2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
47 #include <linux/interrupt.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
62 #include <net/protocol.h>
65 #include <net/checksum.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
71 static kmem_cache_t
*skbuff_head_cache
;
74 * Keep out-of-line to prevent kernel bloat.
75 * __builtin_return_address is not used because it is not always
80 * skb_over_panic - private function
85 * Out of line support code for skb_put(). Not user callable.
87 void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
89 printk(KERN_INFO
"skput:over: %p:%d put:%d dev:%s",
90 here
, skb
->len
, sz
, skb
->dev
? skb
->dev
->name
: "<NULL>");
95 * skb_under_panic - private function
100 * Out of line support code for skb_push(). Not user callable.
103 void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
105 printk(KERN_INFO
"skput:under: %p:%d put:%d dev:%s",
106 here
, skb
->len
, sz
, skb
->dev
? skb
->dev
->name
: "<NULL>");
110 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
111 * 'private' fields and also do memory statistics to find all the
117 * alloc_skb - allocate a network buffer
118 * @size: size to allocate
119 * @gfp_mask: allocation mask
121 * Allocate a new &sk_buff. The returned buffer has no headroom and a
122 * tail room of size bytes. The object has a reference count of one.
123 * The return is the buffer. On a failure the return is %NULL.
125 * Buffers may only be allocated from interrupts using a @gfp_mask of
128 struct sk_buff
*alloc_skb(unsigned int size
, int gfp_mask
)
134 skb
= kmem_cache_alloc(skbuff_head_cache
,
135 gfp_mask
& ~__GFP_DMA
);
139 /* Get the DATA. Size must match skb_add_mtu(). */
140 size
= SKB_DATA_ALIGN(size
);
141 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
145 memset(skb
, 0, offsetof(struct sk_buff
, truesize
));
146 skb
->truesize
= size
+ sizeof(struct sk_buff
);
147 atomic_set(&skb
->users
, 1);
151 skb
->end
= data
+ size
;
153 atomic_set(&(skb_shinfo(skb
)->dataref
), 1);
154 skb_shinfo(skb
)->nr_frags
= 0;
155 skb_shinfo(skb
)->tso_size
= 0;
156 skb_shinfo(skb
)->tso_segs
= 0;
157 skb_shinfo(skb
)->frag_list
= NULL
;
161 kmem_cache_free(skbuff_head_cache
, skb
);
167 static void skb_drop_fraglist(struct sk_buff
*skb
)
169 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
171 skb_shinfo(skb
)->frag_list
= NULL
;
174 struct sk_buff
*this = list
;
180 static void skb_clone_fraglist(struct sk_buff
*skb
)
182 struct sk_buff
*list
;
184 for (list
= skb_shinfo(skb
)->frag_list
; list
; list
= list
->next
)
188 void skb_release_data(struct sk_buff
*skb
)
191 atomic_dec_and_test(&(skb_shinfo(skb
)->dataref
))) {
192 if (skb_shinfo(skb
)->nr_frags
) {
194 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
195 put_page(skb_shinfo(skb
)->frags
[i
].page
);
198 if (skb_shinfo(skb
)->frag_list
)
199 skb_drop_fraglist(skb
);
206 * Free an skbuff by memory without cleaning the state.
208 void kfree_skbmem(struct sk_buff
*skb
)
210 skb_release_data(skb
);
211 kmem_cache_free(skbuff_head_cache
, skb
);
215 * __kfree_skb - private function
218 * Free an sk_buff. Release anything attached to the buffer.
