〉〉 ≡
4 \def\bbl@add#1#2{%
5 \@ifundefined{\expandafter\@gobble\string#1}%
6 {\def#1{#2}}%
7 {\expandafter\def\expandafter#1\expandafter{#1#2}}}
8 \def\bbl@csarg#1#2{\expandafter#1\csname bbl@#2\endcsname}%
9 \long\def\bbl@afterelse#1\else#2\fi{\fi#1}

10 \long\def\bbl@afterfi#1\fi{\fi#1}
11 \def\bbl@loop#1#2#3{\bbl@@loop#1{#3}#2,\@nnil,}
12 \def\bbl@loopx#1#2{\expandafter\bbl@loop\expandafter#1\expandafter{#2}}
13 \def\bbl@@loop#1#2#3,{%
14 \ifx\@nnil#3\relax\else
15 \def#1{#3}#2\bbl@afterfi\bbl@@loop#1{#2}%
16 \fi}
17 \def\bbl@for#1#2#3{\bbl@loopx#1{#2}{\ifx#1\@empty\else#3\fi}}
18 〈〈/Basic macros〉〉

Some files identify themselves with a LATEX macro. The following code is placed
before them to define (and then undefine) if not in LATEX.

19 〈〈∗Make sure ProvidesFile is defined〉〉 ≡
20 \ifx\ProvidesFile\@undefined
21 \def\ProvidesFile#1[#2 #3 #4]{%
22 \wlog{File: #1 #4 #3 <#2>}%
23 \let\ProvidesFile\@undefined}
24 \fi
25 〈〈/Make sure ProvidesFile is defined〉〉

The following code is used in babel.sty and babel.def, and makes sure the
current version of switch.ldf is used, if different from that in the format.

26 〈〈∗Load switch if newer〉〉 ≡
27 \def\bbl@tempa{〈〈version〉〉}%
28 \ifx\bbl@version\bbl@tempa\else
29 \input switch.def\relax
30 \fi
31 〈〈/Load switch if newer〉〉

The following code is used in babel.def and switch.def.

32 〈〈∗Load macros for plain if not LaTeX〉〉 ≡
33 \ifx\AtBeginDocument\@undefined
34 \input plain.def\relax
35 \fi
36 〈〈/Load macros for plain if not LaTeX〉〉

35

5.1 Multiple languages

\language Plain TEX version 3.0 provides the primitive \language that is used to store the
current language. When used with a pre-3.0 version this function has to be
implemented by allocating a counter. The following block is used in switch.def
and hyphen.cfg; the latter may seem redundant, but remember babel doesn’t
requires loading switch.def in the format.

37 〈〈∗Define core switching macros〉〉 ≡
38 \ifx\language\@undefined
39 \csname newcount\endcsname\language
40 \fi
41 〈〈/Define core switching macros〉〉

\last@language Another counter is used to store the last language defined. For pre-3.0 formats an
extra counter has to be allocated.

\addlanguage To add languages to TEX’s memory plain TEX version 3.0 supplies \newlanguage, in
a pre-3.0 environment a similar macro has to be provided. For both cases a new
macro is defined here, because the original \newlanguage was defined to be
\outer.
For a format based on plain version 2.x, the definition of \newlanguage can not be
copied because \count 19 is used for other purposes in these formats. Therefore
\addlanguage is defined using a definition based on the macros used to define
\newlanguage in plain TEX version 3.0.
For formats based on plain version 3.0 the definition of \newlanguage can be
simply copied, removing \outer. Plain TEX version 3.0 uses \count 19 for this
purpose.

42 〈〈∗Define core switching macros〉〉 ≡
43 \ifx\newlanguage\@undefined
44 \csname newcount\endcsname\last@language
45 \def\addlanguage#1{%
46 \global\advance\last@language\@ne
47 \ifnum\last@language<\@cclvi
48 \else
49 \errmessage{No room for a new \string\language!}%
50 \fi
51 \global\chardef#1\last@language
52 \wlog{\string#1 = \string\language\the\last@language}}
53 \else
54 \countdef\last@language=19
55 \def\addlanguage{\alloc@9\language\chardef\@cclvi}
56 \fi
57 〈〈/Define core switching macros〉〉

Identify each file that is produced from this source file.

58 〈∗driver&!user〉
59 \ProvidesFile{babel.drv}[〈〈date〉〉 〈〈version〉〉]
60 〈/driver&!user〉
61 〈∗driver & user〉
62 \ProvidesFile{user.drv}[〈〈date〉〉 〈〈version〉〉]
63 〈/driver & user〉

Now we make sure all required files are loaded. When the command
\AtBeginDocument doesn’t exist we assume that we are dealing with a plain-based
format or LATEX2.09. In that case the file plain.def is needed (which also defines

36

\AtBeginDocument, and therefore it is not loaded twice). We need the first part
when the format is created, and \orig@dump is used as a flag. Otherwise, we need
to use the second part, so \orig@dump is not defined (plain.def undefines it).
Check if the current version of switch.def has been previously loaded (mainly,
hyphen.cfg). If not, load it now. We cannot load babel.def here because we first
need to declare and process the package options.

6 The Package File (LATEX)

In order to make use of the features of LATEX2ε, the babel system contains a
package file, babel.sty. This file is loaded by the \usepackage command and
defines all the language options whose name is different from that of the .ldf file
(like variant spellings). It also takes care of a number of compatibility issues with
other packages an defines a few aditional package options.
Apart from all the language options below we also have a few options that
influence the behaviour of language definition files.
Many of the following options don’t do anything themselves, they are just defined
in order to make it possible for babel and language definition files to check if one
of them was specified by the user.

6.1 base

The first option to be processed is base, which set the hyphenation patterns then
resets ver@babel.sty so that LATEXforgets about the first loading. After
switch.def has been loaded (above) and \AfterBabelLanguage defined, exits.

64 〈∗package〉
65 \NeedsTeXFormat{LaTeX2e}[2005/12/01]
66 \ProvidesPackage{babel}[〈〈date〉〉 〈〈version〉〉 The Babel package]
67 \@ifpackagewith{babel}{debug}
68 {\input switch.def\relax}
69 {〈〈Load switch if newer〉〉}
70 〈〈Basic macros〉〉
71 \def\AfterBabelLanguage#1{%
72 \global\expandafter\bbl@add\csname#1.ldf-h@@k\endcsname}%
73 \@ifpackagewith{babel}{base}{%
74 \DeclareOption*{\bbl@patterns{\CurrentOption}}%
75 \DeclareOption{base}{}%
76 \ProcessOptions
77 \global\expandafter\let\csname opt@babel.sty\endcsname\relax
78 \global\expandafter\let\csname ver@babel.sty\endcsname\relax
79 \global\let\@ifl@ter@@\@ifl@ter
80 \def\@ifl@ter#1#2#3#4#5{\global\let\@ifl@ter\@ifl@ter@@}%
81 \endinput}{}%

6.2 key=value options and other general option

The following macros extract language modifiers, and only real package options
are kept in the option list. Modifiers are saved and assigned to \BabelModifiers
at \bbl@load@language; when no modifiers have been given, the former is \relax.
How modifiers are handled are left to language styles; they can use \in@, loop
them with \@for o load keyval).

82 \bbl@csarg\let{tempa\expandafter}\csname opt@babel.sty\endcsname

37

83 \def\bbl@tempb#1.#2{%
84 #1\ifx\@empty#2\else,\bbl@afterfi\bbl@tempb#2\fi}%
85 \def\bbl@tempd#1.#2\@nnil{%
86 \ifx\@empty#2%
87 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%
88 \else
89 \in@{=}{#1}\ifin@
90 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1.#2}%
91 \else
92 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%
93 \bbl@csarg\edef{mod@#1}{\bbl@tempb#2}%
94 \fi
95 \fi}
96 \let\bbl@tempc\@empty
97 \bbl@for\bbl@tempa\bbl@tempa{%
98 \expandafter\bbl@tempd\bbl@tempa.\@empty\@nnil}
99 \expandafter\let\csname opt@babel.sty\endcsname\bbl@tempc

The next option tells babel to leave shorthand characters active at the end of
processing the package. This is not the default as it can cause problems with other
packages, but for those who want to use the shorthand characters in the preamble
of their documents this can help.

100 \DeclareOption{KeepShorthandsActive}{}
101 \DeclareOption{activeacute}{}
102 \DeclareOption{activegrave}{}
103 \DeclareOption{debug}{}
104 \DeclareOption{noconfigs}{}
105 \DeclareOption{showlanguages}{}
106 \DeclareOption{silent}{}
107 \DeclareOption{shorthands=off}{\bbl@tempa shorthands=\bbl@tempa}
108 〈〈More package options〉〉

Handling of package options is done in three passes. (I [JBL] am not very happy
with the idea, anyway.) The first one processes options which has been declared
above or follow the syntax <key>=<value>, the second one loads the requested
languages, except the main one if set with the key main, and the third one loads
the latter. First, we “flag” valid keys with a nil value.

109 \let\bbl@opt@shorthands\@nnil
110 \let\bbl@opt@config\@nnil
111 \let\bbl@opt@main\@nnil
112 \let\bbl@opt@headfoot\@nnil

The following tool is defined temporarily to store the values of options.

113 \def\bbl@tempa#1=#2\bbl@tempa{%
114 \expandafter\ifx\csname bbl@opt@#1\endcsname\@nnil
115 \expandafter\edef\csname bbl@opt@#1\endcsname{#2}%
116 \else
117 \bbl@error{%
118 Bad option ‘#1=#2’. Either you have misspelled the\\%
119 key or there is a previous setting of ‘#1’}{%
120 Valid keys are ‘shorthands’, ‘config’, ‘strings’, ‘main’,\\%
121 ‘headfoot’, ‘safe’, ‘math’}
122 \fi}

Now the option list is processed, taking into account only currently declared
options (including those declared with a =), and <key>=<value> options (the

38

former take precedence). Unrecognized options are saved in
\bbl@language@opts, because they are language options.

123 \let\bbl@language@opts\@empty
124 \DeclareOption*{%
125 \@expandtwoargs\in@{\string=}{\CurrentOption}%
126 \ifin@
127 \expandafter\bbl@tempa\CurrentOption\bbl@tempa
128 \else
129 \edef\bbl@language@opts{%
130 \ifx\bbl@language@opts\@empty\else\bbl@language@opts,\fi
131 \CurrentOption}%
132 \fi}

Now we finish the first pass (and start over).

133 \ProcessOptions*

6.3 Conditional loading of shorthands

If there is no shorthands=<chars>, the original babel macros are left untouched,
but if there is, these macros are wrapped (in babel.def) to define only those given.
A bit of optimization: if there is no shorthands=, then \bbl@ifshorthands is
always true, and it is always false if shorthands is empty. Also, some code makes
sense only with shorthands=....

134 \def\bbl@sh@string#1{%
135 \ifx#1\@empty\else
136 \ifx#1t\string~%
137 \else\ifx#1c\string,%
138 \else\string#1%
139 \fi\fi
140 \expandafter\bbl@sh@string
141 \fi}
142 \ifx\bbl@opt@shorthands\@nnil
143 \def\bbl@ifshorthand#1#2#3{#2}%
144 \else\ifx\bbl@opt@shorthands\@empty
145 \def\bbl@ifshorthand#1#2#3{#3}%
146 \else

The following macro tests if a shortand is one of the allowed ones.

147 \def\bbl@ifshorthand#1{%
148 \@expandtwoargs\in@{\string#1}{\bbl@opt@shorthands}%
149 \ifin@
150 \expandafter\@firstoftwo
151 \else
152 \expandafter\@secondoftwo
153 \fi}

We make sure all chars in the string are ‘other’, with the help of an auxiliary macro
defined above (which also zaps spaces).

154 \edef\bbl@opt@shorthands{%
155 \expandafter\bbl@sh@string\bbl@opt@shorthands\@empty}%

The following is ignored with shorthands=off, since it is intended to take some
aditional actions for certain chars.

156 \bbl@ifshorthand{’}%
157 {\PassOptionsToPackage{activeacute}{babel}}{}
158 \bbl@ifshorthand{‘}%

39

159 {\PassOptionsToPackage{activegrave}{babel}}{}
160 \fi\fi

With headfoot=lang we can set the language used in heads/foots. For example, in
babel/3796 just adds headfoot=english. It misuses \@resetactivechars but
seems to work.

161 \ifx\bbl@opt@headfoot\@nnil\else
162 \g@addto@macro\@resetactivechars{%
163 \set@typeset@protect
164 \expandafter\select@language@x\expandafter{\bbl@opt@headfoot}%
165 \let\protect\noexpand}
166 \fi

For the option safe we use a different approach – \bbl@opt@safe says which
macros are redefined (B for bibs and R for refs). By default, both are set.

167 \@ifundefined{bbl@opt@safe}{\def\bbl@opt@safe{BR}}{}
168 \ifx\bbl@opt@main\@nnil\else
169 \edef\bbl@language@opts{%
170 \ifx\bbl@language@opts\@empty\else\bbl@language@opts,\fi
171 \bbl@opt@main}
172 \fi

If the format created a list of loaded languages (in \bbl@languages), get the name
of the 0-th to show the actual language used.

173 \ifx\bbl@languages\@undefined\else
174 \begingroup
175 \catcode‘\^^I=12
176 \@ifpackagewith{babel}{showlanguages}{%
177 \begingroup
178 \def\bbl@elt#1#2#3#4{\wlog{#2^^I#1^^I#3^^I#4}}%
179 \wlog{<*languages>}%
180 \bbl@languages
181 \wlog{</languages>}%
182 \endgroup}{}
183 \endgroup
184 \def\bbl@elt#1#2#3#4{%
185 \ifnum#2=\z@
186 \gdef\bbl@nulllanguage{#1}%
187 \def\bbl@elt##1##2##3##4{}%
188 \fi}%
189 \bbl@languages
190 \fi

6.4 Language options

Languages are loaded when processing the corresponding option except if a main
language has been set. In such a case, it is not loaded until all options has been
processed. The following macro inputs the ldf file and does some additional checks
(\input works, too, but possible errors are not catched).

191 \let\bbl@afterlang\relax
192 \let\BabelModifiers\relax
193 \let\bbl@loaded\@empty
194 \def\bbl@load@language#1{%
195 \InputIfFileExists{#1.ldf}%
196 {\edef\bbl@loaded{\CurrentOption
197 \ifx\bbl@loaded\@empty\else,\bbl@loaded\fi}%

40

198 \expandafter\let\expandafter\bbl@afterlang
199 \csname\CurrentOption.ldf-h@@k\endcsname
200 \expandafter\let\expandafter\BabelModifiers
201 \csname bbl@mod@\CurrentOption\endcsname}%
202 {\bbl@error{%
203 Unknown option ‘\CurrentOption’. Either you misspelled it\\%
204 or the language definition file \CurrentOption.ldf was not found}{%
205 Valid options are: shorthands=, KeepShorthandsActive,\\%
206 activeacute, activegrave, noconfigs, safe=, main=, math=\\%
207 headfoot=, strings=, config=, hyphenmap=, or a language name.}}}

Now, we set language options whose names are different from ldf files.

208 \DeclareOption{acadian}{\bbl@load@language{frenchb}}
209 \DeclareOption{afrikaans}{\bbl@load@language{dutch}}
210 \DeclareOption{american}{\bbl@load@language{english}}
211 \DeclareOption{australian}{\bbl@load@language{english}}
212 \DeclareOption{bahasa}{\bbl@load@language{bahasai}}
213 \DeclareOption{bahasai}{\bbl@load@language{bahasai}}
214 \DeclareOption{bahasam}{\bbl@load@language{bahasam}}
215 \DeclareOption{brazil}{\bbl@load@language{portuges}}
216 \DeclareOption{brazilian}{\bbl@load@language{portuges}}
217 \DeclareOption{british}{\bbl@load@language{english}}
218 \DeclareOption{canadian}{\bbl@load@language{english}}
219 \DeclareOption{canadien}{\bbl@load@language{frenchb}}
220 \DeclareOption{francais}{\bbl@load@language{frenchb}}
221 \DeclareOption{french}{\bbl@load@language{frenchb}}%
222 \DeclareOption{hebrew}{%
223 \input{rlbabel.def}%
224 \bbl@load@language{hebrew}}
225 \DeclareOption{hungarian}{\bbl@load@language{magyar}}
226 \DeclareOption{indon}{\bbl@load@language{bahasai}}
227 \DeclareOption{indonesian}{\bbl@load@language{bahasai}}
228 \DeclareOption{lowersorbian}{\bbl@load@language{lsorbian}}
229 \DeclareOption{malay}{\bbl@load@language{bahasam}}
230 \DeclareOption{meyalu}{\bbl@load@language{bahasam}}
231 \DeclareOption{melayu}{\bbl@load@language{bahasam}}
232 \DeclareOption{newzealand}{\bbl@load@language{english}}
233 \DeclareOption{nynorsk}{\bbl@load@language{norsk}}
234 \DeclareOption{polutonikogreek}{%
235 \bbl@load@language{greek}%
236 \languageattribute{greek}{polutoniko}}
237 \DeclareOption{portuguese}{\bbl@load@language{portuges}}
238 \DeclareOption{russian}{\bbl@load@language{russianb}}
239 \DeclareOption{UKenglish}{\bbl@load@language{english}}
240 \DeclareOption{ukrainian}{\bbl@load@language{ukraineb}}
241 \DeclareOption{uppersorbian}{\bbl@load@language{usorbian}}
242 \DeclareOption{USenglish}{\bbl@load@language{english}}

Another way to extend the list of ‘known’ options for babel is to create the file
bblopts.cfg in which one can add option declarations. However, this mechanism
is deprecated – if you want an alternative name for a language, just create a new
.ldf file loading the actual one. You can also set the name of the file with the
package option config=<name>, which will load <name>.cfg instead.

243 \ifx\bbl@opt@config\@nnil
244 \@ifpackagewith{babel}{noconfigs}{}%
245 {\InputIfFileExists{bblopts.cfg}%
246 {\typeout{*************************************^^J%

41

247 * Local config file bblopts.cfg used^^J%
248 *}}%
249 {}}%
250 \else
251 \InputIfFileExists{\bbl@opt@config.cfg}%
252 {\typeout{*************************************^^J%
253 * Local config file \bbl@opt@config.cfg used^^J%
254 *}}%
255 {\bbl@error{%
256 Local config file ‘\bbl@opt@config.cfg’ not found}{%
257 Perhaps you misspelled it.}}%
258 \fi

Recognizing global options in packages not having a closed set of them is not
trivial, as for them to be processed they must be defined explicitly. So, package
options not yet taken into account and stored in bbl@language@opts are assumed
to be languages (note this list also contains the language given with main). If not
declared above, the name of the option and the file are the same.

259 \bbl@for\bbl@tempa\bbl@language@opts{%
260 \@ifundefined{ds@\bbl@tempa}%
261 {\edef\bbl@tempb{%
262 \noexpand\DeclareOption
263 {\bbl@tempa}%
264 {\noexpand\bbl@load@language{\bbl@tempa}}}%
265 \bbl@tempb}%
266 \@empty}

Now, we make sure an option is explicitly declared for any language set as global
option, by checking if an ldf exists. The previous step was, in fact, somewhat
redundant, but that way we minimize accesing the file system just to see if the
option could be a language.

267 \bbl@for\bbl@tempa\@classoptionslist{%
268 \@ifundefined{ds@\bbl@tempa}%
269 {\IfFileExists{\bbl@tempa.ldf}%
270 {\edef\bbl@tempb{%
271 \noexpand\DeclareOption
272 {\bbl@tempa}%
273 {\noexpand\bbl@load@language{\bbl@tempa}}}%
274 \bbl@tempb}%
275 \@empty}%
276 \@empty}

If a main language has been set, store it for the third pass.

277 \ifx\bbl@opt@main\@nnil\else
278 \expandafter
279 \let\expandafter\bbl@loadmain\csname ds@\bbl@opt@main\endcsname
280 \DeclareOption{\bbl@opt@main}{}
281 \fi

And we are done, because all options for this pass has been declared. Those
already processed in the first pass are just ignored.
The options have to be processed in the order in which the user specified them
(except, of course, global options, which LATEX processes before):

282 \def\AfterBabelLanguage#1{%
283 \bbl@ifsamestring\CurrentOption{#1}{\global\bbl@add\bbl@afterlang}{}}
284 \DeclareOption*{}
285 \ProcessOptions*

42

This finished the second pass. Now the third one begins, which loads the main
language set with the key main. A warning is raised if the main language is not the
same as the last named one, or if the value of the key main is not a language. Then
execute directly the option (because it could be used only in main). After loading
all languages, we deactivate \AfterBabelLanguage.

286 \ifx\bbl@opt@main\@nnil
287 \edef\bbl@tempa{\@classoptionslist,\bbl@language@opts}
288 \let\bbl@tempc\@empty
289 \bbl@for\bbl@tempb\bbl@tempa{%
290 \@expandtwoargs\in@{,\bbl@tempb,}{,\bbl@loaded,}%
291 \ifin@\edef\bbl@tempc{\bbl@tempb}\fi}
292 \def\bbl@tempa#1,#2\@nnil{\def\bbl@tempb{#1}}
293 \expandafter\bbl@tempa\bbl@loaded,\@nnil
294 \ifx\bbl@tempb\bbl@tempc\else
295 \bbl@warning{%
296 Last declared language option is ‘\bbl@tempc’,\\%
297 but the last processed one was ‘\bbl@tempb’.\\%
298 The main language cannot be set as both a global\\%
299 and a package option. Use ‘main=\bbl@tempc’ as\\%
300 option. Reported}%
301 \fi
302 \else
303 \DeclareOption{\bbl@opt@main}{\bbl@loadmain}
304 \ExecuteOptions{\bbl@opt@main}
305 \DeclareOption*{}
306 \ProcessOptions*
307 \fi
308 \def\AfterBabelLanguage{%
309 \bbl@error
310 {Too late for \string\AfterBabelLanguage}%
311 {Languages have been loaded, so I can do nothing}}

In order to catch the case where the user forgot to specify a language we check
whether \bbl@main@language, has become defined. If not, no language has been
loaded and an error message is displayed.

312 \ifx\bbl@main@language\@undefined
313 \bbl@error{%
314 You haven’t specified a language option}{%
315 You need to specify a language, either as a global option\\%
316 or as an optional argument to the \string\usepackage\space
317 command;\\%
318 You shouldn’t try to proceed from here, type x to quit.}
319 \fi
320 〈/package〉

7 The kernel of Babel (common)

The kernel of the babel system is stored in either hyphen.cfg or switch.def and
babel.def. The file babel.def contains most of the code, while switch.def
defines the language switching commands; both can be read at run time. The file
hyphen.cfg is a file that can be loaded into the format, which is necessary when
you want to be able to switch hyphenation patterns (by default, it also inputs
switch.def, for “historical reasons”, but it is not necessary). When babel.def is
loaded it checks if the current version of switch.def is in the format; if not it is

43

loaded. A further file, babel.sty, contains LATEX-specific stuff.
Because plain TEX users might want to use some of the features of the babel
system too, care has to be taken that plain TEX can process the files. For this
reason the current format will have to be checked in a number of places. Some of
the code below is common to plain TEX and LATEX, some of it is for the LATEX case
only.
Plain formats based on etex (etex, xetex, luatex) don’t load hyphen.cfg but
etex.src, which follows a different naming convention, so we need to define the
babel names. It presumes language.def exists and it is the same file used when
formats were created.

7.1 Tools

\bbl@engine takes the following values: 0 is pdfTEX, 1 is luatex, and 2 is xetex.
You may use it in your language style if necessary.

321 〈∗core〉
322 〈〈Make sure ProvidesFile is defined〉〉
323 \ProvidesFile{babel.def}[〈〈date〉〉 〈〈version〉〉 Babel common definitions]
324 〈〈Load macros for plain if not LaTeX〉〉
325 \ifx\bbl@ifshorthand\@undefined
326 \def\bbl@ifshorthand#1#2#3{#2}%
327 \def\bbl@opt@safe{BR}
328 \def\AfterBabelLanguage#1#2{}
329 \let\bbl@afterlang\relax
330 \let\bbl@language@opts\@empty
331 \fi
332 〈〈Load switch if newer〉〉
333 \ifx\bbl@languages\@undefined
334 \openin1 = language.def
335 \ifeof1
336 \closein1
337 \message{I couldn’t find the file language.def}
338 \else
339 \closein1
340 \begingroup
341 \def\addlanguage#1#2#3#4#5{%
342 \expandafter\ifx\csname lang@#1\endcsname\relax\else
343 \global\expandafter\let\csname l@#1\expandafter\endcsname
344 \csname lang@#1\endcsname
345 \fi}%
346 \def\uselanguage#1{}%
347 \input language.def
348 \endgroup
349 \fi
350 \chardef\l@english\z@
351 \fi
352 〈〈Basic macros〉〉
353 \def\bbl@csarg#1#2{\expandafter#1\csname bbl@#2\endcsname}%
354 \chardef\bbl@engine=%
355 \ifx\directlua\@undefined
356 \ifx\XeTeXinputencoding\@undefined
357 \z@
358 \else
359 \tw@

44

360 \fi
361 \else
362 \@ne
363 \fi

\bbl@afterelse

\bbl@afterfi

Because the code that is used in the handling of active characters may need to
look ahead, we take extra care to ‘throw’ it over the \else and \fi parts of an
\if-statement25. These macros will break if another \if...\fi statement appears
in one of the arguments and it is not enclosed in braces.

364 \long\def\bbl@afterelse#1\else#2\fi{\fi#1}
365 \long\def\bbl@afterfi#1\fi{\fi#1}

\addto For each language four control sequences have to be defined that control the
language-specific definitions. To be able to add something to these macro once
they have been defined the macro \addto is introduced. It takes two arguments, a
〈control sequence〉 and TEX-code to be added to the 〈control sequence〉.
If the 〈control sequence〉 has not been defined before it is defined now. The control
sequence could also expand to \relax, in which case a circular definition results.
The net result is a stack overflow. Otherwise the replacement text for the 〈control
sequence〉 is expanded and stored in a token register, together with the TEX-code
to be added. Finally the 〈control sequence〉 is redefined, using the contents of the
token register.

366 \def\addto#1#2{%
367 \ifx#1\@undefined
368 \def#1{#2}%
369 \else
370 \ifx#1\relax
371 \def#1{#2}%
372 \else
373 {\toks@\expandafter{#1#2}%
374 \xdef#1{\the\toks@}}%
375 \fi
376 \fi}

The macro \initiate@active@char takes all the necessary actions to make its
argument a shorthand character. The real work is performed once for each
character.

377 \def\bbl@withactive#1#2{%
378 \begingroup
379 \lccode‘~=‘#2\relax
380 \lowercase{\endgroup#1~}}

\bbl@redefine To redefine a command, we save the old meaning of the macro. Then we redefine
it to call the original macro with the ‘sanitized’ argument. The reason why we do it
this way is that we don’t want to redefine the LATEX macros completely in case
their definitions change (they have changed in the past).
Because we need to redefine a number of commands we define the command
\bbl@redefine which takes care of this. It creates a new control sequence,
\org@...

381 \def\bbl@redefine#1{%
382 \edef\bbl@tempa{\expandafter\@gobble\string#1}%

25This code is based on code presented in TUGboat vol. 12, no2, June 1991 in “An expansion Power
Lemma” by Sonja Maus.

