Linux 4.19-rc7
[linux-2.6/btrfs-unstable.git] / mm / memory.c
blobc467102a5cbc5de5ab2ea4dff740f2611c1124a4
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
81 #include "internal.h"
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
107 * Randomize the address space (stacks, mmaps, brk, etc.).
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
115 #else
117 #endif
119 static int __init disable_randmaps(char *s)
121 randomize_va_space = 0;
122 return 1;
124 __setup("norandmaps", disable_randmaps);
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
129 unsigned long highest_memmap_pfn __read_mostly;
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 static int __init init_zero_pfn(void)
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
139 core_initcall(init_zero_pfn);
142 #if defined(SPLIT_RSS_COUNTING)
144 void sync_mm_rss(struct mm_struct *mm)
146 int i;
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
154 current->rss_stat.events = 0;
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 struct task_struct *task = current;
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH (64)
171 static void check_sync_rss_stat(struct task_struct *task)
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 sync_mm_rss(task->mm);
178 #else /* SPLIT_RSS_COUNTING */
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 static void check_sync_rss_stat(struct task_struct *task)
187 #endif /* SPLIT_RSS_COUNTING */
189 #ifdef HAVE_GENERIC_MMU_GATHER
191 static bool tlb_next_batch(struct mmu_gather *tlb)
193 struct mmu_gather_batch *batch;
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
198 return true;
201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 return false;
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
206 return false;
208 tlb->batch_count++;
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
213 tlb->active->next = batch;
214 tlb->active = batch;
216 return true;
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
222 tlb->mm = mm;
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
226 tlb->need_flush_all = 0;
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
231 tlb->batch_count = 0;
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235 #endif
236 tlb->page_size = 0;
238 __tlb_reset_range(tlb);
241 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
243 struct mmu_gather_batch *batch;
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246 tlb_table_flush(tlb);
247 #endif
248 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
249 free_pages_and_swap_cache(batch->pages, batch->nr);
250 batch->nr = 0;
252 tlb->active = &tlb->local;
255 void tlb_flush_mmu(struct mmu_gather *tlb)
257 tlb_flush_mmu_tlbonly(tlb);
258 tlb_flush_mmu_free(tlb);
261 /* tlb_finish_mmu
262 * Called at the end of the shootdown operation to free up any resources
263 * that were required.
265 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
266 unsigned long start, unsigned long end, bool force)
268 struct mmu_gather_batch *batch, *next;
270 if (force)
271 __tlb_adjust_range(tlb, start, end - start);
273 tlb_flush_mmu(tlb);
275 /* keep the page table cache within bounds */
276 check_pgt_cache();
278 for (batch = tlb->local.next; batch; batch = next) {
279 next = batch->next;
280 free_pages((unsigned long)batch, 0);
282 tlb->local.next = NULL;
285 /* __tlb_remove_page
286 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287 * handling the additional races in SMP caused by other CPUs caching valid
288 * mappings in their TLBs. Returns the number of free page slots left.
289 * When out of page slots we must call tlb_flush_mmu().
290 *returns true if the caller should flush.
292 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
294 struct mmu_gather_batch *batch;
296 VM_BUG_ON(!tlb->end);
297 VM_WARN_ON(tlb->page_size != page_size);
299 batch = tlb->active;
301 * Add the page and check if we are full. If so
302 * force a flush.
304 batch->pages[batch->nr++] = page;
305 if (batch->nr == batch->max) {
306 if (!tlb_next_batch(tlb))
307 return true;
308 batch = tlb->active;
310 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
312 return false;
315 #endif /* HAVE_GENERIC_MMU_GATHER */
317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
320 * See the comment near struct mmu_table_batch.
324 * If we want tlb_remove_table() to imply TLB invalidates.
326 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
328 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
330 * Invalidate page-table caches used by hardware walkers. Then we still
331 * need to RCU-sched wait while freeing the pages because software
332 * walkers can still be in-flight.
334 tlb_flush_mmu_tlbonly(tlb);
335 #endif
338 static void tlb_remove_table_smp_sync(void *arg)
340 /* Simply deliver the interrupt */
343 static void tlb_remove_table_one(void *table)
346 * This isn't an RCU grace period and hence the page-tables cannot be
347 * assumed to be actually RCU-freed.
349 * It is however sufficient for software page-table walkers that rely on
350 * IRQ disabling. See the comment near struct mmu_table_batch.
352 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
353 __tlb_remove_table(table);
356 static void tlb_remove_table_rcu(struct rcu_head *head)
358 struct mmu_table_batch *batch;
359 int i;
361 batch = container_of(head, struct mmu_table_batch, rcu);
363 for (i = 0; i < batch->nr; i++)
364 __tlb_remove_table(batch->tables[i]);
366 free_page((unsigned long)batch);
369 void tlb_table_flush(struct mmu_gather *tlb)
371 struct mmu_table_batch **batch = &tlb->batch;
373 if (*batch) {
374 tlb_table_invalidate(tlb);
375 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
376 *batch = NULL;
380 void tlb_remove_table(struct mmu_gather *tlb, void *table)
382 struct mmu_table_batch **batch = &tlb->batch;
384 if (*batch == NULL) {
385 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
386 if (*batch == NULL) {
387 tlb_table_invalidate(tlb);
388 tlb_remove_table_one(table);
389 return;
391 (*batch)->nr = 0;
394 (*batch)->tables[(*batch)->nr++] = table;
395 if ((*batch)->nr == MAX_TABLE_BATCH)
396 tlb_table_flush(tlb);
399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
402 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
403 * @tlb: the mmu_gather structure to initialize
404 * @mm: the mm_struct of the target address space
405 * @start: start of the region that will be removed from the page-table
406 * @end: end of the region that will be removed from the page-table
408 * Called to initialize an (on-stack) mmu_gather structure for page-table
409 * tear-down from @mm. The @start and @end are set to 0 and -1
410 * respectively when @mm is without users and we're going to destroy
411 * the full address space (exit/execve).
413 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
414 unsigned long start, unsigned long end)
416 arch_tlb_gather_mmu(tlb, mm, start, end);
417 inc_tlb_flush_pending(tlb->mm);
420 void tlb_finish_mmu(struct mmu_gather *tlb,
421 unsigned long start, unsigned long end)
424 * If there are parallel threads are doing PTE changes on same range
425 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
426 * flush by batching, a thread has stable TLB entry can fail to flush
427 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
428 * forcefully if we detect parallel PTE batching threads.
430 bool force = mm_tlb_flush_nested(tlb->mm);
432 arch_tlb_finish_mmu(tlb, start, end, force);
433 dec_tlb_flush_pending(tlb->mm);
437 * Note: this doesn't free the actual pages themselves. That
438 * has been handled earlier when unmapping all the memory regions.
440 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
441 unsigned long addr)
443 pgtable_t token = pmd_pgtable(*pmd);
444 pmd_clear(pmd);
445 pte_free_tlb(tlb, token, addr);
446 mm_dec_nr_ptes(tlb->mm);
449 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
450 unsigned long addr, unsigned long end,
451 unsigned long floor, unsigned long ceiling)
453 pmd_t *pmd;
454 unsigned long next;
455 unsigned long start;
457 start = addr;
458 pmd = pmd_offset(pud, addr);
459 do {
460 next = pmd_addr_end(addr, end);
461 if (pmd_none_or_clear_bad(pmd))
462 continue;
463 free_pte_range(tlb, pmd, addr);
464 } while (pmd++, addr = next, addr != end);
466 start &= PUD_MASK;
467 if (start < floor)
468 return;
469 if (ceiling) {
470 ceiling &= PUD_MASK;
471 if (!ceiling)
472 return;
474 if (end - 1 > ceiling - 1)
475 return;
477 pmd = pmd_offset(pud, start);
478 pud_clear(pud);
479 pmd_free_tlb(tlb, pmd, start);
480 mm_dec_nr_pmds(tlb->mm);
483 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
484 unsigned long addr, unsigned long end,
485 unsigned long floor, unsigned long ceiling)
487 pud_t *pud;
488 unsigned long next;
489 unsigned long start;
491 start = addr;
492 pud = pud_offset(p4d, addr);
493 do {
494 next = pud_addr_end(addr, end);
495 if (pud_none_or_clear_bad(pud))
496 continue;
497 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
498 } while (pud++, addr = next, addr != end);
500 start &= P4D_MASK;
501 if (start < floor)
502 return;
503 if (ceiling) {
504 ceiling &= P4D_MASK;
505 if (!ceiling)
506 return;
508 if (end - 1 > ceiling - 1)
509 return;
511 pud = pud_offset(p4d, start);
512 p4d_clear(p4d);
513 pud_free_tlb(tlb, pud, start);
514 mm_dec_nr_puds(tlb->mm);
517 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
518 unsigned long addr, unsigned long end,
519 unsigned long floor, unsigned long ceiling)
521 p4d_t *p4d;
522 unsigned long next;
523 unsigned long start;
525 start = addr;
526 p4d = p4d_offset(pgd, addr);
527 do {
528 next = p4d_addr_end(addr, end);
529 if (p4d_none_or_clear_bad(p4d))
530 continue;
531 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
532 } while (p4d++, addr = next, addr != end);
534 start &= PGDIR_MASK;
535 if (start < floor)
536 return;
537 if (ceiling) {
538 ceiling &= PGDIR_MASK;
539 if (!ceiling)
540 return;
542 if (end - 1 > ceiling - 1)
543 return;
545 p4d = p4d_offset(pgd, start);
546 pgd_clear(pgd);
547 p4d_free_tlb(tlb, p4d, start);
551 * This function frees user-level page tables of a process.
553 void free_pgd_range(struct mmu_gather *tlb,
554 unsigned long addr, unsigned long end,
555 unsigned long floor, unsigned long ceiling)
557 pgd_t *pgd;
558 unsigned long next;
561 * The next few lines have given us lots of grief...
563 * Why are we testing PMD* at this top level? Because often
564 * there will be no work to do at all, and we'd prefer not to
565 * go all the way down to the bottom just to discover that.
567 * Why all these "- 1"s? Because 0 represents both the bottom
568 * of the address space and the top of it (using -1 for the
569 * top wouldn't help much: the masks would do the wrong thing).
570 * The rule is that addr 0 and floor 0 refer to the bottom of
571 * the address space, but end 0 and ceiling 0 refer to the top
572 * Comparisons need to use "end - 1" and "ceiling - 1" (though
573 * that end 0 case should be mythical).
575 * Wherever addr is brought up or ceiling brought down, we must
576 * be careful to reject "the opposite 0" before it confuses the
577 * subsequent tests. But what about where end is brought down
578 * by PMD_SIZE below? no, end can't go down to 0 there.
580 * Whereas we round start (addr) and ceiling down, by different
581 * masks at different levels, in order to test whether a table
582 * now has no other vmas using it, so can be freed, we don't
583 * bother to round floor or end up - the tests don't need that.
586 addr &= PMD_MASK;
587 if (addr < floor) {
588 addr += PMD_SIZE;
589 if (!addr)
590 return;
592 if (ceiling) {
593 ceiling &= PMD_MASK;
594 if (!ceiling)
595 return;
597 if (end - 1 > ceiling - 1)
598 end -= PMD_SIZE;
599 if (addr > end - 1)
600 return;
602 * We add page table cache pages with PAGE_SIZE,
603 * (see pte_free_tlb()), flush the tlb if we need
605 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
606 pgd = pgd_offset(tlb->mm, addr);
607 do {
608 next = pgd_addr_end(addr, end);
609 if (pgd_none_or_clear_bad(pgd))
610 continue;
611 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
612 } while (pgd++, addr = next, addr != end);
615 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
616 unsigned long floor, unsigned long ceiling)
618 while (vma) {
619 struct vm_area_struct *next = vma->vm_next;
620 unsigned long addr = vma->vm_start;
623 * Hide vma from rmap and truncate_pagecache before freeing
624 * pgtables
626 unlink_anon_vmas(vma);
627 unlink_file_vma(vma);
629 if (is_vm_hugetlb_page(vma)) {
630 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
631 floor, next ? next->vm_start : ceiling);
632 } else {
634 * Optimization: gather nearby vmas into one call down
636 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
637 && !is_vm_hugetlb_page(next)) {
638 vma = next;
639 next = vma->vm_next;
640 unlink_anon_vmas(vma);
641 unlink_file_vma(vma);
643 free_pgd_range(tlb, addr, vma->vm_end,
644 floor, next ? next->vm_start : ceiling);
646 vma = next;
650 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
652 spinlock_t *ptl;
653 pgtable_t new = pte_alloc_one(mm, address);
654 if (!new)
655 return -ENOMEM;
658 * Ensure all pte setup (eg. pte page lock and page clearing) are
659 * visible before the pte is made visible to other CPUs by being
660 * put into page tables.
662 * The other side of the story is the pointer chasing in the page
663 * table walking code (when walking the page table without locking;
664 * ie. most of the time). Fortunately, these data accesses consist
665 * of a chain of data-dependent loads, meaning most CPUs (alpha
666 * being the notable exception) will already guarantee loads are
667 * seen in-order. See the alpha page table accessors for the
668 * smp_read_barrier_depends() barriers in page table walking code.
670 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
672 ptl = pmd_lock(mm, pmd);
673 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
674 mm_inc_nr_ptes(mm);
675 pmd_populate(mm, pmd, new);
676 new = NULL;
678 spin_unlock(ptl);
679 if (new)
680 pte_free(mm, new);
681 return 0;
684 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
686 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
687 if (!new)
688 return -ENOMEM;
690 smp_wmb(); /* See comment in __pte_alloc */
692 spin_lock(&init_mm.page_table_lock);
693 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
694 pmd_populate_kernel(&init_mm, pmd, new);
695 new = NULL;
697 spin_unlock(&init_mm.page_table_lock);
698 if (new)
699 pte_free_kernel(&init_mm, new);
700 return 0;
703 static inline void init_rss_vec(int *rss)
705 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
708 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
710 int i;
712 if (current->mm == mm)
713 sync_mm_rss(mm);
714 for (i = 0; i < NR_MM_COUNTERS; i++)
715 if (rss[i])
716 add_mm_counter(mm, i, rss[i]);
720 * This function is called to print an error when a bad pte
721 * is found. For example, we might have a PFN-mapped pte in
722 * a region that doesn't allow it.
724 * The calling function must still handle the error.
726 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
727 pte_t pte, struct page *page)
729 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
730 p4d_t *p4d = p4d_offset(pgd, addr);
731 pud_t *pud = pud_offset(p4d, addr);
732 pmd_t *pmd = pmd_offset(pud, addr);
733 struct address_space *mapping;
734 pgoff_t index;
735 static unsigned long resume;
736 static unsigned long nr_shown;
737 static unsigned long nr_unshown;
740 * Allow a burst of 60 reports, then keep quiet for that minute;
741 * or allow a steady drip of one report per second.