219 * Clean the state. This is an internal helper function. Users should
220 * always call kfree_skb
223 void __kfree_skb(struct sk_buff
*skb
)
225 if(!skb
)return; //johnson
227 printk(KERN_WARNING
"Warning: kfree_skb passed an skb still "
228 "on a list (from %p).\n", NET_CALLER(skb
));
232 dst_release(skb
->dst
);
234 secpath_put(skb
->sp
);
236 if(skb
->destructor
) {
238 printk(KERN_WARNING
"Warning: kfree_skb on "
239 "hard IRQ %p\n", NET_CALLER(skb
));
240 skb
->destructor(skb
);
242 #ifdef CONFIG_NETFILTER
243 nf_conntrack_put(skb
->nfct
);
244 #ifdef CONFIG_BRIDGE_NETFILTER
245 nf_bridge_put(skb
->nf_bridge
);
248 /* XXX: IS this still necessary? - JHS */
249 #ifdef CONFIG_NET_SCHED
251 #ifdef CONFIG_NET_CLS_ACT
261 * skb_clone - duplicate an sk_buff
262 * @skb: buffer to clone
263 * @gfp_mask: allocation priority
265 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
266 * copies share the same packet data but not structure. The new
267 * buffer has a reference count of 1. If the allocation fails the
268 * function returns %NULL otherwise the new buffer is returned.
270 * If this function is called from an interrupt gfp_mask() must be
274 struct sk_buff
*skb_clone(struct sk_buff
*skb
, int gfp_mask
)
276 struct sk_buff
*n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
281 #define C(x) n->x = skb->x
283 n
->next
= n
->prev
= NULL
;
296 secpath_get(skb
->sp
);
298 memcpy(n
->cb
, skb
->cb
, sizeof(skb
->cb
));
309 n
->destructor
= NULL
;
310 #ifdef CONFIG_NETFILTER
314 nf_conntrack_get(skb
->nfct
);
316 #ifdef CONFIG_NETFILTER_DEBUG
319 #ifdef CONFIG_BRIDGE_NETFILTER
321 nf_bridge_get(skb
->nf_bridge
);
323 #endif /*CONFIG_NETFILTER*/
324 #if defined(CONFIG_HIPPI)
327 #ifdef CONFIG_NET_SCHED
329 #ifdef CONFIG_NET_CLS_ACT
330 n
->tc_verd
= SET_TC_VERD(skb
->tc_verd
,0);
331 n
->tc_verd
= CLR_TC_OK2MUNGE(skb
->tc_verd
);
332 n
->tc_verd
= CLR_TC_MUNGED(skb
->tc_verd
);
339 atomic_set(&n
->users
, 1);
345 atomic_inc(&(skb_shinfo(skb
)->dataref
));
351 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
354 * Shift between the two data areas in bytes
356 unsigned long offset
= new->data
- old
->data
;
361 new->real_dev
= old
->real_dev
;
362 new->priority
= old
->priority
;
363 new->protocol
= old
->protocol
;
364 new->dst
= dst_clone(old
->dst
);
366 new->sp
= secpath_get(old
->sp
);
368 new->h
.raw
= old
->h
.raw
+ offset
;
369 new->nh
.raw
= old
->nh
.raw
+ offset
;
370 new->mac
.raw
= old
->mac
.raw
+ offset
;
371 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
372 new->local_df
= old
->local_df
;
373 new->pkt_type
= old
->pkt_type
;
374 new->stamp
= old
->stamp
;
375 new->destructor
= NULL
;
376 new->security
= old
->security
;
377 #ifdef CONFIG_NETFILTER
378 new->nfmark
= old
->nfmark
;
379 new->nfcache
= old
->nfcache
;
380 new->nfct
= old
->nfct
;
381 nf_conntrack_get(old
->nfct
);
382 new->nfctinfo
= old
->nfctinfo
;
383 #ifdef CONFIG_NETFILTER_DEBUG
384 new->nf_debug
= old
->nf_debug
;
386 #ifdef CONFIG_BRIDGE_NETFILTER
387 new->nf_bridge
= old
->nf_bridge
;
388 nf_bridge_get(old
->nf_bridge
);
391 #ifdef CONFIG_NET_SCHED
392 #ifdef CONFIG_NET_CLS_ACT
393 new->tc_verd
= old
->tc_verd
;
395 new->tc_index
= old
->tc_index
;
397 atomic_set(&new->users
, 1);
401 * skb_copy - create private copy of an sk_buff
402 * @skb: buffer to copy
403 * @gfp_mask: allocation priority
405 * Make a copy of both an &sk_buff and its data. This is used when the
406 * caller wishes to modify the data and needs a private copy of the
407 * data to alter. Returns %NULL on failure or the pointer to the buffer
408 * on success. The returned buffer has a reference count of 1.