45

383 \expandafter\let\csname org@\bbl@tempa\endcsname#1%
384 \expandafter\def\csname\bbl@tempa\endcsname}

This command should only be used in the preamble of the document.

385 \@onlypreamble\bbl@redefine

\bbl@redefine@long This version of \babel@redefine can be used to redefine \long commands such as
\ifthenelse.

386 \def\bbl@redefine@long#1{%
387 \edef\bbl@tempa{\expandafter\@gobble\string#1}%
388 \expandafter\let\csname org@\bbl@tempa\endcsname#1%
389 \expandafter\long\expandafter\def\csname\bbl@tempa\endcsname}
390 \@onlypreamble\bbl@redefine@long

\bbl@redefinerobust For commands that are redefined, but which might be robust we need a slightly
more intelligent macro. A robust command foo is defined to expand to
\protect\foo . So it is necessary to check whether \foo exists. The result is
that the command that is being redefined is always robust afterwards. Therefore
all we need to do now is define \foo .

391 \def\bbl@redefinerobust#1{%
392 \edef\bbl@tempa{\expandafter\@gobble\string#1}%
393 \expandafter\ifx\csname\bbl@tempa\space\endcsname\relax
394 \expandafter\let\csname org@\bbl@tempa\endcsname#1%
395 \expandafter\edef\csname\bbl@tempa\endcsname{\noexpand\protect
396 \expandafter\noexpand\csname\bbl@tempa\space\endcsname}%
397 \else
398 \expandafter\let\csname org@\bbl@tempa\expandafter\endcsname
399 \csname\bbl@tempa\space\endcsname
400 \fi
401 \expandafter\def\csname\bbl@tempa\space\endcsname}

This command should only be used in the preamble of the document.

402 \@onlypreamble\bbl@redefinerobust

7.2 Hooks

Note they are loaded in babel.def. switch.def only provides a “hook” for hooks
(with a default value which is a no-op, below). Admittedly, the current
implementation is a somewhat simplistic and does vety little to catch errors, but it
is intended for developpers, after all. \bbl@usehooks is the commands used by
babel to execute hooks defined for an event.

403 \def\AddBabelHook#1#2{%
404 \@ifundefined{bbl@hk@#1}{\EnableBabelHook{#1}}{}%
405 \def\bbl@tempa##1,#2=##2,##3\@empty{\def\bbl@tempb{##2}}%
406 \expandafter\bbl@tempa\bbl@evargs,#2=,\@empty
407 \@ifundefined{bbl@ev@#1@#2}%
408 {\bbl@csarg\bbl@add{ev@#2}{\bbl@elt{#1}}%
409 \bbl@csarg\newcommand}%
410 {\bbl@csarg\let{ev@#1@#2}\relax
411 \bbl@csarg\newcommand}%
412 {ev@#1@#2}[\bbl@tempb]}
413 \def\EnableBabelHook#1{\bbl@csarg\let{hk@#1}\@firstofone}
414 \def\DisableBabelHook#1{\bbl@csarg\let{hk@#1}\@gobble}
415 \def\bbl@usehooks#1#2{%
416 \def\bbl@elt##1{%

46

417 \@nameuse{bbl@hk@##1}{\@nameuse{bbl@ev@##1@#1}#2}}%
418 \@nameuse{bbl@ev@#1}}

To ensure forward compatibility, arguments in hooks are set implicitly. So, if a
further argument is added in the future, there is no need to change the existing
code. Note events intended for hyphen.cfg are also loaded (just in case you need
them for some reason).

419 \def\bbl@evargs{,% don’t delete the comma
420 everylanguage=1,loadkernel=1,loadpatterns=1,loadexceptions=1,%
421 adddialect=2,patterns=2,defaultcommands=0,encodedcommands=2,write=0,%
422 beforeextras=0,afterextras=0,stopcommands=0,stringprocess=0,%
423 hyphenation=2,initiateactive=3,afterreset=0}

\babelensure The user command just parses the optional argument and creates a new macro
named \bbl@ens@〈language〉. We register a hook at the afterextras event which
just executes this macro in a “complete” selection (which, if undefined, is \relax
and does nothing). This part is somewhat involved because we have to make sure
things are expanded the correct number of times.
The macro \bbl@ens@〈language〉 contains
\bbl@ensure{〈include〉}{〈exclude〉}{〈fontenc〉}, which in turn loops over the
macros names in \bbl@ensured, excluding (with the help of \in@) those in the
exclude list. If the fontenc is given (and not \relax), the \fontencoding is also
added. Then we loop over the include list, but if the macro already contains
\foreignlanguage, nothing is done. Note this macro (1) is not restricted to the
preamble, and (2) changes are local.
\bbl@ensured is the list of macros supposed to be “ensured”.

424 \newcommand\babelensure[2][]{%
425 \AddBabelHook{babel-ensure}{afterextras}{%
426 \ifcase\bbl@select@type
427 \@nameuse{bbl@e@\languagename}%
428 \fi}%
429 \begingroup
430 \let\bbl@ens@include\@empty
431 \let\bbl@ens@exclude\@empty
432 \def\bbl@ens@fontenc{\relax}%
433 \def\bbl@tempb##1{%
434 \ifx\@empty##1\else\noexpand##1\expandafter\bbl@tempb\fi}%
435 \edef\bbl@tempa{\bbl@tempb#1\@empty}%
436 \def\bbl@tempb##1=##2\@@{\@namedef{bbl@ens@##1}{##2}}%
437 \bbl@for\bbl@tempa\bbl@tempa{\expandafter\bbl@tempb\bbl@tempa\@@}%
438 \def\bbl@tempc{\bbl@ensure}%
439 \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%
440 \expandafter{\bbl@ens@include}}%
441 \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%
442 \expandafter{\bbl@ens@exclude}}%
443 \toks@\expandafter{\bbl@tempc}%
444 \edef\x{%
445 \endgroup
446 \noexpand\@namedef{bbl@e@#2}{\the\toks@{\bbl@ens@fontenc}}}%
447 \x}
448 \def\bbl@ensure#1#2#3{%
449 \def\bbl@tempb##1{% elt for \bbl@ensured list
450 \ifx##1\@empty\else
451 \in@{##1}{#2}%
452 \ifin@\else

47

453 \toks@\expandafter{##1}%
454 \edef\bbl@tempa{%
455 \noexpand\DeclareRobustCommand
456 \bbl@csarg\noexpand{ensure@\languagename}[1]{%
457 \noexpand\foreignlanguage{\languagename}%
458 {\ifx\relax#3\else
459 \noexpand\fontencoding{#3}\noexpand\selectfont
460 \fi
461 ########1}}}%
462 \bbl@tempa
463 \edef##1{%
464 \bbl@csarg\noexpand{ensure@\languagename}%
465 {\the\toks@}}
466 \fi
467 \expandafter\bbl@tempb
468 \fi}%
469 \expandafter\bbl@tempb\bbl@ensured\@empty
470 \def\bbl@tempa##1{% elt for include list
471 \ifx##1\@empty\else
472 \bbl@csarg\in@{ensure@\languagename\expandafter}\expandafter{##1}%
473 \ifin@\else
474 \bbl@tempb##1\@empty
475 \fi
476 \expandafter\bbl@tempa
477 \fi}%
478 \bbl@tempa#1\@empty}
479 \def\bbl@ensured{%
480 \prefacename\refname\abstractname\bibname\chaptername\appendixname
481 \contentsname\listfigurename\listtablename\indexname\figurename
482 \tablename\partname\enclname\ccname\headtoname\pagename\seename
483 \alsoname\proofname\glossaryname\today}

7.3 Setting up language files

\LdfInit The second version of \LdfInit macro takes two arguments. The first argument is
the name of the language that will be defined in the language definition file; the
second argument is either a control sequence or a string from which a control
sequence should be constructed. The existence of the control sequence indicates
that the file has been processed before.
At the start of processing a language definition file we always check the category
code of the at-sign. We make sure that it is a ‘letter’ during the processing of the
file. We also save its name as the last called option, even if not loaded.
Another character that needs to have the correct category code during processing
of language definition files is the equals sign, ‘=’, because it is sometimes used in
constructions with the \let primitive. Therefore we store its current catcode and
restore it later on.
Now we check whether we should perhaps stop the processing of this file. To do
this we first need to check whether the second argument that is passed to
\LdfInit is a control sequence. We do that by looking at the first token after
passing #2 through string. When it is equal to \@backslashchar we are dealing
with a control sequence which we can compare with \@undefined.
If so, we call \ldf@quit to set the main language, restore the category code of the
@-sign and call \endinput
When #2 was not a control sequence we construct one and compare it with \relax.

48

Finally we check \originalTeX.

484 \def\LdfInit#1#2{%
485 \chardef\atcatcode=\catcode‘\@
486 \catcode‘\@=11\relax
487 \chardef\eqcatcode=\catcode‘\=
488 \catcode‘\==12\relax
489 \expandafter\if\expandafter\@backslashchar
490 \expandafter\@car\string#2\@nil
491 \ifx#2\@undefined\else
492 \ldf@quit{#1}%
493 \fi
494 \else
495 \expandafter\ifx\csname#2\endcsname\relax\else
496 \ldf@quit{#1}%
497 \fi
498 \fi
499 \let\bbl@screset\@empty
500 \let\BabelStrings\bbl@opt@strings
501 \let\BabelOptions\@empty
502 \let\BabelLanguages\relax
503 \ifx\originalTeX\@undefined
504 \let\originalTeX\@empty
505 \else
506 \originalTeX
507 \fi}

\ldf@quit This macro interrupts the processing of a language definition file.

508 \def\ldf@quit#1{%
509 \expandafter\main@language\expandafter{#1}%
510 \catcode‘\@=\atcatcode \let\atcatcode\relax
511 \catcode‘\==\eqcatcode \let\eqcatcode\relax
512 \endinput}

\ldf@finish This macro takes one argument. It is the name of the language that was defined in
the language definition file.
We load the local configuration file if one is present, we set the main language
(taking into account that the argument might be a control sequence that needs to
be expanded) and reset the category code of the @-sign.

513 \def\ldf@finish#1{%
514 \loadlocalcfg{#1}%
515 \bbl@afterlang
516 \let\bbl@afterlang\relax
517 \let\BabelModifiers\relax
518 \let\bbl@screset\relax
519 \expandafter\main@language\expandafter{#1}%
520 \catcode‘\@=\atcatcode \let\atcatcode\relax
521 \catcode‘\==\eqcatcode \let\eqcatcode\relax}

After the preamble of the document the commands \LdfInit, \ldf@quit and
\ldf@finish are no longer needed. Therefore they are turned into warning
messages in LATEX.

522 \@onlypreamble\LdfInit
523 \@onlypreamble\ldf@quit
524 \@onlypreamble\ldf@finish

49

\main@language

\bbl@main@language

This command should be used in the various language definition files. It stores its
argument in \bbl@main@language; to be used to switch to the correct language at
the beginning of the document.

525 \def\main@language#1{%
526 \def\bbl@main@language{#1}%
527 \let\languagename\bbl@main@language
528 \bbl@patterns{\languagename}}

We also have to make sure that some code gets executed at the beginning of the
document.

529 \AtBeginDocument{%
530 \expandafter\selectlanguage\expandafter{\bbl@main@language}}

7.4 Shorthands

\bbl@add@special The macro \bbl@add@special is used to add a new character (or single character
control sequence) to the macro \dospecials (and \@sanitize if LATEX is used).
To keep all changes local, we begin a new group. Then we redefine the macros \do
and \@makeother to add themselves and the given character without expansion.
To add the character to the macros, we expand the original macros with the
additional character inside the redefinition of the macros. Because \@sanitize
can be undefined, we put the definition inside a conditional.

531 \def\bbl@add@special#1{%
532 \begingroup
533 \def\do{\noexpand\do\noexpand}%
534 \def\@makeother{\noexpand\@makeother\noexpand}%
535 \edef\x{\endgroup
536 \def\noexpand\dospecials{\dospecials\do#1}%
537 \expandafter\ifx\csname @sanitize\endcsname\relax \else
538 \def\noexpand\@sanitize{\@sanitize\@makeother#1}%
539 \fi}%
540 \x}

The macro \x contains at this moment the following:
\endgroup\def\dospecials{old contents \do〈char〉}.
If \@sanitize is defined, it contains an additional definition of this macro. The last
thing we have to do, is the expansion of \x. Then \endgroup is executed, which
restores the old meaning of \x, \do and \@makeother. After the group is closed,
the new definition of \dospecials (and \@sanitize) is assigned.

\bbl@remove@special The companion of the former macro is \bbl@remove@special. It is used to remove
a character from the set macros \dospecials and \@sanitize.
To keep all changes local, we begin a new group. Then we define a help macro \x,
which expands to empty if the characters match, otherwise it expands to its
nonexpandable input. Because TEX inserts a \relax, if the corresponding \else or
\fi is scanned before the comparison is evaluated, we provide a ‘stop sign’ which
should expand to nothing.
With the help of this macro we define \do and \make@other.
The rest of the work is similar to \bbl@add@special.

541 \def\bbl@remove@special#1{%
542 \begingroup
543 \def\x##1##2{\ifnum‘#1=‘##2\noexpand\@empty
544 \else\noexpand##1\noexpand##2\fi}%
545 \def\do{\x\do}%

50

546 \def\@makeother{\x\@makeother}%
547 \edef\x{\endgroup
548 \def\noexpand\dospecials{\dospecials}%
549 \expandafter\ifx\csname @sanitize\endcsname\relax \else
550 \def\noexpand\@sanitize{\@sanitize}%
551 \fi}%
552 \x}

\initiate@active@char A language definition file can call this macro to make a character active. This
macro takes one argument, the character that is to be made active. When the
character was already active this macro does nothing. Otherwise, this macro
defines the control sequence \normal@char〈char〉 to expand to the character in its
‘normal state’ and it defines the active character to expand to \normal@char〈char〉
by default (〈char〉 being the character to be made active). Later its definition can
be changed to expand to \active@char〈char〉 by calling \bbl@activate{〈char〉}.
For example, to make the double quote character active one could have
\initiate@active@char{"} in a language definition file. This defines " as
\active@prefix "\active@char" (where the first " is the character with its
original catcode, when the shorthand is created, and \active@char" is a single
token). In protected contexts, it expands to \protect " or \noexpand " (ie, with
the original "); otherwise \active@char" is executed. This macro in turn expands
to \normal@char" in “safe” contexts (eg, \label), but \user@active" in normal
“unsafe” ones. The latter search a definition in the user, language and system
levels, in this order, but if none is found, \normal@char" is used. However, a
deactivated shorthand (with \bbl@deactivate is defined as
\active@prefix "\normal@char".
The following macro is used to define shorthands in the three levels. It takes 4
arguments: the (string’ed) character, \<level>@group, <level>@active and
<next-level>@active (except in system).

553 \def\bbl@active@def#1#2#3#4{%
554 \@namedef{#3#1}{%
555 \expandafter\ifx\csname#2@sh@#1@\endcsname\relax
556 \bbl@afterelse\bbl@sh@select#2#1{#3@arg#1}{#4#1}%
557 \else
558 \bbl@afterfi\csname#2@sh@#1@\endcsname
559 \fi}%

When there is also no current-level shorthand with an argument we will check
whether there is a next-level defined shorthand for this active character.

560 \long\@namedef{#3@arg#1}##1{%
561 \expandafter\ifx\csname#2@sh@#1@\string##1@\endcsname\relax
562 \bbl@afterelse\csname#4#1\endcsname##1%
563 \else
564 \bbl@afterfi\csname#2@sh@#1@\string##1@\endcsname
565 \fi}}%

\initiate@active@char calls \@initiate@active@char with 3 arguments. All of
them are the same character with different catcodes: active, other (string’ed) and
the original one.

566 \def\initiate@active@char#1{%
567 \expandafter\ifx\csname active@char\string#1\endcsname\relax
568 \bbl@withactive
569 {\expandafter\@initiate@active@char\expandafter}#1\string#1#1%
570 \fi}

51

The very first thing to do is saving the original catcode and the original definition,
even if not active, which is possible (undefined characters require a special
treatement to avoid making them \relax).

571 \def\@initiate@active@char#1#2#3{%
572 \expandafter\edef\csname bbl@oricat@#2\endcsname{%
573 \catcode‘#2=\the\catcode‘#2\relax}%
574 \ifx#1\@undefined
575 \expandafter\edef\csname bbl@oridef@#2\endcsname{%
576 \let\noexpand#1\noexpand\@undefined}%
577 \else
578 \expandafter\let\csname bbl@oridef@@#2\endcsname#1%
579 \expandafter\edef\csname bbl@oridef@#2\endcsname{%
580 \let\noexpand#1%
581 \expandafter\noexpand\csname bbl@oridef@@#2\endcsname}%
582 \fi

If the character is already active we provide the default expansion under this
shorthand mechanism. Otherwise we write a message in the transcript file, and
define \normal@char〈char〉 to expand to the character in its default state. If the
character is mathematically active when babel is loaded (for example ’) the
normal expansion is somewhat different to avoid an infinite loop (but it does not
prevent the loop if the mathcode is set to "8000 a posteriori).

583 \ifx#1#3\relax
584 \expandafter\let\csname normal@char#2\endcsname#3%
585 \else
586 \bbl@info{Making #2 an active character}%
587 \ifnum\mathcode‘#2="8000
588 \@namedef{normal@char#2}{%
589 \textormath{#3}{\csname bbl@oridef@@#2\endcsname}}%
590 \else
591 \@namedef{normal@char#2}{#3}%
592 \fi

To prevent problems with the loading of other packages after babel we reset the
catcode of the character to the original one at the end of the package and of each
language file (except with KeepShorthandsActive). It is re-activate again at
\begin{document}. We also need to make sure that the shorthands are active
during the processing of the .aux file. Otherwise some citations may give
unexpected results in the printout when a shorthand was used in the optional
argument of \bibitem for example. . Then we make it active (not strictly
necessary, but done for backward compatibility).

593 \bbl@restoreactive{#2}%
594 \AtBeginDocument{%
595 \catcode‘#2\active
596 \if@filesw
597 \immediate\write\@mainaux{\catcode‘\string#2\active}%
598 \fi}%
599 \expandafter\bbl@add@special\csname#2\endcsname
600 \catcode‘#2\active
601 \fi

Now we have set \normal@char〈char〉, we must define \active@char〈char〉, to be
executed when the character is activated. We define the first level expansion of
\active@char〈char〉 to check the status of the @safe@actives flag. If it is set to
true we expand to the ‘normal’ version of this character, otherwise we call

52

\user@active〈char〉 to start the search of a definition in the user, language and
system levels (or eventually normal@char〈char〉).

602 \let\bbl@tempa\@firstoftwo
603 \if\string^#2%
604 \def\bbl@tempa{\noexpand\textormath}%
605 \else
606 \ifx\bbl@mathnormal\@undefined\else
607 \let\bbl@tempa\bbl@mathnormal
608 \fi
609 \fi
610 \expandafter\edef\csname active@char#2\endcsname{%
611 \bbl@tempa
612 {\noexpand\if@safe@actives
613 \noexpand\expandafter
614 \expandafter\noexpand\csname normal@char#2\endcsname
615 \noexpand\else
616 \noexpand\expandafter
617 \expandafter\noexpand\csname bbl@doactive#2\endcsname
618 \noexpand\fi}%
619 {\expandafter\noexpand\csname normal@char#2\endcsname}}%
620 \bbl@csarg\edef{doactive#2}{%
621 \expandafter\noexpand\csname user@active#2\endcsname}%

We now define the default values which the shorthand is set to when activated or
deactivated. It is set to the deactivated form (globally), so that the character
expands to

\active@prefix 〈char〉 \normal@char〈char〉

(where \active@char〈char〉 is one control sequence!).

622 \bbl@csarg\edef{active@#2}{%
623 \noexpand\active@prefix\noexpand#1%
624 \expandafter\noexpand\csname active@char#2\endcsname}%
625 \bbl@csarg\edef{normal@#2}{%
626 \noexpand\active@prefix\noexpand#1%
627 \expandafter\noexpand\csname normal@char#2\endcsname}%
628 \expandafter\let\expandafter#1\csname bbl@normal@#2\endcsname

The next level of the code checks whether a user has defined a shorthand for
himself with this character. First we check for a single character shorthand. If that
doesn’t exist we check for a shorthand with an argument.

629 \bbl@active@def#2\user@group{user@active}{language@active}%
630 \bbl@active@def#2\language@group{language@active}{system@active}%
631 \bbl@active@def#2\system@group{system@active}{normal@char}%

In order to do the right thing when a shorthand with an argument is used by itself
at the end of the line we provide a definition for the case of an empty argument.
For that case we let the shorthand character expand to its non-active self. Also,
When a shorthand combination such as ’’ ends up in a heading TEX would see
\protect’\protect’. To prevent this from happening a couple of shorthand needs
to be defined at user level.

632 \expandafter\edef\csname\user@group @sh@#2@@\endcsname
633 {\expandafter\noexpand\csname normal@char#2\endcsname}%
634 \expandafter\edef\csname\user@group @sh@#2@\string\protect@\endcsname
635 {\expandafter\noexpand\csname user@active#2\endcsname}%

53

Finally, a couple of special cases are taken care of. (1) If we are making the right
quote (’) active we need to change \pr@m@s as well. Also, make sure that a single
’ in math mode ‘does the right thing’. (2) If we are using the caret (^) as a
shorthand character special care should be taken to make sure math still works.
Therefore an extra level of expansion is introduced with a check for math mode on
the upper level.

636 \if\string’#2%
637 \let\prim@s\bbl@prim@s
638 \let\active@math@prime#1%
639 \fi
640 \bbl@usehooks{initiateactive}{{#1}{#2}{#3}}}

The following package options control the behaviour of shorthands in math mode.

641 〈〈∗More package options〉〉 ≡
642 \DeclareOption{math=active}{}
643 \DeclareOption{math=normal}{\def\bbl@mathnormal{\noexpand\textormath}}
644 〈〈/More package options〉〉

Initiating a shorthand makes active the char. That is not strictly necessary but it is
still done for backward compatibility. So we need to restore the original catcode at
the end of package and and the end of the ldf.

645 \@ifpackagewith{babel}{KeepShorthandsActive}%
646 {\let\bbl@restoreactive\@gobble}%
647 {\def\bbl@restoreactive#1{%
648 \edef\bbl@tempa{%
649 \noexpand\AfterBabelLanguage\noexpand\CurrentOption
650 {\catcode‘#1=\the\catcode‘#1\relax}%
651 \noexpand\AtEndOfPackage{\catcode‘#1=\the\catcode‘#1\relax}}%
652 \bbl@tempa}%
653 \AtEndOfPackage{\let\bbl@restoreactive\@gobble}}

\bbl@sh@select This command helps the shorthand supporting macros to select how to proceed.
Note that this macro needs to be expandable as do all the shorthand macros in
order for them to work in expansion-only environments such as the argument of
\hyphenation.
This macro expects the name of a group of shorthands in its first argument and a
shorthand character in its second argument. It will expand to either \bbl@firstcs
or \bbl@scndcs. Hence two more arguments need to follow it.

654 \def\bbl@sh@select#1#2{%
655 \expandafter\ifx\csname#1@sh@#2@sel\endcsname\relax
656 \bbl@afterelse\bbl@scndcs
657 \else
658 \bbl@afterfi\csname#1@sh@#2@sel\endcsname
659 \fi}

\active@prefix The command \active@prefix which is used in the expansion of active characters
has a function similar to \OT1-cmd in that it \protects the active character
whenever \protect is not \@typeset@protect.

660 \def\active@prefix#1{%
661 \ifx\protect\@typeset@protect
662 \else

When \protect is set to \@unexpandable@protect we make sure that the active
character is als not expanded by inserting \noexpand in front of it. The \@gobble

54

is needed to remove a token such as \activechar: (when the double colon was
the active character to be dealt with).

663 \ifx\protect\@unexpandable@protect
664 \noexpand#1%
665 \else
666 \protect#1%
667 \fi
668 \expandafter\@gobble
669 \fi}

\if@safe@actives In some circumstances it is necessary to be able to change the expansion of an
active character on the fly. For this purpose the switch @safe@actives is available.
The setting of this switch should be checked in the first level expansion of
\active@char〈char〉.

670 \newif\if@safe@actives
671 \@safe@activesfalse

\bbl@restore@actives When the output routine kicks in while the active characters were made “safe” this
must be undone in the headers to prevent unexpected typeset results. For this
situation we define a command to make them “unsafe” again.

672 \def\bbl@restore@actives{\if@safe@actives\@safe@activesfalse\fi}

\bbl@activate

\bbl@deactivate

Both macros take one argument, like \initiate@active@char. The macro is used
to change the definition of an active character to expand to \active@char〈char〉 in
the case of \bbl@activate, or \normal@char〈char〉 in the case of
\bbl@deactivate.

673 \def\bbl@activate#1{%
674 \bbl@withactive{\expandafter\let\expandafter}#1%
675 \csname bbl@active@\string#1\endcsname}
676 \def\bbl@deactivate#1{%
677 \bbl@withactive{\expandafter\let\expandafter}#1%
678 \csname bbl@normal@\string#1\endcsname}

\bbl@firstcs

\bbl@scndcs

These macros have two arguments. They use one of their arguments to build a
control sequence from.

679 \def\bbl@firstcs#1#2{\csname#1\endcsname}
680 \def\bbl@scndcs#1#2{\csname#2\endcsname}

\declare@shorthand The command \declare@shorthand is used to declare a shorthand on a certain
level. It takes three arguments:

1. a name for the collection of shorthands, i.e. ‘system’, or ‘dutch’;

2. the character (sequence) that makes up the shorthand, i.e. ~ or "a;

3. the code to be executed when the shorthand is encountered.

681 \def\declare@shorthand#1#2{\@decl@short{#1}#2\@nil}
682 \def\@decl@short#1#2#3\@nil#4{%
683 \def\bbl@tempa{#3}%
684 \ifx\bbl@tempa\@empty
685 \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@scndcs
686 \@ifundefined{#1@sh@\string#2@}{}%
687 {\def\bbl@tempa{#4}%
688 \expandafter\ifx\csname#1@sh@\string#2@\endcsname\bbl@tempa
689 \else

55

690 \bbl@info
691 {Redefining #1 shorthand \string#2\\%
692 in language \CurrentOption}%
693 \fi}%
694 \@namedef{#1@sh@\string#2@}{#4}%
695 \else
696 \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@firstcs
697 \@ifundefined{#1@sh@\string#2@\string#3@}{}%
698 {\def\bbl@tempa{#4}%
699 \expandafter\ifx\csname#1@sh@\string#2@\string#3@\endcsname\bbl@tempa
700 \else
701 \bbl@info
702 {Redefining #1 shorthand \string#2\string#3\\%
703 in language \CurrentOption}%
704 \fi}%
705 \@namedef{#1@sh@\string#2@\string#3@}{#4}%
706 \fi}

\textormath Some of the shorthands that will be declared by the language definition files have
to be usable in both text and mathmode. To achieve this the helper macro
\textormath is provided.

707 \def\textormath{%
708 \ifmmode
709 \expandafter\@secondoftwo
710 \else
711 \expandafter\@firstoftwo
712 \fi}

\user@group

\language@group

\system@group

The current concept of ‘shorthands’ supports three levels or groups of shorthands.
For each level the name of the level or group is stored in a macro. The default is to
have a user group; use language group ‘english’ and have a system group called
‘system’.