743 if (nr_shown == 60) {
744 if (time_before(jiffies, resume)) {
745 nr_unshown++;
746 return;
748 if (nr_unshown) {
749 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
750 nr_unshown);
751 nr_unshown = 0;
753 nr_shown = 0;
755 if (nr_shown++ == 0)
756 resume = jiffies + 60 * HZ;
758 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
759 index = linear_page_index(vma, addr);
761 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
762 current->comm,
763 (long long)pte_val(pte), (long long)pmd_val(*pmd));
764 if (page)
765 dump_page(page, "bad pte");
766 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
767 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
768 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
769 vma->vm_file,
770 vma->vm_ops ? vma->vm_ops->fault : NULL,
771 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
772 mapping ? mapping->a_ops->readpage : NULL);
773 dump_stack();
774 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
778 * vm_normal_page -- This function gets the "struct page" associated with a pte.
780 * "Special" mappings do not wish to be associated with a "struct page" (either
781 * it doesn't exist, or it exists but they don't want to touch it). In this
782 * case, NULL is returned here. "Normal" mappings do have a struct page.
784 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
785 * pte bit, in which case this function is trivial. Secondly, an architecture
786 * may not have a spare pte bit, which requires a more complicated scheme,
787 * described below.
789 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
790 * special mapping (even if there are underlying and valid "struct pages").
791 * COWed pages of a VM_PFNMAP are always normal.
793 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
794 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
795 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
796 * mapping will always honor the rule
798 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
800 * And for normal mappings this is false.
802 * This restricts such mappings to be a linear translation from virtual address
803 * to pfn. To get around this restriction, we allow arbitrary mappings so long
804 * as the vma is not a COW mapping; in that case, we know that all ptes are
805 * special (because none can have been COWed).
808 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
810 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
811 * page" backing, however the difference is that _all_ pages with a struct
812 * page (that is, those where pfn_valid is true) are refcounted and considered
813 * normal pages by the VM. The disadvantage is that pages are refcounted
814 * (which can be slower and simply not an option for some PFNMAP users). The
815 * advantage is that we don't have to follow the strict linearity rule of
816 * PFNMAP mappings in order to support COWable mappings.
819 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
820 pte_t pte, bool with_public_device)
822 unsigned long pfn = pte_pfn(pte);
824 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
825 if (likely(!pte_special(pte)))
826 goto check_pfn;
827 if (vma->vm_ops && vma->vm_ops->find_special_page)
828 return vma->vm_ops->find_special_page(vma, addr);
829 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
830 return NULL;
831 if (is_zero_pfn(pfn))
832 return NULL;
835 * Device public pages are special pages (they are ZONE_DEVICE
836 * pages but different from persistent memory). They behave
837 * allmost like normal pages. The difference is that they are
838 * not on the lru and thus should never be involve with any-
839 * thing that involve lru manipulation (mlock, numa balancing,
840 * ...).
842 * This is why we still want to return NULL for such page from
843 * vm_normal_page() so that we do not have to special case all
844 * call site of vm_normal_page().
846 if (likely(pfn <= highest_memmap_pfn)) {
847 struct page *page = pfn_to_page(pfn);
849 if (is_device_public_page(page)) {
850 if (with_public_device)
851 return page;
852 return NULL;
856 if (pte_devmap(pte))
857 return NULL;
859 print_bad_pte(vma, addr, pte, NULL);
860 return NULL;
863 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
865 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
866 if (vma->vm_flags & VM_MIXEDMAP) {
867 if (!pfn_valid(pfn))
868 return NULL;
869 goto out;
870 } else {
871 unsigned long off;
872 off = (addr - vma->vm_start) >> PAGE_SHIFT;
873 if (pfn == vma->vm_pgoff + off)
874 return NULL;
875 if (!is_cow_mapping(vma->vm_flags))
876 return NULL;
880 if (is_zero_pfn(pfn))
881 return NULL;
883 check_pfn:
884 if (unlikely(pfn > highest_memmap_pfn)) {
885 print_bad_pte(vma, addr, pte, NULL);
886 return NULL;
890 * NOTE! We still have PageReserved() pages in the page tables.
891 * eg. VDSO mappings can cause them to exist.
893 out:
894 return pfn_to_page(pfn);
897 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
898 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
899 pmd_t pmd)
901 unsigned long pfn = pmd_pfn(pmd);
904 * There is no pmd_special() but there may be special pmds, e.g.
905 * in a direct-access (dax) mapping, so let's just replicate the
906 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
908 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
909 if (vma->vm_flags & VM_MIXEDMAP) {
910 if (!pfn_valid(pfn))
911 return NULL;
912 goto out;
913 } else {
914 unsigned long off;
915 off = (addr - vma->vm_start) >> PAGE_SHIFT;
916 if (pfn == vma->vm_pgoff + off)
917 return NULL;
918 if (!is_cow_mapping(vma->vm_flags))
919 return NULL;
923 if (pmd_devmap(pmd))
924 return NULL;
925 if (is_zero_pfn(pfn))
926 return NULL;
927 if (unlikely(pfn > highest_memmap_pfn))
928 return NULL;
931 * NOTE! We still have PageReserved() pages in the page tables.
932 * eg. VDSO mappings can cause them to exist.
934 out:
935 return pfn_to_page(pfn);
937 #endif
940 * copy one vm_area from one task to the other. Assumes the page tables
941 * already present in the new task to be cleared in the whole range
942 * covered by this vma.
945 static inline unsigned long
946 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
947 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
948 unsigned long addr, int *rss)
950 unsigned long vm_flags = vma->vm_flags;
951 pte_t pte = *src_pte;
952 struct page *page;
954 /* pte contains position in swap or file, so copy. */
955 if (unlikely(!pte_present(pte))) {
956 swp_entry_t entry = pte_to_swp_entry(pte);
958 if (likely(!non_swap_entry(entry))) {
959 if (swap_duplicate(entry) < 0)
960 return entry.val;
962 /* make sure dst_mm is on swapoff's mmlist. */
963 if (unlikely(list_empty(&dst_mm->mmlist))) {
964 spin_lock(&mmlist_lock);
965 if (list_empty(&dst_mm->mmlist))
966 list_add(&dst_mm->mmlist,
967 &src_mm->mmlist);
968 spin_unlock(&mmlist_lock);
970 rss[MM_SWAPENTS]++;
971 } else if (is_migration_entry(entry)) {
972 page = migration_entry_to_page(entry);
974 rss[mm_counter(page)]++;
976 if (is_write_migration_entry(entry) &&
977 is_cow_mapping(vm_flags)) {
979 * COW mappings require pages in both
980 * parent and child to be set to read.
982 make_migration_entry_read(&entry);
983 pte = swp_entry_to_pte(entry);
984 if (pte_swp_soft_dirty(*src_pte))
985 pte = pte_swp_mksoft_dirty(pte);
986 set_pte_at(src_mm, addr, src_pte, pte);
988 } else if (is_device_private_entry(entry)) {
989 page = device_private_entry_to_page(entry);
992 * Update rss count even for unaddressable pages, as
993 * they should treated just like normal pages in this
994 * respect.
996 * We will likely want to have some new rss counters
997 * for unaddressable pages, at some point. But for now
998 * keep things as they are.
1000 get_page(page);
1001 rss[mm_counter(page)]++;
1002 page_dup_rmap(page, false);
1005 * We do not preserve soft-dirty information, because so
1006 * far, checkpoint/restore is the only feature that
1007 * requires that. And checkpoint/restore does not work
1008 * when a device driver is involved (you cannot easily
1009 * save and restore device driver state).
1011 if (is_write_device_private_entry(entry) &&
1012 is_cow_mapping(vm_flags)) {
1013 make_device_private_entry_read(&entry);
1014 pte = swp_entry_to_pte(entry);
1015 set_pte_at(src_mm, addr, src_pte, pte);
1018 goto out_set_pte;
1022 * If it's a COW mapping, write protect it both
1023 * in the parent and the child
1025 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1026 ptep_set_wrprotect(src_mm, addr, src_pte);
1027 pte = pte_wrprotect(pte);
1031 * If it's a shared mapping, mark it clean in
1032 * the child
1034 if (vm_flags & VM_SHARED)
1035 pte = pte_mkclean(pte);
1036 pte = pte_mkold(pte);
1038 page = vm_normal_page(vma, addr, pte);
1039 if (page) {
1040 get_page(page);
1041 page_dup_rmap(page, false);
1042 rss[mm_counter(page)]++;
1043 } else if (pte_devmap(pte)) {
1044 page = pte_page(pte);
1047 * Cache coherent device memory behave like regular page and
1048 * not like persistent memory page. For more informations see
1049 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1051 if (is_device_public_page(page)) {
1052 get_page(page);
1053 page_dup_rmap(page, false);
1054 rss[mm_counter(page)]++;
1058 out_set_pte:
1059 set_pte_at(dst_mm, addr, dst_pte, pte);
1060 return 0;
1063 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1064 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1065 unsigned long addr, unsigned long end)
1067 pte_t *orig_src_pte, *orig_dst_pte;
1068 pte_t *src_pte, *dst_pte;
1069 spinlock_t *src_ptl, *dst_ptl;
1070 int progress = 0;
1071 int rss[NR_MM_COUNTERS];
1072 swp_entry_t entry = (swp_entry_t){0};
1074 again:
1075 init_rss_vec(rss);
1077 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1078 if (!dst_pte)
1079 return -ENOMEM;
1080 src_pte = pte_offset_map(src_pmd, addr);
1081 src_ptl = pte_lockptr(src_mm, src_pmd);
1082 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1083 orig_src_pte = src_pte;
1084 orig_dst_pte = dst_pte;
1085 arch_enter_lazy_mmu_mode();
1087 do {
1089 * We are holding two locks at this point - either of them
1090 * could generate latencies in another task on another CPU.
1092 if (progress >= 32) {
1093 progress = 0;
1094 if (need_resched() ||
1095 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1096 break;
1098 if (pte_none(*src_pte)) {
1099 progress++;
1100 continue;
1102 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1103 vma, addr, rss);
1104 if (entry.val)
1105 break;
1106 progress += 8;
1107 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1109 arch_leave_lazy_mmu_mode();
1110 spin_unlock(src_ptl);
1111 pte_unmap(orig_src_pte);
1112 add_mm_rss_vec(dst_mm, rss);
1113 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1114 cond_resched();
1116 if (entry.val) {
1117 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1118 return -ENOMEM;
1119 progress = 0;
1121 if (addr != end)
1122 goto again;
1123 return 0;
1126 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1127 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1128 unsigned long addr, unsigned long end)
1130 pmd_t *src_pmd, *dst_pmd;
1131 unsigned long next;
1133 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1134 if (!dst_pmd)
1135 return -ENOMEM;
1136 src_pmd = pmd_offset(src_pud, addr);
1137 do {
1138 next = pmd_addr_end(addr, end);
1139 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1140 || pmd_devmap(*src_pmd)) {
1141 int err;
1142 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1143 err = copy_huge_pmd(dst_mm, src_mm,
1144 dst_pmd, src_pmd, addr, vma);
1145 if (err == -ENOMEM)
1146 return -ENOMEM;
1147 if (!err)
1148 continue;
1149 /* fall through */
1151 if (pmd_none_or_clear_bad(src_pmd))
1152 continue;
1153 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1154 vma, addr, next))
1155 return -ENOMEM;
1156 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1157 return 0;
1160 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1161 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1162 unsigned long addr, unsigned long end)
1164 pud_t *src_pud, *dst_pud;
1165 unsigned long next;
1167 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1168 if (!dst_pud)
1169 return -ENOMEM;
1170 src_pud = pud_offset(src_p4d, addr);
1171 do {
1172 next = pud_addr_end(addr, end);
1173 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1174 int err;
1176 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1177 err = copy_huge_pud(dst_mm, src_mm,
1178 dst_pud, src_pud, addr, vma);
1179 if (err == -ENOMEM)
1180 return -ENOMEM;
1181 if (!err)
1182 continue;
1183 /* fall through */
1185 if (pud_none_or_clear_bad(src_pud))
1186 continue;
1187 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1188 vma, addr, next))
1189 return -ENOMEM;
1190 } while (dst_pud++, src_pud++, addr = next, addr != end);
1191 return 0;
1194 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1195 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1196 unsigned long addr, unsigned long end)
1198 p4d_t *src_p4d, *dst_p4d;
1199 unsigned long next;
1201 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1202 if (!dst_p4d)
1203 return -ENOMEM;
1204 src_p4d = p4d_offset(src_pgd, addr);
1205 do {
1206 next = p4d_addr_end(addr, end);
1207 if (p4d_none_or_clear_bad(src_p4d))
1208 continue;
1209 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1210 vma, addr, next))
1211 return -ENOMEM;
1212 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1213 return 0;
1216 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1217 struct vm_area_struct *vma)
1219 pgd_t *src_pgd, *dst_pgd;
1220 unsigned long next;
1221 unsigned long addr = vma->vm_start;
1222 unsigned long end = vma->vm_end;
1223 unsigned long mmun_start; /* For mmu_notifiers */
1224 unsigned long mmun_end; /* For mmu_notifiers */
1225 bool is_cow;
1226 int ret;
1229 * Don't copy ptes where a page fault will fill them correctly.
1230 * Fork becomes much lighter when there are big shared or private
1231 * readonly mappings. The tradeoff is that copy_page_range is more
1232 * efficient than faulting.
1234 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1235 !vma->anon_vma)
1236 return 0;
1238 if (is_vm_hugetlb_page(vma))
1239 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1241 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1243 * We do not free on error cases below as remove_vma
1244 * gets called on error from higher level routine
1246 ret = track_pfn_copy(vma);
1247 if (ret)
1248 return ret;
1252 * We need to invalidate the secondary MMU mappings only when
1253 * there could be a permission downgrade on the ptes of the
1254 * parent mm. And a permission downgrade will only happen if
1255 * is_cow_mapping() returns true.
1257 is_cow = is_cow_mapping(vma->vm_flags);
1258 mmun_start = addr;
1259 mmun_end = end;
1260 if (is_cow)
1261 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1262 mmun_end);
1264 ret = 0;
1265 dst_pgd = pgd_offset(dst_mm, addr);
1266 src_pgd = pgd_offset(src_mm, addr);
1267 do {
1268 next = pgd_addr_end(addr, end);
1269 if (pgd_none_or_clear_bad(src_pgd))
1270 continue;
1271 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1272 vma, addr, next))) {
1273 ret = -ENOMEM;
1274 break;
1276 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1278 if (is_cow)
1279 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1280 return ret;
1283 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1284 struct vm_area_struct *vma, pmd_t *pmd,
1285 unsigned long addr, unsigned long end,
1286 struct zap_details *details)
1288 struct mm_struct *mm = tlb->mm;
1289 int force_flush = 0;
1290 int rss[NR_MM_COUNTERS];
1291 spinlock_t *ptl;
1292 pte_t *start_pte;
1293 pte_t *pte;
1294 swp_entry_t entry;
1296 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1297 again:
1298 init_rss_vec(rss);
1299 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1300 pte = start_pte;
1301 flush_tlb_batched_pending(mm);
1302 arch_enter_lazy_mmu_mode();
1303 do {
1304 pte_t ptent = *pte;
1305 if (pte_none(ptent))
1306 continue;
1308 if (pte_present(ptent)) {
1309 struct page *page;
1311 page = _vm_normal_page(vma, addr, ptent, true);
1312 if (unlikely(details) && page) {
1314 * unmap_shared_mapping_pages() wants to
1315 * invalidate cache without truncating:
1316 * unmap shared but keep private pages.
