MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / fs / jffs2 / nodelist.c
blobd4d0c41490cddad3a99c89727dd848a405693520
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
10 * $Id: nodelist.c,v 1.115 2005/11/07 11:14:40 gleixner Exp $
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/fs.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/rbtree.h>
19 #include <linux/crc32.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include "nodelist.h"
24 void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list)
26 struct jffs2_full_dirent **prev = list;
28 dbg_dentlist("add dirent \"%s\", ino #%u\n", new->name, new->ino);
30 while ((*prev) && (*prev)->nhash <= new->nhash) {
31 if ((*prev)->nhash == new->nhash && !strcmp((*prev)->name, new->name)) {
32 /* Duplicate. Free one */
33 if (new->version < (*prev)->version) {
34 dbg_dentlist("Eep! Marking new dirent node is obsolete, old is \"%s\", ino #%u\n",
35 (*prev)->name, (*prev)->ino);
36 jffs2_mark_node_obsolete(c, new->raw);
37 jffs2_free_full_dirent(new);
38 } else {
39 dbg_dentlist("marking old dirent \"%s\", ino #%u bsolete\n",
40 (*prev)->name, (*prev)->ino);
41 new->next = (*prev)->next;
42 jffs2_mark_node_obsolete(c, ((*prev)->raw));
43 jffs2_free_full_dirent(*prev);
44 *prev = new;
46 return;
48 prev = &((*prev)->next);
50 new->next = *prev;
51 *prev = new;
54 void jffs2_truncate_fragtree(struct jffs2_sb_info *c, struct rb_root *list, uint32_t size)
56 struct jffs2_node_frag *frag = jffs2_lookup_node_frag(list, size);
58 dbg_fragtree("truncating fragtree to 0x%08x bytes\n", size);
60 /* We know frag->ofs <= size. That's what lookup does for us */
61 if (frag && frag->ofs != size) {
62 if (frag->ofs+frag->size > size) {
63 frag->size = size - frag->ofs;
65 frag = frag_next(frag);
67 while (frag && frag->ofs >= size) {
68 struct jffs2_node_frag *next = frag_next(frag);
70 frag_erase(frag, list);
71 jffs2_obsolete_node_frag(c, frag);
72 frag = next;
75 if (size == 0)
76 return;
79 * If the last fragment starts at the RAM page boundary, it is
80 * REF_PRISTINE irrespective of its size.
82 frag = frag_last(list);
83 if (frag->node && (frag->ofs & (PAGE_CACHE_SIZE - 1)) == 0) {
84 dbg_fragtree2("marking the last fragment 0x%08x-0x%08x REF_PRISTINE.\n",
85 frag->ofs, frag->ofs + frag->size);
86 frag->node->raw->flash_offset = ref_offset(frag->node->raw) | REF_PRISTINE;
90 void jffs2_obsolete_node_frag(struct jffs2_sb_info *c, struct jffs2_node_frag *this)
92 if (this->node) {
93 this->node->frags--;
94 if (!this->node->frags) {
95 /* The node has no valid frags left. It's totally obsoleted */
96 dbg_fragtree2("marking old node @0x%08x (0x%04x-0x%04x) obsolete\n",
97 ref_offset(this->node->raw), this->node->ofs, this->node->ofs+this->node->size);
98 jffs2_mark_node_obsolete(c, this->node->raw);
99 jffs2_free_full_dnode(this->node);
100 } else {
101 dbg_fragtree2("marking old node @0x%08x (0x%04x-0x%04x) REF_NORMAL. frags is %d\n",
102 ref_offset(this->node->raw), this->node->ofs, this->node->ofs+this->node->size, this->node->frags);
103 mark_ref_normal(this->node->raw);
107 jffs2_free_node_frag(this);
110 static void jffs2_fragtree_insert(struct jffs2_node_frag *newfrag, struct jffs2_node_frag *base)
112 struct rb_node *parent = &base->rb;
113 struct rb_node **link = &parent;
115 dbg_fragtree2("insert frag (0x%04x-0x%04x)\n", newfrag->ofs, newfrag->ofs + newfrag->size);
117 while (*link) {
118 parent = *link;
119 base = rb_entry(parent, struct jffs2_node_frag, rb);
121 if (newfrag->ofs > base->ofs)
122 link = &base->rb.rb_right;
123 else if (newfrag->ofs < base->ofs)
124 link = &base->rb.rb_left;
125 else {
126 JFFS2_ERROR("duplicate frag at %08x (%p,%p)\n", newfrag->ofs, newfrag, base);
127 BUG();
131 rb_link_node(&newfrag->rb, &base->rb, link);
135 * Allocate and initializes a new fragment.
