4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
8 #include <linux/capability.h>
9 #include <linux/mman.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
24 int can_do_mlock(void)
26 if (capable(CAP_IPC_LOCK
))
28 if (current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
!= 0)
32 EXPORT_SYMBOL(can_do_mlock
);
35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
36 * in vmscan and, possibly, the fault path; and to support semi-accurate
39 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41 * The unevictable list is an LRU sibling list to the [in]active lists.
42 * PageUnevictable is set to indicate the unevictable state.
44 * When lazy mlocking via vmscan, it is important to ensure that the
45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46 * may have mlocked a page that is being munlocked. So lazy mlock must take
47 * the mmap_sem for read, and verify that the vma really is locked
52 * LRU accounting for clear_page_mlock()
54 void __clear_page_mlock(struct page
*page
)
56 VM_BUG_ON(!PageLocked(page
));
58 if (!page
->mapping
) { /* truncated ? */
62 dec_zone_page_state(page
, NR_MLOCK
);
63 count_vm_event(UNEVICTABLE_PGCLEARED
);
64 if (!isolate_lru_page(page
)) {
65 putback_lru_page(page
);
68 * We lost the race. the page already moved to evictable list.
70 if (PageUnevictable(page
))
71 count_vm_event(UNEVICTABLE_PGSTRANDED
);
76 * Mark page as mlocked if not already.
77 * If page on LRU, isolate and putback to move to unevictable list.
79 void mlock_vma_page(struct page
*page
)
81 BUG_ON(!PageLocked(page
));
83 if (!TestSetPageMlocked(page
)) {
84 inc_zone_page_state(page
, NR_MLOCK
);
85 count_vm_event(UNEVICTABLE_PGMLOCKED
);
86 if (!isolate_lru_page(page
))
87 putback_lru_page(page
);
92 * called from munlock()/munmap() path with page supposedly on the LRU.
94 * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
95 * [in try_to_munlock()] and then attempt to isolate the page. We must
96 * isolate the page to keep others from messing with its unevictable
97 * and mlocked state while trying to munlock. However, we pre-clear the
98 * mlocked state anyway as we might lose the isolation race and we might
99 * not get another chance to clear PageMlocked. If we successfully
100 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
101 * mapping the page, it will restore the PageMlocked state, unless the page
102 * is mapped in a non-linear vma. So, we go ahead and ClearPageMlocked(),
103 * perhaps redundantly.
104 * If we lose the isolation race, and the page is mapped by other VM_LOCKED
105 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
106 * either of which will restore the PageMlocked state by calling
107 * mlock_vma_page() above, if it can grab the vma's mmap sem.
109 void munlock_vma_page(struct page
*page
)
111 BUG_ON(!PageLocked(page
));
113 if (TestClearPageMlocked(page
)) {
114 dec_zone_page_state(page
, NR_MLOCK
);
115 if (!isolate_lru_page(page
)) {
116 int ret
= try_to_munlock(page
);
118 * did try_to_unlock() succeed or punt?
120 if (ret
== SWAP_SUCCESS
|| ret
== SWAP_AGAIN
)
121 count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
123 putback_lru_page(page
);
126 * We lost the race. let try_to_unmap() deal
127 * with it. At least we get the page state and
128 * mlock stats right. However, page is still on
129 * the noreclaim list. We'll fix that up when
130 * the page is eventually freed or we scan the
133 if (PageUnevictable(page
))
134 count_vm_event(UNEVICTABLE_PGSTRANDED
);
136 count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
141 static inline int stack_guard_page(struct vm_area_struct
*vma
, unsigned long addr
)
143 return (vma
->vm_flags
& VM_GROWSDOWN
) &&
144 (vma
->vm_start
== addr
) &&
145 !vma_stack_continue(vma
->vm_prev
, addr
);
149 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
151 * @start: start address
154 * This takes care of making the pages present too.
156 * return 0 on success, negative error code on error.
158 * vma->vm_mm->mmap_sem must be held for at least read.