713 \def\user@group{user}
714 \def\language@group{english}
715 \def\system@group{system}

\useshorthands This is the user level command to tell LATEX that user level shorthands will be used
in the document. It takes one argument, the character that starts a shorthand.
First note that this is user level, and then initialize and activate the character for
use as a shorthand character (ie, it’s active in the preamble). Languages can
deactivate shorthands, so a starred version is also provided which activates them
always after the language has been switched.

716 \def\useshorthands{%
717 \@ifstar\bbl@usesh@s{\bbl@usesh@x{}}}
718 \def\bbl@usesh@s#1{%
719 \bbl@usesh@x
720 {\AddBabelHook{babel-sh-\string#1}{afterextras}{\bbl@activate{#1}}}%
721 {#1}}
722 \def\bbl@usesh@x#1#2{%
723 \bbl@ifshorthand{#2}%
724 {\def\user@group{user}%
725 \initiate@active@char{#2}%
726 #1%
727 \bbl@activate{#2}}%
728 {\bbl@error

56

729 {Cannot declare a shorthand turned off (\string#2)}
730 {Sorry, but you cannot use shorthands which have been\\%
731 turned off in the package options}}}

\defineshorthand Currently we only support two groups of user level shorthands, named internally
user and user@<lang> (language-dependent user shorthands). By default, only the
first one is taken into account, but if the former is also used (in the optional
argument of \defineshorthand) a new level is inserted for it (user@generic, done
by \bbl@set@user@generic); we make also sure {} and \protect are taken into
account in this new top level.

732 \def\user@language@group{user@\language@group}
733 \def\bbl@set@user@generic#1#2{%
734 \@ifundefined{user@generic@active#1}%
735 {\bbl@active@def#1\user@language@group{user@active}{user@generic@active}%
736 \bbl@active@def#1\user@group{user@generic@active}{language@active}%
737 \expandafter\edef\csname#2@sh@#1@@\endcsname{%
738 \expandafter\noexpand\csname normal@char#1\endcsname}%
739 \expandafter\edef\csname#2@sh@#1@\string\protect@\endcsname{%
740 \expandafter\noexpand\csname user@active#1\endcsname}}%
741 \@empty}
742 \newcommand\defineshorthand[3][user]{%
743 \edef\bbl@tempa{\zap@space#1 \@empty}%
744 \bbl@for\bbl@tempb\bbl@tempa{%
745 \if*\expandafter\@car\bbl@tempb\@nil
746 \edef\bbl@tempb{user@\expandafter\@gobble\bbl@tempb}%
747 \@expandtwoargs
748 \bbl@set@user@generic{\expandafter\string\@car#2\@nil}\bbl@tempb
749 \fi
750 \declare@shorthand{\bbl@tempb}{#2}{#3}}}

\languageshorthands A user level command to change the language from which shorthands are used.
Unfortunately, babel currently does not keep track of defined groups, and
therefore there is no way to catch a possible change in casing.

751 \def\languageshorthands#1{\def\language@group{#1}}

\aliasshorthand First the new shorthand needs to be initialized,

752 \def\aliasshorthand#1#2{%
753 \bbl@ifshorthand{#2}%
754 {\expandafter\ifx\csname active@char\string#2\endcsname\relax
755 \ifx\document\@notprerr
756 \@notshorthand{#2}%
757 \else
758 \initiate@active@char{#2}%

Then, we define the new shorthand in terms of the original one, but note with
\aliasshorthands{"}{/} is \active@prefix /\active@char/, so we still need to
let the lattest to \active@char".

759 \expandafter\let\csname active@char\string#2\expandafter\endcsname
760 \csname active@char\string#1\endcsname
761 \expandafter\let\csname normal@char\string#2\expandafter\endcsname
762 \csname normal@char\string#1\endcsname
763 \bbl@activate{#2}%
764 \fi
765 \fi}%
766 {\bbl@error

57

767 {Cannot declare a shorthand turned off (\string#2)}
768 {Sorry, but you cannot use shorthands which have been\\%
769 turned off in the package options}}}

\@notshorthand

770 \def\@notshorthand#1{%
771 \bbl@error{%
772 The character ‘\string #1’ should be made a shorthand character;\\%
773 add the command \string\useshorthands\string{#1\string} to
774 the preamble.\\%
775 I will ignore your instruction}%
776 {You may proceed, but expect unexpected results}}

\shorthandon

\shorthandoff

The first level definition of these macros just passes the argument on to
\bbl@switch@sh, adding \@nil at the end to denote the end of the list of
characters.

777 \newcommand*\shorthandon[1]{\bbl@switch@sh\@ne#1\@nnil}
778 \DeclareRobustCommand*\shorthandoff{%
779 \@ifstar{\bbl@shorthandoff\tw@}{\bbl@shorthandoff\z@}}
780 \def\bbl@shorthandoff#1#2{\bbl@switch@sh#1#2\@nnil}

\bbl@switch@sh The macro \bbl@switch@sh takes the list of characters apart one by one and
subsequently switches the category code of the shorthand character according to
the first argument of \bbl@switch@sh.
But before any of this switching takes place we make sure that the character we
are dealing with is known as a shorthand character. If it is, a macro such as
\active@char" should exist.
Switching off and on is easy – we just set the category code to ‘other’ (12) and
\active. With the starred version, the original catcode and the original definition,
saved in @initiate@active@char, are restored.

781 \def\bbl@switch@sh#1#2{%
782 \ifx#2\@nnil\else
783 \@ifundefined{bbl@active@\string#2}%
784 {\bbl@error
785 {I cannot switch ‘\string#2’ on or off--not a shorthand}%
786 {This character is not a shorthand. Maybe you made\\%
787 a typing mistake? I will ignore your instruction}}%
788 {\ifcase#1%
789 \catcode‘#212\relax
790 \or
791 \catcode‘#2\active
792 \or
793 \csname bbl@oricat@\string#2\endcsname
794 \csname bbl@oridef@\string#2\endcsname
795 \fi}%
796 \bbl@afterfi\bbl@switch@sh#1%
797 \fi}

Note the value is that at the expansion time, eg, in the preample shorhands are
usually deactivated.

798 \def\babelshorthand{\active@prefix\babelshorthand\bbl@putsh}
799 \def\bbl@putsh#1{%
800 \@ifundefined{bbl@active@\string#1}%
801 {\bbl@putsh@i#1\@empty\@nnil}%
802 {\csname bbl@active@\string#1\endcsname}}

58

803 \def\bbl@putsh@i#1#2\@nnil{%
804 \csname\languagename @sh@\string#1@%
805 \ifx\@empty#2\else\string#2@\fi\endcsname}
806 \ifx\bbl@opt@shorthands\@nnil\else
807 \let\bbl@s@initiate@active@char\initiate@active@char
808 \def\initiate@active@char#1{%
809 \bbl@ifshorthand{#1}{\bbl@s@initiate@active@char{#1}}{}}
810 \let\bbl@s@switch@sh\bbl@switch@sh
811 \def\bbl@switch@sh#1#2{%
812 \ifx#2\@nnil\else
813 \bbl@afterfi
814 \bbl@ifshorthand{#2}{\bbl@s@switch@sh#1{#2}}{\bbl@switch@sh#1}%
815 \fi}
816 \let\bbl@s@activate\bbl@activate
817 \def\bbl@activate#1{%
818 \bbl@ifshorthand{#1}{\bbl@s@activate{#1}}{}}
819 \let\bbl@s@deactivate\bbl@deactivate
820 \def\bbl@deactivate#1{%
821 \bbl@ifshorthand{#1}{\bbl@s@deactivate{#1}}{}}
822 \fi

\bbl@prim@s

\bbl@pr@m@s

One of the internal macros that are involved in substituting \prime for each right
quote in mathmode is \prim@s. This checks if the next character is a right quote.
When the right quote is active, the definition of this macro needs to be adapted to
look also for an active right quote; the hat could be active, too.

823 \def\bbl@prim@s{%
824 \prime\futurelet\@let@token\bbl@pr@m@s}
825 \def\bbl@if@primes#1#2{%
826 \ifx#1\@let@token
827 \expandafter\@firstoftwo
828 \else\ifx#2\@let@token
829 \bbl@afterelse\expandafter\@firstoftwo
830 \else
831 \bbl@afterfi\expandafter\@secondoftwo
832 \fi\fi}
833 \begingroup
834 \catcode‘\^=7 \catcode‘*=\active \lccode‘*=‘\^
835 \catcode‘\’=12 \catcode‘\"=\active \lccode‘\"=‘\’
836 \lowercase{%
837 \gdef\bbl@pr@m@s{%
838 \bbl@if@primes"’%
839 \pr@@@s
840 {\bbl@if@primes*^\pr@@@t\egroup}}}
841 \endgroup

Usually the ~ is active and expands to \penalty\@M\ . When it is written to the
.aux file it is written expanded. To prevent that and to be able to use the character
~ as a start character for a shorthand, it is redefined here as a one character
shorthand on system level. The system declaration is in most cases redundant
(when ~ is still a non-break space), and in some cases is inconvenient (if ~ has been
redefined); however, for backward compatibility it is maintained (some existing
documents may rely on the babel value).

842 \initiate@active@char{~}
843 \declare@shorthand{system}{~}{\leavevmode\nobreak\ }
844 \bbl@activate{~}

59

\OT1dqpos

\T1dqpos

The position of the double quote character is different for the OT1 and T1
encodings. It will later be selected using the \f@encoding macro. Therefore we
define two macros here to store the position of the character in these encodings.

845 \expandafter\def\csname OT1dqpos\endcsname{127}
846 \expandafter\def\csname T1dqpos\endcsname{4}

When the macro \f@encoding is undefined (as it is in plain TEX) we define it here
to expand to OT1

847 \ifx\f@encoding\@undefined
848 \def\f@encoding{OT1}
849 \fi

7.5 Language attributes

Language attributes provide a means to give the user control over which features
of the language definition files he wants to enable.

\languageattribute The macro \languageattribute checks whether its arguments are valid and then
activates the selected language attribute. First check whether the language is
known, and then process each attribute in the list.

850 \newcommand\languageattribute[2]{%
851 \def\bbl@tempc{#1}%
852 \bbl@fixname\bbl@tempc
853 \bbl@iflanguage\bbl@tempc{%
854 \bbl@loopx\bbl@attr{#2}{%

We want to make sure that each attribute is selected only once; therefore we store
the already selected attributes in \bbl@known@attribs. When that control
sequence is not yet defined this attribute is certainly not selected before.

855 \ifx\bbl@known@attribs\@undefined
856 \in@false
857 \else

Now we need to see if the attribute occurs in the list of already selected attributes.

858 \@expandtwoargs\in@{,\bbl@tempc-\bbl@attr,}{,\bbl@known@attribs,}%
859 \fi

When the attribute was in the list we issue a warning; this might not be the users
intention.

860 \ifin@
861 \bbl@warning{%
862 You have more than once selected the attribute ’\bbl@attr’\\%
863 for language #1}%
864 \else

When we end up here the attribute is not selected before. So, we add it to the list
of selected attributes and execute the associated TEX-code.

865 \edef\bbl@tempa{%
866 \noexpand\bbl@add@list
867 \noexpand\bbl@known@attribs{\bbl@tempc-\bbl@attr}}%
868 \bbl@tempa
869 \edef\bbl@tempa{\bbl@tempc-\bbl@attr}%
870 \expandafter\bbl@ifknown@ttrib\expandafter{\bbl@tempa}\bbl@attributes%
871 {\csname\bbl@tempc @attr@\bbl@attr\endcsname}%
872 {\@attrerr{\bbl@tempc}{\bbl@attr}}%
873 \fi}}}

60

This command should only be used in the preamble of a document.

874 \@onlypreamble\languageattribute

The error text to be issued when an unknown attribute is selected.

875 \newcommand*{\@attrerr}[2]{%
876 \bbl@error
877 {The attribute #2 is unknown for language #1.}%
878 {Your command will be ignored, type <return> to proceed}}

\bbl@declare@ttribute This command adds the new language/attribute combination to the list of known
attributes.
Then it defines a control sequence to be executed when the attribute is used in a
document. The result of this should be that the macro \extras... for the current
language is extended, otherwise the attribute will not work as its code is removed
from memory at \begin{document}.

879 \def\bbl@declare@ttribute#1#2#3{%
880 \@expandtwoargs\in@{,#2,}{,\BabelModifiers,}%
881 \ifin@
882 \AfterBabelLanguage{#1}{\languageattribute{#1}{#2}}%
883 \fi
884 \bbl@add@list\bbl@attributes{#1-#2}%
885 \expandafter\def\csname#1@attr@#2\endcsname{#3}}

\bbl@ifattributeset This internal macro has 4 arguments. It can be used to interpret TEX code based
on whether a certain attribute was set. This command should appear inside the
argument to \AtBeginDocument because the attributes are set in the document
preamble, after babel is loaded.
The first argument is the language, the second argument the attribute being
checked, and the third and fourth arguments are the true and false clauses.

886 \def\bbl@ifattributeset#1#2#3#4{%

First we need to find out if any attributes were set; if not we’re done.

887 \ifx\bbl@known@attribs\@undefined
888 \in@false
889 \else

The we need to check the list of known attributes.

890 \@expandtwoargs\in@{,#1-#2,}{,\bbl@known@attribs,}%
891 \fi

When we’re this far \ifin@ has a value indicating if the attribute in question was
set or not. Just to be safe the code to be executed is ‘thrown over the \fi’.

892 \ifin@
893 \bbl@afterelse#3%
894 \else
895 \bbl@afterfi#4%
896 \fi
897 }

\bbl@add@list This internal macro adds its second argument to a comma separated list in its first
argument. When the list is not defined yet (or empty), it will be initiated

898 \def\bbl@add@list#1#2{%
899 \ifx#1\@undefined
900 \def#1{#2}%
901 \else
902 \ifx#1\@empty

61

903 \def#1{#2}%
904 \else
905 \edef#1{#1,#2}%
906 \fi
907 \fi
908 }

\bbl@ifknown@ttrib An internal macro to check whether a given language/attribute is known. The
macro takes 4 arguments, the language/attribute, the attribute list, the TEX-code
to be executed when the attribute is known and the TEX-code to be executed
otherwise.

909 \def\bbl@ifknown@ttrib#1#2{%

We first assume the attribute is unknown.

910 \let\bbl@tempa\@secondoftwo

Then we loop over the list of known attributes, trying to find a match.

911 \bbl@loopx\bbl@tempb{#2}{%
912 \expandafter\in@\expandafter{\expandafter,\bbl@tempb,}{,#1,}%
913 \ifin@

When a match is found the definition of \bbl@tempa is changed.

914 \let\bbl@tempa\@firstoftwo
915 \else
916 \fi}%

Finally we execute \bbl@tempa.

917 \bbl@tempa
918 }

\bbl@clear@ttribs This macro removes all the attribute code from LATEX’s memory at
\begin{document} time (if any is present).

919 \def\bbl@clear@ttribs{%
920 \ifx\bbl@attributes\@undefined\else
921 \bbl@loopx\bbl@tempa{\bbl@attributes}{%
922 \expandafter\bbl@clear@ttrib\bbl@tempa.
923 }%
924 \let\bbl@attributes\@undefined
925 \fi
926 }
927 \def\bbl@clear@ttrib#1-#2.{%
928 \expandafter\let\csname#1@attr@#2\endcsname\@undefined}
929 \AtBeginDocument{\bbl@clear@ttribs}

7.6 Support for saving macro definitions

To save the meaning of control sequences using \babel@save, we use temporary
control sequences. To save hash table entries for these control sequences, we
don’t use the name of the control sequence to be saved to construct the temporary
name. Instead we simply use the value of a counter, which is reset to zero each
time we begin to save new values. This works well because we release the saved
meanings before we begin to save a new set of control sequence meanings (see
\selectlanguage and \originalTeX). Note undefined macros are not undefined
any more when saved – they are \relax’ed.

\babel@savecnt

\babel@beginsave

The initialization of a new save cycle: reset the counter to zero.

930 \def\babel@beginsave{\babel@savecnt\z@}

62

Before it’s forgotten, allocate the counter and initialize all.

931 \newcount\babel@savecnt
932 \babel@beginsave

\babel@save The macro \babel@save〈csname〉 saves the current meaning of the control
sequence 〈csname〉 to \originalTeX26. To do this, we let the current meaning to a
temporary control sequence, the restore commands are appended to
\originalTeX and the counter is incremented.

933 \def\babel@save#1{%
934 \expandafter\let\csname babel@\number\babel@savecnt\endcsname#1\relax
935 \begingroup
936 \toks@\expandafter{\originalTeX\let#1=}%
937 \edef\x{\endgroup
938 \def\noexpand\originalTeX{\the\toks@ \expandafter\noexpand
939 \csname babel@\number\babel@savecnt\endcsname\relax}}%
940 \x
941 \advance\babel@savecnt\@ne}

\babel@savevariable The macro \babel@savevariable〈variable〉 saves the value of the variable.
〈variable〉 can be anything allowed after the \the primitive.

942 \def\babel@savevariable#1{\begingroup
943 \toks@\expandafter{\originalTeX #1=}%
944 \edef\x{\endgroup
945 \def\noexpand\originalTeX{\the\toks@ \the#1\relax}}%
946 \x}

\bbl@frenchspacing

\bbl@nonfrenchspacing

Some languages need to have \frenchspacing in effect. Others don’t want that.
The command \bbl@frenchspacing switches it on when it isn’t already in effect
and \bbl@nonfrenchspacing switches it off if necessary.

947 \def\bbl@frenchspacing{%
948 \ifnum\the\sfcode‘\.=\@m
949 \let\bbl@nonfrenchspacing\relax
950 \else
951 \frenchspacing
952 \let\bbl@nonfrenchspacing\nonfrenchspacing
953 \fi}
954 \let\bbl@nonfrenchspacing\nonfrenchspacing

7.7 Short tags

\babeltags This macro is straightforward. After zapping spaces, we loop over the list and
define the macros \text〈tag〉 and \〈tag〉. Definitions are first expanded so that
they don’t contain \csname but the actual macro.

955 \def\babeltags#1{%
956 \edef\bbl@tempa{\zap@space#1 \@empty}%
957 \def\bbl@tempb##1=##2\@@{%
958 \edef\bbl@tempc{%
959 \noexpand\newcommand
960 \expandafter\noexpand\csname ##1\endcsname{%
961 \noexpand\protect
962 \expandafter\noexpand\csname otherlanguage*\endcsname{##2}}
963 \noexpand\newcommand
964 \expandafter\noexpand\csname text##1\endcsname{%

26\originalTeX has to be expandable, i. e. you shouldn’t let it to \relax.

63

965 \noexpand\foreignlanguage{##2}}}
966 \bbl@tempc}%
967 \bbl@for\bbl@tempa\bbl@tempa{%
968 \expandafter\bbl@tempb\bbl@tempa\@@}}

7.8 Hyphens

\babelhyphenation This macro saves hyphenation exceptions. Two macros are used to store them:
\bbl@hyphenation@ for the global ones and \bbl@hyphenation<lang> for
language ones. See \bbl@patterns above for further details. We make sure there
is a space between words when multiple commands are used.

969 \@onlypreamble\babelhyphenation
970 \AtEndOfPackage{%
971 \newcommand\babelhyphenation[2][\@empty]{%
972 \ifx\bbl@hyphenation@\relax
973 \let\bbl@hyphenation@\@empty
974 \fi
975 \ifx\bbl@hyphlist\@empty\else
976 \bbl@warning{%
977 You must not intermingle \string\selectlanguage\space and\\%
978 \string\babelhyphenation\space or some exceptions will not\\%
979 be taken into account. Reported}%
980 \fi
981 \ifx\@empty#1%
982 \protected@edef\bbl@hyphenation@{\bbl@hyphenation@\space#2}%
983 \else
984 \edef\bbl@tempb{\zap@space#1 \@empty}%
985 \bbl@for\bbl@tempa\bbl@tempb{%
986 \bbl@fixname\bbl@tempa
987 \bbl@iflanguage\bbl@tempa{%
988 \bbl@csarg\protected@edef{hyphenation@\bbl@tempa}{%
989 \@ifundefined{bbl@hyphenation@\bbl@tempa}%
990 \@empty
991 {\csname bbl@hyphenation@\bbl@tempa\endcsname\space}%
992 #2}}}%
993 \fi}}

\bbl@allowhyphens This macro makes hyphenation possible. Basically its definition is nothing more
than \nobreak \hskip 0pt plus 0pt27.

994 \def\bbl@allowhyphens{\ifvmode\else\nobreak\hskip\z@skip\fi}
995 \def\bbl@t@one{T1}
996 \def\allowhyphens{\ifx\cf@encoding\bbl@t@one\else\bbl@allowhyphens\fi}

\babelhyphen Macros to insert common hyphens. Note the space before @ in \babelhyphen.
Instead of protecting it with \DeclareRobustCommand, which could insert a
\relax, we use the same procedure as shorthands.

997 \newcommand\babelnullhyphen{\char\hyphenchar\font}
998 \def\babelhyphen{\active@prefix\babelhyphen\bbl@hyphen}
999 \def\bbl@hyphen{%

1000 \@ifstar{\bbl@hyphen@i @}{\bbl@hyphen@i\@empty}}
1001 \def\bbl@hyphen@i#1#2{%
1002 \@ifundefined{bbl@hy@#1#2\@empty}%

27TEX begins and ends a word for hyphenation at a glue node. The penalty prevents a linebreak at this
glue node.

64

1003 {\csname bbl@#1usehyphen\endcsname{\discretionary{#2}{}{#2}}}%
1004 {\csname bbl@hy@#1#2\@empty\endcsname}}

The following two commands are used to wrap the “hyphen” and set the behaviour
of the rest of the word – the version with a single @ is used when further
hyphenation is allowed, while that with @@ if no more hyphen are allowed. In both
cases, if the hyphen is preceded by a positive space, breaking after the hyphen is
disallowed.
There should not be a discretionaty after a hyphen at the beginning of a word, so it
is prevented if preceded by a skip. Unfortunately, this does handle cases like
“(-suffix)”. \nobreak is always preceded by \leavevmode, in case the shorthand
starts a paragraph.

1005 \def\bbl@usehyphen#1{%
1006 \leavevmode
1007 \ifdim\lastskip>\z@\mbox{#1}\nobreak\else\nobreak#1\fi
1008 \hskip\z@skip}
1009 \def\bbl@@usehyphen#1{%
1010 \leavevmode\ifdim\lastskip>\z@\mbox{#1}\else#1\fi}

The following macro inserts the hyphen char.

1011 \def\bbl@hyphenchar{%
1012 \ifnum\hyphenchar\font=\m@ne
1013 \babelnullhyphen
1014 \else
1015 \char\hyphenchar\font
1016 \fi}

Finally, we define the hyphen “types”. Their names will not change, so you may
use them in ldf’s.

1017 \def\bbl@hy@soft{\bbl@usehyphen{\discretionary{\bbl@hyphenchar}{}{}}}
1018 \def\bbl@hy@@soft{\bbl@@usehyphen{\discretionary{\bbl@hyphenchar}{}{}}}
1019 \def\bbl@hy@hard{\bbl@usehyphen\bbl@hyphenchar}
1020 \def\bbl@hy@@hard{\bbl@@usehyphen\bbl@hyphenchar}
1021 \def\bbl@hy@nobreak{\bbl@usehyphen{\mbox{\bbl@hyphenchar}\nobreak}}
1022 \def\bbl@hy@@nobreak{\mbox{\bbl@hyphenchar}}
1023 \def\bbl@hy@repeat{%
1024 \bbl@usehyphen{%
1025 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}{\bbl@hyphenchar}%
1026 \nobreak}}
1027 \def\bbl@hy@@repeat{%
1028 \bbl@@usehyphen{%
1029 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}{\bbl@hyphenchar}}}
1030 \def\bbl@hy@empty{\hskip\z@skip}
1031 \def\bbl@hy@@empty{\discretionary{}{}{}}

\bbl@disc For some languages the macro \bbl@disc is used to ease the insertion of
discretionaries for letters that behave ‘abnormally’ at a breakpoint.

1032 \def\bbl@disc#1#2{\nobreak\discretionary{#2-}{}{#1}\bbl@allowhyphens}

7.9 Multiencoding strings

The aim following commands is to provide a commom interface for strings in
several encodings. They also contains several hooks which can be ued by luatex
and xetex. The code is organized here with pseudo-guards, so we start with the
basic commands.

65

Tools But first, a couple of tools. The first one makes global a local variable. This
is not the best solution, but it works.

1033 \def\bbl@toglobal#1{\global\let#1#1}
1034 \def\bbl@recatcode#1{%
1035 \@tempcnta="7F
1036 \def\bbl@tempa{%
1037 \ifnum\@tempcnta>"FF\else
1038 \catcode\@tempcnta=#1\relax
1039 \advance\@tempcnta\@ne
1040 \expandafter\bbl@tempa
1041 \fi}%
1042 \bbl@tempa}

The second one. We need to patch \@uclclist, but it is done once and only if
\SetCase is used or if strings are encoded. The code is far from satisfactory for
several reasons, including the fact \@uclclist is not a list any more. Therefore a
package option is added to ignore it. Instead of gobbling the macro getting the
next two elements (usually \reserved@a), we pass it as argument to \bbl@uclc.
The parser is restarted inside \〈lang〉@bbl@uclc because we do not know how
many expansions are necessary (depends on whether strings are encoded). The
last part is tricky – when uppercasing, we have:

% \let\bbl@tolower\@empty\bbl@toupper\@empty
%

and starts over (and similarly when lowercasing).

1043 \@ifpackagewith{babel}{nocase}%
1044 {\let\bbl@patchuclc\relax}%
1045 {\def\bbl@patchuclc{%
1046 \global\let\bbl@patchuclc\relax
1047 \g@addto@macro\@uclclist{\reserved@b{\reserved@b\bbl@uclc}}%
1048 \gdef\bbl@uclc##1{%
1049 \let\bbl@encoded\bbl@encoded@uclc
1050 \@ifundefined{\languagename @bbl@uclc}% and resumes it
1051 {##1}%
1052 {\let\bbl@tempa##1\relax % Used by LANG@bbl@uclc
1053 \csname\languagename @bbl@uclc\endcsname}%
1054 {\bbl@tolower\@empty}{\bbl@toupper\@empty}}%
1055 \gdef\bbl@tolower{\csname\languagename @bbl@lc\endcsname}%
1056 \gdef\bbl@toupper{\csname\languagename @bbl@uc\endcsname}}}

1057 〈〈∗More package options〉〉 ≡
1058 \DeclareOption{nocase}{}
1059 〈〈/More package options〉〉

The following package options control the behaviour of \SetString.

1060 〈〈∗More package options〉〉 ≡
1061 \let\bbl@opt@strings\@nnil % accept strings=value
1062 \DeclareOption{strings}{\def\bbl@opt@strings{\BabelStringsDefault}}
1063 \DeclareOption{strings=encoded}{\let\bbl@opt@strings\relax}
1064 \def\BabelStringsDefault{generic}
1065 〈〈/More package options〉〉

Main command This is the main command. With the first use it is redefined to
omit the basic setup in subsequent blocks. We make sure strings contain actual
letters in the range 128-255, not active characters.