137 static struct jffs2_node_frag * new_fragment(struct jffs2_full_dnode *fn, uint32_t ofs, uint32_t size)
139 struct jffs2_node_frag *newfrag;
141 newfrag = jffs2_alloc_node_frag();
142 if (likely(newfrag)) {
143 newfrag->ofs = ofs;
144 newfrag->size = size;
145 newfrag->node = fn;
146 } else {
147 JFFS2_ERROR("cannot allocate a jffs2_node_frag object\n");
150 return newfrag;
154 * Called when there is no overlapping fragment exist. Inserts a hole before the new
155 * fragment and inserts the new fragment to the fragtree.
157 static int no_overlapping_node(struct jffs2_sb_info *c, struct rb_root *root,
158 struct jffs2_node_frag *newfrag,
159 struct jffs2_node_frag *this, uint32_t lastend)
161 if (lastend < newfrag->node->ofs) {
162 /* put a hole in before the new fragment */
163 struct jffs2_node_frag *holefrag;
165 holefrag= new_fragment(NULL, lastend, newfrag->node->ofs - lastend);
166 if (unlikely(!holefrag)) {
167 jffs2_free_node_frag(newfrag);
168 return -ENOMEM;
171 if (this) {
172 /* By definition, the 'this' node has no right-hand child,
173 because there are no frags with offset greater than it.
174 So that's where we want to put the hole */
175 dbg_fragtree2("add hole frag %#04x-%#04x on the right of the new frag.\n",
176 holefrag->ofs, holefrag->ofs + holefrag->size);
177 rb_link_node(&holefrag->rb, &this->rb, &this->rb.rb_right);
178 } else {
179 dbg_fragtree2("Add hole frag %#04x-%#04x to the root of the tree.\n",
180 holefrag->ofs, holefrag->ofs + holefrag->size);
181 rb_link_node(&holefrag->rb, NULL, &root->rb_node);
183 rb_insert_color(&holefrag->rb, root);
184 this = holefrag;
187 if (this) {
188 /* By definition, the 'this' node has no right-hand child,
189 because there are no frags with offset greater than it.
190 So that's where we want to put new fragment */
191 dbg_fragtree2("add the new node at the right\n");
192 rb_link_node(&newfrag->rb, &this->rb, &this->rb.rb_right);
193 } else {
194 dbg_fragtree2("insert the new node at the root of the tree\n");
195 rb_link_node(&newfrag->rb, NULL, &root->rb_node);
197 rb_insert_color(&newfrag->rb, root);
199 return 0;
202 /* Doesn't set inode->i_size */
203 static int jffs2_add_frag_to_fragtree(struct jffs2_sb_info *c, struct rb_root *root, struct jffs2_node_frag *newfrag)
205 struct jffs2_node_frag *this;
206 uint32_t lastend;
208 /* Skip all the nodes which are completed before this one starts */
209 this = jffs2_lookup_node_frag(root, newfrag->node->ofs);
211 if (this) {
212 dbg_fragtree2("lookup gave frag 0x%04x-0x%04x; phys 0x%08x (*%p)\n",
213 this->ofs, this->ofs+this->size, this->node?(ref_offset(this->node->raw)):0xffffffff, this);
214 lastend = this->ofs + this->size;
215 } else {
216 dbg_fragtree2("lookup gave no frag\n");
217 lastend = 0;
220 /* See if we ran off the end of the fragtree */
221 if (lastend <= newfrag->ofs) {
222 /* We did */
224 /* Check if 'this' node was on the same page as the new node.
225 If so, both 'this' and the new node get marked REF_NORMAL so
226 the GC can take a look.