160 static long __mlock_vma_pages_range(struct vm_area_struct
*vma
,
161 unsigned long start
, unsigned long end
)
163 struct mm_struct
*mm
= vma
->vm_mm
;
164 unsigned long addr
= start
;
165 struct page
*pages
[16]; /* 16 gives a reasonable batch */
166 int nr_pages
= (end
- start
) / PAGE_SIZE
;
170 VM_BUG_ON(start
& ~PAGE_MASK
);
171 VM_BUG_ON(end
& ~PAGE_MASK
);
172 VM_BUG_ON(start
< vma
->vm_start
);
173 VM_BUG_ON(end
> vma
->vm_end
);
174 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
176 gup_flags
= FOLL_TOUCH
| FOLL_GET
;
177 if (vma
->vm_flags
& VM_WRITE
)
178 gup_flags
|= FOLL_WRITE
;
180 /* We don't try to access the guard page of a stack vma */
181 if (stack_guard_page(vma
, start
)) {
186 while (nr_pages
> 0) {
192 * get_user_pages makes pages present if we are
193 * setting mlock. and this extra reference count will
194 * disable migration of this page. However, page may
195 * still be truncated out from under us.
197 ret
= __get_user_pages(current
, mm
, addr
,
198 min_t(int, nr_pages
, ARRAY_SIZE(pages
)),
199 gup_flags
, pages
, NULL
);
201 * This can happen for, e.g., VM_NONLINEAR regions before
202 * a page has been allocated and mapped at a given offset,
203 * or for addresses that map beyond end of a file.
204 * We'll mlock the pages if/when they get faulted in.
209 lru_add_drain(); /* push cached pages to LRU */
211 for (i
= 0; i
< ret
; i
++) {
212 struct page
*page
= pages
[i
];
216 * That preliminary check is mainly to avoid
217 * the pointless overhead of lock_page on the
218 * ZERO_PAGE: which might bounce very badly if
219 * there is contention. However, we're still
220 * dirtying its cacheline with get/put_page:
221 * we'll add another __get_user_pages flag to
222 * avoid it if that case turns out to matter.
226 * Because we lock page here and migration is
227 * blocked by the elevated reference, we need
228 * only check for file-cache page truncation.
231 mlock_vma_page(page
);
234 put_page(page
); /* ref from get_user_pages() */
237 addr
+= ret
* PAGE_SIZE
;
242 return ret
; /* 0 or negative error code */
246 * convert get_user_pages() return value to posix mlock() error
248 static int __mlock_posix_error_return(long retval
)
250 if (retval
== -EFAULT
)
252 else if (retval
== -ENOMEM
)
258 * mlock_vma_pages_range() - mlock pages in specified vma range.
259 * @vma - the vma containing the specfied address range
260 * @start - starting address in @vma to mlock
261 * @end - end address [+1] in @vma to mlock
263 * For mmap()/mremap()/expansion of mlocked vma.
265 * return 0 on success for "normal" vmas.
267 * return number of pages [> 0] to be removed from locked_vm on success
270 long mlock_vma_pages_range(struct vm_area_struct
*vma
,
271 unsigned long start
, unsigned long end
)
273 int nr_pages
= (end
- start
) / PAGE_SIZE
;
274 BUG_ON(!(vma
->vm_flags
& VM_LOCKED
));
277 * filter unlockable vmas
279 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
282 if (!((vma
->vm_flags
& (VM_DONTEXPAND
| VM_RESERVED
)) ||
283 is_vm_hugetlb_page(vma
) ||
284 vma
== get_gate_vma(current
))) {
286 __mlock_vma_pages_range(vma
, start
, end
);
288 /* Hide errors from mmap() and other callers */
293 * User mapped kernel pages or huge pages:
294 * make these pages present to populate the ptes, but
295 * fall thru' to reset VM_LOCKED--no need to unlock, and
296 * return nr_pages so these don't get counted against task's
297 * locked limit. huge pages are already counted against
300 make_pages_present(start
, end
);
303 vma
->vm_flags
&= ~VM_LOCKED
; /* and don't come back! */
304 return nr_pages
; /* error or pages NOT mlocked */
308 * munlock_vma_pages_range() - munlock all pages in the vma range.'
309 * @vma - vma containing range to be munlock()ed.
310 * @start - start address in @vma of the range
311 * @end - end of range in @vma.
313 * For mremap(), munmap() and exit().
315 * Called with @vma VM_LOCKED.
317 * Returns with VM_LOCKED cleared. Callers must be prepared to
320 * We don't save and restore VM_LOCKED here because pages are
321 * still on lru. In unmap path, pages might be scanned by reclaim
322 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
323 * free them. This will result in freeing mlocked pages.