410 * As by-product this function converts non-linear &sk_buff to linear
411 * one, so that &sk_buff becomes completely private and caller is allowed
412 * to modify all the data of returned buffer. This means that this
413 * function is not recommended for use in circumstances when only
414 * header is going to be modified. Use pskb_copy() instead.
417 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, int gfp_mask
)
419 int headerlen
= skb
->data
- skb
->head
;
421 * Allocate the copy buffer
423 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
+ skb
->data_len
,
428 /* Set the data pointer */
429 skb_reserve(n
, headerlen
);
430 /* Set the tail pointer and length */
431 skb_put(n
, skb
->len
);
433 n
->ip_summed
= skb
->ip_summed
;
435 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
438 copy_skb_header(n
, skb
);
444 * pskb_copy - create copy of an sk_buff with private head.
445 * @skb: buffer to copy
446 * @gfp_mask: allocation priority
448 * Make a copy of both an &sk_buff and part of its data, located
449 * in header. Fragmented data remain shared. This is used when
450 * the caller wishes to modify only header of &sk_buff and needs
451 * private copy of the header to alter. Returns %NULL on failure
452 * or the pointer to the buffer on success.
453 * The returned buffer has a reference count of 1.
456 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, int gfp_mask
)
459 * Allocate the copy buffer
461 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
, gfp_mask
);
466 /* Set the data pointer */
467 skb_reserve(n
, skb
->data
- skb
->head
);
468 /* Set the tail pointer and length */
469 skb_put(n
, skb_headlen(skb
));
471 memcpy(n
->data
, skb
->data
, n
->len
);
473 n
->ip_summed
= skb
->ip_summed
;
475 n
->data_len
= skb
->data_len
;
478 if (skb_shinfo(skb
)->nr_frags
) {
481 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
482 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
483 get_page(skb_shinfo(n
)->frags
[i
].page
);
485 skb_shinfo(n
)->nr_frags
= i
;
487 skb_shinfo(n
)->tso_size
= skb_shinfo(skb
)->tso_size
;
488 skb_shinfo(n
)->tso_segs
= skb_shinfo(skb
)->tso_segs
;
490 if (skb_shinfo(skb
)->frag_list
) {
491 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
492 skb_clone_fraglist(n
);
495 copy_skb_header(n
, skb
);
501 * pskb_expand_head - reallocate header of &sk_buff
502 * @skb: buffer to reallocate
503 * @nhead: room to add at head
504 * @ntail: room to add at tail
505 * @gfp_mask: allocation priority
507 * Expands (or creates identical copy, if &nhead and &ntail are zero)
508 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
509 * reference count of 1. Returns zero in the case of success or error,
510 * if expansion failed. In the last case, &sk_buff is not changed.
512 * All the pointers pointing into skb header may change and must be
513 * reloaded after call to this function.
516 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
, int gfp_mask
)
520 int size
= nhead
+ (skb
->end
- skb
->head
) + ntail
;
526 size
= SKB_DATA_ALIGN(size
);
528 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
532 /* Copy only real data... and, alas, header. This should be
533 * optimized for the cases when header is void. */
534 memcpy(data
+ nhead
, skb
->head
, skb
->tail
- skb
->head
);
535 memcpy(data
+ size
, skb
->end
, sizeof(struct skb_shared_info
));
537 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
538 get_page(skb_shinfo(skb
)->frags
[i
].page
);
540 if (skb_shinfo(skb
)->frag_list
)
541 skb_clone_fraglist(skb
);
543 skb_release_data(skb
);
545 off
= (data
+ nhead
) - skb
->head
;
548 skb
->end
= data
+ size
;
555 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
562 /* Make private copy of skb with writable head and some headroom */
564 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
566 struct sk_buff
*skb2
;
567 int delta
= headroom
- skb_headroom(skb
);
570 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
572 skb2
= skb_clone(skb
, GFP_ATOMIC
);
573 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
584 * skb_copy_expand - copy and expand sk_buff
585 * @skb: buffer to copy
586 * @newheadroom: new free bytes at head
587 * @newtailroom: new free bytes at tail
588 * @gfp_mask: allocation priority
590 * Make a copy of both an &sk_buff and its data and while doing so
591 * allocate additional space.