1318 if (details->check_mapping &&
1319 details->check_mapping != page_rmapping(page))
1320 continue;
1322 ptent = ptep_get_and_clear_full(mm, addr, pte,
1323 tlb->fullmm);
1324 tlb_remove_tlb_entry(tlb, pte, addr);
1325 if (unlikely(!page))
1326 continue;
1328 if (!PageAnon(page)) {
1329 if (pte_dirty(ptent)) {
1330 force_flush = 1;
1331 set_page_dirty(page);
1333 if (pte_young(ptent) &&
1334 likely(!(vma->vm_flags & VM_SEQ_READ)))
1335 mark_page_accessed(page);
1337 rss[mm_counter(page)]--;
1338 page_remove_rmap(page, false);
1339 if (unlikely(page_mapcount(page) < 0))
1340 print_bad_pte(vma, addr, ptent, page);
1341 if (unlikely(__tlb_remove_page(tlb, page))) {
1342 force_flush = 1;
1343 addr += PAGE_SIZE;
1344 break;
1346 continue;
1349 entry = pte_to_swp_entry(ptent);
1350 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1351 struct page *page = device_private_entry_to_page(entry);
1353 if (unlikely(details && details->check_mapping)) {
1355 * unmap_shared_mapping_pages() wants to
1356 * invalidate cache without truncating:
1357 * unmap shared but keep private pages.
1359 if (details->check_mapping !=
1360 page_rmapping(page))
1361 continue;
1364 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1365 rss[mm_counter(page)]--;
1366 page_remove_rmap(page, false);
1367 put_page(page);
1368 continue;
1371 /* If details->check_mapping, we leave swap entries. */
1372 if (unlikely(details))
1373 continue;
1375 entry = pte_to_swp_entry(ptent);
1376 if (!non_swap_entry(entry))
1377 rss[MM_SWAPENTS]--;
1378 else if (is_migration_entry(entry)) {
1379 struct page *page;
1381 page = migration_entry_to_page(entry);
1382 rss[mm_counter(page)]--;
1384 if (unlikely(!free_swap_and_cache(entry)))
1385 print_bad_pte(vma, addr, ptent, NULL);
1386 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1387 } while (pte++, addr += PAGE_SIZE, addr != end);
1389 add_mm_rss_vec(mm, rss);
1390 arch_leave_lazy_mmu_mode();
1392 /* Do the actual TLB flush before dropping ptl */
1393 if (force_flush)
1394 tlb_flush_mmu_tlbonly(tlb);
1395 pte_unmap_unlock(start_pte, ptl);
1398 * If we forced a TLB flush (either due to running out of
1399 * batch buffers or because we needed to flush dirty TLB
1400 * entries before releasing the ptl), free the batched
1401 * memory too. Restart if we didn't do everything.
1403 if (force_flush) {
1404 force_flush = 0;
1405 tlb_flush_mmu_free(tlb);
1406 if (addr != end)
1407 goto again;
1410 return addr;
1413 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1414 struct vm_area_struct *vma, pud_t *pud,
1415 unsigned long addr, unsigned long end,
1416 struct zap_details *details)
1418 pmd_t *pmd;
1419 unsigned long next;
1421 pmd = pmd_offset(pud, addr);
1422 do {
1423 next = pmd_addr_end(addr, end);
1424 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1425 if (next - addr != HPAGE_PMD_SIZE)
1426 __split_huge_pmd(vma, pmd, addr, false, NULL);
1427 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1428 goto next;
1429 /* fall through */
1432 * Here there can be other concurrent MADV_DONTNEED or
1433 * trans huge page faults running, and if the pmd is
1434 * none or trans huge it can change under us. This is
1435 * because MADV_DONTNEED holds the mmap_sem in read
1436 * mode.
1438 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1439 goto next;
1440 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1441 next:
1442 cond_resched();
1443 } while (pmd++, addr = next, addr != end);
1445 return addr;
1448 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1449 struct vm_area_struct *vma, p4d_t *p4d,
1450 unsigned long addr, unsigned long end,
1451 struct zap_details *details)
1453 pud_t *pud;
1454 unsigned long next;
1456 pud = pud_offset(p4d, addr);
1457 do {
1458 next = pud_addr_end(addr, end);
1459 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1460 if (next - addr != HPAGE_PUD_SIZE) {
1461 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1462 split_huge_pud(vma, pud, addr);
1463 } else if (zap_huge_pud(tlb, vma, pud, addr))
1464 goto next;
1465 /* fall through */
1467 if (pud_none_or_clear_bad(pud))
1468 continue;
1469 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1470 next:
1471 cond_resched();
1472 } while (pud++, addr = next, addr != end);
1474 return addr;
1477 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1478 struct vm_area_struct *vma, pgd_t *pgd,
1479 unsigned long addr, unsigned long end,
1480 struct zap_details *details)
1482 p4d_t *p4d;
1483 unsigned long next;
1485 p4d = p4d_offset(pgd, addr);
1486 do {
1487 next = p4d_addr_end(addr, end);
1488 if (p4d_none_or_clear_bad(p4d))
1489 continue;
1490 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1491 } while (p4d++, addr = next, addr != end);
1493 return addr;
1496 void unmap_page_range(struct mmu_gather *tlb,
1497 struct vm_area_struct *vma,
1498 unsigned long addr, unsigned long end,
1499 struct zap_details *details)
1501 pgd_t *pgd;
1502 unsigned long next;
1504 BUG_ON(addr >= end);
1505 tlb_start_vma(tlb, vma);
1506 pgd = pgd_offset(vma->vm_mm, addr);
1507 do {
1508 next = pgd_addr_end(addr, end);
1509 if (pgd_none_or_clear_bad(pgd))
1510 continue;
1511 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1512 } while (pgd++, addr = next, addr != end);
1513 tlb_end_vma(tlb, vma);
1517 static void unmap_single_vma(struct mmu_gather *tlb,
1518 struct vm_area_struct *vma, unsigned long start_addr,
1519 unsigned long end_addr,
1520 struct zap_details *details)
1522 unsigned long start = max(vma->vm_start, start_addr);
1523 unsigned long end;
1525 if (start >= vma->vm_end)
1526 return;
1527 end = min(vma->vm_end, end_addr);
1528 if (end <= vma->vm_start)
1529 return;
1531 if (vma->vm_file)
1532 uprobe_munmap(vma, start, end);
1534 if (unlikely(vma->vm_flags & VM_PFNMAP))
1535 untrack_pfn(vma, 0, 0);
1537 if (start != end) {
1538 if (unlikely(is_vm_hugetlb_page(vma))) {
1540 * It is undesirable to test vma->vm_file as it
1541 * should be non-null for valid hugetlb area.
1542 * However, vm_file will be NULL in the error
1543 * cleanup path of mmap_region. When
1544 * hugetlbfs ->mmap method fails,
1545 * mmap_region() nullifies vma->vm_file
1546 * before calling this function to clean up.
1547 * Since no pte has actually been setup, it is
1548 * safe to do nothing in this case.
1550 if (vma->vm_file) {
1551 i_mmap_lock_write(vma->vm_file->f_mapping);
1552 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1553 i_mmap_unlock_write(vma->vm_file->f_mapping);
1555 } else
1556 unmap_page_range(tlb, vma, start, end, details);
1561 * unmap_vmas - unmap a range of memory covered by a list of vma's
1562 * @tlb: address of the caller's struct mmu_gather
1563 * @vma: the starting vma
1564 * @start_addr: virtual address at which to start unmapping
1565 * @end_addr: virtual address at which to end unmapping
1567 * Unmap all pages in the vma list.
1569 * Only addresses between `start' and `end' will be unmapped.
1571 * The VMA list must be sorted in ascending virtual address order.
1573 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1574 * range after unmap_vmas() returns. So the only responsibility here is to
1575 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1576 * drops the lock and schedules.
1578 void unmap_vmas(struct mmu_gather *tlb,
1579 struct vm_area_struct *vma, unsigned long start_addr,
1580 unsigned long end_addr)
1582 struct mm_struct *mm = vma->vm_mm;
1584 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1585 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1586 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1587 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1591 * zap_page_range - remove user pages in a given range
1592 * @vma: vm_area_struct holding the applicable pages
1593 * @start: starting address of pages to zap
1594 * @size: number of bytes to zap
1596 * Caller must protect the VMA list
1598 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1599 unsigned long size)
1601 struct mm_struct *mm = vma->vm_mm;
1602 struct mmu_gather tlb;
1603 unsigned long end = start + size;
1605 lru_add_drain();
1606 tlb_gather_mmu(&tlb, mm, start, end);
1607 update_hiwater_rss(mm);
1608 mmu_notifier_invalidate_range_start(mm, start, end);
1609 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1610 unmap_single_vma(&tlb, vma, start, end, NULL);
1611 mmu_notifier_invalidate_range_end(mm, start, end);
1612 tlb_finish_mmu(&tlb, start, end);
1616 * zap_page_range_single - remove user pages in a given range
1617 * @vma: vm_area_struct holding the applicable pages
1618 * @address: starting address of pages to zap
1619 * @size: number of bytes to zap
1620 * @details: details of shared cache invalidation
1622 * The range must fit into one VMA.
1624 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1625 unsigned long size, struct zap_details *details)
1627 struct mm_struct *mm = vma->vm_mm;
1628 struct mmu_gather tlb;
1629 unsigned long end = address + size;
1631 lru_add_drain();
1632 tlb_gather_mmu(&tlb, mm, address, end);
1633 update_hiwater_rss(mm);
1634 mmu_notifier_invalidate_range_start(mm, address, end);
1635 unmap_single_vma(&tlb, vma, address, end, details);
1636 mmu_notifier_invalidate_range_end(mm, address, end);
1637 tlb_finish_mmu(&tlb, address, end);
1641 * zap_vma_ptes - remove ptes mapping the vma
1642 * @vma: vm_area_struct holding ptes to be zapped
1643 * @address: starting address of pages to zap
1644 * @size: number of bytes to zap
1646 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1648 * The entire address range must be fully contained within the vma.
1651 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1652 unsigned long size)
1654 if (address < vma->vm_start || address + size > vma->vm_end ||
1655 !(vma->vm_flags & VM_PFNMAP))
1656 return;
1658 zap_page_range_single(vma, address, size, NULL);
1660 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1662 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1663 spinlock_t **ptl)
1665 pgd_t *pgd;
1666 p4d_t *p4d;
1667 pud_t *pud;
1668 pmd_t *pmd;
1670 pgd = pgd_offset(mm, addr);
1671 p4d = p4d_alloc(mm, pgd, addr);
1672 if (!p4d)
1673 return NULL;
1674 pud = pud_alloc(mm, p4d, addr);
1675 if (!pud)
1676 return NULL;
1677 pmd = pmd_alloc(mm, pud, addr);
1678 if (!pmd)
1679 return NULL;
1681 VM_BUG_ON(pmd_trans_huge(*pmd));
1682 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1686 * This is the old fallback for page remapping.
1688 * For historical reasons, it only allows reserved pages. Only
1689 * old drivers should use this, and they needed to mark their
1690 * pages reserved for the old functions anyway.
1692 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1693 struct page *page, pgprot_t prot)
1695 struct mm_struct *mm = vma->vm_mm;
1696 int retval;
1697 pte_t *pte;
1698 spinlock_t *ptl;
1700 retval = -EINVAL;
1701 if (PageAnon(page))
1702 goto out;
1703 retval = -ENOMEM;
1704 flush_dcache_page(page);
1705 pte = get_locked_pte(mm, addr, &ptl);
1706 if (!pte)
1707 goto out;
1708 retval = -EBUSY;
1709 if (!pte_none(*pte))
1710 goto out_unlock;
1712 /* Ok, finally just insert the thing.. */
1713 get_page(page);
1714 inc_mm_counter_fast(mm, mm_counter_file(page));
1715 page_add_file_rmap(page, false);
1716 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1718 retval = 0;
1719 pte_unmap_unlock(pte, ptl);
1720 return retval;
1721 out_unlock:
1722 pte_unmap_unlock(pte, ptl);
1723 out:
1724 return retval;
1728 * vm_insert_page - insert single page into user vma
1729 * @vma: user vma to map to
1730 * @addr: target user address of this page
1731 * @page: source kernel page
1733 * This allows drivers to insert individual pages they've allocated
1734 * into a user vma.
1736 * The page has to be a nice clean _individual_ kernel allocation.
1737 * If you allocate a compound page, you need to have marked it as
1738 * such (__GFP_COMP), or manually just split the page up yourself
1739 * (see split_page()).
1741 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1742 * took an arbitrary page protection parameter. This doesn't allow
1743 * that. Your vma protection will have to be set up correctly, which
1744 * means that if you want a shared writable mapping, you'd better
1745 * ask for a shared writable mapping!
1747 * The page does not need to be reserved.
1749 * Usually this function is called from f_op->mmap() handler
1750 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1751 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1752 * function from other places, for example from page-fault handler.
1754 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1755 struct page *page)
1757 if (addr < vma->vm_start || addr >= vma->vm_end)
1758 return -EFAULT;
1759 if (!page_count(page))
1760 return -EINVAL;
1761 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1762 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1763 BUG_ON(vma->vm_flags & VM_PFNMAP);
1764 vma->vm_flags |= VM_MIXEDMAP;
1766 return insert_page(vma, addr, page, vma->vm_page_prot);
1768 EXPORT_SYMBOL(vm_insert_page);
1770 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1771 pfn_t pfn, pgprot_t prot, bool mkwrite)
1773 struct mm_struct *mm = vma->vm_mm;
1774 int retval;
1775 pte_t *pte, entry;
1776 spinlock_t *ptl;
1778 retval = -ENOMEM;
1779 pte = get_locked_pte(mm, addr, &ptl);
1780 if (!pte)
1781 goto out;
1782 retval = -EBUSY;
1783 if (!pte_none(*pte)) {
1784 if (mkwrite) {
1786 * For read faults on private mappings the PFN passed
1787 * in may not match the PFN we have mapped if the
1788 * mapped PFN is a writeable COW page. In the mkwrite
1789 * case we are creating a writable PTE for a shared
1790 * mapping and we expect the PFNs to match.
1792 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1793 goto out_unlock;
1794 entry = *pte;
1795 goto out_mkwrite;
1796 } else
1797 goto out_unlock;
1800 /* Ok, finally just insert the thing.. */
1801 if (pfn_t_devmap(pfn))
1802 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1803 else
1804 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1806 out_mkwrite:
1807 if (mkwrite) {
1808 entry = pte_mkyoung(entry);
1809 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1812 set_pte_at(mm, addr, pte, entry);
1813 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1815 retval = 0;
1816 out_unlock:
1817 pte_unmap_unlock(pte, ptl);
1818 out:
1819 return retval;
1823 * vm_insert_pfn - insert single pfn into user vma
1824 * @vma: user vma to map to
1825 * @addr: target user address of this page
1826 * @pfn: source kernel pfn
1828 * Similar to vm_insert_page, this allows drivers to insert individual pages
1829 * they've allocated into a user vma. Same comments apply.