325 void munlock_vma_pages_range(struct vm_area_struct
*vma
,
326 unsigned long start
, unsigned long end
)
331 vma
->vm_flags
&= ~VM_LOCKED
;
333 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
336 * Although FOLL_DUMP is intended for get_dump_page(),
337 * it just so happens that its special treatment of the
338 * ZERO_PAGE (returning an error instead of doing get_page)
339 * suits munlock very well (and if somehow an abnormal page
340 * has sneaked into the range, we won't oops here: great).
342 page
= follow_page(vma
, addr
, FOLL_GET
| FOLL_DUMP
);
343 if (page
&& !IS_ERR(page
)) {
346 * Like in __mlock_vma_pages_range(),
347 * because we lock page here and migration is
348 * blocked by the elevated reference, we need
349 * only check for file-cache page truncation.
352 munlock_vma_page(page
);
361 * mlock_fixup - handle mlock[all]/munlock[all] requests.
363 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
364 * munlock is a no-op. However, for some special vmas, we go ahead and
365 * populate the ptes via make_pages_present().
367 * For vmas that pass the filters, merge/split as appropriate.
369 static int mlock_fixup(struct vm_area_struct
*vma
, struct vm_area_struct
**prev
,
370 unsigned long start
, unsigned long end
, unsigned int newflags
)
372 struct mm_struct
*mm
= vma
->vm_mm
;
376 int lock
= newflags
& VM_LOCKED
;
378 if (newflags
== vma
->vm_flags
||
379 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
380 goto out
; /* don't set VM_LOCKED, don't count */
382 if ((vma
->vm_flags
& (VM_DONTEXPAND
| VM_RESERVED
)) ||
383 is_vm_hugetlb_page(vma
) ||
384 vma
== get_gate_vma(current
)) {
386 make_pages_present(start
, end
);
387 goto out
; /* don't set VM_LOCKED, don't count */
390 pgoff
= vma
->vm_pgoff
+ ((start
- vma
->vm_start
) >> PAGE_SHIFT
);
391 *prev
= vma_merge(mm
, *prev
, start
, end
, newflags
, vma
->anon_vma
,
392 vma
->vm_file
, pgoff
, vma_policy(vma
));
398 if (start
!= vma
->vm_start
) {
399 ret
= split_vma(mm
, vma
, start
, 1);
404 if (end
!= vma
->vm_end
) {
405 ret
= split_vma(mm
, vma
, end
, 0);
412 * Keep track of amount of locked VM.
414 nr_pages
= (end
- start
) >> PAGE_SHIFT
;
416 nr_pages
= -nr_pages
;
417 mm
->locked_vm
+= nr_pages
;
420 * vm_flags is protected by the mmap_sem held in write mode.
421 * It's okay if try_to_unmap_one unmaps a page just after we
422 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
426 vma
->vm_flags
= newflags
;
427 ret
= __mlock_vma_pages_range(vma
, start
, end
);
429 ret
= __mlock_posix_error_return(ret
);
431 munlock_vma_pages_range(vma
, start
, end
);
439 static int do_mlock(unsigned long start
, size_t len
, int on
)
441 unsigned long nstart
, end
, tmp
;
442 struct vm_area_struct
* vma
, * prev
;
445 len
= PAGE_ALIGN(len
);
451 vma
= find_vma_prev(current
->mm
, start
, &prev
);
452 if (!vma
|| vma
->vm_start
> start
)
455 if (start
> vma
->vm_start
)
458 for (nstart
= start
; ; ) {
459 unsigned int newflags
;
461 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
463 newflags
= vma
->vm_flags
| VM_LOCKED
;
465 newflags
&= ~VM_LOCKED
;
470 error
= mlock_fixup(vma
, &prev
, nstart
, tmp
, newflags
);
474 if (nstart
< prev
->vm_end
)
475 nstart
= prev
->vm_end
;
480 if (!vma
|| vma
->vm_start
!= nstart
) {
488 SYSCALL_DEFINE2(mlock
, unsigned long, start
, size_t, len
)
490 unsigned long locked
;
491 unsigned long lock_limit
;
497 lru_add_drain_all(); /* flush pagevec */