66

1066 \@onlypreamble\StartBabelCommands
1067 \def\StartBabelCommands{%
1068 \begingroup
1069 \bbl@recatcode{11}%
1070 〈〈Macros local to BabelCommands〉〉
1071 \def\bbl@provstring##1##2{%
1072 \providecommand##1{##2}%
1073 \bbl@toglobal##1}%
1074 \global\let\bbl@scafter\@empty
1075 \let\StartBabelCommands\bbl@startcmds
1076 \ifx\BabelLanguages\relax
1077 \let\BabelLanguages\CurrentOption
1078 \fi
1079 \begingroup
1080 \let\bbl@screset\@nnil % local flag - disable 1st stopcommands
1081 \StartBabelCommands}
1082 \def\bbl@startcmds{%
1083 \ifx\bbl@screset\@nnil\else
1084 \bbl@usehooks{stopcommands}{}%
1085 \fi
1086 \endgroup
1087 \begingroup
1088 \@ifstar
1089 {\ifx\bbl@opt@strings\@nnil
1090 \let\bbl@opt@strings\BabelStringsDefault
1091 \fi
1092 \bbl@startcmds@i}%
1093 \bbl@startcmds@i}
1094 \def\bbl@startcmds@i#1#2{%
1095 \edef\bbl@L{\zap@space#1 \@empty}%
1096 \edef\bbl@G{\zap@space#2 \@empty}%
1097 \bbl@startcmds@ii}

Parse the encoding info to get the label, input, and font parts.
Select the behaviour of \SetString. Thre are two main cases, depending of if
there is an optional argument: without it and strings=encoded, strings are
defined always; otherwise, they are set only if they are still undefined (ie, fallback
values). With labelled blocks and strings=encoded, define the strings, but with
another value, define strings only if the current label or font encoding is the value
of strings; otherwise (ie, no strings or a block whose label is not in strings=) do
nothing.
We presume the current block is not loaded, and therefore set (above) a couple of
default values to gobble the arguments. Then, these macros are redefined if
necessary according to several parameters.

1098 \newcommand\bbl@startcmds@ii[1][\@empty]{%
1099 \let\SetString\@gobbletwo
1100 \let\bbl@stringdef\@gobbletwo
1101 \let\AfterBabelCommands\@gobble
1102 \ifx\@empty#1%
1103 \def\bbl@sc@label{generic}%
1104 \def\bbl@encstring##1##2{%
1105 \ProvideTextCommandDefault##1{##2}%
1106 \bbl@toglobal##1%
1107 \expandafter\bbl@toglobal\csname\string?\string##1\endcsname}%
1108 \let\bbl@sctest\in@true

67

1109 \else
1110 \let\bbl@sc@charset\space % <- zapped below
1111 \let\bbl@sc@fontenc\space % <- " "
1112 \def\bbl@tempa##1=##2\@nil{%
1113 \bbl@csarg\edef{sc@\zap@space##1 \@empty}{##2 }}%
1114 \bbl@for\bbl@tempb{label=#1}{\expandafter\bbl@tempa\bbl@tempb\@nil}%
1115 \def\bbl@tempa##1 ##2{% space -> comma
1116 ##1%
1117 \ifx\@empty##2\else\ifx,##1,\else,\fi\bbl@afterfi\bbl@tempa##2\fi}%
1118 \edef\bbl@sc@fontenc{\expandafter\bbl@tempa\bbl@sc@fontenc\@empty}%
1119 \edef\bbl@sc@label{\expandafter\zap@space\bbl@sc@label\@empty}%
1120 \edef\bbl@sc@charset{\expandafter\zap@space\bbl@sc@charset\@empty}%
1121 \def\bbl@encstring##1##2{%
1122 \bbl@for\bbl@tempc\bbl@sc@fontenc{%
1123 \@ifundefined{T@\bbl@tempc}%
1124 {}%
1125 {\ProvideTextCommand##1\bbl@tempc{##2}%
1126 \bbl@toglobal##1%
1127 \expandafter
1128 \bbl@toglobal\csname\bbl@tempc\string##1\endcsname}}}%
1129 \def\bbl@sctest{%
1130 \@expandtwoargs
1131 \in@{,\bbl@opt@strings,}{,\bbl@sc@label,\bbl@sc@fontenc,}}%
1132 \fi
1133 \ifx\bbl@opt@strings\@nnil % ie, no strings key -> defaults
1134 \else\ifx\bbl@opt@strings\relax % ie, strings=encoded
1135 \let\AfterBabelCommands\bbl@aftercmds
1136 \let\SetString\bbl@setstring
1137 \let\bbl@stringdef\bbl@encstring
1138 \else % ie, strings=value
1139 \bbl@sctest
1140 \ifin@
1141 \let\AfterBabelCommands\bbl@aftercmds
1142 \let\SetString\bbl@setstring
1143 \let\bbl@stringdef\bbl@provstring
1144 \fi\fi\fi
1145 \bbl@scswitch
1146 \ifx\bbl@G\@empty
1147 \def\SetString##1##2{%
1148 \bbl@error{Missing group for string \string##1}%
1149 {You must assign strings to some category, typically\\%
1150 captions or extras, but you set none}}%
1151 \fi
1152 \ifx\@empty#1%
1153 \@expandtwoargs
1154 \bbl@usehooks{defaultcommands}{}%
1155 \else
1156 \@expandtwoargs
1157 \bbl@usehooks{encodedcommands}{{\bbl@sc@charset}{\bbl@sc@fontenc}}%
1158 \fi}

There are two versions of \bbl@scswitch. The first version is used when ldfs are
read, and it makes sure \〈group〉〈language〉 is reset, but only once (\bbl@screset
is used to keep track of this). The second version is used in the preamble and
packages loaded after babel and does nothing. The macro \bbl@forlang loops
\bbl@L but its body is executed only if the value is in \BabelLanguages (inside

68

babel) or \date〈language〉 is defined (after babel has been loaded). There are also
two version of \bbl@forlang. The first one skips the current iteration if the
language is not in \BabelLanguages (used in ldfs), and the second one skips
undefined languages (after babel has been loaded) .

1159 \def\bbl@forlang#1#2{%
1160 \bbl@for#1\bbl@L{%
1161 \@expandtwoargs\in@{,#1,}{,\BabelLanguages,}%
1162 \ifin@#2\relax\fi}}
1163 \def\bbl@scswitch{%
1164 \bbl@forlang\bbl@tempa{%
1165 \ifx\bbl@G\@empty\else
1166 \ifx\SetString\@gobbletwo\else
1167 \edef\bbl@GL{\bbl@G\bbl@tempa}%
1168 \@expandtwoargs\in@{,\bbl@GL,}{,\bbl@screset,}%
1169 \ifin@\else
1170 \global\expandafter\let\csname\bbl@GL\endcsname\@undefined
1171 \xdef\bbl@screset{\bbl@screset,\bbl@GL}%
1172 \fi
1173 \fi
1174 \fi}}
1175 \AtEndOfPackage{%
1176 \def\bbl@forlang#1#2{\bbl@for#1\bbl@L{\@ifundefined{date#1}{}{#2}}}%
1177 \let\bbl@scswitch\relax}
1178 \@onlypreamble\EndBabelCommands
1179 \def\EndBabelCommands{%
1180 \bbl@usehooks{stopcommands}{}%
1181 \endgroup
1182 \endgroup
1183 \bbl@scafter}

Now we define commands to be used inside \StartBabelCommands.

Strings The following macro is the actual definition of \SetString when it is
“active”
First save the “switcher”. Create it if undefined. Strings are defined only if
undefined (ie, like \providescommmand). With the event stringprocess you can
preprocess the string by manipulating the value of \BabelString. If there are
several hooks assigned to this event, preprocessing is done in the same order as
defined. Finally, the string is set.

1184 \def\bbl@setstring#1#2{%
1185 \bbl@forlang\bbl@tempa{%
1186 \edef\bbl@LC{\bbl@tempa\expandafter\@gobble\string#1}%
1187 \@ifundefined{\bbl@LC}% eg, \germanchaptername
1188 {\global\expandafter
1189 \bbl@add\csname\bbl@G\bbl@tempa\expandafter\endcsname\expandafter
1190 {\expandafter\bbl@scset\expandafter#1\csname\bbl@LC\endcsname}}%
1191 {}%
1192 \def\BabelString{#2}%
1193 \bbl@usehooks{stringprocess}{}%
1194 \expandafter\bbl@stringdef
1195 \csname\bbl@LC\expandafter\endcsname\expandafter{\BabelString}}}

Now, some addtional stuff to be used when encoded strings are used. Captions
then include \bbl@encoded for string to be expanded in case transformations. It is

69

\relax by default, but in \MakeUppercase and \MakeLowercase its value is a
modified expandable \@changed@cmd.

1196 \ifx\bbl@opt@strings\relax
1197 \def\bbl@scset#1#2{\def#1{\bbl@encoded#2}}
1198 \bbl@patchuclc
1199 \let\bbl@encoded\relax
1200 \def\bbl@encoded@uclc#1{%
1201 \@inmathwarn#1%
1202 \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
1203 \expandafter\ifx\csname ?\string#1\endcsname\relax
1204 \TextSymbolUnavailable#1%
1205 \else
1206 \csname ?\string#1\endcsname
1207 \fi
1208 \else
1209 \csname\cf@encoding\string#1\endcsname
1210 \fi}
1211 \else
1212 \def\bbl@scset#1#2{\def#1{#2}}
1213 \fi

Define \SetStringLoop, which is actually set inside \StartBabelCommands. The
current definition is somewhat complicated because we need a count, but \count@
is not under our control (remember \SetString may call hooks).

1214 〈〈∗Macros local to BabelCommands〉〉 ≡
1215 \def\SetStringLoop##1##2{%
1216 \def\bbl@templ####1{\expandafter\noexpand\csname##1\endcsname}%
1217 \count@\z@
1218 \bbl@loop\bbl@tempa{##2}{%
1219 \advance\count@\@ne
1220 \toks@\expandafter{\bbl@tempa}%
1221 \edef\bbl@tempb{%
1222 \bbl@templ{\romannumeral\count@}{\the\toks@}%
1223 \count@=\the\count@\relax}%
1224 \expandafter\SetString\bbl@tempb}}%
1225 〈〈/Macros local to BabelCommands〉〉

Delaying code Now the definition of \AfterBabelCommands when it is activated.

1226 \def\bbl@aftercmds#1{%
1227 \toks@\expandafter{\bbl@scafter#1}%
1228 \xdef\bbl@scafter{\the\toks@}}

Case mapping The command \SetCase provides a way to change the behaviour
of \MakeUppercase and \MakeLowercase. \bbl@tempa is set by the patched
\@uclclist to the parsing command.

1229 〈〈∗Macros local to BabelCommands〉〉 ≡
1230 \newcommand\SetCase[3][]{%
1231 \bbl@patchuclc
1232 \bbl@forlang\bbl@tempa{%
1233 \expandafter\bbl@encstring
1234 \csname\bbl@tempa @bbl@uclc\endcsname{\bbl@tempa##1}%
1235 \expandafter\bbl@encstring
1236 \csname\bbl@tempa @bbl@uc\endcsname{##2}%
1237 \expandafter\bbl@encstring

70

1238 \csname\bbl@tempa @bbl@lc\endcsname{##3}}}%
1239 〈〈/Macros local to BabelCommands〉〉

Macros to deal with case mapping for hyphenation. To decide if the document is
monolingual or multilingual, we make a rough guess – just see if there is a comma
in the languages list, built in the first pass of the package options.

1240 〈〈∗Macros local to BabelCommands〉〉 ≡
1241 \newcommand\SetHyphenMap[1]{%
1242 \bbl@forlang\bbl@tempa{%
1243 \expandafter\bbl@stringdef
1244 \csname\bbl@tempa @bbl@hyphenmap\endcsname{##1}}}
1245 〈〈/Macros local to BabelCommands〉〉

There are 3 helper macros which do most of the work for you.

1246 \newcommand\BabelLower[2]{% one to one.
1247 \ifnum\lccode#1=#2\else
1248 \babel@savevariable{\lccode#1}%
1249 \lccode#1=#2\relax
1250 \fi}
1251 \newcommand\BabelLowerMM[4]{% many-to-many
1252 \@tempcnta=#1\relax
1253 \@tempcntb=#4\relax
1254 \def\bbl@tempa{%
1255 \ifnum\@tempcnta>#2\else
1256 \@expandtwoargs\BabelLower{\the\@tempcnta}{\the\@tempcntb}%
1257 \advance\@tempcnta#3\relax
1258 \advance\@tempcntb#3\relax
1259 \expandafter\bbl@tempa
1260 \fi}%
1261 \bbl@tempa}
1262 \newcommand\BabelLowerMO[4]{% many-to-one
1263 \@tempcnta=#1\relax
1264 \def\bbl@tempa{%
1265 \ifnum\@tempcnta>#2\else
1266 \@expandtwoargs\BabelLower{\the\@tempcnta}{#4}%
1267 \advance\@tempcnta#3
1268 \expandafter\bbl@tempa
1269 \fi}%
1270 \bbl@tempa}

The following package options control the behaviour of hyphenation mapping.

1271 〈〈∗More package options〉〉 ≡
1272 \DeclareOption{hyphenmap=off}{\chardef\bbl@hymapopt\z@}
1273 \DeclareOption{hyphenmap=first}{\chardef\bbl@hymapopt\@ne}
1274 \DeclareOption{hyphenmap=select}{\chardef\bbl@hymapopt\tw@}
1275 \DeclareOption{hyphenmap=other}{\chardef\bbl@hymapopt\thr@@}
1276 \DeclareOption{hyphenmap=other*}{\chardef\bbl@hymapopt4\relax}
1277 〈〈/More package options〉〉

Initial setup to provide a default behaviour if hypenmap is not set.

1278 \AtEndOfPackage{%
1279 \ifx\bbl@hymapopt\@undefined
1280 \@expandtwoargs\in@{,}{\bbl@language@opts}%
1281 \chardef\bbl@hymapopt\ifin@4\else\@ne\fi
1282 \fi}

71

7.10 Macros common to a number of languages

\set@low@box The following macro is used to lower quotes to the same level as the comma. It
prepares its argument in box register 0.

1283 \def\set@low@box#1{\setbox\tw@\hbox{,}\setbox\z@\hbox{#1}%
1284 \dimen\z@\ht\z@ \advance\dimen\z@ -\ht\tw@%
1285 \setbox\z@\hbox{\lower\dimen\z@ \box\z@}\ht\z@\ht\tw@ \dp\z@\dp\tw@}

\save@sf@q The macro \save@sf@q is used to save and reset the current space factor.

1286 \def\save@sf@q#1{\leavevmode
1287 \begingroup
1288 \edef\@SF{\spacefactor\the\spacefactor}#1\@SF
1289 \endgroup}

7.11 Making glyphs available

This section makes a number of glyphs available that either do not exist in the OT1
encoding and have to be ‘faked’, or that are not accessible through T1enc.def.

7.11.1 Quotation marks

\quotedblbase In the T1 encoding the opening double quote at the baseline is available as a
separate character, accessible via \quotedblbase. In the OT1 encoding it is not
available, therefore we make it available by lowering the normal open quote
character to the baseline.

1290 \ProvideTextCommand{\quotedblbase}{OT1}{%
1291 \save@sf@q{\set@low@box{\textquotedblright\/}%
1292 \box\z@\kern-.04em\bbl@allowhyphens}}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still
be typeset.

1293 \ProvideTextCommandDefault{\quotedblbase}{%
1294 \UseTextSymbol{OT1}{\quotedblbase}}

\quotesinglbase We also need the single quote character at the baseline.

1295 \ProvideTextCommand{\quotesinglbase}{OT1}{%
1296 \save@sf@q{\set@low@box{\textquoteright\/}%
1297 \box\z@\kern-.04em\bbl@allowhyphens}}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still
be typeset.

1298 \ProvideTextCommandDefault{\quotesinglbase}{%
1299 \UseTextSymbol{OT1}{\quotesinglbase}}

\guillemotleft

\guillemotright

The guillemet characters are not available in OT1 encoding. They are faked.

1300 \ProvideTextCommand{\guillemotleft}{OT1}{%
1301 \ifmmode
1302 \ll
1303 \else
1304 \save@sf@q{\nobreak
1305 \raise.2ex\hbox{$\scriptscriptstyle\ll$}\bbl@allowhyphens}%
1306 \fi}
1307 \ProvideTextCommand{\guillemotright}{OT1}{%
1308 \ifmmode
1309 \gg

72

1310 \else
1311 \save@sf@q{\nobreak
1312 \raise.2ex\hbox{$\scriptscriptstyle\gg$}\bbl@allowhyphens}%
1313 \fi}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can
still be typeset.

1314 \ProvideTextCommandDefault{\guillemotleft}{%
1315 \UseTextSymbol{OT1}{\guillemotleft}}
1316 \ProvideTextCommandDefault{\guillemotright}{%
1317 \UseTextSymbol{OT1}{\guillemotright}}

\guilsinglleft

\guilsinglright

The single guillemets are not available in OT1 encoding. They are faked.

1318 \ProvideTextCommand{\guilsinglleft}{OT1}{%
1319 \ifmmode
1320 <%
1321 \else
1322 \save@sf@q{\nobreak
1323 \raise.2ex\hbox{$\scriptscriptstyle<$}\bbl@allowhyphens}%
1324 \fi}
1325 \ProvideTextCommand{\guilsinglright}{OT1}{%
1326 \ifmmode
1327 >%
1328 \else
1329 \save@sf@q{\nobreak
1330 \raise.2ex\hbox{$\scriptscriptstyle>$}\bbl@allowhyphens}%
1331 \fi}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can
still be typeset.

1332 \ProvideTextCommandDefault{\guilsinglleft}{%
1333 \UseTextSymbol{OT1}{\guilsinglleft}}
1334 \ProvideTextCommandDefault{\guilsinglright}{%
1335 \UseTextSymbol{OT1}{\guilsinglright}}

7.11.2 Letters

\ij

\IJ

The dutch language uses the letter ‘ij’. It is available in T1 encoded fonts, but not
in the OT1 encoded fonts. Therefore we fake it for the OT1 encoding.

1336 \DeclareTextCommand{\ij}{OT1}{%
1337 i\kern-0.02em\bbl@allowhyphens j}
1338 \DeclareTextCommand{\IJ}{OT1}{%
1339 I\kern-0.02em\bbl@allowhyphens J}
1340 \DeclareTextCommand{\ij}{T1}{\char188}
1341 \DeclareTextCommand{\IJ}{T1}{\char156}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can
still be typeset.

1342 \ProvideTextCommandDefault{\ij}{%
1343 \UseTextSymbol{OT1}{\ij}}
1344 \ProvideTextCommandDefault{\IJ}{%
1345 \UseTextSymbol{OT1}{\IJ}}

\dj

\DJ

The croatian language needs the letters \dj and \DJ; they are available in the T1
encoding, but not in the OT1 encoding by default.

73

Some code to construct these glyphs for the OT1 encoding was made available to
me by Stipcevic Mario, (stipcevic@olimp.irb.hr).

1346 \def\crrtic@{\hrule height0.1ex width0.3em}
1347 \def\crttic@{\hrule height0.1ex width0.33em}
1348 \def\ddj@{%
1349 \setbox0\hbox{d}\dimen@=\ht0
1350 \advance\dimen@1ex
1351 \dimen@.45\dimen@
1352 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@
1353 \advance\dimen@ii.5ex
1354 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}
1355 \def\DDJ@{%
1356 \setbox0\hbox{D}\dimen@=.55\ht0
1357 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@
1358 \advance\dimen@ii.15ex % correction for the dash position
1359 \advance\dimen@ii-.15\fontdimen7\font % correction for cmtt font
1360 \dimen\thr@@\expandafter\rem@pt\the\fontdimen7\font\dimen@
1361 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crttic@}}}}
1362 %
1363 \DeclareTextCommand{\dj}{OT1}{\ddj@ d}
1364 \DeclareTextCommand{\DJ}{OT1}{\DDJ@ D}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can
still be typeset.

1365 \ProvideTextCommandDefault{\dj}{%
1366 \UseTextSymbol{OT1}{\dj}}
1367 \ProvideTextCommandDefault{\DJ}{%
1368 \UseTextSymbol{OT1}{\DJ}}

\SS For the T1 encoding \SS is defined and selects a specific glyph from the font, but
for other encodings it is not available. Therefore we make it available here.

1369 \DeclareTextCommand{\SS}{OT1}{SS}
1370 \ProvideTextCommandDefault{\SS}{\UseTextSymbol{OT1}{\SS}}

7.11.3 Shorthands for quotation marks

Shorthands are provided for a number of different quotation marks, which make
them usable both outside and inside mathmode.

\glq

\grq

The ‘german’ single quotes.

1371 \ProvideTextCommand{\glq}{OT1}{%
1372 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}
1373 \ProvideTextCommand{\glq}{T1}{%
1374 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}
1375 \ProvideTextCommandDefault{\glq}{\UseTextSymbol{OT1}\glq}

The definition of \grq depends on the fontencoding. With T1 encoding no extra
kerning is needed.

1376 \ProvideTextCommand{\grq}{T1}{%
1377 \textormath{\textquoteleft}{\mbox{\textquoteleft}}}
1378 \ProvideTextCommand{\grq}{OT1}{%
1379 \save@sf@q{\kern-.0125em%
1380 \textormath{\textquoteleft}{\mbox{\textquoteleft}}%
1381 \kern.07em\relax}}
1382 \ProvideTextCommandDefault{\grq}{\UseTextSymbol{OT1}\grq}

74

\glqq

\grqq

The ‘german’ double quotes.

1383 \ProvideTextCommand{\glqq}{OT1}{%
1384 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
1385 \ProvideTextCommand{\glqq}{T1}{%
1386 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
1387 \ProvideTextCommandDefault{\glqq}{\UseTextSymbol{OT1}\glqq}

The definition of \grqq depends on the fontencoding. With T1 encoding no extra
kerning is needed.

1388 \ProvideTextCommand{\grqq}{T1}{%
1389 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
1390 \ProvideTextCommand{\grqq}{OT1}{%
1391 \save@sf@q{\kern-.07em%
1392 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}%
1393 \kern.07em\relax}}
1394 \ProvideTextCommandDefault{\grqq}{\UseTextSymbol{OT1}\grqq}

\flq

\frq

The ‘french’ single guillemets.

1395 \ProvideTextCommand{\flq}{OT1}{%
1396 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
1397 \ProvideTextCommand{\flq}{T1}{%
1398 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
1399 \ProvideTextCommandDefault{\flq}{\UseTextSymbol{OT1}\flq}

1400 \ProvideTextCommand{\frq}{OT1}{%
1401 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}
1402 \ProvideTextCommand{\frq}{T1}{%
1403 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}
1404 \ProvideTextCommandDefault{\frq}{\UseTextSymbol{OT1}\frq}

\flqq

\frqq

The ‘french’ double guillemets.

1405 \ProvideTextCommand{\flqq}{OT1}{%
1406 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
1407 \ProvideTextCommand{\flqq}{T1}{%
1408 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
1409 \ProvideTextCommandDefault{\flqq}{\UseTextSymbol{OT1}\flqq}

1410 \ProvideTextCommand{\frqq}{OT1}{%
1411 \textormath{\guillemotright}{\mbox{\guillemotright}}}
1412 \ProvideTextCommand{\frqq}{T1}{%
1413 \textormath{\guillemotright}{\mbox{\guillemotright}}}
1414 \ProvideTextCommandDefault{\frqq}{\UseTextSymbol{OT1}\frqq}

7.11.4 Umlauts and tremas

The command \" needs to have a different effect for different languages. For
German for instance, the ‘umlaut’ should be positioned lower than the default
position for placing it over the letters a, o, u, A, O and U. When placed over an e, i,
E or I it can retain its normal position. For Dutch the same glyph is always placed
in the lower position.

\umlauthigh

\umlautlow

To be able to provide both positions of \" we provide two commands to switch the
positioning, the default will be \umlauthigh (the normal positioning).

1415 \def\umlauthigh{%
1416 \def\bbl@umlauta##1{\leavevmode\bgroup%
1417 \expandafter\accent\csname\f@encoding dqpos\endcsname
1418 ##1\bbl@allowhyphens\egroup}%

75

1419 \let\bbl@umlaute\bbl@umlauta}
1420 \def\umlautlow{%
1421 \def\bbl@umlauta{\protect\lower@umlaut}}
1422 \def\umlautelow{%
1423 \def\bbl@umlaute{\protect\lower@umlaut}}
1424 \umlauthigh

\lower@umlaut The command \lower@umlaut is used to position the \" closer the the letter.
We want the umlaut character lowered, nearer to the letter. To do this we need an
extra 〈dimen〉 register.

1425 \expandafter\ifx\csname U@D\endcsname\relax
1426 \csname newdimen\endcsname\U@D
1427 \fi

The following code fools TEX’s make_accent procedure about the current x-height
of the font to force another placement of the umlaut character. First we have to
save the current x-height of the font, because we’ll change this font dimension and
this is always done globally.
Then we compute the new x-height in such a way that the umlaut character is
lowered to the base character. The value of .45ex depends on the METAFONT

parameters with which the fonts were built. (Just try out, which value will look
best.) If the new x-height is too low, it is not changed. Finally we call the \accent
primitive, reset the old x-height and insert the base character in the argument.

1428 \def\lower@umlaut#1{%
1429 \leavevmode\bgroup
1430 \U@D 1ex%
1431 {\setbox\z@\hbox{%
1432 \expandafter\char\csname\f@encoding dqpos\endcsname}%
1433 \dimen@ -.45ex\advance\dimen@\ht\z@
1434 \ifdim 1ex<\dimen@ \fontdimen5\font\dimen@ \fi}%
1435 \expandafter\accent\csname\f@encoding dqpos\endcsname
1436 \fontdimen5\font\U@D #1%
1437 \egroup}

For all vowels we declare \" to be a composite command which uses
\bbl@umlauta or \bbl@umlaute to position the umlaut character. We need to be
sure that these definitions override the ones that are provided when the package
fontenc with option OT1 is used. Therefore these declarations are postponed until
the beginning of the document. Note these definitions only apply to some
languages, but babel sets them for all languages – you may want to redefine
\bbl@umlauta and/or \bbl@umlaute for a language in the corresponding ldf
(using the babel switching mechanism, of course).

1438 \AtBeginDocument{%
1439 \DeclareTextCompositeCommand{\"}{OT1}{a}{\bbl@umlauta{a}}%
1440 \DeclareTextCompositeCommand{\"}{OT1}{e}{\bbl@umlaute{e}}%
1441 \DeclareTextCompositeCommand{\"}{OT1}{i}{\bbl@umlaute{\i}}%
1442 \DeclareTextCompositeCommand{\"}{OT1}{\i}{\bbl@umlaute{\i}}%
1443 \DeclareTextCompositeCommand{\"}{OT1}{o}{\bbl@umlauta{o}}%
1444 \DeclareTextCompositeCommand{\"}{OT1}{u}{\bbl@umlauta{u}}%
1445 \DeclareTextCompositeCommand{\"}{OT1}{A}{\bbl@umlauta{A}}%
1446 \DeclareTextCompositeCommand{\"}{OT1}{E}{\bbl@umlaute{E}}%
1447 \DeclareTextCompositeCommand{\"}{OT1}{I}{\bbl@umlaute{I}}%
1448 \DeclareTextCompositeCommand{\"}{OT1}{O}{\bbl@umlauta{O}}%
1449 \DeclareTextCompositeCommand{\"}{OT1}{U}{\bbl@umlauta{U}}%
1450 }

76

Finally, the default is to use English as the main language.