1831 * This function should only be called from a vm_ops->fault handler, and
1832 * in that case the handler should return NULL.
1834 * vma cannot be a COW mapping.
1836 * As this is called only for pages that do not currently exist, we
1837 * do not need to flush old virtual caches or the TLB.
1839 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1840 unsigned long pfn)
1842 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1844 EXPORT_SYMBOL(vm_insert_pfn);
1847 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1848 * @vma: user vma to map to
1849 * @addr: target user address of this page
1850 * @pfn: source kernel pfn
1851 * @pgprot: pgprot flags for the inserted page
1853 * This is exactly like vm_insert_pfn, except that it allows drivers to
1854 * to override pgprot on a per-page basis.
1856 * This only makes sense for IO mappings, and it makes no sense for
1857 * cow mappings. In general, using multiple vmas is preferable;
1858 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1859 * impractical.
1861 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1862 unsigned long pfn, pgprot_t pgprot)
1864 int ret;
1866 * Technically, architectures with pte_special can avoid all these
1867 * restrictions (same for remap_pfn_range). However we would like
1868 * consistency in testing and feature parity among all, so we should
1869 * try to keep these invariants in place for everybody.
1871 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1872 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1873 (VM_PFNMAP|VM_MIXEDMAP));
1874 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1875 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1877 if (addr < vma->vm_start || addr >= vma->vm_end)
1878 return -EFAULT;
1880 if (!pfn_modify_allowed(pfn, pgprot))
1881 return -EACCES;
1883 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1885 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1886 false);
1888 return ret;
1890 EXPORT_SYMBOL(vm_insert_pfn_prot);
1892 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1894 /* these checks mirror the abort conditions in vm_normal_page */
1895 if (vma->vm_flags & VM_MIXEDMAP)
1896 return true;
1897 if (pfn_t_devmap(pfn))
1898 return true;
1899 if (pfn_t_special(pfn))
1900 return true;
1901 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1902 return true;
1903 return false;
1906 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1907 pfn_t pfn, bool mkwrite)
1909 pgprot_t pgprot = vma->vm_page_prot;
1911 BUG_ON(!vm_mixed_ok(vma, pfn));
1913 if (addr < vma->vm_start || addr >= vma->vm_end)
1914 return -EFAULT;
1916 track_pfn_insert(vma, &pgprot, pfn);
1918 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1919 return -EACCES;
1922 * If we don't have pte special, then we have to use the pfn_valid()
1923 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1924 * refcount the page if pfn_valid is true (hence insert_page rather
1925 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1926 * without pte special, it would there be refcounted as a normal page.
1928 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1929 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1930 struct page *page;
1933 * At this point we are committed to insert_page()
1934 * regardless of whether the caller specified flags that
1935 * result in pfn_t_has_page() == false.
1937 page = pfn_to_page(pfn_t_to_pfn(pfn));
1938 return insert_page(vma, addr, page, pgprot);
1940 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1943 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1944 pfn_t pfn)
1946 return __vm_insert_mixed(vma, addr, pfn, false);
1949 EXPORT_SYMBOL(vm_insert_mixed);
1952 * If the insertion of PTE failed because someone else already added a
1953 * different entry in the mean time, we treat that as success as we assume
1954 * the same entry was actually inserted.
1957 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1958 unsigned long addr, pfn_t pfn)
1960 int err;
1962 err = __vm_insert_mixed(vma, addr, pfn, true);
1963 if (err == -ENOMEM)
1964 return VM_FAULT_OOM;
1965 if (err < 0 && err != -EBUSY)
1966 return VM_FAULT_SIGBUS;
1967 return VM_FAULT_NOPAGE;
1969 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1972 * maps a range of physical memory into the requested pages. the old
1973 * mappings are removed. any references to nonexistent pages results
1974 * in null mappings (currently treated as "copy-on-access")
1976 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1977 unsigned long addr, unsigned long end,
1978 unsigned long pfn, pgprot_t prot)
1980 pte_t *pte;
1981 spinlock_t *ptl;
1982 int err = 0;
1984 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1985 if (!pte)
1986 return -ENOMEM;
1987 arch_enter_lazy_mmu_mode();
1988 do {
1989 BUG_ON(!pte_none(*pte));
1990 if (!pfn_modify_allowed(pfn, prot)) {
1991 err = -EACCES;
1992 break;
1994 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1995 pfn++;
1996 } while (pte++, addr += PAGE_SIZE, addr != end);
1997 arch_leave_lazy_mmu_mode();
1998 pte_unmap_unlock(pte - 1, ptl);
1999 return err;
2002 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2003 unsigned long addr, unsigned long end,
2004 unsigned long pfn, pgprot_t prot)
2006 pmd_t *pmd;
2007 unsigned long next;
2008 int err;
2010 pfn -= addr >> PAGE_SHIFT;
2011 pmd = pmd_alloc(mm, pud, addr);
2012 if (!pmd)
2013 return -ENOMEM;
2014 VM_BUG_ON(pmd_trans_huge(*pmd));
2015 do {
2016 next = pmd_addr_end(addr, end);
2017 err = remap_pte_range(mm, pmd, addr, next,
2018 pfn + (addr >> PAGE_SHIFT), prot);
2019 if (err)
2020 return err;
2021 } while (pmd++, addr = next, addr != end);
2022 return 0;
2025 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2026 unsigned long addr, unsigned long end,
2027 unsigned long pfn, pgprot_t prot)
2029 pud_t *pud;
2030 unsigned long next;
2031 int err;
2033 pfn -= addr >> PAGE_SHIFT;
2034 pud = pud_alloc(mm, p4d, addr);
2035 if (!pud)
2036 return -ENOMEM;
2037 do {
2038 next = pud_addr_end(addr, end);
2039 err = remap_pmd_range(mm, pud, addr, next,
2040 pfn + (addr >> PAGE_SHIFT), prot);
2041 if (err)
2042 return err;
2043 } while (pud++, addr = next, addr != end);
2044 return 0;
2047 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2048 unsigned long addr, unsigned long end,
2049 unsigned long pfn, pgprot_t prot)
2051 p4d_t *p4d;
2052 unsigned long next;
2053 int err;
2055 pfn -= addr >> PAGE_SHIFT;
2056 p4d = p4d_alloc(mm, pgd, addr);
2057 if (!p4d)
2058 return -ENOMEM;
2059 do {
2060 next = p4d_addr_end(addr, end);
2061 err = remap_pud_range(mm, p4d, addr, next,
2062 pfn + (addr >> PAGE_SHIFT), prot);
2063 if (err)
2064 return err;
2065 } while (p4d++, addr = next, addr != end);
2066 return 0;
2070 * remap_pfn_range - remap kernel memory to userspace
2071 * @vma: user vma to map to
2072 * @addr: target user address to start at
2073 * @pfn: physical address of kernel memory
2074 * @size: size of map area
2075 * @prot: page protection flags for this mapping
2077 * Note: this is only safe if the mm semaphore is held when called.
2079 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2080 unsigned long pfn, unsigned long size, pgprot_t prot)
2082 pgd_t *pgd;
2083 unsigned long next;
2084 unsigned long end = addr + PAGE_ALIGN(size);
2085 struct mm_struct *mm = vma->vm_mm;
2086 unsigned long remap_pfn = pfn;
2087 int err;
2090 * Physically remapped pages are special. Tell the
2091 * rest of the world about it:
2092 * VM_IO tells people not to look at these pages
2093 * (accesses can have side effects).
2094 * VM_PFNMAP tells the core MM that the base pages are just
2095 * raw PFN mappings, and do not have a "struct page" associated
2096 * with them.
2097 * VM_DONTEXPAND
2098 * Disable vma merging and expanding with mremap().
2099 * VM_DONTDUMP
2100 * Omit vma from core dump, even when VM_IO turned off.
2102 * There's a horrible special case to handle copy-on-write
2103 * behaviour that some programs depend on. We mark the "original"
2104 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2105 * See vm_normal_page() for details.
2107 if (is_cow_mapping(vma->vm_flags)) {
2108 if (addr != vma->vm_start || end != vma->vm_end)
2109 return -EINVAL;
2110 vma->vm_pgoff = pfn;
2113 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2114 if (err)
2115 return -EINVAL;
2117 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2119 BUG_ON(addr >= end);
2120 pfn -= addr >> PAGE_SHIFT;
2121 pgd = pgd_offset(mm, addr);
2122 flush_cache_range(vma, addr, end);
2123 do {
2124 next = pgd_addr_end(addr, end);
2125 err = remap_p4d_range(mm, pgd, addr, next,
2126 pfn + (addr >> PAGE_SHIFT), prot);
2127 if (err)
2128 break;
2129 } while (pgd++, addr = next, addr != end);
2131 if (err)
2132 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2134 return err;
2136 EXPORT_SYMBOL(remap_pfn_range);
2139 * vm_iomap_memory - remap memory to userspace
2140 * @vma: user vma to map to
2141 * @start: start of area
2142 * @len: size of area
2144 * This is a simplified io_remap_pfn_range() for common driver use. The
2145 * driver just needs to give us the physical memory range to be mapped,
2146 * we'll figure out the rest from the vma information.
2148 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2149 * whatever write-combining details or similar.
2151 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2153 unsigned long vm_len, pfn, pages;
2155 /* Check that the physical memory area passed in looks valid */
2156 if (start + len < start)
2157 return -EINVAL;
2159 * You *really* shouldn't map things that aren't page-aligned,
2160 * but we've historically allowed it because IO memory might
2161 * just have smaller alignment.
2163 len += start & ~PAGE_MASK;
2164 pfn = start >> PAGE_SHIFT;
2165 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2166 if (pfn + pages < pfn)
2167 return -EINVAL;
2169 /* We start the mapping 'vm_pgoff' pages into the area */
2170 if (vma->vm_pgoff > pages)
2171 return -EINVAL;
2172 pfn += vma->vm_pgoff;
2173 pages -= vma->vm_pgoff;
2175 /* Can we fit all of the mapping? */
2176 vm_len = vma->vm_end - vma->vm_start;
2177 if (vm_len >> PAGE_SHIFT > pages)
2178 return -EINVAL;
2180 /* Ok, let it rip */
2181 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2183 EXPORT_SYMBOL(vm_iomap_memory);
2185 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2186 unsigned long addr, unsigned long end,
2187 pte_fn_t fn, void *data)
2189 pte_t *pte;
2190 int err;
2191 pgtable_t token;
2192 spinlock_t *uninitialized_var(ptl);
2194 pte = (mm == &init_mm) ?
2195 pte_alloc_kernel(pmd, addr) :
2196 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2197 if (!pte)
2198 return -ENOMEM;
2200 BUG_ON(pmd_huge(*pmd));
2202 arch_enter_lazy_mmu_mode();
2204 token = pmd_pgtable(*pmd);
2206 do {
2207 err = fn(pte++, token, addr, data);
2208 if (err)
2209 break;
2210 } while (addr += PAGE_SIZE, addr != end);
2212 arch_leave_lazy_mmu_mode();
2214 if (mm != &init_mm)
2215 pte_unmap_unlock(pte-1, ptl);
2216 return err;
2219 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2220 unsigned long addr, unsigned long end,
2221 pte_fn_t fn, void *data)
2223 pmd_t *pmd;
2224 unsigned long next;
2225 int err;
2227 BUG_ON(pud_huge(*pud));
2229 pmd = pmd_alloc(mm, pud, addr);
2230 if (!pmd)
2231 return -ENOMEM;
2232 do {
2233 next = pmd_addr_end(addr, end);
2234 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2235 if (err)
2236 break;
2237 } while (pmd++, addr = next, addr != end);
2238 return err;
2241 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2242 unsigned long addr, unsigned long end,
2243 pte_fn_t fn, void *data)
2245 pud_t *pud;
2246 unsigned long next;
2247 int err;
2249 pud = pud_alloc(mm, p4d, addr);
2250 if (!pud)
2251 return -ENOMEM;
2252 do {
2253 next = pud_addr_end(addr, end);
2254 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2255 if (err)
2256 break;
2257 } while (pud++, addr = next, addr != end);
2258 return err;
2261 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2262 unsigned long addr, unsigned long end,
2263 pte_fn_t fn, void *data)
2265 p4d_t *p4d;
2266 unsigned long next;
2267 int err;
2269 p4d = p4d_alloc(mm, pgd, addr);
2270 if (!p4d)
2271 return -ENOMEM;
2272 do {
2273 next = p4d_addr_end(addr, end);
2274 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2275 if (err)
2276 break;
2277 } while (p4d++, addr = next, addr != end);
2278 return err;
2282 * Scan a region of virtual memory, filling in page tables as necessary
2283 * and calling a provided function on each leaf page table.
2285 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2286 unsigned long size, pte_fn_t fn, void *data)
2288 pgd_t *pgd;
2289 unsigned long next;
2290 unsigned long end = addr + size;
2291 int err;
2293 if (WARN_ON(addr >= end))
2294 return -EINVAL;
2296 pgd = pgd_offset(mm, addr);
2297 do {
2298 next = pgd_addr_end(addr, end);
2299 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2300 if (err)
2301 break;
2302 } while (pgd++, addr = next, addr != end);
2304 return err;
2306 EXPORT_SYMBOL_GPL(apply_to_page_range);
2309 * handle_pte_fault chooses page fault handler according to an entry which was
2310 * read non-atomically. Before making any commitment, on those architectures
2311 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2312 * parts, do_swap_page must check under lock before unmapping the pte and
2313 * proceeding (but do_wp_page is only called after already making such a check;
2314 * and do_anonymous_page can safely check later on).
2316 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2317 pte_t *page_table, pte_t orig_pte)
2319 int same = 1;
2320 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2321 if (sizeof(pte_t) > sizeof(unsigned long)) {
2322 spinlock_t *ptl = pte_lockptr(mm, pmd);
2323 spin_lock(ptl);
2324 same = pte_same(*page_table, orig_pte);
2325 spin_unlock(ptl);
2327 #endif
2328 pte_unmap(page_table);
2329 return same;
2332 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2334 debug_dma_assert_idle(src);
2337 * If the source page was a PFN mapping, we don't have
2338 * a "struct page" for it. We do a best-effort copy by
2339 * just copying from the original user address. If that
2340 * fails, we just zero-fill it. Live with it.
2342 if (unlikely(!src)) {
2343 void *kaddr = kmap_atomic(dst);
2344 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2347 * This really shouldn't fail, because the page is there
2348 * in the page tables. But it might just be unreadable,
2349 * in which case we just give up and fill the result with
2350 * zeroes.
2352 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2353 clear_page(kaddr);
2354 kunmap_atomic(kaddr);
2355 flush_dcache_page(dst);
2356 } else
2357 copy_user_highpage(dst, src, va, vma);
2360 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2362 struct file *vm_file = vma->vm_file;
2364 if (vm_file)
2365 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2368 * Special mappings (e.g. VDSO) do not have any file so fake
2369 * a default GFP_KERNEL for them.