228 if (lastend && (lastend-1) >> PAGE_CACHE_SHIFT == newfrag->ofs >> PAGE_CACHE_SHIFT) {
229 if (this->node)
230 mark_ref_normal(this->node->raw);
231 mark_ref_normal(newfrag->node->raw);
234 return no_overlapping_node(c, root, newfrag, this, lastend);
237 if (this->node)
238 dbg_fragtree2("dealing with frag %u-%u, phys %#08x(%d).\n",
239 this->ofs, this->ofs + this->size,
240 ref_offset(this->node->raw), ref_flags(this->node->raw));
241 else
242 dbg_fragtree2("dealing with hole frag %u-%u.\n",
243 this->ofs, this->ofs + this->size);
245 /* OK. 'this' is pointing at the first frag that newfrag->ofs at least partially obsoletes,
246 * - i.e. newfrag->ofs < this->ofs+this->size && newfrag->ofs >= this->ofs
248 if (newfrag->ofs > this->ofs) {
249 /* This node isn't completely obsoleted. The start of it remains valid */
251 /* Mark the new node and the partially covered node REF_NORMAL -- let
252 the GC take a look at them */
253 mark_ref_normal(newfrag->node->raw);
254 if (this->node)
255 mark_ref_normal(this->node->raw);
257 if (this->ofs + this->size > newfrag->ofs + newfrag->size) {
258 /* The new node splits 'this' frag into two */
259 struct jffs2_node_frag *newfrag2;
261 if (this->node)
262 dbg_fragtree2("split old frag 0x%04x-0x%04x, phys 0x%08x\n",
263 this->ofs, this->ofs+this->size, ref_offset(this->node->raw));
264 else
265 dbg_fragtree2("split old hole frag 0x%04x-0x%04x\n",
266 this->ofs, this->ofs+this->size);
268 /* New second frag pointing to this's node */
269 newfrag2 = new_fragment(this->node, newfrag->ofs + newfrag->size,
270 this->ofs + this->size - newfrag->ofs - newfrag->size);
271 if (unlikely(!newfrag2))
272 return -ENOMEM;
273 if (this->node)
274 this->node->frags++;
276 /* Adjust size of original 'this' */
277 this->size = newfrag->ofs - this->ofs;
279 /* Now, we know there's no node with offset
280 greater than this->ofs but smaller than
281 newfrag2->ofs or newfrag->ofs, for obvious
282 reasons. So we can do a tree insert from
283 'this' to insert newfrag, and a tree insert
284 from newfrag to insert newfrag2. */
285 jffs2_fragtree_insert(newfrag, this);
286 rb_insert_color(&newfrag->rb, root);
288 jffs2_fragtree_insert(newfrag2, newfrag);
289 rb_insert_color(&newfrag2->rb, root);
291 return 0;
293 /* New node just reduces 'this' frag in size, doesn't split it */
294 this->size = newfrag->ofs - this->ofs;
296 /* Again, we know it lives down here in the tree */
297 jffs2_fragtree_insert(newfrag, this);
298 rb_insert_color(&newfrag->rb, root);
299 } else {
300 /* New frag starts at the same point as 'this' used to. Replace
301 it in the tree without doing a delete and insertion */
302 dbg_fragtree2("inserting newfrag (*%p),%d-%d in before 'this' (*%p),%d-%d\n",
303 newfrag, newfrag->ofs, newfrag->ofs+newfrag->size, this, this->ofs, this->ofs+this->size);
305 rb_replace_node(&this->rb, &newfrag->rb, root);
307 if (newfrag->ofs + newfrag->size >= this->ofs+this->size) {
308 dbg_fragtree2("obsoleting node frag %p (%x-%x)\n", this, this->ofs, this->ofs+this->size);
309 jffs2_obsolete_node_frag(c, this);
310 } else {
311 this->ofs += newfrag->size;
312 this->size -= newfrag->size;
314 jffs2_fragtree_insert(this, newfrag);
315 rb_insert_color(&this->rb, root);
316 return 0;
319 /* OK, now we have newfrag added in the correct place in the tree, but
320 frag_next(newfrag) may be a fragment which is overlapped by it
322 while ((this = frag_next(newfrag)) && newfrag->ofs + newfrag->size >= this->ofs + this->size) {
323 /* 'this' frag is obsoleted completely. */
324 dbg_fragtree2("obsoleting node frag %p (%x-%x) and removing from tree\n",
325 this, this->ofs, this->ofs+this->size);
326 rb_erase(&this->rb, root);
327 jffs2_obsolete_node_frag(c, this);
329 /* Now we're pointing at the first frag which isn't totally obsoleted by
330 the new frag */
332 if (!this || newfrag->ofs + newfrag->size == this->ofs)
333 return 0;
335 /* Still some overlap but we don't need to move it in the tree */
336 this->size = (this->ofs + this->size) - (newfrag->ofs + newfrag->size);
337 this->ofs = newfrag->ofs + newfrag->size;
339 /* And mark them REF_NORMAL so the GC takes a look at them */
340 if (this->node)
341 mark_ref_normal(this->node->raw);
342 mark_ref_normal(newfrag->node->raw);
344 return 0;
348 * Given an inode, probably with existing tree of fragments, add the new node
349 * to the fragment tree.