1451 \ifx\l@english\@undefined
1452 \chardef\l@english\z@
1453 \fi
1454 \main@language{english}

Now we load definition files for engines.

1455 \ifcase\bbl@engine\or
1456 \input luababel.def
1457 \or
1458 \input xebabel.def
1459 \fi

8 The kernel of Babel (only LATEX)

8.1 The redefinition of the style commands

The rest of the code in this file can only be processed by LATEX, so we check the
current format. If it is plain TEX, processing should stop here. But, because of the
need to limit the scope of the definition of \format, a macro that is used locally in
the following \if statement, this comparison is done inside a group. To prevent
TEX from complaining about an unclosed group, the processing of the command
\endinput is deferred until after the group is closed. This is accomplished by the
command \aftergroup.

1460 {\def\format{lplain}
1461 \ifx\fmtname\format
1462 \else
1463 \def\format{LaTeX2e}
1464 \ifx\fmtname\format
1465 \else
1466 \aftergroup\endinput
1467 \fi
1468 \fi}

8.2 Cross referencing macros

The LATEX book states:

The key argument is any sequence of letters, digits, and punctuation
symbols; upper- and lowercase letters are regarded as different.

When the above quote should still be true when a document is typeset in a
language that has active characters, special care has to be taken of the category
codes of these characters when they appear in an argument of the cross
referencing macros.
When a cross referencing command processes its argument, all tokens in this
argument should be character tokens with category ‘letter’ or ‘other’.
The only way to accomplish this in most cases is to use the trick described in the
TEXbook [1] (Appendix D, page 382). The primitive \meaning applied to a token
expands to the current meaning of this token. For example, ‘\meaning\A’ with \A
defined as ‘\def\A#1{\B}’ expands to the characters ‘macro:#1->\B’ with all
category codes set to ‘other’ or ‘space’.

77

\newlabel The macro \label writes a line with a \newlabel command into the .aux file to
define labels.

1469 %\bbl@redefine\newlabel#1#2{%
1470 % \@safe@activestrue\org@newlabel{#1}{#2}\@safe@activesfalse}

\@newl@bel We need to change the definition of the LATEX-internal macro \@newl@bel. This is
needed because we need to make sure that shorthand characters expand to their
non-active version.
The following package options control which macros are to be redefined.

1471 〈〈∗More package options〉〉 ≡
1472 \DeclareOption{safe=none}{\let\bbl@opt@safe\@empty}
1473 \DeclareOption{safe=bib}{\def\bbl@opt@safe{B}}
1474 \DeclareOption{safe=ref}{\def\bbl@opt@safe{R}}
1475 〈〈/More package options〉〉

First we open a new group to keep the changed setting of \protect local and then
we set the @safe@actives switch to true to make sure that any shorthand that
appears in any of the arguments immediately expands to its non-active self.

1476 \ifx\bbl@opt@safe\@empty\else
1477 \def\@newl@bel#1#2#3{%
1478 {\@safe@activestrue
1479 \@ifundefined{#1@#2}%
1480 \relax
1481 {\gdef\@multiplelabels{%
1482 \@latex@warning@no@line{There were multiply-defined labels}}%
1483 \@latex@warning@no@line{Label ‘#2’ multiply defined}}%
1484 \global\@namedef{#1@#2}{#3}}}

\@testdef An internal LATEX macro used to test if the labels that have been written on the
.aux file have changed. It is called by the \enddocument macro. This macro needs
to be completely rewritten, using \meaning. The reason for this is that in some
cases the expansion of \#1@#2 contains the same characters as the #3; but the
character codes differ. Therefore LATEX keeps reporting that the labels may have
changed.

1485 \CheckCommand*\@testdef[3]{%
1486 \def\reserved@a{#3}%
1487 \expandafter\ifx\csname#1@#2\endcsname\reserved@a
1488 \else
1489 \@tempswatrue
1490 \fi}

Now that we made sure that \@testdef still has the same definition we can
rewrite it. First we make the shorthands ‘safe’.

1491 \def\@testdef#1#2#3{%
1492 \@safe@activestrue

Then we use \bbl@tempa as an ‘alias’ for the macro that contains the label which
is being checked.

1493 \expandafter\let\expandafter\bbl@tempa\csname #1@#2\endcsname

Then we define \bbl@tempb just as \@newl@bel does it.

1494 \def\bbl@tempb{#3}%
1495 \@safe@activesfalse

When the label is defined we replace the definition of \bbl@tempa by its meaning.

1496 \ifx\bbl@tempa\relax
1497 \else

78

1498 \edef\bbl@tempa{\expandafter\strip@prefix\meaning\bbl@tempa}%
1499 \fi

We do the same for \bbl@tempb.

1500 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%

If the label didn’t change, \bbl@tempa and \bbl@tempb should be identical macros.

1501 \ifx\bbl@tempa\bbl@tempb
1502 \else
1503 \@tempswatrue
1504 \fi}
1505 \fi

\ref

\pageref

The same holds for the macro \ref that references a label and \pageref to
reference a page. So we redefine \ref and \pageref. While we change these
macros, we make them robust as well (if they weren’t already) to prevent
problems if they should become expanded at the wrong moment.

1506 \@expandtwoargs\in@{R}\bbl@opt@safe
1507 \ifin@
1508 \bbl@redefinerobust\ref#1{%
1509 \@safe@activestrue\org@ref{#1}\@safe@activesfalse}
1510 \bbl@redefinerobust\pageref#1{%
1511 \@safe@activestrue\org@pageref{#1}\@safe@activesfalse}
1512 \else
1513 \let\org@ref\ref
1514 \let\org@pageref\pageref
1515 \fi

\@citex The macro used to cite from a bibliography, \cite, uses an internal macro,
\@citex. It is this internal macro that picks up the argument(s), so we redefine
this internal macro and leave \cite alone. The first argument is used for
typesetting, so the shorthands need only be deactivated in the second argument.

1516 \@expandtwoargs\in@{B}\bbl@opt@safe
1517 \ifin@
1518 \bbl@redefine\@citex[#1]#2{%
1519 \@safe@activestrue\edef\@tempa{#2}\@safe@activesfalse
1520 \org@@citex[#1]{\@tempa}}

Unfortunately, the packages natbib and cite need a different definition of
\@citex... To begin with, natbib has a definition for \@citex with three
arguments... We only know that a package is loaded when \begin{document} is
executed, so we need to postpone the different redefinition.

1521 \AtBeginDocument{%
1522 \@ifpackageloaded{natbib}{%

Notice that we use \def here instead of \bbl@redefine because \org@@citex is
already defined and we don’t want to overwrite that definition (it would result in
parameter stack overflow because of a circular definition).
(Recent versions of natbib change dynamically \@citex, so PR4087 doesn’t seem
fixable in a simple way. Just load natbib before.)

1523 \def\@citex[#1][#2]#3{%
1524 \@safe@activestrue\edef\@tempa{#3}\@safe@activesfalse
1525 \org@@citex[#1][#2]{\@tempa}}%
1526 }{}}

The package cite has a definition of \@citex where the shorthands need to be
turned off in both arguments.

79

1527 \AtBeginDocument{%
1528 \@ifpackageloaded{cite}{%
1529 \def\@citex[#1]#2{%
1530 \@safe@activestrue\org@@citex[#1]{#2}\@safe@activesfalse}%
1531 }{}}

\nocite The macro \nocite which is used to instruct BiBTEX to extract uncited references
from the database.

1532 \bbl@redefine\nocite#1{%
1533 \@safe@activestrue\org@nocite{#1}\@safe@activesfalse}

\bibcite The macro that is used in the .aux file to define citation labels. When packages
such as natbib or cite are not loaded its second argument is used to typeset the
citation label. In that case, this second argument can contain active characters but
is used in an environment where \@safe@activestrue is in effect. This switch
needs to be reset inside the \hbox which contains the citation label. In order to
determine during .aux file processing which definition of \bibcite is needed we
define \bibcite in such a way that it redefines itself with the proper definition.

1534 \bbl@redefine\bibcite{%

We call \bbl@cite@choice to select the proper definition for \bibcite. This new
definition is then activated.

1535 \bbl@cite@choice
1536 \bibcite}

\bbl@bibcite The macro \bbl@bibcite holds the definition of \bibcite needed when neither
natbib nor cite is loaded.

1537 \def\bbl@bibcite#1#2{%
1538 \org@bibcite{#1}{\@safe@activesfalse#2}}

\bbl@cite@choice The macro \bbl@cite@choice determines which definition of \bibcite is needed.

1539 \def\bbl@cite@choice{%

First we give \bibcite its default definition.

1540 \global\let\bibcite\bbl@bibcite

Then, when natbib is loaded we restore the original definition of \bibcite.

1541 \@ifpackageloaded{natbib}{\global\let\bibcite\org@bibcite}{}%

For cite we do the same.

1542 \@ifpackageloaded{cite}{\global\let\bibcite\org@bibcite}{}%

Make sure this only happens once.

1543 \global\let\bbl@cite@choice\relax}

When a document is run for the first time, no .aux file is available, and \bibcite
will not yet be properly defined. In this case, this has to happen before the
document starts.

1544 \AtBeginDocument{\bbl@cite@choice}

\@bibitem One of the two internal LATEX macros called by \bibitem that write the citation
label on the .aux file.

1545 \bbl@redefine\@bibitem#1{%
1546 \@safe@activestrue\org@@bibitem{#1}\@safe@activesfalse}
1547 \else
1548 \let\org@nocite\nocite
1549 \let\org@@citex\@citex

80

1550 \let\org@bibcite\bibcite
1551 \let\org@@bibitem\@bibitem
1552 \fi

8.3 Marks

\markright Because the output routine is asynchronous, we must pass the current language
attribute to the head lines, together with the text that is put into them. To achieve
this we need to adapt the definition of \markright and \markboth somewhat.

1553 \bbl@redefine\markright#1{%

First of all we temporarily store the language switching command, using an
expanded definition in order to get the current value of \languagename.

1554 \edef\bbl@tempb{\noexpand\protect
1555 \noexpand\foreignlanguage{\languagename}}%

Then, we check whether the argument is empty; if it is, we just make sure the
scratch token register is empty.

1556 \def\bbl@arg{#1}%
1557 \ifx\bbl@arg\@empty
1558 \toks@{}%
1559 \else

Next, we store the argument to \markright in the scratch token register, together
with the expansion of \bbl@tempb (containing the language switching command)
as defined before. This way these commands will not be expanded by using \edef
later on, and we make sure that the text is typeset using the correct language
settings. While doing so, we make sure that active characters that may end up in
the mark are not disabled by the output routine kicking in while
\@safe@activestrue is in effect.

1560 \expandafter\toks@\expandafter{%
1561 \bbl@tempb{\protect\bbl@restore@actives#1}}%
1562 \fi

Then we define a temporary control sequence using \edef.

1563 \edef\bbl@tempa{%

When \bbl@tempa is executed, only \languagename will be expanded, because of
the way the token register was filled.

1564 \noexpand\org@markright{\the\toks@}}%
1565 \bbl@tempa
1566 }

\markboth

\@mkboth

The definition of \markboth is equivalent to that of \markright, except that we
need two token registers. The documentclasses report and book define and set
the headings for the page. While doing so they also store a copy of \markboth in
\@mkboth. Therefore we need to check whether \@mkboth has already been set. If
so we neeed to do that again with the new definition of \makrboth.

1567 \ifx\@mkboth\markboth
1568 \def\bbl@tempc{\let\@mkboth\markboth}
1569 \else
1570 \def\bbl@tempc{}
1571 \fi

Now we can start the new definition of \markboth

1572 \bbl@redefine\markboth#1#2{%
1573 \edef\bbl@tempb{\noexpand\protect

81

1574 \noexpand\foreignlanguage{\languagename}}%
1575 \def\bbl@arg{#1}%
1576 \ifx\bbl@arg\@empty
1577 \toks@{}%
1578 \else
1579 \expandafter\toks@\expandafter{%
1580 \bbl@tempb{\protect\bbl@restore@actives#1}}%
1581 \fi
1582 \def\bbl@arg{#2}%
1583 \ifx\bbl@arg\@empty
1584 \toks8{}%
1585 \else
1586 \expandafter\toks8\expandafter{%
1587 \bbl@tempb{\protect\bbl@restore@actives#2}}%
1588 \fi
1589 \edef\bbl@tempa{%
1590 \noexpand\org@markboth{\the\toks@}{\the\toks8}}%
1591 \bbl@tempa
1592 }

and copy it to \@mkboth if necesary.

1593 \bbl@tempc

8.4 Preventing clashes with other packages

8.4.1 ifthen

\ifthenelse Sometimes a document writer wants to create a special effect depending on the
page a certain fragment of text appears on. This can be achieved by the following
piece of code:

% \ifthenelse{\isodd{\pageref{some:label}}}
% {code for odd pages}
% {code for even pages}
%

In order for this to work the argument of \isodd needs to be fully expandable.
With the above redefinition of \pageref it is not in the case of this example. To
overcome that, we add some code to the definition of \ifthenelse to make things
work.
The first thing we need to do is check if the package ifthen is loaded. This should
be done at \begin{document} time.

1594 \@expandtwoargs\in@{R}\bbl@opt@safe
1595 \ifin@
1596 \AtBeginDocument{%
1597 \@ifpackageloaded{ifthen}{%

Then we can redefine \ifthenelse:

1598 \bbl@redefine@long\ifthenelse#1#2#3{%

We want to revert the definition of \pageref and \ref to their original definition
for the first argument of \ifthenelse, so we first need to store their current
meanings.

1599 \let\bbl@temp@pref\pageref
1600 \let\pageref\org@pageref
1601 \let\bbl@temp@ref\ref
1602 \let\ref\org@ref

82

Then we can set the \@safe@actives switch and call the original \ifthenelse. In
order to be able to use shorthands in the second and third arguments of
\ifthenelse the resetting of the switch and the definition of \pageref happens
inside those arguments. When the package wasn’t loaded we do nothing.

1603 \@safe@activestrue
1604 \org@ifthenelse{#1}{%
1605 \let\pageref\bbl@temp@pref
1606 \let\ref\bbl@temp@ref
1607 \@safe@activesfalse
1608 #2}{%
1609 \let\pageref\bbl@temp@pref
1610 \let\ref\bbl@temp@ref
1611 \@safe@activesfalse
1612 #3}%
1613 }%
1614 }{}%
1615 }

8.4.2 varioref

\@@vpageref

\vrefpagenum

\Ref

When the package varioref is in use we need to modify its internal command
\@@vpageref in order to prevent problems when an active character ends up in the
argument of \vref.

1616 \AtBeginDocument{%
1617 \@ifpackageloaded{varioref}{%
1618 \bbl@redefine\@@vpageref#1[#2]#3{%
1619 \@safe@activestrue
1620 \org@@@vpageref{#1}[#2]{#3}%
1621 \@safe@activesfalse}%

The same needs to happen for \vrefpagenum.

1622 \bbl@redefine\vrefpagenum#1#2{%
1623 \@safe@activestrue
1624 \org@vrefpagenum{#1}{#2}%
1625 \@safe@activesfalse}%

The package varioref defines \Ref to be a robust command wich uppercases the
first character of the reference text. In order to be able to do that it needs to
access the exandable form of \ref. So we employ a little trick here. We redefine
the (internal) command \Ref to call \org@ref instead of \ref. The disadvantgage
of this solution is that whenever the derfinition of \Ref changes, this definition
needs to be updated as well.

1626 \expandafter\def\csname Ref \endcsname#1{%
1627 \protected@edef\@tempa{\org@ref{#1}}\expandafter\MakeUppercase\@tempa}
1628 }{}%
1629 }
1630 \fi

8.4.3 hhline

\hhline Delaying the activation of the shorthand characters has introduced a problem with
the hhline package. The reason is that it uses the ‘:’ character which is made
active by the french support in babel. Therefore we need to reload the package
when the ‘:’ is an active character.
So at \begin{document} we check whether hhline is loaded.

83

1631 \AtEndOfPackage{%
1632 \AtBeginDocument{%
1633 \@ifpackageloaded{hhline}%

Then we check whether the expansion of \normal@char: is not equal to \relax.

1634 {\expandafter\ifx\csname normal@char\string:\endcsname\relax
1635 \else

In that case we simply reload the package. Note that this happens after the
category code of the @-sign has been changed to other, so we need to temporarily
change it to letter again.

1636 \makeatletter
1637 \def\@currname{hhline}\input{hhline.sty}\makeatother
1638 \fi}%
1639 {}}}

8.4.4 hyperref

\pdfstringdefDisableCommands A number of interworking problems between babel and hyperref are tackled by
hyperref itself. The following code was introduced to prevent some annoying
warnings but it broke bookmarks. This was quickly fixed in hyperref, which
essentially made it no-op. However, it will not removed for the moment because
hyperref is expecting it.

1640 \AtBeginDocument{%
1641 \@ifundefined{pdfstringdefDisableCommands}%
1642 {}%
1643 {\pdfstringdefDisableCommands{%
1644 \languageshorthands{system}}%
1645 }%
1646 }

8.4.5 fancyhdr

\FOREIGNLANGUAGE The package fancyhdr treats the running head and fout lines somewhat differently
as the standard classes. A symptom of this is that the command \foreignlanguage
which babel adds to the marks can end up inside the argument of \MakeUppercase.
To prevent unexpected results we need to define \FOREIGNLANGUAGE here.

1647 \DeclareRobustCommand{\FOREIGNLANGUAGE}[1]{%
1648 \lowercase{\foreignlanguage{#1}}}

\substitutefontfamily The command \substitutefontfamily creates an .fd file on the fly. The first
argument is an encoding mnemonic, the second and third arguments are font
family names.

1649 \def\substitutefontfamily#1#2#3{%
1650 \lowercase{\immediate\openout15=#1#2.fd\relax}%
1651 \immediate\write15{%
1652 \string\ProvidesFile{#1#2.fd}%
1653 [\the\year/\two@digits{\the\month}/\two@digits{\the\day}
1654 \space generated font description file]^^J
1655 \string\DeclareFontFamily{#1}{#2}{}^^J
1656 \string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}^^J
1657 \string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}^^J
1658 \string\DeclareFontShape{#1}{#2}{m}{sl}{<->ssub * #3/m/sl}{}^^J
1659 \string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}^^J
1660 \string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}^^J

84

1661 \string\DeclareFontShape{#1}{#2}{b}{it}{<->ssub * #3/bx/it}{}^^J
1662 \string\DeclareFontShape{#1}{#2}{b}{sl}{<->ssub * #3/bx/sl}{}^^J
1663 \string\DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/bx/sc}{}^^J
1664 }%
1665 \closeout15
1666 }

This command should only be used in the preamble of a document.

1667 \@onlypreamble\substitutefontfamily

8.5 Encoding issues

Because documents may use non-ASCII font encodings, we make sure that the
logos of TEX and LATEX always come out in the right encoding. There is a list of
non-ASCII encodings. Unfortunately, fontenc deletes its package options, so we
must guess which encodings has been loaded by traversing \@filelist to search
for 〈enc〉enc.def. If a non-ASCII has been loaded, we define versions of \TeX and
\LaTeX for them using \ensureascii. The default ASCII encoding is set, too (in
reverse order): the “main” encoding (when the document begins), the last loaded,
or OT1.

\ensureascii

1668 \newcommand\BabelNonASCII{LGR,X2,OT2,OT3,OT6,LHE,LWN,LMA,LMC,LMS,LMU,}
1669 \let\org@TeX\TeX
1670 \let\org@LaTeX\LaTeX
1671 \let\ensureascii\@firstofone
1672 \AtBeginDocument{%
1673 \in@false
1674 \bbl@loopx\bbl@tempa\BabelNonASCII{% is there a non-ascii enc?
1675 \ifin@\else
1676 \edef\bbl@tempb{{,\bbl@tempa enc.def,}{,\@filelist,}}%
1677 \lowercase\expandafter{\expandafter\in@\bbl@tempb}%
1678 \fi}
1679 \ifin@ % if a non-ascii has been loaded
1680 \def\ensureascii#1{{\fontencoding{OT1}\selectfont#1}}%
1681 \DeclareTextCommandDefault{\TeX}{\org@TeX}%
1682 \DeclareTextCommandDefault{\LaTeX}{\org@LaTeX}%
1683 \def\bbl@tempb#1\@@{\uppercase{\bbl@tempc#1}ENC.DEF\@empty\@@}%
1684 \def\bbl@tempc#1ENC.DEF#2\@@{%
1685 \ifx\@empty#2\else
1686 \@ifundefined{T@#1}%
1687 {}%
1688 {\@expandtwoargs\in@{,#1,}{,\BabelNonASCII,}%
1689 \ifin@
1690 \DeclareTextCommand{\TeX}{#1}{\ensureascii{\org@TeX}}%
1691 \DeclareTextCommand{\LaTeX}{#1}{\ensureascii{\org@LaTeX}}%
1692 \else
1693 \def\ensureascii##1{{\fontencoding{#1}\selectfont##1}}%
1694 \fi}%
1695 \fi}%
1696 \bbl@loopx\bbl@tempa\@filelist{\expandafter\bbl@tempb\bbl@tempa\@@}%
1697 \@expandtwoargs\in@{,\cf@encoding,}{,\BabelNonASCII,}%
1698 \ifin@\else
1699 \edef\ensureascii#1{{%
1700 \noexpand\fontencoding{\cf@encoding}\noexpand\selectfont#1}}%

85

1701 \fi
1702 \fi}

Now comes the old deprecated stuff (with a little change in 3.9l, for fontspec). The
first thing we need to do is to determine, at \begin{document}, which latin
fontencoding to use.

\latinencoding When text is being typeset in an encoding other than ‘latin’ (OT1 or T1), it would be
nice to still have Roman numerals come out in the Latin encoding. So we first
assume that the current encoding at the end of processing the package is the Latin
encoding.

1703 \AtEndOfPackage{\edef\latinencoding{\cf@encoding}}

But this might be overruled with a later loading of the package fontenc. Therefore
we check at the execution of \begin{document} whether it was loaded with the T1
option. The normal way to do this (using \@ifpackageloaded) is disabled for this
package. Now we have to revert to parsing the internal macro \@filelist which
contains all the filenames loaded.

1704 \AtBeginDocument{%
1705 \@ifpackageloaded{fontspec}%
1706 {\xdef\latinencoding{%
1707 \@ifundefined{UTFencname}%
1708 {EU\ifcase\bbl@engine\or2\or1\fi}%
1709 {\UTFencname}}}%
1710 {\gdef\latinencoding{OT1}%
1711 \ifx\cf@encoding\bbl@t@one
1712 \xdef\latinencoding{\bbl@t@one}%
1713 \else
1714 \@ifl@aded{def}{t1enc}{\xdef\latinencoding{\bbl@t@one}}{}%
1715 \fi}}

\latintext Then we can define the command \latintext which is a declarative switch to a
latin font-encoding. Usage of this macro is deprecated.

1716 \DeclareRobustCommand{\latintext}{%
1717 \fontencoding{\latinencoding}\selectfont
1718 \def\encodingdefault{\latinencoding}}

\textlatin This command takes an argument which is then typeset using the requested font
encoding. In order to avoid many encoding switches it operates in a local scope.

1719 \ifx\@undefined\DeclareTextFontCommand
1720 \DeclareRobustCommand{\textlatin}[1]{\leavevmode{\latintext #1}}
1721 \else
1722 \DeclareTextFontCommand{\textlatin}{\latintext}
1723 \fi

8.6 Local Language Configuration

\loadlocalcfg At some sites it may be necessary to add site-specific actions to a language
definition file. This can be done by creating a file with the same name as the
language definition file, but with the extension .cfg. For instance the file
norsk.cfg will be loaded when the language definition file norsk.ldf is loaded.
For plain-based formats we don’t want to override the definition of \loadlocalcfg
from plain.def.

1724 \ifx\loadlocalcfg\@undefined

86

1725 \@ifpackagewith{babel}{noconfigs}%
1726 {\let\loadlocalcfg\@gobble}%
1727 {\def\loadlocalcfg#1{%
1728 \InputIfFileExists{#1.cfg}%
1729 {\typeout{*************************************^^J%
1730 * Local config file #1.cfg used^^J%
1731 *}}%
1732 \@empty}}
1733 \fi

Just to be compatible with LATEX 2.09 we add a few more lines of code:

1734 \ifx\@unexpandable@protect\@undefined
1735 \def\@unexpandable@protect{\noexpand\protect\noexpand}
1736 \long\def\protected@write#1#2#3{%
1737 \begingroup
1738 \let\thepage\relax
1739 #2%
1740 \let\protect\@unexpandable@protect
1741 \edef\reserved@a{\write#1{#3}}%
1742 \reserved@a
1743 \endgroup
1744 \if@nobreak\ifvmode\nobreak\fi\fi}
1745 \fi
1746 〈/core〉

9 Internationalizing LATEX 2.09

Now that we’re sure that the code is seen by LATEX only, we have to find out what
the main (primary) document style is because we want to redefine some macros.
This is only necessary for releases of LATEX dated before December 1991.
Therefore this part of the code can optionally be included in babel.def by
specifying the docstrip option names.
The standard styles can be distinguished by checking whether some macros are
defined. In table 1 an overview is given of the macros that can be used for this
purpose.

article : both the \chapter and \opening macros are un-
defined

report and book : the \chapter macro is defined and the \opening
is undefined

letter : the \chapter macro is undefined and the
\opening is defined

Table 1: How to determine the main document style

The macros that have to be redefined for the report and book document styles
happen to be the same, so there is no need to distinguish between those two styles.

\doc@style First a parameter \doc@style is defined to identify the current document style.
This parameter might have been defined by a document style that already uses
macros instead of hard-wired texts, such as artikel1.sty [6], so the existence of
\doc@style is checked. If this macro is undefined, i. e., if the document style is

87

unknown and could therefore contain hard-wired texts, \doc@style is defined to
the default value ‘0’.

1747 〈∗names〉
1748 \ifx\@undefined\doc@style
1749 \def\doc@style{0}%

This parameter is defined in the following if construction (see table 1):

1750 \ifx\@undefined\opening
1751 \ifx\@undefined\chapter
1752 \def\doc@style{1}%
1753 \else
1754 \def\doc@style{2}%
1755 \fi
1756 \else
1757 \def\doc@style{3}%
1758 \fi%
1759 \fi%

Now here comes the real work: we start to redefine things and replace hard-wired
texts by macros. These redefinitions should be carried out conditionally, in case it
has already been done.
For the figure and table environments we have in all styles:

1760 \@ifundefined{figurename}{\def\fnum@figure{\figurename{} \thefigure}}{}
1761 \@ifundefined{tablename}{\def\fnum@table{\tablename{} \thetable}}{}

The rest of the macros have to be treated differently for each style. When
\doc@style still has its default value nothing needs to be done.

1762 \ifcase \doc@style\relax
1763 \or

This means that babel.def is read after the article style, where no \chapter and
\opening commands are defined28.
First we have the \tableofcontents, \listoffigures and \listoftables:

1764 \@ifundefined{contentsname}%
1765 {\def\tableofcontents{\section*{\contentsname\@mkboth
1766 {\uppercase{\contentsname}}{\uppercase{\contentsname}}}%
1767 \@starttoc{toc}}}{}
1768 \@ifundefined{listfigurename}%
1769 {\def\listoffigures{\section*{\listfigurename\@mkboth
1770 {\uppercase{\listfigurename}}{\uppercase{\listfigurename}}}%
1771 \@starttoc{lof}}}{}
1772 \@ifundefined{listtablename}%
1773 {\def\listoftables{\section*{\listtablename\@mkboth
1774 {\uppercase{\listtablename}}{\uppercase{\listtablename}}}%
1775 \@starttoc{lot}}}{}

Then the \thebibliography and \theindex environments.

