2 ## This file is part of the libsigrokdecode project.
4 ## Copyright (C) 2010-2016 Uwe Hermann <uwe@hermann-uwe.de>
6 ## This program is free software; you can redistribute it and/or modify
7 ## it under the terms of the GNU General Public License as published by
8 ## the Free Software Foundation; either version 2 of the License, or
9 ## (at your option) any later version.
11 ## This program is distributed in the hope that it will be useful,
12 ## but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 ## GNU General Public License for more details.
16 ## You should have received a copy of the GNU General Public License
17 ## along with this program; if not, see <http://www.gnu.org/licenses/>.
20 # TODO: Look into arbitration, collision detection, clock synchronisation, etc.
21 # TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
22 # TODO: Implement support for detecting various bus errors.
24 from common
.srdhelper
import bitpack_msb
25 import sigrokdecode
as srd
34 - 'START' (START condition)
35 - 'START REPEAT' (Repeated START condition)
36 - 'ADDRESS READ' (Slave address, read)
37 - 'ADDRESS WRITE' (Slave address, write)
38 - 'DATA READ' (Data, read)
39 - 'DATA WRITE' (Data, write)
40 - 'STOP' (STOP condition)
43 - 'BITS' (<pdata>: list of data/address bits and their ss/es numbers)
45 <pdata> is the data or address byte associated with the 'ADDRESS*' and 'DATA*'
46 command. Slave addresses do not include bit 0 (the READ/WRITE indication bit).
47 For example, a slave address field could be 0x51 (instead of 0xa2).
48 For 'START', 'START REPEAT', 'STOP', 'ACK', and 'NACK' <pdata> is None.
49 For 'BITS' <pdata> is a sequence of tuples of bit values and their start and
50 stop positions, in LSB first order (although the I2C protocol is MSB first).
53 # Meaning of table items:
54 # command -> [annotation class, annotation text in order of decreasing length]
56 'START': [0, 'Start', 'S'],
57 'START REPEAT': [1, 'Start repeat', 'Sr'],
58 'STOP': [2, 'Stop', 'P'],
59 'ACK': [3, 'ACK', 'A'],
60 'NACK': [4, 'NACK', 'N'],
62 'ADDRESS READ': [6, 'Address read: {b:02X}', 'AR: {b:02X}', '{b:02X}'],
63 'ADDRESS WRITE': [7, 'Address write: {b:02X}', 'AW: {b:02X}', '{b:02X}'],
64 'DATA READ': [8, 'Data read: {b:02X}', 'DR: {b:02X}', '{b:02X}'],
65 'DATA WRITE': [9, 'Data write: {b:02X}', 'DW: {b:02X}', '{b:02X}'],
66 'WARN': [10, '{text}'],
69 class Decoder(srd
.Decoder
):
73 longname
= 'Inter-Integrated Circuit'
74 desc
= 'Two-wire, multi-master, serial bus.'
78 tags
= ['Embedded/industrial']
80 {'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'},
81 {'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'},
84 {'id': 'address_format', 'desc': 'Displayed slave address format',
85 'default': 'shifted', 'values': ('shifted', 'unshifted')},
88 ('start', 'Start condition'),
89 ('repeat-start', 'Repeat start condition'),
90 ('stop', 'Stop condition'),
93 ('bit', 'Data/address bit'),
94 ('address-read', 'Address read'),
95 ('address-write', 'Address write'),
96 ('data-read', 'Data read'),
97 ('data-write', 'Data write'),
98 ('warning', 'Warning'),
101 ('bits', 'Bits', (5,)),
102 ('addr-data', 'Address/data', (0, 1, 2, 3, 4, 6, 7, 8, 9)),
103 ('warnings', 'Warnings', (10,)),
106 ('address-read', 'Address read'),
107 ('address-write', 'Address write'),
108 ('data-read', 'Data read'),
109 ('data-write', 'Data write'),
116 self
.samplerate
= None
118 self
.rem_addr_bytes
= None
119 self
.slave_addr_7
= None
120 self
.slave_addr_10
= None
121 self
.is_repeat_start
= False
122 self
.pdu_start
= None
127 def metadata(self
, key
, value
):
128 if key
== srd
.SRD_CONF_SAMPLERATE
:
129 self
.samplerate
= value
132 self
.out_python
= self
.register(srd
.OUTPUT_PYTHON
)
133 self
.out_ann
= self
.register(srd
.OUTPUT_ANN
)
134 self
.out_binary
= self
.register(srd
.OUTPUT_BINARY
)
135 self
.out_bitrate
= self
.register(srd
.OUTPUT_META
,
136 meta
=(int, 'Bitrate', 'Bitrate from Start bit to Stop bit'))
138 def putg(self
, ss
, es
, cls
, text
):
139 self
.put(ss
, es
, self
.out_ann
, [cls
, text
])
141 def putp(self
, ss
, es
, data
):
142 self
.put(ss
, es
, self
.out_python
, data
)
144 def putb(self
, ss
, es
, data
):
145 self
.put(ss
, es
, self
.out_binary
, data
)
147 def _wants_start(self
):
148 # Check whether START is required (to sync to the input stream).