593 * This is used when the caller wishes to modify the data and needs a
594 * private copy of the data to alter as well as more space for new fields.
595 * Returns %NULL on failure or the pointer to the buffer
596 * on success. The returned buffer has a reference count of 1.
598 * You must pass %GFP_ATOMIC as the allocation priority if this function
599 * is called from an interrupt.
601 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
602 * only by netfilter in the cases when checksum is recalculated? --ANK
604 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
605 int newheadroom
, int newtailroom
, int gfp_mask
)
608 * Allocate the copy buffer
610 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
612 int head_copy_len
, head_copy_off
;
617 skb_reserve(n
, newheadroom
);
619 /* Set the tail pointer and length */
620 skb_put(n
, skb
->len
);
622 head_copy_len
= skb_headroom(skb
);
624 if (newheadroom
<= head_copy_len
)
625 head_copy_len
= newheadroom
;
627 head_copy_off
= newheadroom
- head_copy_len
;
629 /* Copy the linear header and data. */
630 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
631 skb
->len
+ head_copy_len
))
634 copy_skb_header(n
, skb
);
635 skb_shinfo(n
)->tso_size
= skb_shinfo(skb
)->tso_size
;
636 skb_shinfo(n
)->tso_segs
= skb_shinfo(skb
)->tso_segs
;
642 * skb_pad - zero pad the tail of an skb
643 * @skb: buffer to pad
646 * Ensure that a buffer is followed by a padding area that is zero
647 * filled. Used by network drivers which may DMA or transfer data
648 * beyond the buffer end onto the wire.
650 * May return NULL in out of memory cases.
653 struct sk_buff
*skb_pad(struct sk_buff
*skb
, int pad
)
655 struct sk_buff
*nskb
;
657 /* If the skbuff is non linear tailroom is always zero.. */
658 if (skb_tailroom(skb
) >= pad
) {
659 memset(skb
->data
+skb
->len
, 0, pad
);
663 nskb
= skb_copy_expand(skb
, skb_headroom(skb
), skb_tailroom(skb
) + pad
, GFP_ATOMIC
);
666 memset(nskb
->data
+nskb
->len
, 0, pad
);
670 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
671 * If realloc==0 and trimming is impossible without change of data,
675 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
, int realloc
)
677 int offset
= skb_headlen(skb
);
678 int nfrags
= skb_shinfo(skb
)->nr_frags
;
681 for (i
= 0; i
< nfrags
; i
++) {
682 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
684 if (skb_cloned(skb
)) {
687 if (pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
691 put_page(skb_shinfo(skb
)->frags
[i
].page
);
692 skb_shinfo(skb
)->nr_frags
--;
694 skb_shinfo(skb
)->frags
[i
].size
= len
- offset
;
701 skb
->data_len
-= skb
->len
- len
;
704 if (len
<= skb_headlen(skb
)) {
707 skb
->tail
= skb
->data
+ len
;
708 if (skb_shinfo(skb
)->frag_list
&& !skb_cloned(skb
))
709 skb_drop_fraglist(skb
);
711 skb
->data_len
-= skb
->len
- len
;
720 * __pskb_pull_tail - advance tail of skb header
721 * @skb: buffer to reallocate
722 * @delta: number of bytes to advance tail
724 * The function makes a sense only on a fragmented &sk_buff,
725 * it expands header moving its tail forward and copying necessary
726 * data from fragmented part.
728 * &sk_buff MUST have reference count of 1.
730 * Returns %NULL (and &sk_buff does not change) if pull failed
731 * or value of new tail of skb in the case of success.
733 * All the pointers pointing into skb header may change and must be
734 * reloaded after call to this function.
737 /* Moves tail of skb head forward, copying data from fragmented part,
738 * when it is necessary.
739 * 1. It may fail due to malloc failure.
740 * 2. It may change skb pointers.
742 * It is pretty complicated. Luckily, it is called only in exceptional cases.
744 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
746 /* If skb has not enough free space at tail, get new one
747 * plus 128 bytes for future expansions. If we have enough
748 * room at tail, reallocate without expansion only if skb is cloned.