1776 \@ifundefined{refname}%
1777 {\def\thebibliography#1{\section*{\refname
1778 \@mkboth{\uppercase{\refname}}{\uppercase{\refname}}}%
1779 \list{[\arabic{enumi}]}{\settowidth\labelwidth{[#1]}%
1780 \leftmargin\labelwidth
1781 \advance\leftmargin\labelsep
1782 \usecounter{enumi}}%

28A fact that was pointed out to me by Nico Poppelier and was already used in Piet van Oostrum’s
document style option nl.

88

1783 \def\newblock{\hskip.11em plus.33em minus.07em}%
1784 \sloppy\clubpenalty4000\widowpenalty\clubpenalty
1785 \sfcode‘\.=1000\relax}}{}
1786 \@ifundefined{indexname}%
1787 {\def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi
1788 \columnseprule \z@
1789 \columnsep 35pt\twocolumn[\section*{\indexname}]%
1790 \@mkboth{\uppercase{\indexname}}{\uppercase{\indexname}}%
1791 \thispagestyle{plain}%
1792 \parskip\z@ plus.3pt\parindent\z@\let\item\@idxitem}}{}

The abstract environment:

1793 \@ifundefined{abstractname}%
1794 {\def\abstract{\if@twocolumn
1795 \section*{\abstractname}%
1796 \else \small
1797 \begin{center}%
1798 {\bf \abstractname\vspace{-.5em}\vspace{\z@}}%
1799 \end{center}%
1800 \quotation
1801 \fi}}{}

And last but not least, the macro \part:

1802 \@ifundefined{partname}%
1803 {\def\@part[#1]#2{\ifnum \c@secnumdepth >\m@ne
1804 \refstepcounter{part}%
1805 \addcontentsline{toc}{part}{\thepart
1806 \hspace{1em}#1}\else
1807 \addcontentsline{toc}{part}{#1}\fi
1808 {\parindent\z@ \raggedright
1809 \ifnum \c@secnumdepth >\m@ne
1810 \Large \bf \partname{} \thepart
1811 \par \nobreak
1812 \fi
1813 \huge \bf
1814 #2\markboth{}{}\par}%
1815 \nobreak
1816 \vskip 3ex\@afterheading}%
1817 }{}

This is all that needs to be done for the article style.

1818 \or

The next case is formed by the two styles book and report. Basically we have to
do the same as for the article style, except now we must also change the
\chapter command.
The tables of contents, figures and tables:

1819 \@ifundefined{contentsname}%
1820 {\def\tableofcontents{\@restonecolfalse
1821 \if@twocolumn\@restonecoltrue\onecolumn
1822 \fi\chapter*{\contentsname\@mkboth
1823 {\uppercase{\contentsname}}{\uppercase{\contentsname}}}%
1824 \@starttoc{toc}%
1825 \csname if@restonecol\endcsname\twocolumn
1826 \csname fi\endcsname}}{}
1827 \@ifundefined{listfigurename}%

89

1828 {\def\listoffigures{\@restonecolfalse
1829 \if@twocolumn\@restonecoltrue\onecolumn
1830 \fi\chapter*{\listfigurename\@mkboth
1831 {\uppercase{\listfigurename}}{\uppercase{\listfigurename}}}%
1832 \@starttoc{lof}%
1833 \csname if@restonecol\endcsname\twocolumn
1834 \csname fi\endcsname}}{}
1835 \@ifundefined{listtablename}%
1836 {\def\listoftables{\@restonecolfalse
1837 \if@twocolumn\@restonecoltrue\onecolumn
1838 \fi\chapter*{\listtablename\@mkboth
1839 {\uppercase{\listtablename}}{\uppercase{\listtablename}}}%
1840 \@starttoc{lot}%
1841 \csname if@restonecol\endcsname\twocolumn
1842 \csname fi\endcsname}}{}

Again, the bibliography and index environments; notice that in this case we use
\bibname instead of \refname as in the definitions for the article style. The
reason for this is that in the article document style the term ‘References’ is used
in the definition of \thebibliography. In the report and book document styles
the term ‘Bibliography’ is used.

1843 \@ifundefined{bibname}%
1844 {\def\thebibliography#1{\chapter*{\bibname
1845 \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}}%
1846 \list{[\arabic{enumi}]}{\settowidth\labelwidth{[#1]}%
1847 \leftmargin\labelwidth \advance\leftmargin\labelsep
1848 \usecounter{enumi}}%
1849 \def\newblock{\hskip.11em plus.33em minus.07em}%
1850 \sloppy\clubpenalty4000\widowpenalty\clubpenalty
1851 \sfcode‘\.=1000\relax}}{}
1852 \@ifundefined{indexname}%
1853 {\def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi
1854 \columnseprule \z@
1855 \columnsep 35pt\twocolumn[\@makeschapterhead{\indexname}]%
1856 \@mkboth{\uppercase{\indexname}}{\uppercase{\indexname}}%
1857 \thispagestyle{plain}%
1858 \parskip\z@ plus.3pt\parindent\z@ \let\item\@idxitem}}{}

Here is the abstract environment:

1859 \@ifundefined{abstractname}%
1860 {\def\abstract{\titlepage
1861 \null\vfil
1862 \begin{center}%
1863 {\bf \abstractname}%
1864 \end{center}}}{}

And last but not least the \chapter, \appendix and \part macros.

1865 \@ifundefined{chaptername}{\def\@chapapp{\chaptername}}{}
1866 %
1867 \@ifundefined{appendixname}%
1868 {\def\appendix{\par
1869 \setcounter{chapter}{0}%
1870 \setcounter{section}{0}%
1871 \def\@chapapp{\appendixname}%
1872 \def\thechapter{\Alph{chapter}}}}{}
1873 %
1874 \@ifundefined{partname}%

90

1875 {\def\@part[#1]#2{\ifnum \c@secnumdepth >-2\relax
1876 \refstepcounter{part}%
1877 \addcontentsline{toc}{part}{\thepart
1878 \hspace{1em}#1}\else
1879 \addcontentsline{toc}{part}{#1}\fi
1880 \markboth{}{}%
1881 {\centering
1882 \ifnum \c@secnumdepth >-2\relax
1883 \huge\bf \partname{} \thepart
1884 \par
1885 \vskip 20pt \fi
1886 \Huge \bf
1887 #1\par}\@endpart}}{}%

1888 \or

Now we address the case where babel.def is read after the letter style. The
letter document style defines the macro \opening and some other macros that
are specific to letter. This means that we have to redefine other macros,
compared to the previous two cases.
First two macros for the material at the end of a letter, the \cc and \encl macros.

1889 \@ifundefined{ccname}%
1890 {\def\cc#1{\par\noindent
1891 \parbox[t]{\textwidth}%
1892 {\@hangfrom{\rm \ccname : }\ignorespaces #1\strut}\par}}{}
1893 \@ifundefined{enclname}%
1894 {\def\encl#1{\par\noindent
1895 \parbox[t]{\textwidth}%
1896 {\@hangfrom{\rm \enclname : }\ignorespaces #1\strut}\par}}{}

The last thing we have to do here is to redefine the headings pagestyle:

1897 \@ifundefined{headtoname}%
1898 {\def\ps@headings{%
1899 \def\@oddhead{\sl \headtoname{} \ignorespaces\toname \hfil
1900 \@date \hfil \pagename{} \thepage}%
1901 \def\@oddfoot{}}}{}

This was the last of the four standard document styles, so if \doc@style has
another value we do nothing and just close the if construction.

1902 \fi
1903 〈/names〉

Here ends the code that can be optionally included when a version of LATEX is in
use that is dated before December 1991.
We also need to redefine a number of commands to ensure that the right font
encoding is used, but this can’t be done before babel.def is loaded.

10 Multiple languages

Plain TEX version 3.0 provides the primitive \language that is used to store the
current language. When used with a pre-3.0 version this function has to be
implemented by allocating a counter.

1904 〈∗kernel〉
1905 〈〈Make sure ProvidesFile is defined〉〉
1906 \ProvidesFile{switch.def}[〈〈date〉〉 〈〈version〉〉 Babel switching mechanism]
1907 〈〈Load macros for plain if not LaTeX〉〉
1908 〈〈Define core switching macros〉〉

91

\adddialect The macro \adddialect can be used to add the name of a dialect or variant
language, for which an already defined hyphenation table can be used.

1909 \def\bbl@version{〈〈version〉〉}
1910 \def\bbl@date{〈〈date〉〉}
1911 \def\adddialect#1#2{%
1912 \global\chardef#1#2\relax
1913 \bbl@usehooks{adddialect}{{#1}{#2}}%
1914 \wlog{\string#1 = a dialect from \string\language#2}}

\bbl@iflanguage executes code only of the language exists. Otherwise raises and
error.
The argument of \bbl@fixname has to be a macro name, as it may get “fixed” if
casing (lc/uc) is wrong. It’s intented to fix a long-standing bug when
\foreignlanguage and the like appear in a \MakeXXXcase. However, a lowercase
form is not imposed to improve backward compatibility (perhaps you defined a
language named MYLANG, but unfortunately mixed case names cannot be trapped).

1915 \def\bbl@fixname#1{%
1916 \begingroup
1917 \def\bbl@tempe{l@}%
1918 \edef\bbl@tempd{\noexpand\@ifundefined{\noexpand\bbl@tempe#1}}%
1919 \bbl@tempd
1920 {\lowercase\expandafter{\bbl@tempd}%
1921 {\uppercase\expandafter{\bbl@tempd}%
1922 \@empty
1923 {\edef\bbl@tempd{\def\noexpand#1{#1}}%
1924 \uppercase\expandafter{\bbl@tempd}}}%
1925 {\edef\bbl@tempd{\def\noexpand#1{#1}}%
1926 \lowercase\expandafter{\bbl@tempd}}}%
1927 \@empty
1928 \edef\bbl@tempd{\endgroup\def\noexpand#1{#1}}%
1929 \bbl@tempd}
1930 \def\bbl@iflanguage#1{%
1931 \@ifundefined{l@#1}{\@nolanerr{#1}\@gobble}\@firstofone}

\iflanguage Users might want to test (in a private package for instance) which language is
currently active. For this we provide a test macro, \iflanguage, that has three
arguments. It checks whether the first argument is a known language. If so, it
compares the first argument with the value of \language. Then, depending on the
result of the comparison, it executes either the second or the third argument.

1932 \def\iflanguage#1{%
1933 \bbl@iflanguage{#1}{%
1934 \ifnum\csname l@#1\endcsname=\language
1935 \expandafter\@firstoftwo
1936 \else
1937 \expandafter\@secondoftwo
1938 \fi}}

10.1 Selecting the language

\selectlanguage The macro \selectlanguage checks whether the language is already defined
before it performs its actual task, which is to update \language and activate
language-specific definitions.

92

To allow the call of \selectlanguage either with a control sequence name or with
a simple string as argument, we have to use a trick to delete the optional escape
character.
To convert a control sequence to a string, we use the \string primitive. Next we
have to look at the first character of this string and compare it with the escape
character. Because this escape character can be changed by setting the internal
integer \escapechar to a character number, we have to compare this number with
the character of the string. To do this we have to use TEX’s backquote notation to
specify the character as a number.
If the first character of the \string’ed argument is the current escape character,
the comparison has stripped this character and the rest in the ‘then’ part consists
of the rest of the control sequence name. Otherwise we know that either the
argument is not a control sequence or \escapechar is set to a value outside of the
character range 0–255.
If the user gives an empty argument, we provide a default argument for \string.
This argument should expand to nothing.

1939 \let\bbl@select@type\z@
1940 \edef\selectlanguage{%
1941 \noexpand\protect
1942 \expandafter\noexpand\csname selectlanguage \endcsname}

Because the command \selectlanguage could be used in a moving argument it
expands to \protect\selectlanguage . Therefore, we have to make sure that a
macro \protect exists. If it doesn’t it is \let to \relax.

1943 \ifx\@undefined\protect\let\protect\relax\fi

As LATEX 2.09 writes to files expanded whereas LATEX2ε takes care not to expand
the arguments of \write statements we need to be a bit clever about the way we
add information to .aux files. Therefore we introduce the macro \xstring which
should expand to the right amount of \string’s.

1944 \ifx\documentclass\@undefined
1945 \def\xstring{\string\string\string}
1946 \else
1947 \let\xstring\string
1948 \fi

Since version 3.5 babel writes entries to the auxiliary files in order to typeset table
of contents etc. in the correct language environment.

\bbl@pop@language But when the language change happens inside a group the end of the group
doesn’t write anything to the auxiliary files. Therefore we need TEX’s aftergroup
mechanism to help us. The command \aftergroup stores the token immediately
following it to be executed when the current group is closed. So we define a
temporary control sequence \bbl@pop@language to be executed at the end of the
group. It calls \bbl@set@language with the name of the current language as its
argument.

\bbl@language@stack The previous solution works for one level of nesting groups, but as soon as more
levels are used it is no longer adequate. For that case we need to keep track of the
nested languages using a stack mechanism. This stack is called
\bbl@language@stack and initially empty.

1949 \def\bbl@language@stack{}

When using a stack we need a mechanism to push an element on the stack and to
retrieve the information afterwards.

93

\bbl@push@language

\bbl@pop@language

The stack is simply a list of languagenames, separated with a ‘+’ sign; the push
function can be simple:

1950 \def\bbl@push@language{%
1951 \xdef\bbl@language@stack{\languagename+\bbl@language@stack}}

Retrieving information from the stack is a little bit less simple, as we need to
remove the element from the stack while storing it in the macro \languagename.
For this we first define a helper function.

\bbl@pop@lang This macro stores its first element (which is delimited by the ‘+’-sign) in
\languagename and stores the rest of the string (delimited by ‘-’) in its third
argument.

1952 \def\bbl@pop@lang#1+#2-#3{%
1953 \edef\languagename{#1}\xdef#3{#2}}

The reason for the somewhat weird arrangement of arguments to the helper
function is the fact it is called in the following way. This means that before
\bbl@pop@lang is executed TEX first expands the stack, stored in
\bbl@language@stack. The result of that is that the argument string of
\bbl@pop@lang contains one or more language names, each followed by a ‘+’-sign
(zero language names won’t occur as this macro will only be called after
something has been pushed on the stack) followed by the ‘-’-sign and finally the
reference to the stack.

1954 \def\bbl@pop@language{%
1955 \expandafter\bbl@pop@lang\bbl@language@stack-\bbl@language@stack
1956 \expandafter\bbl@set@language\expandafter{\languagename}}

Once the name of the previous language is retrieved from the stack, it is fed to
\bbl@set@language to do the actual work of switching everything that needs
switching.

1957 \expandafter\def\csname selectlanguage \endcsname#1{%
1958 \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\tw@\fi
1959 \bbl@push@language
1960 \aftergroup\bbl@pop@language
1961 \bbl@set@language{#1}}

\bbl@set@language The macro \bbl@set@language takes care of switching the language environment
and of writing entries on the auxiliary files. For historial reasons, language names
can be either language of \language. To catch either form a trick is used, but
unfortunately as a side effect the catcodes of letters in \languagename are not well
defined. The list of auxiliary files can be extended by redefining
\BabelContentsFiles, but make sure they are loaded inside a group (as aux, toc,
lof, and lot do) or the last language of the document will remain active
afterwards.
We also write a command to change the current language in the auxiliary files.

1962 \def\BabelContentsFiles{toc,lof,lot}
1963 \def\bbl@set@language#1{%
1964 \edef\languagename{%
1965 \ifnum\escapechar=\expandafter‘\string#1\@empty
1966 \else\string#1\@empty\fi}%
1967 \select@language{\languagename}%
1968 \expandafter\ifx\csname date\languagename\endcsname\relax\else
1969 \if@filesw
1970 \protected@write\@auxout{}{\string\select@language{\languagename}}%

94

1971 \bbl@for\bbl@tempa\BabelContentsFiles{%
1972 \addtocontents{\bbl@tempa}{\xstring\select@language{\languagename}}}%
1973 \bbl@usehooks{write}{}%
1974 \fi
1975 \fi}
1976 \def\select@language#1{%
1977 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi
1978 \edef\languagename{#1}%
1979 \bbl@fixname\languagename
1980 \bbl@iflanguage\languagename{%
1981 \expandafter\ifx\csname date\languagename\endcsname\relax
1982 \bbl@error
1983 {Unknown language ‘#1’. Either you have\\%
1984 misspelled its name, it has not been installed,\\%
1985 or you requested it in a previous run. Fix its name,\\%
1986 install it or just rerun the file, respectively}%
1987 {You may proceed, but expect unexpected results}%
1988 \else
1989 \let\bbl@select@type\z@
1990 \expandafter\bbl@switch\expandafter{\languagename}%
1991 \fi}}
1992 % A bit of optimization:
1993 \def\select@language@x#1{%
1994 \ifcase\bbl@select@type
1995 \bbl@ifsamestring\languagename{#1}{}{\select@language{#1}}%
1996 \else
1997 \select@language{#1}%
1998 \fi}

First, check if the user asks for a known language. If so, update the value of
\language and call \originalTeX to bring TEX in a certain pre-defined state.

The name of the language is stored in the control sequence \languagename.
Then we have to redefine \originalTeX to compensate for the things that have
been activated. To save memory space for the macro definition of \originalTeX,
we construct the control sequence name for the \noextras〈lang〉 command at
definition time by expanding the \csname primitive.
Now activate the language-specific definitions. This is done by constructing the
names of three macros by concatenating three words with the argument of
\selectlanguage, and calling these macros.
The switching of the values of \lefthyphenmin and \righthyphenmin is somewhat
different. First we save their current values, then we check if \〈lang〉hyphenmins
is defined. If it is not, we set default values (2 and 3), otherwise the values in
\〈lang〉hyphenmins will be used.

1999 \def\bbl@switch#1{%
2000 \originalTeX
2001 \expandafter\def\expandafter\originalTeX\expandafter{%
2002 \csname noextras#1\endcsname
2003 \let\originalTeX\@empty
2004 \babel@beginsave}%
2005 \bbl@usehooks{afterreset}{}%
2006 \languageshorthands{none}%
2007 \ifcase\bbl@select@type
2008 \csname captions#1\endcsname
2009 \csname date#1\endcsname

95

2010 \fi
2011 \bbl@usehooks{beforeextras}{}%
2012 \csname extras#1\endcsname\relax
2013 \bbl@usehooks{afterextras}{}%
2014 \ifcase\bbl@hymapopt\or
2015 \def\BabelLower##1##2{\lccode##1=##2\relax}%
2016 \ifnum\bbl@hymapsel>4\else
2017 \csname\languagename @bbl@hyphenmap\endcsname
2018 \fi
2019 \chardef\bbl@hymapopt\z@
2020 \else
2021 \ifnum\bbl@hymapsel>\bbl@hymapopt\else
2022 \csname\languagename @bbl@hyphenmap\endcsname
2023 \fi
2024 \fi
2025 \global\let\bbl@hymapsel\@cclv
2026 \bbl@patterns{#1}%
2027 \babel@savevariable\lefthyphenmin
2028 \babel@savevariable\righthyphenmin
2029 \expandafter\ifx\csname #1hyphenmins\endcsname\relax
2030 \set@hyphenmins\tw@\thr@@\relax
2031 \else
2032 \expandafter\expandafter\expandafter\set@hyphenmins
2033 \csname #1hyphenmins\endcsname\relax
2034 \fi}

2035 \def\bbl@ifsamestring#1#2{%
2036 \protected@edef\bbl@tempb{#1}%
2037 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%
2038 \protected@edef\bbl@tempc{#2}%
2039 \edef\bbl@tempc{\expandafter\strip@prefix\meaning\bbl@tempc}%
2040 \ifx\bbl@tempb\bbl@tempc
2041 \expandafter\@firstoftwo
2042 \else
2043 \expandafter\@secondoftwo
2044 \fi}

otherlanguage The otherlanguage environment can be used as an alternative to using the
\selectlanguage declarative command. When you are typesetting a document
which mixes left-to-right and right-to-left typesetting you have to use this
environment in order to let things work as you expect them to.
The first thing this environment does is store the name of the language in
\languagename; it then calls \selectlanguage to switch on everything that is
needed for this language The \ignorespaces command is necessary to hide the
environment when it is entered in horizontal mode.

2045 \long\def\otherlanguage#1{%
2046 \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\thr@@\fi
2047 \csname selectlanguage \endcsname{#1}%
2048 \ignorespaces}

The \endotherlanguage part of the environment tries to hide itself when it is
called in horizontal mode.

2049 \long\def\endotherlanguage{%
2050 \global\@ignoretrue\ignorespaces}

otherlanguage* The otherlanguage environment is meant to be used when a large part of text from

96

a different language needs to be typeset, but without changing the translation of
words such as ‘figure’. This environment makes use of \foreign@language.

2051 \expandafter\def\csname otherlanguage*\endcsname#1{%
2052 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi
2053 \foreign@language{#1}}

At the end of the environment we need to switch off the extra definitions. The
grouping mechanism of the environment will take care of resetting the correct
hyphenation rules and “extras”.

2054 \expandafter\let\csname endotherlanguage*\endcsname\relax

\foreignlanguage The \foreignlanguage command is another substitute for the \selectlanguage
command. This command takes two arguments, the first argument is the name of
the language to use for typesetting the text specified in the second argument.
Unlike \selectlanguage this command doesn’t switch everything, it only switches
the hyphenation rules and the extra definitions for the language specified. It does
this within a group and assumes the \extras〈lang〉 command doesn’t make any
\global changes. The coding is very similar to part of \selectlanguage.

2055 \edef\foreignlanguage{%
2056 \noexpand\protect
2057 \expandafter\noexpand\csname foreignlanguage \endcsname}
2058 \expandafter\def\csname foreignlanguage \endcsname#1#2{%
2059 \begingroup
2060 \foreign@language{#1}%
2061 #2%
2062 \endgroup}

\foreign@language This macro does the work for \foreignlanguage and the otherlanguage*
environment. First we need to store the name of the language and check that it is
a known language. Then it just calls bbl@switch.

2063 \def\foreign@language#1{%
2064 \edef\languagename{#1}%
2065 \bbl@fixname\languagename
2066 \bbl@iflanguage\languagename{%
2067 \expandafter\ifx\csname date\languagename\endcsname\relax
2068 \bbl@warning
2069 {You haven’t loaded the language \languagename\space yet\\%
2070 I’ll proceed, but expect unexpected results.\\%
2071 Reported}%
2072 \fi
2073 \let\bbl@select@type\@ne
2074 \expandafter\bbl@switch\expandafter{\languagename}}}

\bbl@patterns This macro selects the hyphenation patterns by changing the \language register.
If special hyphenation patterns are available specifically for the current font
encoding, use them instead of the default.
It also sets hyphenation exceptions, but only once, because they are global (here
language \lccode’s has been set, too). \bbl@hyphenation@ is set to relax until the
very first \babelhyphenation, so do nothing with this value. If the exceptions for a
language (by its number, not its name, so that :ENC is taken into account) has been
set, then use \hyphenation with both global and language exceptions and empty
the latter to mark they must not be set again.

2075 \let\bbl@hyphlist\@empty
2076 \let\bbl@hyphenation@\relax

97

2077 \let\bbl@pttnlist\@empty
2078 \let\bbl@patterns@\relax
2079 \let\bbl@hymapsel=\@cclv
2080 \def\bbl@patterns#1{%
2081 \language=\expandafter\ifx\csname l@#1:\f@encoding\endcsname\relax
2082 \csname l@#1\endcsname
2083 \edef\bbl@tempa{#1}%
2084 \else
2085 \csname l@#1:\f@encoding\endcsname
2086 \edef\bbl@tempa{#1:\f@encoding}%
2087 \fi\relax
2088 \@expandtwoargs\bbl@usehooks{patterns}{{#1}{\bbl@tempa}}%
2089 \@ifundefined{bbl@hyphenation@}{}{%
2090 \begingroup
2091 \@expandtwoargs\in@{,\number\language,}{,\bbl@hyphlist}%
2092 \ifin@\else
2093 \@expandtwoargs\bbl@usehooks{hyphenation}{{#1}{\bbl@tempa}}%
2094 \hyphenation{%
2095 \bbl@hyphenation@
2096 \@ifundefined{bbl@hyphenation@#1}%
2097 \@empty
2098 {\space\csname bbl@hyphenation@#1\endcsname}}%
2099 \xdef\bbl@hyphlist{\bbl@hyphlist\number\language,}%
2100 \fi
2101 \endgroup}}

hyphenrules The environment hyphenrules can be used to select just the hyphenation rules.
This environment does not change \languagename and when the hyphenation
rules specified were not loaded it has no effect. Note however, \lccode’s and font
encodings are not set at all, so in most cases you should use otherlanguage*.

2102 \def\hyphenrules#1{%
2103 \edef\languagename{#1}%
2104 \bbl@fixname\languagename
2105 \bbl@iflanguage\languagename{%
2106 \expandafter\bbl@patterns\expandafter{\languagename}%
2107 \languageshorthands{none}%
2108 \expandafter\ifx\csname\languagename hyphenmins\endcsname\relax
2109 \set@hyphenmins\tw@\thr@@\relax
2110 \else
2111 \expandafter\expandafter\expandafter\set@hyphenmins
2112 \csname\languagename hyphenmins\endcsname\relax
2113 \fi}}
2114 \let\endhyphenrules\@empty

\providehyphenmins The macro \providehyphenmins should be used in the language definition files to
provide a default setting for the hyphenation parameters \lefthyphenmin and
\righthyphenmin. If the macro \〈lang〉hyphenmins is already defined this
command has no effect.

2115 \def\providehyphenmins#1#2{%
2116 \expandafter\ifx\csname #1hyphenmins\endcsname\relax
2117 \@namedef{#1hyphenmins}{#2}%
2118 \fi}

\set@hyphenmins This macro sets the values of \lefthyphenmin and \righthyphenmin. It expects
two values as its argument.

2119 \def\set@hyphenmins#1#2{\lefthyphenmin#1\relax\righthyphenmin#2\relax}

98

\ProvidesLanguage The identification code for each file is something that was introduced in LATEX2ε.
When the command \ProvidesFile does not exist, a dummy definition is provided
temporarily. For use in the language definition file the command
\ProvidesLanguage is defined by babel.
Depending on the format, ie, on if the former is defined, we use a similar definition
or not.

2120 \ifx\ProvidesFile\@undefined
2121 \def\ProvidesLanguage#1[#2 #3 #4]{%
2122 \wlog{Language: #1 #4 #3 <#2>}%
2123 }
2124 \else
2125 \def\ProvidesLanguage#1{%
2126 \begingroup
2127 \catcode‘\ 10 %
2128 \@makeother\/%
2129 \@ifnextchar[%]
2130 {\@provideslanguage{#1}}{\@provideslanguage{#1}[]}}
2131 \def\@provideslanguage#1[#2]{%
2132 \wlog{Language: #1 #2}%
2133 \expandafter\xdef\csname ver@#1.ldf\endcsname{#2}%
2134 \endgroup}
2135 \fi

\LdfInit This macro is defined in two versions. The first version is to be part of the ‘kernel’
of babel, ie. the part that is loaded in the format; the second version is defined in
babel.def. The version in the format just checks the category code of the
ampersand and then loads babel.def.
The category code of the ampersand is restored and the macro calls itself again
with the new definition from babel.def

2136 \def\LdfInit{%
2137 \chardef\atcatcode=\catcode‘\@
2138 \catcode‘\@=11\relax
2139 \input babel.def\relax
2140 \catcode‘\@=\atcatcode \let\atcatcode\relax
2141 \LdfInit}

\originalTeX The macro\originalTeX should be known to TEX at this moment. As it has to be
expandable we \let it to \@empty instead of \relax.