351 int jffs2_add_full_dnode_to_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
353 int ret;
354 struct jffs2_node_frag *newfrag;
356 if (unlikely(!fn->size))
357 return 0;
359 newfrag = new_fragment(fn, fn->ofs, fn->size);
360 if (unlikely(!newfrag))
361 return -ENOMEM;
362 newfrag->node->frags = 1;
364 dbg_fragtree("adding node %#04x-%#04x @0x%08x on flash, newfrag *%p\n",
365 fn->ofs, fn->ofs+fn->size, ref_offset(fn->raw), newfrag);
367 ret = jffs2_add_frag_to_fragtree(c, &f->fragtree, newfrag);
368 if (unlikely(ret))
369 return ret;
371 /* If we now share a page with other nodes, mark either previous
372 or next node REF_NORMAL, as appropriate. */
373 if (newfrag->ofs & (PAGE_CACHE_SIZE-1)) {
374 struct jffs2_node_frag *prev = frag_prev(newfrag);
376 mark_ref_normal(fn->raw);
377 /* If we don't start at zero there's _always_ a previous */
378 if (prev->node)
379 mark_ref_normal(prev->node->raw);
382 if ((newfrag->ofs+newfrag->size) & (PAGE_CACHE_SIZE-1)) {
383 struct jffs2_node_frag *next = frag_next(newfrag);
385 if (next) {
386 mark_ref_normal(fn->raw);
387 if (next->node)
388 mark_ref_normal(next->node->raw);
391 jffs2_dbg_fragtree_paranoia_check_nolock(f);
393 return 0;
397 * Check the data CRC of the node.
399 * Returns: 0 if the data CRC is correct;
400 * 1 - if incorrect;
401 * error code if an error occured.
403 static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
405 struct jffs2_raw_node_ref *ref = tn->fn->raw;
406 int err = 0, pointed = 0;
407 struct jffs2_eraseblock *jeb;
408 unsigned char *buffer;
409 uint32_t crc, ofs, len;
410 size_t retlen;
412 BUG_ON(tn->csize == 0);
414 if (!jffs2_is_writebuffered(c))
415 goto adj_acc;
417 /* Calculate how many bytes were already checked */
418 ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode);
419 len = ofs % c->wbuf_pagesize;
420 if (likely(len))
421 len = c->wbuf_pagesize - len;
423 if (len >= tn->csize) {
424 dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n",
425 ref_offset(ref), tn->csize, ofs);
426 goto adj_acc;
429 ofs += len;
430 len = tn->csize - len;
432 dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n",
433 ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len);
435 #ifndef __ECOS
436 /* TODO: instead, incapsulate point() stuff to jffs2_flash_read(),
437 * adding and jffs2_flash_read_end() interface. */
438 if (c->mtd->point) {
439 err = c->mtd->point(c->mtd, ofs, len, &retlen, &buffer);
440 if (!err && retlen < tn->csize) {
441 JFFS2_WARNING("MTD point returned len too short: %u instead of %u.\n", retlen, tn->csize);
442 c->mtd->unpoint(c->mtd, buffer, ofs, len);
443 } else if (err)
444 JFFS2_WARNING("MTD point failed: error code %d.\n", err);
445 else
446 pointed = 1; /* succefully pointed to device */
448 #endif
450 if (!pointed) {
451 buffer = kmalloc(len, GFP_KERNEL);
452 if (unlikely(!buffer))
453 return -ENOMEM;
455 /* TODO: this is very frequent pattern, make it a separate
456 * routine */
457 err = jffs2_flash_read(c, ofs, len, &retlen, buffer);
458 if (err) {
459 JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err);
460 goto free_out;
463 if (retlen != len) {
464 JFFS2_ERROR("short read at %#08x: %d instead of %d.\n", ofs, retlen, len);
465 err = -EIO;
466 goto free_out;
470 /* Continue calculating CRC */
471 crc = crc32(tn->partial_crc, buffer, len);
472 if(!pointed)
473 kfree(buffer);
474 #ifndef __ECOS
475 else
476 c->mtd->unpoint(c->mtd, buffer, ofs, len);
477 #endif
479 if (crc != tn->data_crc) {
480 JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
481 ofs, tn->data_crc, crc);
482 return 1;
485 adj_acc:
486 jeb = &c->blocks[ref->flash_offset / c->sector_size];
487 len = ref_totlen(c, jeb, ref);
490 * Mark the node as having been checked and fix the
491 * accounting accordingly.