750 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
752 if (eat
> 0 || skb_cloned(skb
)) {
753 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
758 if (skb_copy_bits(skb
, skb_headlen(skb
), skb
->tail
, delta
))
761 /* Optimization: no fragments, no reasons to preestimate
762 * size of pulled pages. Superb.
764 if (!skb_shinfo(skb
)->frag_list
)
767 /* Estimate size of pulled pages. */
769 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
770 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
772 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
775 /* If we need update frag list, we are in troubles.
776 * Certainly, it possible to add an offset to skb data,
777 * but taking into account that pulling is expected to
778 * be very rare operation, it is worth to fight against
779 * further bloating skb head and crucify ourselves here instead.
780 * Pure masohism, indeed. 8)8)
783 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
784 struct sk_buff
*clone
= NULL
;
785 struct sk_buff
*insp
= NULL
;
791 if (list
->len
<= eat
) {
792 /* Eaten as whole. */
797 /* Eaten partially. */
799 if (skb_shared(list
)) {
800 /* Sucks! We need to fork list. :-( */
801 clone
= skb_clone(list
, GFP_ATOMIC
);
807 /* This may be pulled without
811 if (!pskb_pull(list
, eat
)) {
820 /* Free pulled out fragments. */
821 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
822 skb_shinfo(skb
)->frag_list
= list
->next
;
825 /* And insert new clone at head. */
828 skb_shinfo(skb
)->frag_list
= clone
;
831 /* Success! Now we may commit changes to skb data. */
836 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
837 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
838 put_page(skb_shinfo(skb
)->frags
[i
].page
);
839 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
841 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
843 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
844 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
850 skb_shinfo(skb
)->nr_frags
= k
;
853 skb
->data_len
-= delta
;
858 /* Copy some data bits from skb to kernel buffer. */
860 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
863 int start
= skb_headlen(skb
);
865 if (offset
> (int)skb
->len
- len
)
869 if ((copy
= start
- offset
) > 0) {
872 memcpy(to
, skb
->data
+ offset
, copy
);
873 if ((len
-= copy
) == 0)
879 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
882 BUG_TRAP(start
<= offset
+ len
);
884 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
885 if ((copy
= end
- offset
) > 0) {
891 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
893 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
894 offset
- start
, copy
);
895 kunmap_skb_frag(vaddr
);
897 if ((len
-= copy
) == 0)
905 if (skb_shinfo(skb
)->frag_list
) {
906 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
908 for (; list
; list
= list
->next
) {
911 BUG_TRAP(start
<= offset
+ len
);
913 end
= start
+ list
->len
;
914 if ((copy
= end
- offset
) > 0) {
917 if (skb_copy_bits(list
, offset
- start
,
920 if ((len
-= copy
) == 0)
935 /* Keep iterating until skb_iter_next returns false. */
936 void skb_iter_first(const struct sk_buff
*skb
, struct skb_iter
*i
)
938 i
->len
= skb_headlen(skb
);
939 i
->data
= (unsigned char *)skb
->data
;
944 int skb_iter_next(const struct sk_buff
*skb
, struct skb_iter
*i
)
946 /* Unmap previous, if not head fragment. */
948 kunmap_skb_frag(i
->data
);
952 /* We're iterating through fraglist. */
953 if (i
->nextfrag
< skb_shinfo(i
->fraglist
)->nr_frags
) {
954 i
->data
= kmap_skb_frag(&skb_shinfo(i
->fraglist
)
955 ->frags
[i
->nextfrag
]);
956 i
->len
= skb_shinfo(i
->fraglist
)->frags
[i
->nextfrag
]
961 /* Fragments with fragments? Too hard! */
962 BUG_ON(skb_shinfo(i
->fraglist
)->frag_list
);
963 i
->fraglist
= i
->fraglist
->next
;
967 i
->len
= skb_headlen(i
->fraglist
);
968 i
->data
= i
->fraglist
->data
;
973 if (i
->nextfrag
< skb_shinfo(skb
)->nr_frags
) {
974 i
->data
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