2371 return GFP_KERNEL;
2375 * Notify the address space that the page is about to become writable so that
2376 * it can prohibit this or wait for the page to get into an appropriate state.
2378 * We do this without the lock held, so that it can sleep if it needs to.
2380 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2382 vm_fault_t ret;
2383 struct page *page = vmf->page;
2384 unsigned int old_flags = vmf->flags;
2386 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2388 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2389 /* Restore original flags so that caller is not surprised */
2390 vmf->flags = old_flags;
2391 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2392 return ret;
2393 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2394 lock_page(page);
2395 if (!page->mapping) {
2396 unlock_page(page);
2397 return 0; /* retry */
2399 ret |= VM_FAULT_LOCKED;
2400 } else
2401 VM_BUG_ON_PAGE(!PageLocked(page), page);
2402 return ret;
2406 * Handle dirtying of a page in shared file mapping on a write fault.
2408 * The function expects the page to be locked and unlocks it.
2410 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2411 struct page *page)
2413 struct address_space *mapping;
2414 bool dirtied;
2415 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2417 dirtied = set_page_dirty(page);
2418 VM_BUG_ON_PAGE(PageAnon(page), page);
2420 * Take a local copy of the address_space - page.mapping may be zeroed
2421 * by truncate after unlock_page(). The address_space itself remains
2422 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2423 * release semantics to prevent the compiler from undoing this copying.
2425 mapping = page_rmapping(page);
2426 unlock_page(page);
2428 if ((dirtied || page_mkwrite) && mapping) {
2430 * Some device drivers do not set page.mapping
2431 * but still dirty their pages
2433 balance_dirty_pages_ratelimited(mapping);
2436 if (!page_mkwrite)
2437 file_update_time(vma->vm_file);
2441 * Handle write page faults for pages that can be reused in the current vma
2443 * This can happen either due to the mapping being with the VM_SHARED flag,
2444 * or due to us being the last reference standing to the page. In either
2445 * case, all we need to do here is to mark the page as writable and update
2446 * any related book-keeping.
2448 static inline void wp_page_reuse(struct vm_fault *vmf)
2449 __releases(vmf->ptl)
2451 struct vm_area_struct *vma = vmf->vma;
2452 struct page *page = vmf->page;
2453 pte_t entry;
2455 * Clear the pages cpupid information as the existing
2456 * information potentially belongs to a now completely
2457 * unrelated process.
2459 if (page)
2460 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2462 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2463 entry = pte_mkyoung(vmf->orig_pte);
2464 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2465 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2466 update_mmu_cache(vma, vmf->address, vmf->pte);
2467 pte_unmap_unlock(vmf->pte, vmf->ptl);
2471 * Handle the case of a page which we actually need to copy to a new page.
2473 * Called with mmap_sem locked and the old page referenced, but
2474 * without the ptl held.
2476 * High level logic flow:
2478 * - Allocate a page, copy the content of the old page to the new one.
2479 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2480 * - Take the PTL. If the pte changed, bail out and release the allocated page
2481 * - If the pte is still the way we remember it, update the page table and all
2482 * relevant references. This includes dropping the reference the page-table
2483 * held to the old page, as well as updating the rmap.
2484 * - In any case, unlock the PTL and drop the reference we took to the old page.
2486 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2488 struct vm_area_struct *vma = vmf->vma;
2489 struct mm_struct *mm = vma->vm_mm;
2490 struct page *old_page = vmf->page;
2491 struct page *new_page = NULL;
2492 pte_t entry;
2493 int page_copied = 0;
2494 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2495 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2496 struct mem_cgroup *memcg;
2498 if (unlikely(anon_vma_prepare(vma)))
2499 goto oom;
2501 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2502 new_page = alloc_zeroed_user_highpage_movable(vma,
2503 vmf->address);
2504 if (!new_page)
2505 goto oom;
2506 } else {
2507 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2508 vmf->address);
2509 if (!new_page)
2510 goto oom;
2511 cow_user_page(new_page, old_page, vmf->address, vma);
2514 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2515 goto oom_free_new;
2517 __SetPageUptodate(new_page);
2519 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2522 * Re-check the pte - we dropped the lock
2524 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2525 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2526 if (old_page) {
2527 if (!PageAnon(old_page)) {
2528 dec_mm_counter_fast(mm,
2529 mm_counter_file(old_page));
2530 inc_mm_counter_fast(mm, MM_ANONPAGES);
2532 } else {
2533 inc_mm_counter_fast(mm, MM_ANONPAGES);
2535 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2536 entry = mk_pte(new_page, vma->vm_page_prot);
2537 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2539 * Clear the pte entry and flush it first, before updating the
2540 * pte with the new entry. This will avoid a race condition
2541 * seen in the presence of one thread doing SMC and another
2542 * thread doing COW.
2544 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2545 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2546 mem_cgroup_commit_charge(new_page, memcg, false, false);
2547 lru_cache_add_active_or_unevictable(new_page, vma);
2549 * We call the notify macro here because, when using secondary
2550 * mmu page tables (such as kvm shadow page tables), we want the
2551 * new page to be mapped directly into the secondary page table.
2553 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2554 update_mmu_cache(vma, vmf->address, vmf->pte);
2555 if (old_page) {
2557 * Only after switching the pte to the new page may
2558 * we remove the mapcount here. Otherwise another
2559 * process may come and find the rmap count decremented
2560 * before the pte is switched to the new page, and
2561 * "reuse" the old page writing into it while our pte
2562 * here still points into it and can be read by other
2563 * threads.
2565 * The critical issue is to order this
2566 * page_remove_rmap with the ptp_clear_flush above.
2567 * Those stores are ordered by (if nothing else,)
2568 * the barrier present in the atomic_add_negative
2569 * in page_remove_rmap.
2571 * Then the TLB flush in ptep_clear_flush ensures that
2572 * no process can access the old page before the
2573 * decremented mapcount is visible. And the old page
2574 * cannot be reused until after the decremented
2575 * mapcount is visible. So transitively, TLBs to
2576 * old page will be flushed before it can be reused.
2578 page_remove_rmap(old_page, false);
2581 /* Free the old page.. */
2582 new_page = old_page;
2583 page_copied = 1;
2584 } else {
2585 mem_cgroup_cancel_charge(new_page, memcg, false);
2588 if (new_page)
2589 put_page(new_page);
2591 pte_unmap_unlock(vmf->pte, vmf->ptl);
2593 * No need to double call mmu_notifier->invalidate_range() callback as
2594 * the above ptep_clear_flush_notify() did already call it.
2596 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2597 if (old_page) {
2599 * Don't let another task, with possibly unlocked vma,
2600 * keep the mlocked page.
2602 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2603 lock_page(old_page); /* LRU manipulation */
2604 if (PageMlocked(old_page))
2605 munlock_vma_page(old_page);
2606 unlock_page(old_page);
2608 put_page(old_page);
2610 return page_copied ? VM_FAULT_WRITE : 0;
2611 oom_free_new:
2612 put_page(new_page);
2613 oom:
2614 if (old_page)
2615 put_page(old_page);
2616 return VM_FAULT_OOM;
2620 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2621 * writeable once the page is prepared
2623 * @vmf: structure describing the fault
2625 * This function handles all that is needed to finish a write page fault in a
2626 * shared mapping due to PTE being read-only once the mapped page is prepared.
2627 * It handles locking of PTE and modifying it. The function returns
2628 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2629 * lock.
2631 * The function expects the page to be locked or other protection against
2632 * concurrent faults / writeback (such as DAX radix tree locks).
2634 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2636 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2637 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2638 &vmf->ptl);
2640 * We might have raced with another page fault while we released the
2641 * pte_offset_map_lock.
2643 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2644 pte_unmap_unlock(vmf->pte, vmf->ptl);
2645 return VM_FAULT_NOPAGE;
2647 wp_page_reuse(vmf);
2648 return 0;
2652 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2653 * mapping
2655 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2657 struct vm_area_struct *vma = vmf->vma;
2659 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2660 vm_fault_t ret;
2662 pte_unmap_unlock(vmf->pte, vmf->ptl);
2663 vmf->flags |= FAULT_FLAG_MKWRITE;
2664 ret = vma->vm_ops->pfn_mkwrite(vmf);
2665 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2666 return ret;
2667 return finish_mkwrite_fault(vmf);
2669 wp_page_reuse(vmf);
2670 return VM_FAULT_WRITE;
2673 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2674 __releases(vmf->ptl)
2676 struct vm_area_struct *vma = vmf->vma;
2678 get_page(vmf->page);
2680 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2681 vm_fault_t tmp;
2683 pte_unmap_unlock(vmf->pte, vmf->ptl);
2684 tmp = do_page_mkwrite(vmf);
2685 if (unlikely(!tmp || (tmp &
2686 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2687 put_page(vmf->page);
2688 return tmp;
2690 tmp = finish_mkwrite_fault(vmf);
2691 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2692 unlock_page(vmf->page);
2693 put_page(vmf->page);
2694 return tmp;
2696 } else {
2697 wp_page_reuse(vmf);
2698 lock_page(vmf->page);
2700 fault_dirty_shared_page(vma, vmf->page);
2701 put_page(vmf->page);
2703 return VM_FAULT_WRITE;
2707 * This routine handles present pages, when users try to write
2708 * to a shared page. It is done by copying the page to a new address
2709 * and decrementing the shared-page counter for the old page.
2711 * Note that this routine assumes that the protection checks have been
2712 * done by the caller (the low-level page fault routine in most cases).
2713 * Thus we can safely just mark it writable once we've done any necessary
2714 * COW.
2716 * We also mark the page dirty at this point even though the page will
2717 * change only once the write actually happens. This avoids a few races,
2718 * and potentially makes it more efficient.
2720 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2721 * but allow concurrent faults), with pte both mapped and locked.
2722 * We return with mmap_sem still held, but pte unmapped and unlocked.
2724 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2725 __releases(vmf->ptl)
2727 struct vm_area_struct *vma = vmf->vma;
2729 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2730 if (!vmf->page) {
2732 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2733 * VM_PFNMAP VMA.
2735 * We should not cow pages in a shared writeable mapping.
2736 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2738 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2739 (VM_WRITE|VM_SHARED))
2740 return wp_pfn_shared(vmf);
2742 pte_unmap_unlock(vmf->pte, vmf->ptl);
2743 return wp_page_copy(vmf);
2747 * Take out anonymous pages first, anonymous shared vmas are
2748 * not dirty accountable.
2750 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2751 int total_map_swapcount;
2752 if (!trylock_page(vmf->page)) {
2753 get_page(vmf->page);
2754 pte_unmap_unlock(vmf->pte, vmf->ptl);
2755 lock_page(vmf->page);
2756 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2757 vmf->address, &vmf->ptl);
2758 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2759 unlock_page(vmf->page);
2760 pte_unmap_unlock(vmf->pte, vmf->ptl);
2761 put_page(vmf->page);
2762 return 0;
2764 put_page(vmf->page);
2766 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2767 if (total_map_swapcount == 1) {
2769 * The page is all ours. Move it to
2770 * our anon_vma so the rmap code will
2771 * not search our parent or siblings.
2772 * Protected against the rmap code by
2773 * the page lock.
2775 page_move_anon_rmap(vmf->page, vma);
2777 unlock_page(vmf->page);
2778 wp_page_reuse(vmf);
2779 return VM_FAULT_WRITE;
2781 unlock_page(vmf->page);
2782 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2783 (VM_WRITE|VM_SHARED))) {
2784 return wp_page_shared(vmf);
2788 * Ok, we need to copy. Oh, well..
2790 get_page(vmf->page);
2792 pte_unmap_unlock(vmf->pte, vmf->ptl);
2793 return wp_page_copy(vmf);
2796 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2797 unsigned long start_addr, unsigned long end_addr,
2798 struct zap_details *details)
2800 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2803 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2804 struct zap_details *details)
2806 struct vm_area_struct *vma;
2807 pgoff_t vba, vea, zba, zea;
2809 vma_interval_tree_foreach(vma, root,
2810 details->first_index, details->last_index) {
2812 vba = vma->vm_pgoff;
2813 vea = vba + vma_pages(vma) - 1;
2814 zba = details->first_index;
2815 if (zba < vba)
2816 zba = vba;
2817 zea = details->last_index;
2818 if (zea > vea)
2819 zea = vea;
2821 unmap_mapping_range_vma(vma,
2822 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2823 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2824 details);
2829 * unmap_mapping_pages() - Unmap pages from processes.
2830 * @mapping: The address space containing pages to be unmapped.
2831 * @start: Index of first page to be unmapped.
2832 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2833 * @even_cows: Whether to unmap even private COWed pages.
2835 * Unmap the pages in this address space from any userspace process which
2836 * has them mmaped. Generally, you want to remove COWed pages as well when
2837 * a file is being truncated, but not when invalidating pages from the page
2838 * cache.
2840 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2841 pgoff_t nr, bool even_cows)
2843 struct zap_details details = { };
2845 details.check_mapping = even_cows ? NULL : mapping;
2846 details.first_index = start;
2847 details.last_index = start + nr - 1;
2848 if (details.last_index < details.first_index)
2849 details.last_index = ULONG_MAX;
2851 i_mmap_lock_write(mapping);
2852 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2853 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2854 i_mmap_unlock_write(mapping);
2858 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2859 * address_space corresponding to the specified byte range in the underlying
2860 * file.
2862 * @mapping: the address space containing mmaps to be unmapped.
2863 * @holebegin: byte in first page to unmap, relative to the start of
2864 * the underlying file. This will be rounded down to a PAGE_SIZE
2865 * boundary. Note that this is different from truncate_pagecache(), which
2866 * must keep the partial page. In contrast, we must get rid of
2867 * partial pages.
2868 * @holelen: size of prospective hole in bytes. This will be rounded
2869 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2870 * end of the file.
2871 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2872 * but 0 when invalidating pagecache, don't throw away private data.
2874 void unmap_mapping_range(struct address_space *mapping,
2875 loff_t const holebegin, loff_t const holelen, int even_cows)
2877 pgoff_t hba = holebegin >> PAGE_SHIFT;
2878 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2880 /* Check for overflow. */
2881 if (sizeof(holelen) > sizeof(hlen)) {
2882 long long holeend =
2883 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2884 if (holeend & ~(long long)ULONG_MAX)
2885 hlen = ULONG_MAX - hba + 1;
2888 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2890 EXPORT_SYMBOL(unmap_mapping_range);
2893 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2894 * but allow concurrent faults), and pte mapped but not yet locked.
2895 * We return with pte unmapped and unlocked.
2897 * We return with the mmap_sem locked or unlocked in the same cases
2898 * as does filemap_fault().
2900 vm_fault_t do_swap_page(struct vm_fault *vmf)
2902 struct vm_area_struct *vma = vmf->vma;
2903 struct page *page = NULL, *swapcache;
2904 struct mem_cgroup *memcg;
2905 swp_entry_t entry;
2906 pte_t pte;
2907 int locked;
2908 int exclusive = 0;
2909 vm_fault_t ret = 0;
2911 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2912 goto out;
2914 entry = pte_to_swp_entry(vmf->orig_pte);
2915 if (unlikely(non_swap_entry(entry))) {
2916 if (is_migration_entry(entry)) {
2917 migration_entry_wait(vma->vm_mm, vmf->pmd,
2918 vmf->address);
2919 } else if (is_device_private_entry(entry)) {
2921 * For un-addressable device memory we call the pgmap
2922 * fault handler callback. The callback must migrate
2923 * the page back to some CPU accessible page.