493 spin_lock(&c->erase_completion_lock);
494 jeb->used_size += len;
495 jeb->unchecked_size -= len;
496 c->used_size += len;
497 c->unchecked_size -= len;
498 spin_unlock(&c->erase_completion_lock);
500 return 0;
502 free_out:
503 if(!pointed)
504 kfree(buffer);
505 #ifndef __ECOS
506 else
507 c->mtd->unpoint(c->mtd, buffer, ofs, len);
508 #endif
509 return err;
513 * Helper function for jffs2_add_older_frag_to_fragtree().
515 * Checks the node if we are in the checking stage.
517 static int check_node(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_tmp_dnode_info *tn)
519 int ret;
521 BUG_ON(ref_obsolete(tn->fn->raw));
523 /* We only check the data CRC of unchecked nodes */
524 if (ref_flags(tn->fn->raw) != REF_UNCHECKED)
525 return 0;
527 dbg_fragtree2("check node %#04x-%#04x, phys offs %#08x.\n",
528 tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw));
530 ret = check_node_data(c, tn);
531 if (unlikely(ret < 0)) {
532 JFFS2_ERROR("check_node_data() returned error: %d.\n",
533 ret);
534 } else if (unlikely(ret > 0)) {
535 dbg_fragtree2("CRC error, mark it obsolete.\n");
536 jffs2_mark_node_obsolete(c, tn->fn->raw);
539 return ret;
543 * Helper function for jffs2_add_older_frag_to_fragtree().
545 * Called when the new fragment that is being inserted
546 * splits a hole fragment.
548 static int split_hole(struct jffs2_sb_info *c, struct rb_root *root,
549 struct jffs2_node_frag *newfrag, struct jffs2_node_frag *hole)
551 dbg_fragtree2("fragment %#04x-%#04x splits the hole %#04x-%#04x\n",
552 newfrag->ofs, newfrag->ofs + newfrag->size, hole->ofs, hole->ofs + hole->size);
554 if (hole->ofs == newfrag->ofs) {
556 * Well, the new fragment actually starts at the same offset as
557 * the hole.
559 if (hole->ofs + hole->size > newfrag->ofs + newfrag->size) {
561 * We replace the overlapped left part of the hole by
562 * the new node.
565 dbg_fragtree2("insert fragment %#04x-%#04x and cut the left part of the hole\n",
566 newfrag->ofs, newfrag->ofs + newfrag->size);
567 rb_replace_node(&hole->rb, &newfrag->rb, root);
569 hole->ofs += newfrag->size;
570 hole->size -= newfrag->size;
573 * We know that 'hole' should be the right hand
574 * fragment.
576 jffs2_fragtree_insert(hole, newfrag);
577 rb_insert_color(&hole->rb, root);
578 } else {
580 * Ah, the new fragment is of the same size as the hole.
581 * Relace the hole by it.
583 dbg_fragtree2("insert fragment %#04x-%#04x and overwrite hole\n",
584 newfrag->ofs, newfrag->ofs + newfrag->size);
585 rb_replace_node(&hole->rb, &newfrag->rb, root);
586 jffs2_free_node_frag(hole);
588 } else {
589 /* The new fragment lefts some hole space at the left */
591 struct jffs2_node_frag * newfrag2 = NULL;
593 if (hole->ofs + hole->size > newfrag->ofs + newfrag->size) {
594 /* The new frag also lefts some space at the right */
595 newfrag2 = new_fragment(NULL, newfrag->ofs +
596 newfrag->size, hole->ofs + hole->size
597 - newfrag->ofs - newfrag->size);
598 if (unlikely(!newfrag2)) {
599 jffs2_free_node_frag(newfrag);
600 return -ENOMEM;
604 hole->size = newfrag->ofs - hole->ofs;
605 dbg_fragtree2("left the hole %#04x-%#04x at the left and inserd fragment %#04x-%#04x\n",
606 hole->ofs, hole->ofs + hole->size, newfrag->ofs, newfrag->ofs + newfrag->size);
608 jffs2_fragtree_insert(newfrag, hole);
609 rb_insert_color(&newfrag->rb, root);
611 if (newfrag2) {
612 dbg_fragtree2("left the hole %#04x-%#04x at the right\n",
613 newfrag2->ofs, newfrag2->ofs + newfrag2->size);
614 jffs2_fragtree_insert(newfrag2, newfrag);
615 rb_insert_color(&newfrag2->rb, root);
619 return 0;
623 * This function is used when we build inode. It expects the nodes are passed
624 * in the decreasing version order. The whole point of this is to improve the
625 * inodes checking on NAND: we check the nodes' data CRC only when they are not
626 * obsoleted. Previously, add_frag_to_fragtree() function was used and
627 * nodes were passed to it in the increasing version ordes and CRCs of all
628 * nodes were checked.