->nextfrag
]);
975 i
->len
= skb_shinfo(skb
)->frags
[i
->nextfrag
].size
;
980 i
->fraglist
= skb_shinfo(skb
)->frag_list
;
985 /* Bug trap for callers */
990 void skb_iter_abort(const struct sk_buff
*skb
, struct skb_iter
*i
)
992 /* Unmap previous, if not head fragment. */
993 if (i
->data
&& i
->nextfrag
)
994 kunmap_skb_frag(i
->data
);
995 /* Bug trap for callers */
999 /* Checksum skb data. */
1001 unsigned int skb_checksum(const struct sk_buff
*skb
, int offset
,
1002 int len
, unsigned int csum
)
1004 int start
= skb_headlen(skb
);
1005 int i
, copy
= start
- offset
;
1008 /* Checksum header. */
1012 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1013 if ((len
-= copy
) == 0)
1019 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1022 BUG_TRAP(start
<= offset
+ len
);
1024 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1025 if ((copy
= end
- offset
) > 0) {
1028 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1032 vaddr
= kmap_skb_frag(frag
);
1033 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1034 offset
- start
, copy
, 0);
1035 kunmap_skb_frag(vaddr
);
1036 csum
= csum_block_add(csum
, csum2
, pos
);
1045 if (skb_shinfo(skb
)->frag_list
) {
1046 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1048 for (; list
; list
= list
->next
) {
1051 BUG_TRAP(start
<= offset
+ len
);
1053 end
= start
+ list
->len
;
1054 if ((copy
= end
- offset
) > 0) {
1058 csum2
= skb_checksum(list
, offset
- start
,
1060 csum
= csum_block_add(csum
, csum2
, pos
);
1061 if ((len
-= copy
) == 0)
1075 /* Both of above in one bottle. */
1077 unsigned int skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1078 u8
*to
, int len
, unsigned int csum
)
1080 int start
= skb_headlen(skb
);
1081 int i
, copy
= start
- offset
;
1088 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1090 if ((len
-= copy
) == 0)
1097 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1100 BUG_TRAP(start
<= offset
+ len
);
1102 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1103 if ((copy
= end
- offset
) > 0) {
1106 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1110 vaddr
= kmap_skb_frag(frag
);
1111 csum2
= csum_partial_copy_nocheck(vaddr
+
1115 kunmap_skb_frag(vaddr
);
1116 csum
= csum_block_add(csum
, csum2
, pos
);
1126 if (skb_shinfo(skb
)->frag_list
) {
1127 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1129 for (; list
; list
= list
->next
) {
1133 BUG_TRAP(start
<= offset
+ len
);
1135 end
= start
+ list
->len
;
1136 if ((copy
= end
- offset
) > 0) {
1139 csum2
= skb_copy_and_csum_bits(list
,
1142 csum
= csum_block_add(csum
, csum2
, pos
);
1143 if ((len
-= copy
) == 0)
1157 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1162 if (skb
->ip_summed
== CHECKSUM_HW
)
1163 csstart
= skb
->h
.raw
- skb
->data
;
1165 csstart
= skb_headlen(skb
);
1167 if (csstart
> skb_headlen(skb
))
1170 memcpy(to
, skb
->data
, csstart
);
1173 if (csstart
!= skb
->len
)
1174 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1175 skb
->len
- csstart
, 0);
1177 if (skb
->ip_summed
== CHECKSUM_HW
) {
1178 long csstuff
= csstart
+ skb
->csum
;
1180 *((unsigned short *)(to
+ csstuff
)) = csum_fold(csum
);
1185 * skb_dequeue - remove from the head of the queue
1186 * @list: list to dequeue from
1188 * Remove the head of the list. The list lock is taken so the function
1189 * may be used safely with other locking list functions. The head item is
1190 * returned or %NULL if the list is empty.
1193 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1195 unsigned long flags
;
1196 struct sk_buff
*result
;
1198 spin_lock_irqsave(&list
->lock
, flags
);
1199 result
= __skb_dequeue(list
);
1200 spin_unlock_irqrestore(&list
->lock
, flags
);
1205 * skb_dequeue_tail - remove from the tail of the queue
1206 * @list: list to dequeue from
1208 * Remove the tail of the list. The list lock is taken so the function
1209 * may be used safely with other locking list functions. The tail item is
1210 * returned or %NULL if the list is empty.