2925 ret = device_private_entry_fault(vma, vmf->address, entry,
2926 vmf->flags, vmf->pmd);
2927 } else if (is_hwpoison_entry(entry)) {
2928 ret = VM_FAULT_HWPOISON;
2929 } else {
2930 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2931 ret = VM_FAULT_SIGBUS;
2933 goto out;
2937 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2938 page = lookup_swap_cache(entry, vma, vmf->address);
2939 swapcache = page;
2941 if (!page) {
2942 struct swap_info_struct *si = swp_swap_info(entry);
2944 if (si->flags & SWP_SYNCHRONOUS_IO &&
2945 __swap_count(si, entry) == 1) {
2946 /* skip swapcache */
2947 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2948 vmf->address);
2949 if (page) {
2950 __SetPageLocked(page);
2951 __SetPageSwapBacked(page);
2952 set_page_private(page, entry.val);
2953 lru_cache_add_anon(page);
2954 swap_readpage(page, true);
2956 } else {
2957 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2958 vmf);
2959 swapcache = page;
2962 if (!page) {
2964 * Back out if somebody else faulted in this pte
2965 * while we released the pte lock.
2967 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2968 vmf->address, &vmf->ptl);
2969 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2970 ret = VM_FAULT_OOM;
2971 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2972 goto unlock;
2975 /* Had to read the page from swap area: Major fault */
2976 ret = VM_FAULT_MAJOR;
2977 count_vm_event(PGMAJFAULT);
2978 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2979 } else if (PageHWPoison(page)) {
2981 * hwpoisoned dirty swapcache pages are kept for killing
2982 * owner processes (which may be unknown at hwpoison time)
2984 ret = VM_FAULT_HWPOISON;
2985 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2986 goto out_release;
2989 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2991 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2992 if (!locked) {
2993 ret |= VM_FAULT_RETRY;
2994 goto out_release;
2998 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2999 * release the swapcache from under us. The page pin, and pte_same
3000 * test below, are not enough to exclude that. Even if it is still
3001 * swapcache, we need to check that the page's swap has not changed.
3003 if (unlikely((!PageSwapCache(page) ||
3004 page_private(page) != entry.val)) && swapcache)
3005 goto out_page;
3007 page = ksm_might_need_to_copy(page, vma, vmf->address);
3008 if (unlikely(!page)) {
3009 ret = VM_FAULT_OOM;
3010 page = swapcache;
3011 goto out_page;
3014 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3015 &memcg, false)) {
3016 ret = VM_FAULT_OOM;
3017 goto out_page;
3021 * Back out if somebody else already faulted in this pte.
3023 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3024 &vmf->ptl);
3025 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3026 goto out_nomap;
3028 if (unlikely(!PageUptodate(page))) {
3029 ret = VM_FAULT_SIGBUS;
3030 goto out_nomap;
3034 * The page isn't present yet, go ahead with the fault.
3036 * Be careful about the sequence of operations here.
3037 * To get its accounting right, reuse_swap_page() must be called
3038 * while the page is counted on swap but not yet in mapcount i.e.
3039 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3040 * must be called after the swap_free(), or it will never succeed.
3043 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3044 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3045 pte = mk_pte(page, vma->vm_page_prot);
3046 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3047 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3048 vmf->flags &= ~FAULT_FLAG_WRITE;
3049 ret |= VM_FAULT_WRITE;
3050 exclusive = RMAP_EXCLUSIVE;
3052 flush_icache_page(vma, page);
3053 if (pte_swp_soft_dirty(vmf->orig_pte))
3054 pte = pte_mksoft_dirty(pte);
3055 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3056 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3057 vmf->orig_pte = pte;
3059 /* ksm created a completely new copy */
3060 if (unlikely(page != swapcache && swapcache)) {
3061 page_add_new_anon_rmap(page, vma, vmf->address, false);
3062 mem_cgroup_commit_charge(page, memcg, false, false);
3063 lru_cache_add_active_or_unevictable(page, vma);
3064 } else {
3065 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3066 mem_cgroup_commit_charge(page, memcg, true, false);
3067 activate_page(page);
3070 swap_free(entry);
3071 if (mem_cgroup_swap_full(page) ||
3072 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3073 try_to_free_swap(page);
3074 unlock_page(page);
3075 if (page != swapcache && swapcache) {
3077 * Hold the lock to avoid the swap entry to be reused
3078 * until we take the PT lock for the pte_same() check
3079 * (to avoid false positives from pte_same). For
3080 * further safety release the lock after the swap_free
3081 * so that the swap count won't change under a
3082 * parallel locked swapcache.
3084 unlock_page(swapcache);
3085 put_page(swapcache);
3088 if (vmf->flags & FAULT_FLAG_WRITE) {
3089 ret |= do_wp_page(vmf);
3090 if (ret & VM_FAULT_ERROR)
3091 ret &= VM_FAULT_ERROR;
3092 goto out;
3095 /* No need to invalidate - it was non-present before */
3096 update_mmu_cache(vma, vmf->address, vmf->pte);
3097 unlock:
3098 pte_unmap_unlock(vmf->pte, vmf->ptl);
3099 out:
3100 return ret;
3101 out_nomap:
3102 mem_cgroup_cancel_charge(page, memcg, false);
3103 pte_unmap_unlock(vmf->pte, vmf->ptl);
3104 out_page:
3105 unlock_page(page);
3106 out_release:
3107 put_page(page);
3108 if (page != swapcache && swapcache) {
3109 unlock_page(swapcache);
3110 put_page(swapcache);
3112 return ret;
3116 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3117 * but allow concurrent faults), and pte mapped but not yet locked.
3118 * We return with mmap_sem still held, but pte unmapped and unlocked.
3120 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3122 struct vm_area_struct *vma = vmf->vma;
3123 struct mem_cgroup *memcg;
3124 struct page *page;
3125 vm_fault_t ret = 0;
3126 pte_t entry;
3128 /* File mapping without ->vm_ops ? */
3129 if (vma->vm_flags & VM_SHARED)
3130 return VM_FAULT_SIGBUS;
3133 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3134 * pte_offset_map() on pmds where a huge pmd might be created
3135 * from a different thread.
3137 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3138 * parallel threads are excluded by other means.
3140 * Here we only have down_read(mmap_sem).
3142 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3143 return VM_FAULT_OOM;
3145 /* See the comment in pte_alloc_one_map() */
3146 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3147 return 0;
3149 /* Use the zero-page for reads */
3150 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3151 !mm_forbids_zeropage(vma->vm_mm)) {
3152 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3153 vma->vm_page_prot));
3154 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3155 vmf->address, &vmf->ptl);
3156 if (!pte_none(*vmf->pte))
3157 goto unlock;
3158 ret = check_stable_address_space(vma->vm_mm);
3159 if (ret)
3160 goto unlock;
3161 /* Deliver the page fault to userland, check inside PT lock */
3162 if (userfaultfd_missing(vma)) {
3163 pte_unmap_unlock(vmf->pte, vmf->ptl);
3164 return handle_userfault(vmf, VM_UFFD_MISSING);
3166 goto setpte;
3169 /* Allocate our own private page. */
3170 if (unlikely(anon_vma_prepare(vma)))
3171 goto oom;
3172 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3173 if (!page)
3174 goto oom;
3176 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3177 false))
3178 goto oom_free_page;
3181 * The memory barrier inside __SetPageUptodate makes sure that
3182 * preceeding stores to the page contents become visible before
3183 * the set_pte_at() write.
3185 __SetPageUptodate(page);
3187 entry = mk_pte(page, vma->vm_page_prot);
3188 if (vma->vm_flags & VM_WRITE)
3189 entry = pte_mkwrite(pte_mkdirty(entry));
3191 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3192 &vmf->ptl);
3193 if (!pte_none(*vmf->pte))
3194 goto release;
3196 ret = check_stable_address_space(vma->vm_mm);
3197 if (ret)
3198 goto release;
3200 /* Deliver the page fault to userland, check inside PT lock */
3201 if (userfaultfd_missing(vma)) {
3202 pte_unmap_unlock(vmf->pte, vmf->ptl);
3203 mem_cgroup_cancel_charge(page, memcg, false);
3204 put_page(page);
3205 return handle_userfault(vmf, VM_UFFD_MISSING);
3208 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3209 page_add_new_anon_rmap(page, vma, vmf->address, false);
3210 mem_cgroup_commit_charge(page, memcg, false, false);
3211 lru_cache_add_active_or_unevictable(page, vma);
3212 setpte:
3213 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3215 /* No need to invalidate - it was non-present before */
3216 update_mmu_cache(vma, vmf->address, vmf->pte);
3217 unlock:
3218 pte_unmap_unlock(vmf->pte, vmf->ptl);
3219 return ret;
3220 release:
3221 mem_cgroup_cancel_charge(page, memcg, false);
3222 put_page(page);
3223 goto unlock;
3224 oom_free_page:
3225 put_page(page);
3226 oom:
3227 return VM_FAULT_OOM;
3231 * The mmap_sem must have been held on entry, and may have been
3232 * released depending on flags and vma->vm_ops->fault() return value.
3233 * See filemap_fault() and __lock_page_retry().
3235 static vm_fault_t __do_fault(struct vm_fault *vmf)
3237 struct vm_area_struct *vma = vmf->vma;
3238 vm_fault_t ret;
3240 ret = vma->vm_ops->fault(vmf);
3241 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3242 VM_FAULT_DONE_COW)))
3243 return ret;
3245 if (unlikely(PageHWPoison(vmf->page))) {
3246 if (ret & VM_FAULT_LOCKED)
3247 unlock_page(vmf->page);
3248 put_page(vmf->page);
3249 vmf->page = NULL;
3250 return VM_FAULT_HWPOISON;
3253 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3254 lock_page(vmf->page);
3255 else
3256 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3258 return ret;
3262 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3263 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3264 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3265 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3267 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3269 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3272 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3274 struct vm_area_struct *vma = vmf->vma;
3276 if (!pmd_none(*vmf->pmd))
3277 goto map_pte;
3278 if (vmf->prealloc_pte) {
3279 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3280 if (unlikely(!pmd_none(*vmf->pmd))) {
3281 spin_unlock(vmf->ptl);
3282 goto map_pte;
3285 mm_inc_nr_ptes(vma->vm_mm);
3286 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3287 spin_unlock(vmf->ptl);
3288 vmf->prealloc_pte = NULL;
3289 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3290 return VM_FAULT_OOM;
3292 map_pte:
3294 * If a huge pmd materialized under us just retry later. Use
3295 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3296 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3297 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3298 * running immediately after a huge pmd fault in a different thread of
3299 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3300 * All we have to ensure is that it is a regular pmd that we can walk
3301 * with pte_offset_map() and we can do that through an atomic read in
3302 * C, which is what pmd_trans_unstable() provides.
3304 if (pmd_devmap_trans_unstable(vmf->pmd))
3305 return VM_FAULT_NOPAGE;
3308 * At this point we know that our vmf->pmd points to a page of ptes
3309 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3310 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3311 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3312 * be valid and we will re-check to make sure the vmf->pte isn't
3313 * pte_none() under vmf->ptl protection when we return to
3314 * alloc_set_pte().
3316 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3317 &vmf->ptl);
3318 return 0;
3321 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3323 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3324 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3325 unsigned long haddr)
3327 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3328 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3329 return false;
3330 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3331 return false;
3332 return true;
3335 static void deposit_prealloc_pte(struct vm_fault *vmf)
3337 struct vm_area_struct *vma = vmf->vma;
3339 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3341 * We are going to consume the prealloc table,
3342 * count that as nr_ptes.
3344 mm_inc_nr_ptes(vma->vm_mm);
3345 vmf->prealloc_pte = NULL;
3348 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3350 struct vm_area_struct *vma = vmf->vma;
3351 bool write = vmf->flags & FAULT_FLAG_WRITE;
3352 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3353 pmd_t entry;
3354 int i;
3355 vm_fault_t ret;
3357 if (!transhuge_vma_suitable(vma, haddr))
3358 return VM_FAULT_FALLBACK;
3360 ret = VM_FAULT_FALLBACK;
3361 page = compound_head(page);
3364 * Archs like ppc64 need additonal space to store information
3365 * related to pte entry. Use the preallocated table for that.
3367 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3368 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3369 if (!vmf->prealloc_pte)
3370 return VM_FAULT_OOM;
3371 smp_wmb(); /* See comment in __pte_alloc() */
3374 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3375 if (unlikely(!pmd_none(*vmf->pmd)))
3376 goto out;
3378 for (i = 0; i < HPAGE_PMD_NR; i++)
3379 flush_icache_page(vma, page + i);
3381 entry = mk_huge_pmd(page, vma->vm_page_prot);
3382 if (write)
3383 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3385 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3386 page_add_file_rmap(page, true);
3388 * deposit and withdraw with pmd lock held
3390 if (arch_needs_pgtable_deposit())
3391 deposit_prealloc_pte(vmf);
3393 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3395 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3397 /* fault is handled */
3398 ret = 0;
3399 count_vm_event(THP_FILE_MAPPED);
3400 out:
3401 spin_unlock(vmf->ptl);
3402 return ret;
3404 #else
3405 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3407 BUILD_BUG();
3408 return 0;
3410 #endif
3413 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3414 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3416 * @vmf: fault environment
3417 * @memcg: memcg to charge page (only for private mappings)
3418 * @page: page to map
3420 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3421 * return.
3423 * Target users are page handler itself and implementations of
3424 * vm_ops->map_pages.
3426 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3427 struct page *page)
3429 struct vm_area_struct *vma = vmf->vma;
3430 bool write = vmf->flags & FAULT_FLAG_WRITE;
3431 pte_t entry;
3432 vm_fault_t ret;
3434 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3435 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3436 /* THP on COW? */
3437 VM_BUG_ON_PAGE(memcg, page);
3439 ret = do_set_pmd(vmf, page);
3440 if (ret != VM_FAULT_FALLBACK)
3441 return ret;
3444 if (!vmf->pte) {
3445 ret = pte_alloc_one_map(vmf);
3446 if (ret)
3447 return ret;
3450 /* Re-check under ptl */
3451 if (unlikely(!pte_none(*vmf->pte)))
3452 return VM_FAULT_NOPAGE;
3454 flush_icache_page(vma, page);
3455 entry = mk_pte(page, vma->vm_page_prot);
3456 if (write)
3457 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3458 /* copy-on-write page */
3459 if (write && !(vma->vm_flags & VM_SHARED)) {
3460 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3461 page_add_new_anon_rmap(page, vma, vmf->address, false);
3462 mem_cgroup_commit_charge(page, memcg, false, false);
3463 lru_cache_add_active_or_unevictable(page, vma);
3464 } else {
3465 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3466 page_add_file_rmap(page, false);
3468 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3470 /* no need to invalidate: a not-present page won't be cached */
3471 update_mmu_cache(vma, vmf->address, vmf->pte);
3473 return 0;
3478 * finish_fault - finish page fault once we have prepared the page to fault
3480 * @vmf: structure describing the fault
3482 * This function handles all that is needed to finish a page fault once the
3483 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3484 * given page, adds reverse page mapping, handles memcg charges and LRU
3485 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3486 * error.