630 * Note: tn->fn->size shouldn't be zero.
632 * Returns 0 if the node was inserted
633 * 1 if it wasn't inserted (since it is obsolete)
634 * < 0 an if error occured
636 int jffs2_add_older_frag_to_fragtree(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
637 struct jffs2_tmp_dnode_info *tn)
639 struct jffs2_node_frag *this, *newfrag;
640 uint32_t lastend;
641 struct jffs2_full_dnode *fn = tn->fn;
642 struct rb_root *root = &f->fragtree;
643 uint32_t fn_size = fn->size, fn_ofs = fn->ofs;
644 int err, checked = 0;
645 int ref_flag;
647 dbg_fragtree("insert fragment %#04x-%#04x, ver %u\n", fn_ofs, fn_ofs + fn_size, tn->version);
649 /* Skip all the nodes which are completed before this one starts */
650 this = jffs2_lookup_node_frag(root, fn_ofs);
651 if (this)
652 dbg_fragtree2("'this' found %#04x-%#04x (%s)\n", this->ofs, this->ofs + this->size, this->node ? "data" : "hole");
654 if (this)
655 lastend = this->ofs + this->size;
656 else
657 lastend = 0;
659 /* Detect the preliminary type of node */
660 if (fn->size >= PAGE_CACHE_SIZE)
661 ref_flag = REF_PRISTINE;
662 else
663 ref_flag = REF_NORMAL;
665 /* See if we ran off the end of the root */
666 if (lastend <= fn_ofs) {
667 /* We did */
670 * We are going to insert the new node into the
671 * fragment tree, so check it.
673 err = check_node(c, f, tn);
674 if (err != 0)
675 return err;
677 fn->frags = 1;
679 newfrag = new_fragment(fn, fn_ofs, fn_size);
680 if (unlikely(!newfrag))
681 return -ENOMEM;
683 err = no_overlapping_node(c, root, newfrag, this, lastend);
684 if (unlikely(err != 0)) {
685 jffs2_free_node_frag(newfrag);
686 return err;
689 goto out_ok;
692 fn->frags = 0;
694 while (1) {
696 * Here we have:
697 * fn_ofs < this->ofs + this->size && fn_ofs >= this->ofs.
699 * Remember, 'this' has higher version, any non-hole node
700 * which is already in the fragtree is newer then the newly
701 * inserted.
703 if (!this->node) {
705 * 'this' is the hole fragment, so at least the
706 * beginning of the new fragment is valid.
710 * We are going to insert the new node into the
711 * fragment tree, so check it.
713 if (!checked) {
714 err = check_node(c, f, tn);
715 if (unlikely(err != 0))
716 return err;
717 checked = 1;
720 if (this->ofs + this->size >= fn_ofs + fn_size) {
721 /* We split the hole on two parts */
723 fn->frags += 1;
724 newfrag = new_fragment(fn, fn_ofs, fn_size);
725 if (unlikely(!newfrag))
726 return -ENOMEM;
728 err = split_hole(c, root, newfrag, this);
729 if (unlikely(err))
730 return err;
731 goto out_ok;
735 * The beginning of the new fragment is valid since it
736 * overlaps the hole node.
739 ref_flag = REF_NORMAL;
741 fn->frags += 1;
742 newfrag = new_fragment(fn, fn_ofs,
743 this->ofs + this->size - fn_ofs);
744 if (unlikely(!newfrag))
745 return -ENOMEM;
747 if (fn_ofs == this->ofs) {
749 * The new node starts at the same offset as
750 * the hole and supersieds the hole.
752 dbg_fragtree2("add the new fragment instead of hole %#04x-%#04x, refcnt %d\n",
753 fn_ofs, fn_ofs + this->ofs + this->size - fn_ofs, fn->frags);
755 rb_replace_node(&this->rb, &newfrag->rb, root);
756 jffs2_free_node_frag(this);
757 } else {
759 * The hole becomes shorter as its right part
760 * is supersieded by the new fragment.