149 return self
.pdu_start
is None
151 def _collects_address(self
):
152 # Check whether the transfer still is in the address phase (is
153 # still collecting address and r/w details, or has not started
155 return self
.rem_addr_bytes
is None or self
.rem_addr_bytes
!= 0
157 def _collects_byte(self
):
158 # Check whether bits of a byte are being collected. Outside of
159 # the data byte, the bit is the ACK/NAK slot.
160 return self
.data_bits
is None or len(self
.data_bits
) < 8
162 def handle_start(self
, ss
, es
):
163 if self
.is_repeat_start
:
169 self
.putp(ss
, es
, [cmd
, None])
170 cls
, texts
= proto
[cmd
][0], proto
[cmd
][1:]
171 self
.putg(ss
, es
, cls
, texts
)
172 self
.is_repeat_start
= True
174 self
.slave_addr_7
= None
175 self
.slave_addr_10
= None
176 self
.rem_addr_bytes
= None
177 self
.data_bits
.clear()
180 # Gather 8 bits of data plus the ACK/NACK bit.
181 def handle_address_or_data(self
, ss
, es
, value
):
184 # Accumulate a byte's bits, including its start position.
185 # Accumulate individual bits and their start/end sample numbers
186 # as we see them. Get the start sample number at the time when
187 # the bit value gets sampled. Assume the start of the next bit
188 # as the end sample number of the previous bit. Guess the last
189 # bit's end sample number from the second last bit's width.
190 # Keep the bits in receive order (MSB first) during accumulation.
191 # (gsi: Strictly speaking falling SCL would be the end of the
192 # bit value's validity. That'd break compatibility though.)
194 self
.data_bits
[-1][2] = ss
195 self
.data_bits
.append([value
, ss
, es
])
196 if len(self
.data_bits
) < 8:
198 self
.bitwidth
= self
.data_bits
[-2][2] - self
.data_bits
[-3][2]
199 self
.data_bits
[-1][2] = self
.data_bits
[-1][1] + self
.bitwidth
201 # Get the byte value. Address and data are transmitted MSB-first.
202 d
= bitpack_msb(self
.data_bits
, 0)
203 ss_byte
, es_byte
= self
.data_bits
[0][1], self
.data_bits
[-1][2]
205 # Process the address bytes at the start of a transfer. The
206 # first byte will carry the R/W bit, and all of the 7bit address
207 # or part of a 10bit address. Bit pattern 0b11110xxx signals
208 # that another byte follows which carries the remaining bits of
209 # a 10bit slave address.
210 is_address
= self
._collects
_address
()
213 if self
.rem_addr_bytes
is None:
214 if (addr_byte
& 0xf8) == 0xf0:
215 self
.rem_addr_bytes
= 2
216 self
.slave_addr_7
= None
217 self
.slave_addr_10
= addr_byte
& 0x06
218 self
.slave_addr_10
<<= 7
220 self
.rem_addr_bytes
= 1
221 self
.slave_addr_7
= addr_byte
>> 1
222 self
.slave_addr_10
= None
223 has_rw_bit
= self
.is_write
is None
224 if self
.is_write
is None:
225 read_bit
= bool(addr_byte
& 1)
226 if self
.options
['address_format'] == 'shifted':
228 self
.is_write
= False if read_bit
else True
229 elif self
.slave_addr_10
is not None:
230 self
.slave_addr_10 |
= addr_byte
232 cls
, texts
= proto
['WARN'][0], proto
['WARN'][1:]
233 msg
= 'Unhandled address byte'
234 texts
= [t
.format(text
= msg
) for t
in texts
]
235 self
.putg(ss_byte
, es_byte
, cls
, texts
)
236 is_write
= self
.is_write
237 is_seven
= self
.slave_addr_7
is not None
239 # Determine annotation classes depending on whether the byte is
240 # an address or payload data, and whether it's written or read.
242 if is_address
and is_write
:
243 cmd
= 'ADDRESS WRITE'
245 elif is_address
and not is_write
:
248 elif not is_address
and is_write
:
251 elif not is_address
and not is_write
:
255 # Reverse the list of bits to LSB first order before emitting
256 # annotations and passing bits to upper layers. This may be
257 # unexpected because the protocol is MSB first, but it keeps
258 # backwards compatibility.