3488 * The function expects the page to be locked and on success it consumes a
3489 * reference of a page being mapped (for the PTE which maps it).
3491 vm_fault_t finish_fault(struct vm_fault *vmf)
3493 struct page *page;
3494 vm_fault_t ret = 0;
3496 /* Did we COW the page? */
3497 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3498 !(vmf->vma->vm_flags & VM_SHARED))
3499 page = vmf->cow_page;
3500 else
3501 page = vmf->page;
3504 * check even for read faults because we might have lost our CoWed
3505 * page
3507 if (!(vmf->vma->vm_flags & VM_SHARED))
3508 ret = check_stable_address_space(vmf->vma->vm_mm);
3509 if (!ret)
3510 ret = alloc_set_pte(vmf, vmf->memcg, page);
3511 if (vmf->pte)
3512 pte_unmap_unlock(vmf->pte, vmf->ptl);
3513 return ret;
3516 static unsigned long fault_around_bytes __read_mostly =
3517 rounddown_pow_of_two(65536);
3519 #ifdef CONFIG_DEBUG_FS
3520 static int fault_around_bytes_get(void *data, u64 *val)
3522 *val = fault_around_bytes;
3523 return 0;
3527 * fault_around_bytes must be rounded down to the nearest page order as it's
3528 * what do_fault_around() expects to see.
3530 static int fault_around_bytes_set(void *data, u64 val)
3532 if (val / PAGE_SIZE > PTRS_PER_PTE)
3533 return -EINVAL;
3534 if (val > PAGE_SIZE)
3535 fault_around_bytes = rounddown_pow_of_two(val);
3536 else
3537 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3538 return 0;
3540 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3541 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3543 static int __init fault_around_debugfs(void)
3545 void *ret;
3547 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3548 &fault_around_bytes_fops);
3549 if (!ret)
3550 pr_warn("Failed to create fault_around_bytes in debugfs");
3551 return 0;
3553 late_initcall(fault_around_debugfs);
3554 #endif
3557 * do_fault_around() tries to map few pages around the fault address. The hope
3558 * is that the pages will be needed soon and this will lower the number of
3559 * faults to handle.
3561 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3562 * not ready to be mapped: not up-to-date, locked, etc.
3564 * This function is called with the page table lock taken. In the split ptlock
3565 * case the page table lock only protects only those entries which belong to
3566 * the page table corresponding to the fault address.
3568 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3569 * only once.
3571 * fault_around_bytes defines how many bytes we'll try to map.
3572 * do_fault_around() expects it to be set to a power of two less than or equal
3573 * to PTRS_PER_PTE.
3575 * The virtual address of the area that we map is naturally aligned to
3576 * fault_around_bytes rounded down to the machine page size
3577 * (and therefore to page order). This way it's easier to guarantee
3578 * that we don't cross page table boundaries.
3580 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3582 unsigned long address = vmf->address, nr_pages, mask;
3583 pgoff_t start_pgoff = vmf->pgoff;
3584 pgoff_t end_pgoff;
3585 int off;
3586 vm_fault_t ret = 0;
3588 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3589 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3591 vmf->address = max(address & mask, vmf->vma->vm_start);
3592 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3593 start_pgoff -= off;
3596 * end_pgoff is either the end of the page table, the end of
3597 * the vma or nr_pages from start_pgoff, depending what is nearest.
3599 end_pgoff = start_pgoff -
3600 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3601 PTRS_PER_PTE - 1;
3602 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3603 start_pgoff + nr_pages - 1);
3605 if (pmd_none(*vmf->pmd)) {
3606 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3607 vmf->address);
3608 if (!vmf->prealloc_pte)
3609 goto out;
3610 smp_wmb(); /* See comment in __pte_alloc() */
3613 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3615 /* Huge page is mapped? Page fault is solved */
3616 if (pmd_trans_huge(*vmf->pmd)) {
3617 ret = VM_FAULT_NOPAGE;
3618 goto out;
3621 /* ->map_pages() haven't done anything useful. Cold page cache? */
3622 if (!vmf->pte)
3623 goto out;
3625 /* check if the page fault is solved */
3626 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3627 if (!pte_none(*vmf->pte))
3628 ret = VM_FAULT_NOPAGE;
3629 pte_unmap_unlock(vmf->pte, vmf->ptl);
3630 out:
3631 vmf->address = address;
3632 vmf->pte = NULL;
3633 return ret;
3636 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3638 struct vm_area_struct *vma = vmf->vma;
3639 vm_fault_t ret = 0;
3642 * Let's call ->map_pages() first and use ->fault() as fallback
3643 * if page by the offset is not ready to be mapped (cold cache or
3644 * something).
3646 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3647 ret = do_fault_around(vmf);
3648 if (ret)
3649 return ret;
3652 ret = __do_fault(vmf);
3653 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3654 return ret;
3656 ret |= finish_fault(vmf);
3657 unlock_page(vmf->page);
3658 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3659 put_page(vmf->page);
3660 return ret;
3663 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3665 struct vm_area_struct *vma = vmf->vma;
3666 vm_fault_t ret;
3668 if (unlikely(anon_vma_prepare(vma)))
3669 return VM_FAULT_OOM;
3671 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3672 if (!vmf->cow_page)
3673 return VM_FAULT_OOM;
3675 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3676 &vmf->memcg, false)) {
3677 put_page(vmf->cow_page);
3678 return VM_FAULT_OOM;
3681 ret = __do_fault(vmf);
3682 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3683 goto uncharge_out;
3684 if (ret & VM_FAULT_DONE_COW)
3685 return ret;
3687 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3688 __SetPageUptodate(vmf->cow_page);
3690 ret |= finish_fault(vmf);
3691 unlock_page(vmf->page);
3692 put_page(vmf->page);
3693 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3694 goto uncharge_out;
3695 return ret;
3696 uncharge_out:
3697 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3698 put_page(vmf->cow_page);
3699 return ret;
3702 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3704 struct vm_area_struct *vma = vmf->vma;
3705 vm_fault_t ret, tmp;
3707 ret = __do_fault(vmf);
3708 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3709 return ret;
3712 * Check if the backing address space wants to know that the page is
3713 * about to become writable
3715 if (vma->vm_ops->page_mkwrite) {
3716 unlock_page(vmf->page);
3717 tmp = do_page_mkwrite(vmf);
3718 if (unlikely(!tmp ||
3719 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3720 put_page(vmf->page);
3721 return tmp;
3725 ret |= finish_fault(vmf);
3726 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3727 VM_FAULT_RETRY))) {
3728 unlock_page(vmf->page);
3729 put_page(vmf->page);
3730 return ret;
3733 fault_dirty_shared_page(vma, vmf->page);
3734 return ret;
3738 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3739 * but allow concurrent faults).
3740 * The mmap_sem may have been released depending on flags and our
3741 * return value. See filemap_fault() and __lock_page_or_retry().
3743 static vm_fault_t do_fault(struct vm_fault *vmf)
3745 struct vm_area_struct *vma = vmf->vma;
3746 vm_fault_t ret;
3748 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3749 if (!vma->vm_ops->fault)
3750 ret = VM_FAULT_SIGBUS;
3751 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3752 ret = do_read_fault(vmf);
3753 else if (!(vma->vm_flags & VM_SHARED))
3754 ret = do_cow_fault(vmf);
3755 else
3756 ret = do_shared_fault(vmf);
3758 /* preallocated pagetable is unused: free it */
3759 if (vmf->prealloc_pte) {
3760 pte_free(vma->vm_mm, vmf->prealloc_pte);
3761 vmf->prealloc_pte = NULL;
3763 return ret;
3766 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3767 unsigned long addr, int page_nid,
3768 int *flags)
3770 get_page(page);
3772 count_vm_numa_event(NUMA_HINT_FAULTS);
3773 if (page_nid == numa_node_id()) {
3774 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3775 *flags |= TNF_FAULT_LOCAL;
3778 return mpol_misplaced(page, vma, addr);
3781 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3783 struct vm_area_struct *vma = vmf->vma;
3784 struct page *page = NULL;
3785 int page_nid = -1;
3786 int last_cpupid;
3787 int target_nid;
3788 bool migrated = false;
3789 pte_t pte;
3790 bool was_writable = pte_savedwrite(vmf->orig_pte);
3791 int flags = 0;
3794 * The "pte" at this point cannot be used safely without
3795 * validation through pte_unmap_same(). It's of NUMA type but
3796 * the pfn may be screwed if the read is non atomic.
3798 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3799 spin_lock(vmf->ptl);
3800 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3801 pte_unmap_unlock(vmf->pte, vmf->ptl);
3802 goto out;
3806 * Make it present again, Depending on how arch implementes non
3807 * accessible ptes, some can allow access by kernel mode.
3809 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3810 pte = pte_modify(pte, vma->vm_page_prot);
3811 pte = pte_mkyoung(pte);
3812 if (was_writable)
3813 pte = pte_mkwrite(pte);
3814 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3815 update_mmu_cache(vma, vmf->address, vmf->pte);
3817 page = vm_normal_page(vma, vmf->address, pte);
3818 if (!page) {
3819 pte_unmap_unlock(vmf->pte, vmf->ptl);
3820 return 0;
3823 /* TODO: handle PTE-mapped THP */
3824 if (PageCompound(page)) {
3825 pte_unmap_unlock(vmf->pte, vmf->ptl);
3826 return 0;
3830 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3831 * much anyway since they can be in shared cache state. This misses
3832 * the case where a mapping is writable but the process never writes
3833 * to it but pte_write gets cleared during protection updates and
3834 * pte_dirty has unpredictable behaviour between PTE scan updates,
3835 * background writeback, dirty balancing and application behaviour.
3837 if (!pte_write(pte))
3838 flags |= TNF_NO_GROUP;
3841 * Flag if the page is shared between multiple address spaces. This
3842 * is later used when determining whether to group tasks together
3844 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3845 flags |= TNF_SHARED;
3847 last_cpupid = page_cpupid_last(page);
3848 page_nid = page_to_nid(page);
3849 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3850 &flags);
3851 pte_unmap_unlock(vmf->pte, vmf->ptl);
3852 if (target_nid == -1) {
3853 put_page(page);
3854 goto out;
3857 /* Migrate to the requested node */
3858 migrated = migrate_misplaced_page(page, vma, target_nid);
3859 if (migrated) {
3860 page_nid = target_nid;
3861 flags |= TNF_MIGRATED;
3862 } else
3863 flags |= TNF_MIGRATE_FAIL;
3865 out:
3866 if (page_nid != -1)
3867 task_numa_fault(last_cpupid, page_nid, 1, flags);
3868 return 0;
3871 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3873 if (vma_is_anonymous(vmf->vma))
3874 return do_huge_pmd_anonymous_page(vmf);
3875 if (vmf->vma->vm_ops->huge_fault)
3876 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3877 return VM_FAULT_FALLBACK;
3880 /* `inline' is required to avoid gcc 4.1.2 build error */
3881 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3883 if (vma_is_anonymous(vmf->vma))
3884 return do_huge_pmd_wp_page(vmf, orig_pmd);
3885 if (vmf->vma->vm_ops->huge_fault)
3886 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3888 /* COW handled on pte level: split pmd */
3889 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3890 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3892 return VM_FAULT_FALLBACK;
3895 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3897 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3900 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3903 /* No support for anonymous transparent PUD pages yet */
3904 if (vma_is_anonymous(vmf->vma))
3905 return VM_FAULT_FALLBACK;
3906 if (vmf->vma->vm_ops->huge_fault)
3907 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3908 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3909 return VM_FAULT_FALLBACK;
3912 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3914 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3915 /* No support for anonymous transparent PUD pages yet */
3916 if (vma_is_anonymous(vmf->vma))
3917 return VM_FAULT_FALLBACK;
3918 if (vmf->vma->vm_ops->huge_fault)
3919 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3920 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3921 return VM_FAULT_FALLBACK;
3925 * These routines also need to handle stuff like marking pages dirty
3926 * and/or accessed for architectures that don't do it in hardware (most
3927 * RISC architectures). The early dirtying is also good on the i386.
3929 * There is also a hook called "update_mmu_cache()" that architectures
3930 * with external mmu caches can use to update those (ie the Sparc or
3931 * PowerPC hashed page tables that act as extended TLBs).
3933 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3934 * concurrent faults).
3936 * The mmap_sem may have been released depending on flags and our return value.
3937 * See filemap_fault() and __lock_page_or_retry().
3939 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3941 pte_t entry;
3943 if (unlikely(pmd_none(*vmf->pmd))) {
3945 * Leave __pte_alloc() until later: because vm_ops->fault may
3946 * want to allocate huge page, and if we expose page table
3947 * for an instant, it will be difficult to retract from
3948 * concurrent faults and from rmap lookups.
3950 vmf->pte = NULL;
3951 } else {
3952 /* See comment in pte_alloc_one_map() */
3953 if (pmd_devmap_trans_unstable(vmf->pmd))
3954 return 0;
3956 * A regular pmd is established and it can't morph into a huge
3957 * pmd from under us anymore at this point because we hold the
3958 * mmap_sem read mode and khugepaged takes it in write mode.
3959 * So now it's safe to run pte_offset_map().
3961 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3962 vmf->orig_pte = *vmf->pte;
3965 * some architectures can have larger ptes than wordsize,
3966 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3967 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3968 * accesses. The code below just needs a consistent view
3969 * for the ifs and we later double check anyway with the
3970 * ptl lock held. So here a barrier will do.
3972 barrier();
3973 if (pte_none(vmf->orig_pte)) {
3974 pte_unmap(vmf->pte);
3975 vmf->pte = NULL;
3979 if (!vmf->pte) {
3980 if (vma_is_anonymous(vmf->vma))
3981 return do_anonymous_page(vmf);
3982 else
3983 return do_fault(vmf);
3986 if (!pte_present(vmf->orig_pte))
3987 return do_swap_page(vmf);
3989 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3990 return do_numa_page(vmf);
3992 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3993 spin_lock(vmf->ptl);
3994 entry = vmf->orig_pte;
3995 if (unlikely(!pte_same(*vmf->pte, entry)))
3996 goto unlock;
3997 if (vmf->flags & FAULT_FLAG_WRITE) {
3998 if (!pte_write(entry))
3999 return do_wp_page(vmf);
4000 entry = pte_mkdirty(entry);
4002 entry = pte_mkyoung(entry);
4003 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4004 vmf->flags & FAULT_FLAG_WRITE)) {
4005 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4006 } else {
4008 * This is needed only for protection faults but the arch code
4009 * is not yet telling us if this is a protection fault or not.
4010 * This still avoids useless tlb flushes for .text page faults
4011 * with threads.