762 dbg_fragtree2("reduce size of hole %#04x-%#04x to %#04x-%#04x\n",
763 this->ofs, this->ofs + this->size, this->ofs, this->ofs + this->size - newfrag->size);
765 dbg_fragtree2("add new fragment %#04x-%#04x, refcnt %d\n", fn_ofs,
766 fn_ofs + this->ofs + this->size - fn_ofs, fn->frags);
768 this->size -= newfrag->size;
769 jffs2_fragtree_insert(newfrag, this);
770 rb_insert_color(&newfrag->rb, root);
773 fn_ofs += newfrag->size;
774 fn_size -= newfrag->size;
775 this = rb_entry(rb_next(&newfrag->rb),
776 struct jffs2_node_frag, rb);
778 dbg_fragtree2("switch to the next 'this' fragment: %#04x-%#04x %s\n",
779 this->ofs, this->ofs + this->size, this->node ? "(data)" : "(hole)");
783 * 'This' node is not the hole so it obsoletes the new fragment
784 * either fully or partially.
786 if (this->ofs + this->size >= fn_ofs + fn_size) {
787 /* The new node is obsolete, drop it */
788 if (fn->frags == 0) {
789 dbg_fragtree2("%#04x-%#04x is obsolete, mark it obsolete\n", fn_ofs, fn_ofs + fn_size);
790 ref_flag = REF_OBSOLETE;
792 goto out_ok;
793 } else {
794 struct jffs2_node_frag *new_this;
796 /* 'This' node obsoletes the beginning of the new node */
797 dbg_fragtree2("the beginning %#04x-%#04x is obsolete\n", fn_ofs, this->ofs + this->size);
799 ref_flag = REF_NORMAL;
801 fn_size -= this->ofs + this->size - fn_ofs;
802 fn_ofs = this->ofs + this->size;
803 dbg_fragtree2("now considering %#04x-%#04x\n", fn_ofs, fn_ofs + fn_size);
805 new_this = rb_entry(rb_next(&this->rb), struct jffs2_node_frag, rb);
806 if (!new_this) {
808 * There is no next fragment. Add the rest of
809 * the new node as the right-hand child.
811 if (!checked) {
812 err = check_node(c, f, tn);
813 if (unlikely(err != 0))
814 return err;
815 checked = 1;
818 fn->frags += 1;
819 newfrag = new_fragment(fn, fn_ofs, fn_size);
820 if (unlikely(!newfrag))
821 return -ENOMEM;
823 dbg_fragtree2("there are no more fragments, insert %#04x-%#04x\n",
824 newfrag->ofs, newfrag->ofs + newfrag->size);
825 rb_link_node(&newfrag->rb, &this->rb, &this->rb.rb_right);
826 rb_insert_color(&newfrag->rb, root);
827 goto out_ok;
828 } else {
829 this = new_this;
830 dbg_fragtree2("switch to the next 'this' fragment: %#04x-%#04x %s\n",
831 this->ofs, this->ofs + this->size, this->node ? "(data)" : "(hole)");
836 out_ok:
837 BUG_ON(fn->size < PAGE_CACHE_SIZE && ref_flag == REF_PRISTINE);
839 if (ref_flag == REF_OBSOLETE) {
840 dbg_fragtree2("the node is obsolete now\n");
841 /* jffs2_mark_node_obsolete() will adjust space accounting */
842 jffs2_mark_node_obsolete(c, fn->raw);
843 return 1;
846 dbg_fragtree2("the node is \"%s\" now\n", ref_flag == REF_NORMAL ? "REF_NORMAL" : "REF_PRISTINE");
848 /* Space accounting was adjusted at check_node_data() */
849 spin_lock(&c->erase_completion_lock);
850 fn->raw->flash_offset = ref_offset(fn->raw) | ref_flag;
851 spin_unlock(&c->erase_completion_lock);
853 return 0;
856 void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state)
858 spin_lock(&c->inocache_lock);
859 ic->state = state;
860 wake_up(&c->inocache_wq);
861 spin_unlock(&c->inocache_lock);
864 /* During mount, this needs no locking. During normal operation, its
865 callers want to do other stuff while still holding the inocache_lock.