259 lsb_bits
= self
.data_bits
[:]
261 self
.putp(ss_byte
, es_byte
, ['BITS', lsb_bits
])
262 self
.putp(ss_byte
, es_byte
, [cmd
, d
])
264 self
.putb(ss_byte
, es_byte
, [bin_class
, bytes([d
])])
266 for bit_value
, ss_bit
, es_bit
in lsb_bits
:
267 cls
, texts
= proto
['BIT'][0], proto
['BIT'][1:]
268 texts
= [t
.format(b
= bit_value
) for t
in texts
]
269 self
.putg(ss_bit
, es_bit
, cls
, texts
)
271 if is_address
and has_rw_bit
:
272 # Assign the last bit's location to the R/W annotation.
273 # Adjust the address value's location to the left.
274 ss_bit
, es_bit
= self
.data_bits
[-1][1], self
.data_bits
[-1][2]
275 es_byte
= self
.data_bits
[-2][2]
277 w
= ['Write', 'Wr', 'W'] if self
.is_write
else ['Read', 'Rd', 'R']
278 self
.putg(ss_bit
, es_bit
, cls
, w
)
280 cls
, texts
= proto
[cmd
][0], proto
[cmd
][1:]
281 texts
= [t
.format(b
= d
) for t
in texts
]
282 self
.putg(ss_byte
, es_byte
, cls
, texts
)
284 def get_ack(self
, ss
, es
, value
):
285 ss_bit
, es_bit
= ss
, es
286 cmd
= 'ACK' if value
== 0 else 'NACK'
287 self
.putp(ss_bit
, es_bit
, [cmd
, None])
288 cls
, texts
= proto
[cmd
][0], proto
[cmd
][1:]
289 self
.putg(ss_bit
, es_bit
, cls
, texts
)
290 # Slave addresses can span one or two bytes, before data bytes
291 # follow. There can be an arbitrary number of data bytes. Stick
292 # with getting more address bytes if applicable, or enter or
293 # remain in the data phase of the transfer otherwise.
294 if self
.rem_addr_bytes
:
295 self
.rem_addr_bytes
-= 1
296 self
.data_bits
.clear()
298 def handle_stop(self
, ss
, es
):
300 if self
.samplerate
and self
.pdu_start
:
301 elapsed
= es
- self
.pdu_start
+ 1
302 elapsed
/= self
.samplerate
303 bitrate
= int(1 / elapsed
* self
.pdu_bits
)
304 ss_meta
, es_meta
= self
.pdu_start
, es
305 self
.put(ss_meta
, es_meta
, self
.out_bitrate
, bitrate
)
306 self
.pdu_start
= None
310 self
.putp(ss
, es
, [cmd
, None])
311 cls
, texts
= proto
[cmd
][0], proto
[cmd
][1:]
312 self
.putg(ss
, es
, cls
, texts
)
313 self
.is_repeat_start
= False
315 self
.data_bits
.clear()
318 # Check for several bus conditions. Determine sample numbers
319 # here and pass ss, es, and bit values to handling routines.
322 # BEWARE! This implementation expects to see valid traffic,
323 # is rather picky in which phase which symbols get handled.
324 # This attempts to support severely undersampled captures,
325 # which a previous implementation happened to read instead
326 # of rejecting the inadequate input data.
327 # NOTE that handling bits at the start of their validity,
328 # and assuming that they remain valid until the next bit
329 # starts, is also done for backwards compatibility.
330 if self
._wants
_start
():
331 # Wait for a START condition (S): SCL = high, SDA = falling.
332 pins
= self
.wait({0: 'h', 1: 'f'})
333 ss
, es
= self
.samplenum
, self
.samplenum
334 self
.handle_start(ss
, es
)
335 elif self
._collects
_address
() and self
._collects
_byte
():
336 # Wait for a data bit: SCL = rising.
337 pins
= self
.wait({0: 'r'})
339 ss
, es
= self
.samplenum
, self
.samplenum
+ self
.bitwidth
340 self
.handle_address_or_data(ss
, es
, sda
)
341 elif self
._collects
_byte
():
342 # Wait for any of the following conditions (or combinations):
343 # a) Data sampling of receiver: SCL = rising, and/or
344 # b) START condition (S): SCL = high, SDA = falling, and/or
345 # c) STOP condition (P): SCL = high, SDA = rising
346 pins
= self
.wait([{0: 'r'}, {0: 'h', 1: 'f'}, {0: 'h', 1: 'r'}])
348 # Check which of the condition(s) matched and handle them.
351 ss
, es
= self
.samplenum
, self
.samplenum
+ self
.bitwidth
352 self
.handle_address_or_data(ss
, es
, sda
)
353 elif self
.matched
[1]:
354 ss
, es
= self
.samplenum
, self
.samplenum
355 self
.handle_start(ss
, es
)
356 elif self
.matched
[2]:
357 ss
, es
= self
.samplenum
, self
.samplenum
358 self
.handle_stop(ss
, es
)
360 # Wait for a data/ack bit: SCL = rising.
361 pins
= self
.wait({0: 'r'})
363 ss
, es
= self
.samplenum
, self
.samplenum
+ self
.bitwidth
364 self
.get_ack(ss
, es
, sda
)