499 down_write(¤t
->mm
->mmap_sem
);
500 len
= PAGE_ALIGN(len
+ (start
& ~PAGE_MASK
));
503 locked
= len
>> PAGE_SHIFT
;
504 locked
+= current
->mm
->locked_vm
;
506 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
507 lock_limit
>>= PAGE_SHIFT
;
509 /* check against resource limits */
510 if ((locked
<= lock_limit
) || capable(CAP_IPC_LOCK
))
511 error
= do_mlock(start
, len
, 1);
512 up_write(¤t
->mm
->mmap_sem
);
516 SYSCALL_DEFINE2(munlock
, unsigned long, start
, size_t, len
)
520 down_write(¤t
->mm
->mmap_sem
);
521 len
= PAGE_ALIGN(len
+ (start
& ~PAGE_MASK
));
523 ret
= do_mlock(start
, len
, 0);
524 up_write(¤t
->mm
->mmap_sem
);
528 static int do_mlockall(int flags
)
530 struct vm_area_struct
* vma
, * prev
= NULL
;
531 unsigned int def_flags
= 0;
533 if (flags
& MCL_FUTURE
)
534 def_flags
= VM_LOCKED
;
535 current
->mm
->def_flags
= def_flags
;
536 if (flags
== MCL_FUTURE
)
539 for (vma
= current
->mm
->mmap
; vma
; vma
= prev
->vm_next
) {
540 unsigned int newflags
;
542 newflags
= vma
->vm_flags
| VM_LOCKED
;
543 if (!(flags
& MCL_CURRENT
))
544 newflags
&= ~VM_LOCKED
;
547 mlock_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
, newflags
);
553 SYSCALL_DEFINE1(mlockall
, int, flags
)
555 unsigned long lock_limit
;
558 if (!flags
|| (flags
& ~(MCL_CURRENT
| MCL_FUTURE
)))
565 lru_add_drain_all(); /* flush pagevec */
567 down_write(¤t
->mm
->mmap_sem
);
569 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
570 lock_limit
>>= PAGE_SHIFT
;
573 if (!(flags
& MCL_CURRENT
) || (current
->mm
->total_vm
<= lock_limit
) ||
574 capable(CAP_IPC_LOCK
))
575 ret
= do_mlockall(flags
);
576 up_write(¤t
->mm
->mmap_sem
);
581 SYSCALL_DEFINE0(munlockall
)
585 down_write(¤t
->mm
->mmap_sem
);
586 ret
= do_mlockall(0);
587 up_write(¤t
->mm
->mmap_sem
);
592 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
593 * shm segments) get accounted against the user_struct instead.
595 static DEFINE_SPINLOCK(shmlock_user_lock
);
597 int user_shm_lock(size_t size
, struct user_struct
*user
)
599 unsigned long lock_limit
, locked
;
602 locked
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
603 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
604 if (lock_limit
== RLIM_INFINITY
)
606 lock_limit
>>= PAGE_SHIFT
;
607 spin_lock(&shmlock_user_lock
);
609 locked
+ user
->locked_shm
> lock_limit
&& !capable(CAP_IPC_LOCK
))
612 user
->locked_shm
+= locked
;
615 spin_unlock(&shmlock_user_lock
);
619 void user_shm_unlock(size_t size
, struct user_struct
*user
)
621 spin_lock(&shmlock_user_lock
);
622 user
->locked_shm
-= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
623 spin_unlock(&shmlock_user_lock
);
627 int account_locked_memory(struct mm_struct
*mm
, struct rlimit
*rlim
,
630 unsigned long lim
, vm
, pgsz
;
633 pgsz
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
635 down_write(&mm
->mmap_sem
);
637 lim
= rlim
[RLIMIT_AS
].rlim_cur
>> PAGE_SHIFT
;
638 vm
= mm
->total_vm
+ pgsz
;
642 lim
= rlim
[RLIMIT_MEMLOCK
].rlim_cur
>> PAGE_SHIFT
;
643 vm
= mm
->locked_vm
+ pgsz
;
647 mm
->total_vm
+= pgsz
;
648 mm
->locked_vm
+= pgsz
;
652 up_write(&mm
->mmap_sem
);
656 void refund_locked_memory(struct mm_struct
*mm
, size_t size
)
658 unsigned long pgsz
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
660 down_write(&mm
->mmap_sem
);
662 mm
->total_vm
-= pgsz
;
663 mm
->locked_vm
-= pgsz
;
665 up_write(&mm
->mmap_sem
);