866 Rather than introducing special case get_ino_cache functions or
867 callbacks, we just let the caller do the locking itself. */
869 struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, uint32_t ino)
871 struct jffs2_inode_cache *ret;
873 ret = c->inocache_list[ino % INOCACHE_HASHSIZE];
874 while (ret && ret->ino < ino) {
875 ret = ret->next;
878 if (ret && ret->ino != ino)
879 ret = NULL;
881 return ret;
884 void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new)
886 struct jffs2_inode_cache **prev;
888 spin_lock(&c->inocache_lock);
889 if (!new->ino)
890 new->ino = ++c->highest_ino;
892 dbg_inocache("add %p (ino #%u)\n", new, new->ino);
894 prev = &c->inocache_list[new->ino % INOCACHE_HASHSIZE];
896 while ((*prev) && (*prev)->ino < new->ino) {
897 prev = &(*prev)->next;
899 new->next = *prev;
900 *prev = new;
902 spin_unlock(&c->inocache_lock);
905 void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old)
907 struct jffs2_inode_cache **prev;
909 dbg_inocache("del %p (ino #%u)\n", old, old->ino);
910 spin_lock(&c->inocache_lock);
912 prev = &c->inocache_list[old->ino % INOCACHE_HASHSIZE];
914 while ((*prev) && (*prev)->ino < old->ino) {
915 prev = &(*prev)->next;
917 if ((*prev) == old) {
918 *prev = old->next;
921 /* Free it now unless it's in READING or CLEARING state, which
922 are the transitions upon read_inode() and clear_inode(). The
923 rest of the time we know nobody else is looking at it, and
924 if it's held by read_inode() or clear_inode() they'll free it
925 for themselves. */
926 if (old->state != INO_STATE_READING && old->state != INO_STATE_CLEARING)
927 jffs2_free_inode_cache(old);
929 spin_unlock(&c->inocache_lock);
932 void jffs2_free_ino_caches(struct jffs2_sb_info *c)
934 int i;
935 struct jffs2_inode_cache *this, *next;
937 for (i=0; i<INOCACHE_HASHSIZE; i++) {
938 this = c->inocache_list[i];
939 while (this) {
940 next = this->next;
941 jffs2_free_inode_cache(this);
942 this = next;
944 c->inocache_list[i] = NULL;
948 void jffs2_free_raw_node_refs(struct jffs2_sb_info *c)
950 int i;
951 struct jffs2_raw_node_ref *this, *next;
953 for (i=0; i<c->nr_blocks; i++) {
954 this = c->blocks[i].first_node;
955 while(this) {
956 next = this->next_phys;
957 jffs2_free_raw_node_ref(this);
958 this = next;
960 c->blocks[i].first_node = c->blocks[i].last_node = NULL;
964 struct jffs2_node_frag *jffs2_lookup_node_frag(struct rb_root *fragtree, uint32_t offset)
966 /* The common case in lookup is that there will be a node
967 which precisely matches. So we go looking for that first */
968 struct rb_node *next;
969 struct jffs2_node_frag *prev = NULL;
970 struct jffs2_node_frag *frag = NULL;
972 dbg_fragtree2("root %p, offset %d\n", fragtree, offset);
974 next = fragtree->rb_node;
976 while(next) {
977 frag = rb_entry(next, struct jffs2_node_frag, rb);
979 if (frag->ofs + frag->size <= offset) {
980 /* Remember the closest smaller match on the way down */
981 if (!prev || frag->ofs > prev->ofs)
982 prev = frag;
983 next = frag->rb.rb_right;
984 } else if (frag->ofs > offset) {
985 next = frag->rb.rb_left;
986 } else {
987 return frag;
991 /* Exact match not found. Go back up looking at each parent,
992 and return the closest smaller one */
994 if (prev)
995 dbg_fragtree2("no match. Returning frag %#04x-%#04x, closest previous\n",
996 prev->ofs, prev->ofs+prev->size);
997 else
998 dbg_fragtree2("returning NULL, empty fragtree\n");
1000 return prev;
1003 /* Pass 'c' argument to indicate that nodes should be marked obsolete as
1004 they're killed. */
1005 void jffs2_kill_fragtree(struct rb_root *root, struct jffs2_sb_info *c)
1007 struct jffs2_node_frag *frag;
1008 struct jffs2_node_frag *parent;
1010 if (!root->rb_node)
1011 return;
1013 dbg_fragtree("killing\n");
1015 frag = (rb_entry(root->rb_node, struct jffs2_node_frag, rb));
1016 while(frag) {
1017 if (frag->rb.rb_left) {
1018 frag = frag_left(frag);
1019 continue;
1021 if (frag->rb.rb_right) {
1022 frag = frag_right(frag);
1023 continue;
1026 if (frag->node && !(--frag->node->frags)) {
1027 /* Not a hole, and it's the final remaining frag
1028 of this node. Free the node */
1029 if (c)
1030 jffs2_mark_node_obsolete(c, frag->node->raw);
1032 jffs2_free_full_dnode(frag->node);
1034 parent = frag_parent(frag);
1035 if (parent) {
1036 if (frag_left(parent) == frag)
1037 parent->rb.rb_left = NULL;
1038 else
1039 parent->rb.rb_right = NULL;
1042 jffs2_free_node_frag(frag);
1043 frag = parent;
1045 cond_resched();