2142 \ifx\originalTeX\@undefined\let\originalTeX\@empty\fi

Because this part of the code can be included in a format, we make sure that the
macro which initialises the save mechanism, \babel@beginsave, is not considered
to be undefined.

2143 \ifx\babel@beginsave\@undefined\let\babel@beginsave\relax\fi

10.2 Errors

\@nolanerr

\@nopatterns

The babel package will signal an error when a documents tries to select a
language that hasn’t been defined earlier. When a user selects a language for
which no hyphenation patterns were loaded into the format he will be given a
warning about that fact. We revert to the patterns for \language=0 in that case.
In most formats that will be (US)english, but it might also be empty.

\@noopterr When the package was loaded without options not everything will work as
expected. An error message is issued in that case.

99

When the format knows about \PackageError it must be LATEX2ε, so we can safely
use its error handling interface. Otherwise we’ll have to ‘keep it simple’.

2144 \edef\bbl@nulllanguage{\string\language=0}
2145 \ifx\PackageError\@undefined
2146 \def\bbl@error#1#2{%
2147 \begingroup
2148 \newlinechar=‘\^^J
2149 \def\\{^^J(babel) }%
2150 \errhelp{#2}\errmessage{\\#1}%
2151 \endgroup}
2152 \def\bbl@warning#1{%
2153 \begingroup
2154 \newlinechar=‘\^^J
2155 \def\\{^^J(babel) }%
2156 \message{\\#1}%
2157 \endgroup}
2158 \def\bbl@info#1{%
2159 \begingroup
2160 \newlinechar=‘\^^J
2161 \def\\{^^J}%
2162 \wlog{#1}%
2163 \endgroup}
2164 \else
2165 \def\bbl@error#1#2{%
2166 \begingroup
2167 \def\\{\MessageBreak}%
2168 \PackageError{babel}{#1}{#2}%
2169 \endgroup}
2170 \def\bbl@warning#1{%
2171 \begingroup
2172 \def\\{\MessageBreak}%
2173 \PackageWarning{babel}{#1}%
2174 \endgroup}
2175 \def\bbl@info#1{%
2176 \begingroup
2177 \def\\{\MessageBreak}%
2178 \PackageInfo{babel}{#1}%
2179 \endgroup}
2180 \fi
2181 \@ifpackagewith{babel}{silent}
2182 {\let\bbl@info\@gobble
2183 \let\bbl@warning\@gobble}
2184 {}
2185 \def\@nolanerr#1{%
2186 \bbl@error
2187 {You haven’t defined the language #1\space yet}%
2188 {Your command will be ignored, type <return> to proceed}}
2189 \def\@nopatterns#1{%
2190 \bbl@warning
2191 {No hyphenation patterns were preloaded for\\%
2192 the language ‘#1’ into the format.\\%
2193 Please, configure your TeX system to add them and\\%
2194 rebuild the format. Now I will use the patterns\\%
2195 preloaded for \bbl@nulllanguage\space instead}}
2196 \let\bbl@usehooks\@gobbletwo
2197 〈/kernel〉

100

11 Loading hyphenation patterns

The following code is meant to be read by iniTEX because it should instruct TEX to
read hyphenation patterns. To this end the docstrip option patterns can be used
to include this code in the file hyphen.cfg. Code is written with lower level
macros.
toks8 stores info to be shown when the program is run.
We want to add a message to the message LATEX 2.09 puts in the \everyjob
register. This could be done by the following code:

% \let\orgeveryjob\everyjob
% \def\everyjob#1{%
% \orgeveryjob{#1}%
% \orgeveryjob\expandafter{\the\orgeveryjob\immediate\write16{%
% hyphenation patterns for \the\loaded@patterns loaded.}}%
% \let\everyjob\orgeveryjob\let\orgeveryjob\@undefined}
%

The code above redefines the control sequence \everyjob in order to be able to
add something to the current contents of the register. This is necessary because
the processing of hyphenation patterns happens long before LATEX fills the register.
There are some problems with this approach though.

• When someone wants to use several hyphenation patterns with SLiTEX the
above scheme won’t work. The reason is that SLiTEX overwrites the contents
of the \everyjob register with its own message.

• Plain TEX does not use the \everyjob register so the message would not be
displayed.

To circumvent this a ‘dirty trick’ can be used. As this code is only processed when
creating a new format file there is one command that is sure to be used, \dump.
Therefore the original \dump is saved in \org@dump and a new definition is
supplied.
To make sure that LATEX 2.09 executes the \@begindocumenthook we would want to
alter \begin{document}, but as this done too often already, we add the new code
at the front of \@preamblecmds. But we can only do that after it has been defined,
so we add this piece of code to \dump.
This new definition starts by adding an instruction to write a message on the
terminal and in the transcript file to inform the user of the preloaded hyphenation
patterns.
Then everything is restored to the old situation and the format is dumped.

2198 〈∗patterns〉
2199 〈〈Make sure ProvidesFile is defined〉〉
2200 \ProvidesFile{hyphen.cfg}[〈〈date〉〉 〈〈version〉〉 Babel hyphens]
2201 \xdef\bbl@format{\jobname}
2202 \ifx\AtBeginDocument\@undefined
2203 \def\@empty{}
2204 \let\orig@dump\dump
2205 \def\dump{%
2206 \ifx\@ztryfc\@undefined
2207 \else
2208 \toks0=\expandafter{\@preamblecmds}%
2209 \edef\@preamblecmds{\noexpand\@begindocumenthook\the\toks0}%
2210 \def\@begindocumenthook{}%

101

2211 \fi
2212 \let\dump\orig@dump\let\orig@dump\@undefined\dump}
2213 \fi
2214 〈〈Define core switching macros〉〉
2215 \toks8{Babel «@version@>> and hyphenation patterns for }%

\process@line Each line in the file language.dat is processed by \process@line after it is read.
The first thing this macro does is to check whether the line starts with =. When the
first token of a line is an =, the macro \process@synonym is called; otherwise the
macro \process@language will continue.

2216 \def\process@line#1#2 #3 #4 {%
2217 \ifx=#1%
2218 \process@synonym{#2}%
2219 \else
2220 \process@language{#1#2}{#3}{#4}%
2221 \fi
2222 \ignorespaces}

\process@synonym This macro takes care of the lines which start with an =. It needs an empty token
register to begin with. \bbl@languages is also set to empty.

2223 \toks@{}
2224 \def\bbl@languages{}

When no languages have been loaded yet, the name following the = will be a
synonym for hyphenation register 0. So, it is stored in a token register and
executed when the first pattern file has been processed. (The \relax just helps to
the \if below catching synonyms without a language.)
Otherwise the name will be a synonym for the language loaded last.
We also need to copy the hyphenmin parameters for the synonym.

2225 \def\process@synonym#1{%
2226 \ifnum\last@language=\m@ne
2227 \toks@\expandafter{\the\toks@\relax\process@synonym{#1}}%
2228 \else
2229 \expandafter\chardef\csname l@#1\endcsname\last@language
2230 \wlog{\string\l@#1=\string\language\the\last@language}%
2231 \expandafter\let\csname #1hyphenmins\expandafter\endcsname
2232 \csname\languagename hyphenmins\endcsname
2233 \let\bbl@elt\relax
2234 \edef\bbl@languages{\bbl@languages\bbl@elt{#1}{\the\last@language}{}{}}%
2235 \fi}

\process@language The macro \process@language is used to process a non-empty line from the
‘configuration file’. It has three arguments, each delimited by white space. The
first argument is the ‘name’ of a language; the second is the name of the file that
contains the patterns. The optional third argument is the name of a file containing
hyphenation exceptions.
The first thing to do is call \addlanguage to allocate a pattern register and to
make that register ‘active’. Then the ‘name’ of the language that will be loaded
now is added to the token register \toks8. and finally the pattern file is read.
For some hyphenation patterns it is needed to load them with a specific font
encoding selected. This can be specified in the file language.dat by adding for
instance ‘:T1’ to the name of the language. The macro \bbl@get@enc extracts the
font encoding from the language name and stores it in \bbl@hyph@enc. The latter
can be used in hyphenation files if you need to set a behaviour depending on the
given encoding (it is set to empty if no encoding is given).

102

Pattern files may contain assignments to \lefthyphenmin and \righthyphenmin.
TEX does not keep track of these assignments. Therefore we try to detect such
assignments and store them in the \〈lang〉hyphenmins macro. When no
assignments were made we provide a default setting.
Some pattern files contain changes to the \lccode en \uccode arrays. Such
changes should remain local to the language; therefore we process the pattern file
in a group; the \patterns command acts globally so its effect will be remembered.
Then we globally store the settings of \lefthyphenmin and \righthyphenmin and
close the group.
When the hyphenation patterns have been processed we need to see if a file with
hyphenation exceptions needs to be read. This is the case when the third
argument is not empty and when it does not contain a space token. (Note however
there is no need to save hyphenation exceptions into the format.)
\bbl@languages saves a snapshot of the loaded languagues in the form
\bbl@elt{〈language-name〉}{〈number〉} {〈patterns-file〉}{〈exceptions-file〉}. Note
the last 2 arguments are empty in ‘dialects’ defined in language.dat with =. Note
also the language name can have encoding info.
Finally, if the counter \language is equal to zero we execute the synonyms stored.

2236 \def\process@language#1#2#3{%
2237 \expandafter\addlanguage\csname l@#1\endcsname
2238 \expandafter\language\csname l@#1\endcsname
2239 \edef\languagename{#1}%
2240 \bbl@hook@everylanguage{#1}%
2241 \bbl@get@enc#1::\@@@
2242 \begingroup
2243 \lefthyphenmin\m@ne
2244 \bbl@hook@loadpatterns{#2}%
2245 \ifnum\lefthyphenmin=\m@ne
2246 \else
2247 \expandafter\xdef\csname #1hyphenmins\endcsname{%
2248 \the\lefthyphenmin\the\righthyphenmin}%
2249 \fi
2250 \endgroup
2251 \def\bbl@tempa{#3}%
2252 \ifx\bbl@tempa\@empty\else
2253 \bbl@hook@loadexceptions{#3}%
2254 \fi
2255 \let\bbl@elt\relax
2256 \edef\bbl@languages{%
2257 \bbl@languages\bbl@elt{#1}{\the\language}{#2}{\bbl@tempa}}%
2258 \ifnum\the\language=\z@
2259 \expandafter\ifx\csname #1hyphenmins\endcsname\relax
2260 \set@hyphenmins\tw@\thr@@\relax
2261 \else
2262 \expandafter\expandafter\expandafter\set@hyphenmins
2263 \csname #1hyphenmins\endcsname
2264 \fi
2265 \the\toks@
2266 \toks@{}%
2267 \fi}

\bbl@get@enc

\bbl@hyph@enc

The macro \bbl@get@enc extracts the font encoding from the language name and
stores it in \bbl@hyph@enc. It uses delimited arguments to achieve this.

2268 \def\bbl@get@enc#1:#2:#3\@@@{\def\bbl@hyph@enc{#2}}

103

Now, hooks are defined. For efficiency reasons, they are dealt here in a special
way. Besides luatex, format specific configuration files are taken into account.

2269 \def\bbl@hook@everylanguage#1{}
2270 \def\bbl@hook@loadpatterns#1{\input #1\relax}
2271 \let\bbl@hook@loadexceptions\bbl@hook@loadpatterns
2272 \let\bbl@hook@loadkernel\bbl@hook@loadpatterns
2273 \begingroup
2274 \def\AddBabelHook#1#2{%
2275 \expandafter\ifx\csname bbl@hook@#2\endcsname\relax
2276 \def\next{\toks1}%
2277 \else
2278 \def\next{\expandafter\gdef\csname bbl@hook@#2\endcsname####1}%
2279 \fi
2280 \next}
2281 \ifx\directlua\@undefined
2282 \ifx\XeTeXinputencoding\@undefined\else
2283 \input xebabel.def
2284 \fi
2285 \else
2286 \input luababel.def
2287 \fi
2288 \openin1 = babel-\bbl@format.cfg
2289 \ifeof1
2290 \else
2291 \input babel-\bbl@format.cfg\relax
2292 \fi
2293 \closein1
2294 \endgroup
2295 \bbl@hook@loadkernel{switch.def}

\readconfigfile The configuration file can now be opened for reading.

2296 \openin1 = language.dat

See if the file exists, if not, use the default hyphenation file hyphen.tex. The user
will be informed about this.

2297 \def\languagename{english}%
2298 \ifeof1
2299 \message{I couldn’t find the file language.dat,\space
2300 I will try the file hyphen.tex}
2301 \input hyphen.tex\relax
2302 \chardef\l@english\z@
2303 \else

Pattern registers are allocated using count register \last@language. Its initial
value is 0. The definition of the macro \newlanguage is such that it first
increments the count register and then defines the language. In order to have the
first patterns loaded in pattern register number 0 we initialize \last@language
with the value −1.

2304 \last@language\m@ne

We now read lines from the file until the end is found

2305 \loop

While reading from the input, it is useful to switch off recognition of the end-of-line
character. This saves us stripping off spaces from the contents of the control
sequence.

104

2306 \endlinechar\m@ne
2307 \read1 to \bbl@line
2308 \endlinechar‘\^^M

If the file has reached its end, exit from the loop here. If not, empty lines are
skipped. Add 3 space characters to the end of \bbl@line. This is needed to be
able to recognize the arguments of \process@line later on. The default language
should be the very first one.

2309 \if T\ifeof1F\fi T\relax
2310 \ifx\bbl@line\@empty\else
2311 \edef\bbl@line{\bbl@line\space\space\space}%
2312 \expandafter\process@line\bbl@line\relax
2313 \fi
2314 \repeat

Check for the end of the file. We must reverse the test for \ifeof without \else.
Then reactivate the default patterns,

2315 \begingroup
2316 \def\bbl@elt#1#2#3#4{%
2317 \global\language=#2\relax
2318 \gdef\languagename{#1}%
2319 \def\bbl@elt##1##2##3##4{}}%
2320 \bbl@languages
2321 \endgroup
2322 \fi

and close the configuration file.

2323 \closein1

We add a message about the fact that babel is loaded in the format and with which
language patterns to the \everyjob register.

2324 \if/\the\toks@/\else
2325 \errhelp{language.dat loads no language, only synonyms}
2326 \errmessage{Orphan language synonym}
2327 \fi
2328 \advance\last@language\@ne
2329 \edef\bbl@tempa{%
2330 \everyjob{%
2331 \the\everyjob
2332 \ifx\typeout\@undefined
2333 \immediate\write16%
2334 \else
2335 \noexpand\typeout
2336 \fi
2337 {\the\toks8 \the\last@language\space language(s) loaded.}}}
2338 \advance\last@language\m@ne
2339 \bbl@tempa

Also remove some macros from memory and raise an error if \toks@ is not empty.
Finally load switch.def, but the letter is not required and the line inputting it may
be commented out.

2340 \let\bbl@line\@undefined
2341 \let\process@line\@undefined
2342 \let\process@synonym\@undefined
2343 \let\process@language\@undefined
2344 \let\bbl@get@enc\@undefined
2345 \let\bbl@hyph@enc\@undefined

105

2346 \let\bbl@tempa\@undefined
2347 \let\bbl@hook@loadkernel\@undefined
2348 \let\bbl@hook@everylanguage\@undefined
2349 \let\bbl@hook@loadpatterns\@undefined
2350 \let\bbl@hook@loadexceptions\@undefined
2351 〈/patterns〉

Here the code for iniTEX ends.

12 The ‘nil’ language

This ‘language’ does nothing, except setting the hyphenation patterns to
nohyphenation.
For this language currently no special definitions are needed or available.
The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

2352 〈∗nil〉
2353 \ProvidesLanguage{nil}[〈〈date〉〉 〈〈version〉〉 Nil language]
2354 \LdfInit{nil}{datenil}

When this file is read as an option, i.e. by the \usepackage command, nil could be
an ‘unknown’ language in which case we have to make it known.

2355 \ifx\l@nohyphenation\@undefined
2356 \@nopatterns{nil}
2357 \adddialect\l@nil0
2358 \else
2359 \let\l@nil\l@nohyphenation
2360 \fi

This macro is used to store the values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

2361 \providehyphenmins{\CurrentOption}{\m@ne\m@ne}

The next step consists of defining commands to switch to (and from) the ‘nil’
language.

\captionnil

\datenil 2362 \let\captionsnil\@empty
2363 \let\datenil\@empty

The macro \ldf@finish takes care of looking for a configuration file, setting the
main language to be switched on at \begin{document} and resetting the category
code of @ to its original value.

2364 \ldf@finish{nil}
2365 〈/nil〉

13 Support for Plain TEX

13.1 Not renaming hyphen.tex

As Don Knuth has declared that the filename hyphen.tex may only be used to
designate his version of the american English hyphenation patterns, a new
solution has to be found in order to be able to load hyphenation patterns for other
languages in a plain-based TEX-format. When asked he responded:

106

That file name is “sacred”, and if anybody changes it they will cause
severe upward/downward compatibility headaches.

People can have a file localhyphen.tex or whatever they like, but they
mustn’t diddle with hyphen.tex (or plain.tex except to preload
additional fonts).

The files bplain.tex and blplain.tex can be used as replacement wrappers
around plain.tex and lplain.tex to acheive the desired effect, based on the
babel package. If you load each of them with iniTEX, you will get a file called
either bplain.fmt or blplain.fmt, which you can use as replacements for
plain.fmt and lplain.fmt.
As these files are going to be read as the first thing iniTEX sees, we need to set
some category codes just to be able to change the definition of \input

2366 〈∗bplain | blplain〉
2367 \catcode‘\{=1 % left brace is begin-group character
2368 \catcode‘\}=2 % right brace is end-group character
2369 \catcode‘\#=6 % hash mark is macro parameter character

Now let’s see if a file called hyphen.cfg can be found somewhere on TEX’s input
path by trying to open it for reading...

2370 \openin 0 hyphen.cfg

If the file wasn’t found the following test turns out true.

2371 \ifeof0
2372 \else

When hyphen.cfg could be opened we make sure that it will be read instead of the
file hyphen.tex which should (according to Don Knuth’s ruling) contain the
american English hyphenation patterns and nothing else.
We do this by first saving the original meaning of \input (and I use a one letter
control sequence for that so as not to waste multi-letter control sequence on this in
the format).

2373 \let\a\input

Then \input is defined to forget about its argument and load hyphen.cfg instead.

2374 \def\input #1 {%
2375 \let\input\a
2376 \a hyphen.cfg

Once that’s done the original meaning of \input can be restored and the definition
of \a can be forgotten.

2377 \let\a\undefined
2378 }
2379 \fi
2380 〈/bplain | blplain〉

Now that we have made sure that hyphen.cfg will be loaded at the right moment
it is time to load plain.tex.

2381 〈bplain〉\a plain.tex
2382 〈blplain〉\a lplain.tex

Finally we change the contents of \fmtname to indicate that this is not the plain
format, but a format based on plain with the babel package preloaded.

2383 〈bplain〉\def\fmtname{babel-plain}
2384 〈blplain〉\def\fmtname{babel-lplain}

When you are using a different format, based on plain.tex you can make a copy of
blplain.tex, rename it and replace plain.tex with the name of your format file.

107

13.2 Emulating some LATEX features

The following code duplicates or emulates parts of LATEX2ε that are needed for
babel.
We need to define \loadlocalcfg for plain users as the LATEX definition uses
\InputIfFileExists. We have to execute \@endofldf in this case.

2385 〈∗plain〉
2386 \def\@empty{}
2387 \def\loadlocalcfg#1{%
2388 \openin0#1.cfg
2389 \ifeof0
2390 \closein0
2391 \else
2392 \closein0
2393 {\immediate\write16{*************************************}%
2394 \immediate\write16{* Local config file #1.cfg used}%
2395 \immediate\write16{*}%
2396 }
2397 \input #1.cfg\relax
2398 \fi
2399 \@endofldf}

13.3 General tools

A number of LATEX macro’s that are needed later on.

2400 \long\def\@firstofone#1{#1}
2401 \long\def\@firstoftwo#1#2{#1}
2402 \long\def\@secondoftwo#1#2{#2}
2403 \def\@nnil{\@nil}
2404 \def\@gobbletwo#1#2{}
2405 \def\@ifstar#1{\@ifnextchar *{\@firstoftwo{#1}}}
2406 \def\@star@or@long#1{%
2407 \@ifstar
2408 {\let\l@ngrel@x\relax#1}%
2409 {\let\l@ngrel@x\long#1}}
2410 \let\l@ngrel@x\relax
2411 \def\@car#1#2\@nil{#1}
2412 \def\@cdr#1#2\@nil{#2}
2413 \let\@typeset@protect\relax
2414 \let\protected@edef\edef
2415 \long\def\@gobble#1{}
2416 \edef\@backslashchar{\expandafter\@gobble\string\\}
2417 \def\strip@prefix#1>{}
2418 \def\g@addto@macro#1#2{{%
2419 \toks@\expandafter{#1#2}%
2420 \xdef#1{\the\toks@}}}
2421 \def\@namedef#1{\expandafter\def\csname #1\endcsname}
2422 \def\@nameuse#1{\csname #1\endcsname}
2423 \def\@ifundefined#1{%
2424 \expandafter\ifx\csname#1\endcsname\relax
2425 \expandafter\@firstoftwo
2426 \else
2427 \expandafter\@secondoftwo
2428 \fi}
2429 \def\@expandtwoargs#1#2#3{%

108

2430 \edef\reserved@a{\noexpand#1{#2}{#3}}\reserved@a}
2431 \def\zap@space#1 #2{%
2432 #1%
2433 \ifx#2\@empty\else\expandafter\zap@space\fi
2434 #2}

LATEX2ε has the command \@onlypreamble which adds commands to a list of
commands that are no longer needed after \begin{document}.

2435 \ifx\@preamblecmds\@undefined
2436 \def\@preamblecmds{}
2437 \fi
2438 \def\@onlypreamble#1{%
2439 \expandafter\gdef\expandafter\@preamblecmds\expandafter{%
2440 \@preamblecmds\do#1}}
2441 \@onlypreamble\@onlypreamble

Mimick LATEX’s \AtBeginDocument; for this to work the user needs to add
\begindocument to his file.

2442 \def\begindocument{%
2443 \@begindocumenthook
2444 \global\let\@begindocumenthook\@undefined
2445 \def\do##1{\global\let##1\@undefined}%
2446 \@preamblecmds
2447 \global\let\do\noexpand}

2448 \ifx\@begindocumenthook\@undefined
2449 \def\@begindocumenthook{}
2450 \fi
2451 \@onlypreamble\@begindocumenthook
2452 \def\AtBeginDocument{\g@addto@macro\@begindocumenthook}

We also have to mimick LATEX’s \AtEndOfPackage. Our replacement macro is much
simpler; it stores its argument in \@endofldf.

2453 \def\AtEndOfPackage#1{\g@addto@macro\@endofldf{#1}}
2454 \@onlypreamble\AtEndOfPackage
2455 \def\@endofldf{}
2456 \@onlypreamble\@endofldf
2457 \let\bbl@afterlang\@empty
2458 \chardef\bbl@hymapopt\z@

LATEX needs to be able to switch off writing to its auxiliary files; plain doesn’t have
them by default.

2459 \ifx\if@filesw\@undefined
2460 \expandafter\let\csname if@filesw\expandafter\endcsname
2461 \csname iffalse\endcsname
2462 \fi

Mimick LATEX’s commands to define control sequences.

2463 \def\newcommand{\@star@or@long\new@command}
2464 \def\new@command#1{%
2465 \@testopt{\@newcommand#1}0}
2466 \def\@newcommand#1[#2]{%
2467 \@ifnextchar [{\@xargdef#1[#2]}%
2468 {\@argdef#1[#2]}}
2469 \long\def\@argdef#1[#2]#3{%
2470 \@yargdef#1\@ne{#2}{#3}}
2471 \long\def\@xargdef#1[#2][#3]#4{%
2472 \expandafter\def\expandafter#1\expandafter{%

109

2473 \expandafter\@protected@testopt\expandafter #1%
2474 \csname\string#1\expandafter\endcsname{#3}}%
2475 \expandafter\@yargdef \csname\string#1\endcsname
2476 \tw@{#2}{#4}}
2477 \long\def\@yargdef#1#2#3{%
2478 \@tempcnta#3\relax
2479 \advance \@tempcnta \@ne
2480 \let\@hash@\relax
2481 \edef\reserved@a{\ifx#2\tw@ [\@hash@1]\fi}%
2482 \@tempcntb #2%
2483 \@whilenum\@tempcntb <\@tempcnta
2484 \do{%
2485 \edef\reserved@a{\reserved@a\@hash@\the\@tempcntb}%
2486 \advance\@tempcntb \@ne}%
2487 \let\@hash@##%
2488 \l@ngrel@x\expandafter\def\expandafter#1\reserved@a}
2489 \def\providecommand{\@star@or@long\provide@command}
2490 \def\provide@command#1{%
2491 \begingroup
2492 \escapechar\m@ne\xdef\@gtempa{{\string#1}}%
2493 \endgroup
2494 \expandafter\@ifundefined\@gtempa
2495 {\def\reserved@a{\new@command#1}}%
2496 {\let\reserved@a\relax
2497 \def\reserved@a{\new@command\reserved@a}}%
2498 \reserved@a}%

2499 \def\DeclareRobustCommand{\@star@or@long\declare@robustcommand}
2500 \def\declare@robustcommand#1{%
2501 \edef\reserved@a{\string#1}%
2502 \def\reserved@b{#1}%
2503 \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}%
2504 \edef#1{%
2505 \ifx\reserved@a\reserved@b
2506 \noexpand\x@protect
2507 \noexpand#1%
2508 \fi
2509 \noexpand\protect
2510 \expandafter\noexpand\csname
2511 \expandafter\@gobble\string#1 \endcsname
2512 }%
2513 \expandafter\new@command\csname
2514 \expandafter\@gobble\string#1 \endcsname
2515 }
2516 \def\x@protect#1{%
2517 \ifx\protect\@typeset@protect\else
2518 \@x@protect#1%
2519 \fi
2520 }
2521 \def\@x@protect#1\fi#2#3{%
2522 \fi\protect#1%
2523 }

The following little macro \in@ is taken from latex.ltx; it checks whether its first
argument is part of its second argument. It uses the boolean \in@; allocating a
new boolean inside conditionally executed code is not possible, hence the
construct with the temporary definition of \bbl@tempa.