1212 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1214 unsigned long flags
;
1215 struct sk_buff
*result
;
1217 spin_lock_irqsave(&list
->lock
, flags
);
1218 result
= __skb_dequeue_tail(list
);
1219 spin_unlock_irqrestore(&list
->lock
, flags
);
1224 * skb_queue_purge - empty a list
1225 * @list: list to empty
1227 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1228 * the list and one reference dropped. This function takes the list
1229 * lock and is atomic with respect to other list locking functions.
1231 void skb_queue_purge(struct sk_buff_head
*list
)
1233 struct sk_buff
*skb
;
1234 while ((skb
= skb_dequeue(list
)) != NULL
)
1239 * skb_queue_head - queue a buffer at the list head
1240 * @list: list to use
1241 * @newsk: buffer to queue
1243 * Queue a buffer at the start of the list. This function takes the
1244 * list lock and can be used safely with other locking &sk_buff functions
1247 * A buffer cannot be placed on two lists at the same time.
1249 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1251 unsigned long flags
;
1253 spin_lock_irqsave(&list
->lock
, flags
);
1254 __skb_queue_head(list
, newsk
);
1255 spin_unlock_irqrestore(&list
->lock
, flags
);
1259 * skb_queue_tail - queue a buffer at the list tail
1260 * @list: list to use
1261 * @newsk: buffer to queue
1263 * Queue a buffer at the tail of the list. This function takes the
1264 * list lock and can be used safely with other locking &sk_buff functions
1267 * A buffer cannot be placed on two lists at the same time.
1269 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1271 unsigned long flags
;
1273 spin_lock_irqsave(&list
->lock
, flags
);
1274 __skb_queue_tail(list
, newsk
);
1275 spin_unlock_irqrestore(&list
->lock
, flags
);
1278 * skb_unlink - remove a buffer from a list
1279 * @skb: buffer to remove
1281 * Place a packet after a given packet in a list. The list locks are taken
1282 * and this function is atomic with respect to other list locked calls
1284 * Works even without knowing the list it is sitting on, which can be
1285 * handy at times. It also means that THE LIST MUST EXIST when you
1286 * unlink. Thus a list must have its contents unlinked before it is
1289 void skb_unlink(struct sk_buff
*skb
)
1291 struct sk_buff_head
*list
= skb
->list
;
1294 unsigned long flags
;
1296 spin_lock_irqsave(&list
->lock
, flags
);
1297 if (skb
->list
== list
)
1298 __skb_unlink(skb
, skb
->list
);
1299 spin_unlock_irqrestore(&list
->lock
, flags
);
1305 * skb_append - append a buffer
1306 * @old: buffer to insert after
1307 * @newsk: buffer to insert
1309 * Place a packet after a given packet in a list. The list locks are taken
1310 * and this function is atomic with respect to other list locked calls.
1311 * A buffer cannot be placed on two lists at the same time.
1314 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
)
1316 unsigned long flags
;
1318 spin_lock_irqsave(&old
->list
->lock
, flags
);
1319 __skb_append(old
, newsk
);
1320 spin_unlock_irqrestore(&old
->list
->lock
, flags
);
1325 * skb_insert - insert a buffer
1326 * @old: buffer to insert before
1327 * @newsk: buffer to insert
1329 * Place a packet before a given packet in a list. The list locks are taken
1330 * and this function is atomic with respect to other list locked calls
1331 * A buffer cannot be placed on two lists at the same time.
1334 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
)
1336 unsigned long flags
;
1338 spin_lock_irqsave(&old
->list
->lock
, flags
);
1339 __skb_insert(newsk
, old
->prev
, old
, old
->list
);
1340 spin_unlock_irqrestore(&old
->list
->lock
, flags
);
1345 * Tune the memory allocator for a new MTU size.