110

2524 \def\bbl@tempa{\csname newif\endcsname\ifin@}
2525 \ifx\in@\@undefined
2526 \def\in@#1#2{%
2527 \def\in@@##1#1##2##3\in@@{%
2528 \ifx\in@##2\in@false\else\in@true\fi}%
2529 \in@@#2#1\in@\in@@}
2530 \else
2531 \let\bbl@tempa\@empty
2532 \fi
2533 \bbl@tempa

LATEX has a macro to check whether a certain package was loaded with specific
options. The command has two extra arguments which are code to be executed in
either the true or false case. This is used to detect whether the document needs
one of the accents to be activated (activegrave and activeacute). For plain TEX we
assume that the user wants them to be active by default. Therefore the only thing
we do is execute the third argument (the code for the true case).

2534 \def\@ifpackagewith#1#2#3#4{#3}

The LATEX macro \@ifl@aded checks whether a file was loaded. This functionality
is not needed for plain TEX but we need the macro to be defined as a no-op.

2535 \def\@ifl@aded#1#2#3#4{}

For the following code we need to make sure that the commands \newcommand and
\providecommand exist with some sensible definition. They are not fully equivalent
to their LATEX2ε versions; just enough to make things work in
plain TEXenvironments.

2536 \ifx\@tempcnta\@undefined
2537 \csname newcount\endcsname\@tempcnta\relax
2538 \fi
2539 \ifx\@tempcntb\@undefined
2540 \csname newcount\endcsname\@tempcntb\relax
2541 \fi

To prevent wasting two counters in LATEX 2.09 (because counters with the same
name are allocated later by it) we reset the counter that holds the next free
counter (\count10).

2542 \ifx\bye\@undefined
2543 \advance\count10 by -2\relax
2544 \fi
2545 \ifx\@ifnextchar\@undefined
2546 \def\@ifnextchar#1#2#3{%
2547 \let\reserved@d=#1%
2548 \def\reserved@a{#2}\def\reserved@b{#3}%
2549 \futurelet\@let@token\@ifnch}
2550 \def\@ifnch{%
2551 \ifx\@let@token\@sptoken
2552 \let\reserved@c\@xifnch
2553 \else
2554 \ifx\@let@token\reserved@d
2555 \let\reserved@c\reserved@a
2556 \else
2557 \let\reserved@c\reserved@b
2558 \fi
2559 \fi
2560 \reserved@c}

111

2561 \def\:{\let\@sptoken= } \: % this makes \@sptoken a space token
2562 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}
2563 \fi
2564 \def\@testopt#1#2{%
2565 \@ifnextchar[{#1}{#1[#2]}}
2566 \def\@protected@testopt#1{%%
2567 \ifx\protect\@typeset@protect
2568 \expandafter\@testopt
2569 \else
2570 \@x@protect#1%
2571 \fi}
2572 \long\def\@whilenum#1\do #2{\ifnum #1\relax #2\relax\@iwhilenum{#1\relax
2573 #2\relax}\fi}
2574 \long\def\@iwhilenum#1{\ifnum #1\expandafter\@iwhilenum
2575 \else\expandafter\@gobble\fi{#1}}

13.4 Encoding related macros

Code from ltoutenc.dtx, adapted for use in the plain TEX environment.

2576 \def\DeclareTextCommand{%
2577 \@dec@text@cmd\providecommand
2578 }
2579 \def\ProvideTextCommand{%
2580 \@dec@text@cmd\providecommand
2581 }
2582 \def\DeclareTextSymbol#1#2#3{%
2583 \@dec@text@cmd\chardef#1{#2}#3\relax
2584 }
2585 \def\@dec@text@cmd#1#2#3{%
2586 \expandafter\def\expandafter#2%
2587 \expandafter{%
2588 \csname#3-cmd\expandafter\endcsname
2589 \expandafter#2%
2590 \csname#3\string#2\endcsname
2591 }%
2592 % \let\@ifdefinable\@rc@ifdefinable
2593 \expandafter#1\csname#3\string#2\endcsname
2594 }
2595 \def\@current@cmd#1{%
2596 \ifx\protect\@typeset@protect\else
2597 \noexpand#1\expandafter\@gobble
2598 \fi
2599 }
2600 \def\@changed@cmd#1#2{%
2601 \ifx\protect\@typeset@protect
2602 \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
2603 \expandafter\ifx\csname ?\string#1\endcsname\relax
2604 \expandafter\def\csname ?\string#1\endcsname{%
2605 \@changed@x@err{#1}%
2606 }%
2607 \fi
2608 \global\expandafter\let
2609 \csname\cf@encoding \string#1\expandafter\endcsname
2610 \csname ?\string#1\endcsname
2611 \fi

112

2612 \csname\cf@encoding\string#1%
2613 \expandafter\endcsname
2614 \else
2615 \noexpand#1%
2616 \fi
2617 }
2618 \def\@changed@x@err#1{%
2619 \errhelp{Your command will be ignored, type <return> to proceed}%
2620 \errmessage{Command \protect#1 undefined in encoding \cf@encoding}}
2621 \def\DeclareTextCommandDefault#1{%
2622 \DeclareTextCommand#1?%
2623 }
2624 \def\ProvideTextCommandDefault#1{%
2625 \ProvideTextCommand#1?%
2626 }
2627 \expandafter\let\csname OT1-cmd\endcsname\@current@cmd
2628 \expandafter\let\csname?-cmd\endcsname\@changed@cmd
2629 \def\DeclareTextAccent#1#2#3{%
2630 \DeclareTextCommand#1{#2}[1]{\accent#3 ##1}
2631 }
2632 \def\DeclareTextCompositeCommand#1#2#3#4{%
2633 \expandafter\let\expandafter\reserved@a\csname#2\string#1\endcsname
2634 \edef\reserved@b{\string##1}%
2635 \edef\reserved@c{%
2636 \expandafter\@strip@args\meaning\reserved@a:-\@strip@args}%
2637 \ifx\reserved@b\reserved@c
2638 \expandafter\expandafter\expandafter\ifx
2639 \expandafter\@car\reserved@a\relax\relax\@nil
2640 \@text@composite
2641 \else
2642 \edef\reserved@b##1{%
2643 \def\expandafter\noexpand
2644 \csname#2\string#1\endcsname####1{%
2645 \noexpand\@text@composite
2646 \expandafter\noexpand\csname#2\string#1\endcsname
2647 ####1\noexpand\@empty\noexpand\@text@composite
2648 {##1}%
2649 }%
2650 }%
2651 \expandafter\reserved@b\expandafter{\reserved@a{##1}}%
2652 \fi
2653 \expandafter\def\csname\expandafter\string\csname
2654 #2\endcsname\string#1-\string#3\endcsname{#4}
2655 \else
2656 \errhelp{Your command will be ignored, type <return> to proceed}%
2657 \errmessage{\string\DeclareTextCompositeCommand\space used on
2658 inappropriate command \protect#1}
2659 \fi
2660 }
2661 \def\@text@composite#1#2#3\@text@composite{%
2662 \expandafter\@text@composite@x
2663 \csname\string#1-\string#2\endcsname
2664 }
2665 \def\@text@composite@x#1#2{%
2666 \ifx#1\relax
2667 #2%

113

2668 \else
2669 #1%
2670 \fi
2671 }
2672 %
2673 \def\@strip@args#1:#2-#3\@strip@args{#2}
2674 \def\DeclareTextComposite#1#2#3#4{%
2675 \def\reserved@a{\DeclareTextCompositeCommand#1{#2}{#3}}%
2676 \bgroup
2677 \lccode‘\@=#4%
2678 \lowercase{%
2679 \egroup
2680 \reserved@a @%
2681 }%
2682 }
2683 %
2684 \def\UseTextSymbol#1#2{%
2685 % \let\@curr@enc\cf@encoding
2686 % \@use@text@encoding{#1}%
2687 #2%
2688 % \@use@text@encoding\@curr@enc
2689 }
2690 \def\UseTextAccent#1#2#3{%
2691 % \let\@curr@enc\cf@encoding
2692 % \@use@text@encoding{#1}%
2693 % #2{\@use@text@encoding\@curr@enc\selectfont#3}%
2694 % \@use@text@encoding\@curr@enc
2695 }
2696 \def\@use@text@encoding#1{%
2697 % \edef\f@encoding{#1}%
2698 % \xdef\font@name{%
2699 % \csname\curr@fontshape/\f@size\endcsname
2700 % }%
2701 % \pickup@font
2702 % \font@name
2703 % \@@enc@update
2704 }
2705 \def\DeclareTextSymbolDefault#1#2{%
2706 \DeclareTextCommandDefault#1{\UseTextSymbol{#2}#1}%
2707 }
2708 \def\DeclareTextAccentDefault#1#2{%
2709 \DeclareTextCommandDefault#1{\UseTextAccent{#2}#1}%
2710 }
2711 \def\cf@encoding{OT1}

Currently we only use the LATEX2ε method for accents for those that are known to
be made active in some language definition file.

2712 \DeclareTextAccent{\"}{OT1}{127}
2713 \DeclareTextAccent{\’}{OT1}{19}
2714 \DeclareTextAccent{\^}{OT1}{94}
2715 \DeclareTextAccent{\‘}{OT1}{18}
2716 \DeclareTextAccent{\~}{OT1}{126}

The following control sequences are used in babel.def but are not defined for
plain TEX.

2717 \DeclareTextSymbol{\textquotedblleft}{OT1}{92}
2718 \DeclareTextSymbol{\textquotedblright}{OT1}{‘\"}

114

2719 \DeclareTextSymbol{\textquoteleft}{OT1}{‘\‘}
2720 \DeclareTextSymbol{\textquoteright}{OT1}{‘\’}
2721 \DeclareTextSymbol{\i}{OT1}{16}
2722 \DeclareTextSymbol{\ss}{OT1}{25}

For a couple of languages we need the LATEX-control sequence \scriptsize to be
available. Because plain TEX doesn’t have such a sofisticated font mechanism as
LATEX has, we just \let it to \sevenrm.

2723 \ifx\scriptsize\@undefined
2724 \let\scriptsize\sevenrm
2725 \fi

13.5 Babel options

The file babel.def expects some definitions made in the LATEX style file. So we
must provide them at least some predefined values as well some tools to set them
(even if not all options are available). There in no package options, and therefore
and alternative mechanism is provided. For the moment, only
\babeloptionstrings and \babeloptionmath are provided, which can be defined
before loading babel. \BabelModifiers can be set too (but not sure it works).

2726 \let\bbl@opt@shorthands\@nnil
2727 \def\bbl@ifshorthand#1#2#3{#2}%
2728 \ifx\babeloptionstrings\@undefined
2729 \let\bbl@opt@strings\@nnil
2730 \else
2731 \let\bbl@opt@strings\babeloptionstrings
2732 \fi
2733 \def\bbl@tempa{normal}
2734 \ifx\babeloptionmath\bbl@tempa
2735 \def\bbl@mathnormal{\noexpand\textormath}
2736 \fi
2737 \def\BabelStringsDefault{generic}
2738 \ifx\BabelModifiers\@undefined\let\BabelModifiers\relax\fi
2739 \let\bbl@afterlang\relax
2740 \let\bbl@language@opts\@empty
2741 \ifx\@uclclist\@undefined\let\@uclclist\@empty\fi
2742 \def\AfterBabelLanguage#1#2{}
2743 〈/plain〉

14 Tentative font handling

A general solution is far from trivial:

• \addfontfeature only sets it for the current family and it’s not very efficient,
and

• \defaultfontfeatures requires to redefine the font (and the options aren’t
“orthogonal”).

2744 〈〈∗Font selection〉〉 ≡
2745 \def\babelFSstore#1{%
2746 \bbl@for\bbl@tempa{#1}{%
2747 \edef\bbl@tempb{\noexpand\bbl@FSstore{\bbl@tempa}}
2748 \bbl@tempb{rm}\rmdefault\bbl@save@rmdefault
2749 \bbl@tempb{sf}\sfdefault\bbl@save@sfdefault

115

2750 \bbl@tempb{tt}\ttdefault\bbl@save@ttdefault}}
2751 \def\bbl@FSstore#1#2#3#4{%
2752 \bbl@csarg\edef{#2default#1}{#3}%
2753 \expandafter\addto\csname extras#1\endcsname{%
2754 \let#4#3%
2755 \ifx#3\f@family
2756 \edef#3{\csname bbl@#2default#1\endcsname}%
2757 \fontfamily{#3}\selectfont
2758 \else
2759 \edef#3{\csname bbl@#2default#1\endcsname}%
2760 \fi}%
2761 \expandafter\addto\csname noextras#1\endcsname{%
2762 \ifx#3\f@family
2763 \fontfamily{#4}\selectfont
2764 \fi
2765 \let#3#4}}
2766 \let\bbl@langfeatures\@empty
2767 \def\babelFSfeatures{%
2768 \let\bbl@ori@fontspec\fontspec
2769 \renewcommand\fontspec[1][]{%
2770 \bbl@ori@fontspec[\bbl@langfeatures##1]}
2771 \let\babelFSfeatures\bbl@FSfeatures
2772 \babelFSfeatures}
2773 \def\bbl@FSfeatures#1#2{%
2774 \expandafter\addto\csname extras#1\endcsname{%
2775 \babel@save\bbl@langfeatures
2776 \edef\bbl@langfeatures{#2,}}}
2777 〈〈/Font selection〉〉

15 Hooks for XeTeX and LuaTeX

15.1 XeTeX

Unfortunately, the current encoding cannot be retrieved and therefore it is reset
always to utf8, which seems a sensible default.
LATEX sets many “codes” just before loading hyphen.cfg. That is not a problem in
luatex, but in xetex they must be reset to the proper value. Most of the work is
done in xe(la)tex.ini, so here we just “undo” some of the changes done by LATEX.
Anyway, for consistency LuaTEX also resets the catcodes.

2778 〈〈∗Restore Unicode catcodes before loading patterns〉〉 ≡
2779 \begingroup
2780 % Reset chars "80-"C0 to category "other", no case mapping:
2781 \catcode‘\@=11 \count@=128
2782 \loop\ifnum\count@<192
2783 \global\uccode\count@=0 \global\lccode\count@=0
2784 \global\catcode\count@=12 \global\sfcode\count@=1000
2785 \advance\count@ by 1 \repeat
2786 % Other:
2787 \def\O ##1 {%
2788 \global\uccode"##1=0 \global\lccode"##1=0
2789 \global\catcode"##1=12 \global\sfcode"##1=1000 }%
2790 % Letter:
2791 \def\L ##1 ##2 ##3 {\global\catcode"##1=11
2792 \global\uccode"##1="##2

116

2793 \global\lccode"##1="##3
2794 % Uppercase letters have sfcode=999:
2795 \ifnum"##1="##3 \else \global\sfcode"##1=999 \fi }%
2796 % Letter without case mappings:
2797 \def\l ##1 {\L ##1 ##1 ##1 }%
2798 \l 00AA
2799 \L 00B5 039C 00B5
2800 \l 00BA
2801 \O 00D7
2802 \l 00DF
2803 \O 00F7
2804 \L 00FF 0178 00FF
2805 \endgroup
2806 \input #1\relax
2807 〈〈/Restore Unicode catcodes before loading patterns〉〉

Now, the code.

2808 〈∗xetex〉
2809 \def\BabelStringsDefault{unicode}
2810 \let\xebbl@stop\relax
2811 \AddBabelHook{xetex}{encodedcommands}{%
2812 \def\bbl@tempa{#1}%
2813 \ifx\bbl@tempa\@empty
2814 \XeTeXinputencoding"bytes"%
2815 \else
2816 \XeTeXinputencoding"#1"%
2817 \fi
2818 \def\xebbl@stop{\XeTeXinputencoding"utf8"}}
2819 \AddBabelHook{xetex}{stopcommands}{%
2820 \xebbl@stop
2821 \let\xebbl@stop\relax}
2822 \AddBabelHook{xetex}{loadkernel}{%
2823 〈〈Restore Unicode catcodes before loading patterns〉〉}
2824 〈〈Font selection〉〉
2825 〈/xetex〉

15.2 LuaTeX

The new loader for luatex is based solely on language.dat, which is read on the
fly. The code shouldn’t be executed when the format is build, so we check if
\bbl@get@enc is defined. Then comes a simplified version of the loader in
hyphen.cfg (without the hyphenmins stuff, which is under the direct control of
babel). A language has been loaded if bbl@hyphendata@<num> exists. The names
\l@<language> are defined and take some value from the beginning because all ldf
files assume this for the corresponding language to be considered valid. Of course,
there is room for improvements.

2826 〈∗luatex〉
2827 \ifx\bbl@get@enc\@undefined
2828 \def\bbl@process@line#1#2 #3 #4 {%
2829 \ifx=#1%
2830 \bbl@process@synonym{#2}%
2831 \else
2832 \bbl@process@language{#1#2}{#3}{#4}%
2833 \fi
2834 \ignorespaces}

117

2835 \def\bbl@process@language#1#2#3{%
2836 \@ifundefined{l@#1}%
2837 {\expandafter\addlanguage\csname l@#1\endcsname
2838 \expandafter\language\csname l@#1\endcsname
2839 \let\bbl@elt\relax
2840 \edef\bbl@languages{%
2841 \bbl@languages\bbl@elt{#1}{\the\language}{#2}{#3}}}%
2842 {}}
2843 \def\bbl@process@synonym#1{%
2844 \@ifundefined{l@#1}%
2845 {\expandafter\chardef\csname l@#1\endcsname\last@language
2846 \let\bbl@elt\relax
2847 \edef\bbl@languages{%
2848 \bbl@languages\bbl@elt{#1}{\the\last@language}{}{}}}%
2849 {}}
2850 \ifnum\last@language>\z@
2851 \bbl@warning{Wrong or old hyphenation setup. Please, rebuild\\%
2852 the format. I’ll try to fix it for this run.\\%
2853 Reported}%
2854 \def\bbl@elt#1#2#3#4{%
2855 \ifnum#2>\z@\else
2856 \noexpand\bbl@elt{#1}{#2}{#3}{#4}%
2857 \fi}%
2858 \edef\bbl@languages{\bbl@languages}%
2859 \fi
2860 \ifnum\l@english=\z@\else
2861 \bbl@warning{Wrong hyphenation setup. The 0th language must\\%
2862 be ‘english’. Reported}%
2863 \fi
2864 \@namedef{bbl@hyphendata@0}{{hyphen.tex}{}}%
2865 \openin1=language.dat
2866 \ifeof1
2867 \bbl@warning{I couldn’t find language.dat. No additional\\%
2868 patterns loaded. Reported}%
2869 \else
2870 \loop
2871 \endlinechar\m@ne
2872 \read1 to \bbl@line
2873 \endlinechar‘\^^M
2874 \if T\ifeof1F\fi T\relax
2875 \ifx\bbl@line\@empty\else
2876 \edef\bbl@line{\bbl@line\space\space\space}%
2877 \expandafter\bbl@process@line\bbl@line\relax
2878 \fi
2879 \repeat
2880 \fi
2881 \def\bbl@get@enc#1:#2:#3\@@@{\def\bbl@hyph@enc{#2}}
2882 \def\bbl@luapatterns#1#2{%
2883 \bbl@get@enc#1::\@@@
2884 \begingroup
2885 \input #1\relax
2886 \endgroup
2887 \def\bbl@tempa{#2}%
2888 \ifx\bbl@tempa\@empty\else
2889 \input #2\relax
2890 \fi}%

118

2891 \fi
2892 \begingroup
2893 \catcode‘\%=12
2894 \catcode‘\’=12
2895 \catcode‘\"=12
2896 \catcode‘\:=12
2897 \directlua{
2898 Babel = {}
2899 function Babel.bytes(line)
2900 return line:gsub("(.)",
2901 function (chr) return unicode.utf8.char(string.byte(chr)) end)
2902 end
2903 function Babel.begin_process_input()
2904 if luatexbase and luatexbase.add_to_callback then
2905 luatexbase.add_to_callback(’process_input_buffer’,
2906 Babel.bytes,’Babel.bytes’)
2907 else
2908 Babel.callback = callback.find(’process_input_buffer’)
2909 callback.register(’process_input_buffer’,Babel.bytes)
2910 end
2911 end
2912 function Babel.end_process_input ()
2913 if luatexbase and luatexbase.remove_from_callback then
2914 luatexbase.remove_from_callback(’process_input_buffer’,’Babel.bytes’)
2915 else
2916 callback.register(’process_input_buffer’,Babel.callback)
2917 end
2918 end
2919 function Babel.addpatterns(pp, lg)
2920 local lg = lang.new(lg)
2921 local pats = lang.patterns(lg) or ’’
2922 lang.clear_patterns(lg)
2923 for p in pp:gmatch(’[^%s]+’) do
2924 ss = ’’
2925 for i in string.utfcharacters(p:gsub(’%d’, ’’)) do
2926 ss = ss .. ’%d?’ .. i
2927 end
2928 ss = ss:gsub(’^%%d%?%.’, ’%%.’) .. ’%d?’
2929 ss = ss:gsub(’%.%%d%?$’, ’%%.’)
2930 pats, n = pats:gsub(’%s’ .. ss .. ’%s’, ’ ’ .. p .. ’ ’)
2931 if n == 0 then
2932 tex.sprint(
2933 [[\string\csname\space bbl@info\endcsname{New pattern:]]
2934 .. p .. [[}]])
2935 pats = pats .. ’ ’ .. p
2936 else
2937 tex.sprint(
2938 [[\string\csname\space bbl@info\endcsname{Renew pattern:]]
2939 .. p .. [[}]])
2940 end
2941 end
2942 lang.patterns(lg, pats)
2943 end
2944 }
2945 \endgroup
2946 \def\BabelStringsDefault{unicode}

119

2947 \let\luabbl@stop\relax
2948 \AddBabelHook{luatex}{encodedcommands}{%
2949 \def\bbl@tempa{utf8}\def\bbl@tempb{#1}%
2950 \ifx\bbl@tempa\bbl@tempb\else
2951 \directlua{Babel.begin_process_input()}%
2952 \def\luabbl@stop{%
2953 \directlua{Babel.end_process_input()}}%
2954 \fi}%
2955 \AddBabelHook{luatex}{stopcommands}{%
2956 \luabbl@stop
2957 \let\luabbl@stop\relax}
2958 \AddBabelHook{luatex}{patterns}{%
2959 \@ifundefined{bbl@hyphendata@\the\language}%
2960 {\def\bbl@elt##1##2##3##4{%
2961 \def\bbl@tempa{##1}%
2962 \def\bbl@tempb{##3}%
2963 \ifx\bbl@tempb\@empty\else % if not synonymous
2964 \def\bbl@tempc{{##3}{##4}}%
2965 \fi
2966 \def\bbl@tempb{#2}% eg, spanish, dutch:OT1, etc.
2967 \ifx\bbl@tempa\bbl@tempb
2968 \bbl@csarg\edef{hyphendata@##2}{\bbl@tempc}%
2969 \fi}%
2970 \bbl@languages
2971 \@ifundefined{bbl@hyphendata@\the\language}%
2972 {\bbl@info{No hyphenation patterns were set for\\%
2973 language âĂŸ#2âĂŹ. Reported}}%
2974 {\expandafter\expandafter\expandafter\bbl@luapatterns
2975 \csname bbl@hyphendata@\the\language\endcsname}}{}%
2976 \@ifundefined{bbl@patterns@}{}{%
2977 \begingroup
2978 \@expandtwoargs\in@{,\number\language,}{,\bbl@pttnlist}%
2979 \ifin@\else
2980 \ifx\bbl@patterns@\@empty\else
2981 \directlua{ Babel.addpatterns(
2982 [[\bbl@patterns@]], \number\language) }%
2983 \fi
2984 \@ifundefined{bbl@patterns@#1}%
2985 \@empty
2986 {\directlua{ Babel.addpatterns(
2987 [[\space\csname bbl@patterns@#1\endcsname]],
2988 \number\language) }}%
2989 \xdef\bbl@pttnlist{\bbl@pttnlist\number\language,}%
2990 \fi
2991 \endgroup}}
2992 \AddBabelHook{luatex}{everylanguage}{%
2993 \def\process@language##1##2##3{%
2994 \def\process@line####1####2 ####3 ####4 {}}}

\babelpatterns This macro adds patterns. Two macros are used to store them: \bbl@patterns@
for the global ones and \bbl@patterns<lang> for language ones. We make sure
there is a space between words when multiple commands are used.

2995 \@onlypreamble\babelpatterns
2996 \AtEndOfPackage{%
2997 \newcommand\babelpatterns[2][\@empty]{%
2998 \ifx\bbl@patterns@\relax

120

2999 \let\bbl@patterns@\@empty
3000 \fi
3001 \ifx\bbl@pttnlist\@empty\else
3002 \bbl@warning{%
3003 You must not intermingle \string\selectlanguage\space and\\%
3004 \string\babelpatterns\space or some patterns will not\\%
3005 be taken into account. Reported}%
3006 \fi
3007 \ifx\@empty#1%
3008 \protected@edef\bbl@patterns@{\bbl@patterns@\space#2}%
3009 \else
3010 \edef\bbl@tempb{\zap@space#1 \@empty}%
3011 \bbl@for\bbl@tempa\bbl@tempb{%
3012 \bbl@fixname\bbl@tempa
3013 \bbl@iflanguage\bbl@tempa{%
3014 \bbl@csarg\protected@edef{patterns@\bbl@tempa}{%
3015 \@ifundefined{bbl@patterns@\bbl@tempa}%
3016 \@empty
3017 {\csname bbl@patterns@\bbl@tempa\endcsname\space}%
3018 #2}}}%
3019 \fi}}

Common stuff.

3020 \AddBabelHook{luatex}{loadkernel}{%
3021 〈〈Restore Unicode catcodes before loading patterns〉〉}
3022 〈〈Font selection〉〉
3023 〈/luatex〉

16 Conclusion

A system of document options has been presented that enable the user of LATEX to
adapt the standard document classes of LATEX to the language he or she prefers to
use. These options offer the possibility of switching between languages in one
document. The basic interface consists of using one option, which is the same for
all standard document classes.
In some cases the language definition files provide macros that can be useful to
plain TEX users as well as to LATEX users. The babel system has been implemented
so that it can be used by both groups of users.

17 Acknowledgements

I would like to thank all who volunteered as β-testers for their time. I would like to
mention Julio Sanchez who supplied the option file for the Spanish language and
Maurizio Codogno who supplied the option file for the Italian language. Michel
Goossens supplied contributions for most of the other languages. Nico Poppelier
helped polish the text of the documentation and supplied parts of the macros for
the Dutch language. Paul Wackers and Werenfried Spit helped find and repair
bugs.
During the further development of the babel system I received much help from
Bernd Raichle, for which I am grateful.

121

References

[1] Donald E. Knuth, The TEXbook, Addison-Wesley, 1986.

[2] Leslie Lamport, LATEX, A document preparation System, Addison-Wesley, 1986.

[3] K.F. Treebus. Tekstwijzer, een gids voor het grafisch verwerken van tekst. SDU
Uitgeverij (’s-Gravenhage, 1988). A Dutch book on layout design and
typography.

[4] Hubert Partl, German TEX, TUGboat 9 (1988) #1, p. 70–72.

[5] Leslie Lamport, in: TEXhax Digest, Volume 89, #13, 17 February 1989.

[6] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of
national LATEX styles, TUGboat 10 (1989) #3, p. 401–406.

[7] Joachim Schrod, International LATEX is ready to use, TUGboat 11 (1990) #1,
p. 87–90.

[8] Apostolos Syropoulos, Antonis Tsolomitis and Nick Sofroniu, Digital
typography using LATEX, Springer, 2002, p. 301–373.

[9] Yannis Haralambous, Fonts & Encodings, O’Reilly, 2007.

122