1347 void skb_add_mtu(int mtu
)
1349 /* Must match allocation in alloc_skb */
1350 mtu
= SKB_DATA_ALIGN(mtu
) + sizeof(struct skb_shared_info
);
1352 kmem_add_cache_size(mtu
);
1356 static void inline skb_split_inside_header(struct sk_buff
*skb
,
1357 struct sk_buff
* skb1
,
1358 const u32 len
, const int pos
)
1362 memcpy(skb_put(skb1
, pos
- len
), skb
->data
+ len
, pos
- len
);
1364 /* And move data appendix as is. */
1365 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1366 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1368 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
1369 skb_shinfo(skb
)->nr_frags
= 0;
1370 skb1
->data_len
= skb
->data_len
;
1371 skb1
->len
+= skb1
->data_len
;
1374 skb
->tail
= skb
->data
+ len
;
1377 static void inline skb_split_no_header(struct sk_buff
*skb
,
1378 struct sk_buff
* skb1
,
1379 const u32 len
, int pos
)
1382 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
1384 skb_shinfo(skb
)->nr_frags
= 0;
1385 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
1387 skb
->data_len
= len
- pos
;
1389 for (i
= 0; i
< nfrags
; i
++) {
1390 int size
= skb_shinfo(skb
)->frags
[i
].size
;
1392 if (pos
+ size
> len
) {
1393 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1397 * We have to variants in this case:
1398 * 1. Move all the frag to the second
1399 * part, if it is possible. F.e.
1400 * this approach is mandatory for TUX,
1401 * where splitting is expensive.
1402 * 2. Split is accurately. We make this.
1404 get_page(skb_shinfo(skb
)->frags
[i
].page
);
1405 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
1406 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
1407 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
1408 skb_shinfo(skb
)->nr_frags
++;
1412 skb_shinfo(skb
)->nr_frags
++;
1415 skb_shinfo(skb1
)->nr_frags
= k
;
1419 * skb_split - Split fragmented skb to two parts at length len.
1421 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
1423 int pos
= skb_headlen(skb
);
1425 if (len
< pos
) /* Split line is inside header. */
1426 skb_split_inside_header(skb
, skb1
, len
, pos
);
1427 else /* Second chunk has no header, nothing to copy. */
1428 skb_split_no_header(skb
, skb1
, len
, pos
);
1431 void __init
skb_init(void)
1433 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
1434 sizeof(struct sk_buff
),
1438 if (!skbuff_head_cache
)
1439 panic("cannot create skbuff cache");
1442 EXPORT_SYMBOL(___pskb_trim
);
1443 EXPORT_SYMBOL(__kfree_skb
);
1444 EXPORT_SYMBOL(__pskb_pull_tail
);
1445 EXPORT_SYMBOL(alloc_skb
);
1446 EXPORT_SYMBOL(pskb_copy
);
1447 EXPORT_SYMBOL(pskb_expand_head
);
1448 EXPORT_SYMBOL(skb_checksum
);
1449 EXPORT_SYMBOL(skb_clone
);
1450 EXPORT_SYMBOL(skb_clone_fraglist
);
1451 EXPORT_SYMBOL(skb_copy
);
1452 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
1453 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
1454 EXPORT_SYMBOL(skb_copy_bits
);
1455 EXPORT_SYMBOL(skb_copy_expand
);
1456 EXPORT_SYMBOL(skb_over_panic
);
1457 EXPORT_SYMBOL(skb_pad
);
1458 EXPORT_SYMBOL(skb_realloc_headroom
);
1459 EXPORT_SYMBOL(skb_under_panic
);
1460 EXPORT_SYMBOL(skb_dequeue
);
1461 EXPORT_SYMBOL(skb_dequeue_tail
);
1462 EXPORT_SYMBOL(skb_insert
);
1463 EXPORT_SYMBOL(skb_queue_purge
);
1464 EXPORT_SYMBOL(skb_queue_head
);
1465 EXPORT_SYMBOL(skb_queue_tail
);
1466 EXPORT_SYMBOL(skb_unlink
);
1467 EXPORT_SYMBOL(skb_append
);
1468 EXPORT_SYMBOL(skb_split
);
1469 EXPORT_SYMBOL(skb_iter_first
);
1470 EXPORT_SYMBOL(skb_iter_next
);
1471 EXPORT_SYMBOL(skb_iter_abort
);