4013 if (vmf->flags & FAULT_FLAG_WRITE)
4014 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4016 unlock:
4017 pte_unmap_unlock(vmf->pte, vmf->ptl);
4018 return 0;
4022 * By the time we get here, we already hold the mm semaphore
4024 * The mmap_sem may have been released depending on flags and our
4025 * return value. See filemap_fault() and __lock_page_or_retry().
4027 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4028 unsigned long address, unsigned int flags)
4030 struct vm_fault vmf = {
4031 .vma = vma,
4032 .address = address & PAGE_MASK,
4033 .flags = flags,
4034 .pgoff = linear_page_index(vma, address),
4035 .gfp_mask = __get_fault_gfp_mask(vma),
4037 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4038 struct mm_struct *mm = vma->vm_mm;
4039 pgd_t *pgd;
4040 p4d_t *p4d;
4041 vm_fault_t ret;
4043 pgd = pgd_offset(mm, address);
4044 p4d = p4d_alloc(mm, pgd, address);
4045 if (!p4d)
4046 return VM_FAULT_OOM;
4048 vmf.pud = pud_alloc(mm, p4d, address);
4049 if (!vmf.pud)
4050 return VM_FAULT_OOM;
4051 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4052 ret = create_huge_pud(&vmf);
4053 if (!(ret & VM_FAULT_FALLBACK))
4054 return ret;
4055 } else {
4056 pud_t orig_pud = *vmf.pud;
4058 barrier();
4059 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4061 /* NUMA case for anonymous PUDs would go here */
4063 if (dirty && !pud_write(orig_pud)) {
4064 ret = wp_huge_pud(&vmf, orig_pud);
4065 if (!(ret & VM_FAULT_FALLBACK))
4066 return ret;
4067 } else {
4068 huge_pud_set_accessed(&vmf, orig_pud);
4069 return 0;
4074 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4075 if (!vmf.pmd)
4076 return VM_FAULT_OOM;
4077 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4078 ret = create_huge_pmd(&vmf);
4079 if (!(ret & VM_FAULT_FALLBACK))
4080 return ret;
4081 } else {
4082 pmd_t orig_pmd = *vmf.pmd;
4084 barrier();
4085 if (unlikely(is_swap_pmd(orig_pmd))) {
4086 VM_BUG_ON(thp_migration_supported() &&
4087 !is_pmd_migration_entry(orig_pmd));
4088 if (is_pmd_migration_entry(orig_pmd))
4089 pmd_migration_entry_wait(mm, vmf.pmd);
4090 return 0;
4092 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4093 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4094 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4096 if (dirty && !pmd_write(orig_pmd)) {
4097 ret = wp_huge_pmd(&vmf, orig_pmd);
4098 if (!(ret & VM_FAULT_FALLBACK))
4099 return ret;
4100 } else {
4101 huge_pmd_set_accessed(&vmf, orig_pmd);
4102 return 0;
4107 return handle_pte_fault(&vmf);
4111 * By the time we get here, we already hold the mm semaphore
4113 * The mmap_sem may have been released depending on flags and our
4114 * return value. See filemap_fault() and __lock_page_or_retry().
4116 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4117 unsigned int flags)
4119 vm_fault_t ret;
4121 __set_current_state(TASK_RUNNING);
4123 count_vm_event(PGFAULT);
4124 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4126 /* do counter updates before entering really critical section. */
4127 check_sync_rss_stat(current);
4129 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4130 flags & FAULT_FLAG_INSTRUCTION,
4131 flags & FAULT_FLAG_REMOTE))
4132 return VM_FAULT_SIGSEGV;
4135 * Enable the memcg OOM handling for faults triggered in user
4136 * space. Kernel faults are handled more gracefully.
4138 if (flags & FAULT_FLAG_USER)
4139 mem_cgroup_enter_user_fault();
4141 if (unlikely(is_vm_hugetlb_page(vma)))
4142 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4143 else
4144 ret = __handle_mm_fault(vma, address, flags);
4146 if (flags & FAULT_FLAG_USER) {
4147 mem_cgroup_exit_user_fault();
4149 * The task may have entered a memcg OOM situation but
4150 * if the allocation error was handled gracefully (no
4151 * VM_FAULT_OOM), there is no need to kill anything.
4152 * Just clean up the OOM state peacefully.
4154 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4155 mem_cgroup_oom_synchronize(false);
4158 return ret;
4160 EXPORT_SYMBOL_GPL(handle_mm_fault);
4162 #ifndef __PAGETABLE_P4D_FOLDED
4164 * Allocate p4d page table.
4165 * We've already handled the fast-path in-line.
4167 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4169 p4d_t *new = p4d_alloc_one(mm, address);
4170 if (!new)
4171 return -ENOMEM;
4173 smp_wmb(); /* See comment in __pte_alloc */
4175 spin_lock(&mm->page_table_lock);
4176 if (pgd_present(*pgd)) /* Another has populated it */
4177 p4d_free(mm, new);
4178 else
4179 pgd_populate(mm, pgd, new);
4180 spin_unlock(&mm->page_table_lock);
4181 return 0;
4183 #endif /* __PAGETABLE_P4D_FOLDED */
4185 #ifndef __PAGETABLE_PUD_FOLDED
4187 * Allocate page upper directory.
4188 * We've already handled the fast-path in-line.
4190 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4192 pud_t *new = pud_alloc_one(mm, address);
4193 if (!new)
4194 return -ENOMEM;
4196 smp_wmb(); /* See comment in __pte_alloc */
4198 spin_lock(&mm->page_table_lock);
4199 #ifndef __ARCH_HAS_5LEVEL_HACK
4200 if (!p4d_present(*p4d)) {
4201 mm_inc_nr_puds(mm);
4202 p4d_populate(mm, p4d, new);
4203 } else /* Another has populated it */
4204 pud_free(mm, new);
4205 #else
4206 if (!pgd_present(*p4d)) {
4207 mm_inc_nr_puds(mm);
4208 pgd_populate(mm, p4d, new);
4209 } else /* Another has populated it */
4210 pud_free(mm, new);
4211 #endif /* __ARCH_HAS_5LEVEL_HACK */
4212 spin_unlock(&mm->page_table_lock);
4213 return 0;
4215 #endif /* __PAGETABLE_PUD_FOLDED */
4217 #ifndef __PAGETABLE_PMD_FOLDED
4219 * Allocate page middle directory.
4220 * We've already handled the fast-path in-line.
4222 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4224 spinlock_t *ptl;
4225 pmd_t *new = pmd_alloc_one(mm, address);
4226 if (!new)
4227 return -ENOMEM;
4229 smp_wmb(); /* See comment in __pte_alloc */
4231 ptl = pud_lock(mm, pud);
4232 #ifndef __ARCH_HAS_4LEVEL_HACK
4233 if (!pud_present(*pud)) {
4234 mm_inc_nr_pmds(mm);
4235 pud_populate(mm, pud, new);
4236 } else /* Another has populated it */
4237 pmd_free(mm, new);
4238 #else
4239 if (!pgd_present(*pud)) {
4240 mm_inc_nr_pmds(mm);
4241 pgd_populate(mm, pud, new);
4242 } else /* Another has populated it */
4243 pmd_free(mm, new);
4244 #endif /* __ARCH_HAS_4LEVEL_HACK */
4245 spin_unlock(ptl);
4246 return 0;
4248 #endif /* __PAGETABLE_PMD_FOLDED */
4250 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4251 unsigned long *start, unsigned long *end,
4252 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4254 pgd_t *pgd;
4255 p4d_t *p4d;
4256 pud_t *pud;
4257 pmd_t *pmd;
4258 pte_t *ptep;
4260 pgd = pgd_offset(mm, address);
4261 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4262 goto out;
4264 p4d = p4d_offset(pgd, address);
4265 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4266 goto out;
4268 pud = pud_offset(p4d, address);
4269 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4270 goto out;
4272 pmd = pmd_offset(pud, address);
4273 VM_BUG_ON(pmd_trans_huge(*pmd));
4275 if (pmd_huge(*pmd)) {
4276 if (!pmdpp)
4277 goto out;
4279 if (start && end) {
4280 *start = address & PMD_MASK;
4281 *end = *start + PMD_SIZE;
4282 mmu_notifier_invalidate_range_start(mm, *start, *end);
4284 *ptlp = pmd_lock(mm, pmd);
4285 if (pmd_huge(*pmd)) {
4286 *pmdpp = pmd;
4287 return 0;
4289 spin_unlock(*ptlp);
4290 if (start && end)
4291 mmu_notifier_invalidate_range_end(mm, *start, *end);
4294 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4295 goto out;
4297 if (start && end) {
4298 *start = address & PAGE_MASK;
4299 *end = *start + PAGE_SIZE;
4300 mmu_notifier_invalidate_range_start(mm, *start, *end);
4302 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4303 if (!pte_present(*ptep))
4304 goto unlock;
4305 *ptepp = ptep;
4306 return 0;
4307 unlock:
4308 pte_unmap_unlock(ptep, *ptlp);
4309 if (start && end)
4310 mmu_notifier_invalidate_range_end(mm, *start, *end);
4311 out:
4312 return -EINVAL;
4315 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4316 pte_t **ptepp, spinlock_t **ptlp)
4318 int res;
4320 /* (void) is needed to make gcc happy */
4321 (void) __cond_lock(*ptlp,
4322 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4323 ptepp, NULL, ptlp)));
4324 return res;
4327 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4328 unsigned long *start, unsigned long *end,
4329 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4331 int res;
4333 /* (void) is needed to make gcc happy */
4334 (void) __cond_lock(*ptlp,
4335 !(res = __follow_pte_pmd(mm, address, start, end,
4336 ptepp, pmdpp, ptlp)));
4337 return res;
4339 EXPORT_SYMBOL(follow_pte_pmd);
4342 * follow_pfn - look up PFN at a user virtual address
4343 * @vma: memory mapping
4344 * @address: user virtual address
4345 * @pfn: location to store found PFN
4347 * Only IO mappings and raw PFN mappings are allowed.
4349 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4351 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4352 unsigned long *pfn)
4354 int ret = -EINVAL;
4355 spinlock_t *ptl;
4356 pte_t *ptep;
4358 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4359 return ret;
4361 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4362 if (ret)
4363 return ret;
4364 *pfn = pte_pfn(*ptep);
4365 pte_unmap_unlock(ptep, ptl);
4366 return 0;
4368 EXPORT_SYMBOL(follow_pfn);
4370 #ifdef CONFIG_HAVE_IOREMAP_PROT
4371 int follow_phys(struct vm_area_struct *vma,
4372 unsigned long address, unsigned int flags,
4373 unsigned long *prot, resource_size_t *phys)
4375 int ret = -EINVAL;
4376 pte_t *ptep, pte;
4377 spinlock_t *ptl;
4379 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4380 goto out;
4382 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4383 goto out;
4384 pte = *ptep;
4386 if ((flags & FOLL_WRITE) && !pte_write(pte))
4387 goto unlock;
4389 *prot = pgprot_val(pte_pgprot(pte));
4390 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4392 ret = 0;
4393 unlock:
4394 pte_unmap_unlock(ptep, ptl);
4395 out:
4396 return ret;
4399 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4400 void *buf, int len, int write)
4402 resource_size_t phys_addr;
4403 unsigned long prot = 0;
4404 void __iomem *maddr;
4405 int offset = addr & (PAGE_SIZE-1);
4407 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4408 return -EINVAL;
4410 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4411 if (!maddr)
4412 return -ENOMEM;
4414 if (write)
4415 memcpy_toio(maddr + offset, buf, len);
4416 else
4417 memcpy_fromio(buf, maddr + offset, len);
4418 iounmap(maddr);
4420 return len;
4422 EXPORT_SYMBOL_GPL(generic_access_phys);
4423 #endif
4426 * Access another process' address space as given in mm. If non-NULL, use the
4427 * given task for page fault accounting.
4429 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4430 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4432 struct vm_area_struct *vma;
4433 void *old_buf = buf;
4434 int write = gup_flags & FOLL_WRITE;
4436 down_read(&mm->mmap_sem);
4437 /* ignore errors, just check how much was successfully transferred */
4438 while (len) {
4439 int bytes, ret, offset;
4440 void *maddr;
4441 struct page *page = NULL;
4443 ret = get_user_pages_remote(tsk, mm, addr, 1,
4444 gup_flags, &page, &vma, NULL);
4445 if (ret <= 0) {
4446 #ifndef CONFIG_HAVE_IOREMAP_PROT
4447 break;
4448 #else
4450 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4451 * we can access using slightly different code.
4453 vma = find_vma(mm, addr);
4454 if (!vma || vma->vm_start > addr)
4455 break;
4456 if (vma->vm_ops && vma->vm_ops->access)
4457 ret = vma->vm_ops->access(vma, addr, buf,
4458 len, write);
4459 if (ret <= 0)
4460 break;
4461 bytes = ret;
4462 #endif
4463 } else {
4464 bytes = len;
4465 offset = addr & (PAGE_SIZE-1);
4466 if (bytes > PAGE_SIZE-offset)
4467 bytes = PAGE_SIZE-offset;
4469 maddr = kmap(page);
4470 if (write) {
4471 copy_to_user_page(vma, page, addr,
4472 maddr + offset, buf, bytes);
4473 set_page_dirty_lock(page);
4474 } else {
4475 copy_from_user_page(vma, page, addr,
4476 buf, maddr + offset, bytes);
4478 kunmap(page);
4479 put_page(page);
4481 len -= bytes;
4482 buf += bytes;
4483 addr += bytes;
4485 up_read(&mm->mmap_sem);
4487 return buf - old_buf;
4491 * access_remote_vm - access another process' address space
4492 * @mm: the mm_struct of the target address space
4493 * @addr: start address to access
4494 * @buf: source or destination buffer
4495 * @len: number of bytes to transfer
4496 * @gup_flags: flags modifying lookup behaviour
4498 * The caller must hold a reference on @mm.
4500 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4501 void *buf, int len, unsigned int gup_flags)
4503 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4507 * Access another process' address space.
4508 * Source/target buffer must be kernel space,
4509 * Do not walk the page table directly, use get_user_pages
4511 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4512 void *buf, int len, unsigned int gup_flags)
4514 struct mm_struct *mm;
4515 int ret;
4517 mm = get_task_mm(tsk);
4518 if (!mm)
4519 return 0;
4521 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4523 mmput(mm);
4525 return ret;
4527 EXPORT_SYMBOL_GPL(access_process_vm);
4530 * Print the name of a VMA.
4532 void print_vma_addr(char *prefix, unsigned long ip)
4534 struct mm_struct *mm = current->mm;
4535 struct vm_area_struct *vma;
4538 * we might be running from an atomic context so we cannot sleep
4540 if (!down_read_trylock(&mm->mmap_sem))
4541 return;
4543 vma = find_vma(mm, ip);
4544 if (vma && vma->vm_file) {
4545 struct file *f = vma->vm_file;
4546 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4547 if (buf) {
4548 char *p;
4550 p = file_path(f, buf, PAGE_SIZE);
4551 if (IS_ERR(p))
4552 p = "?";
4553 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4554 vma->vm_start,
4555 vma->vm_end - vma->vm_start);
4556 free_page((unsigned long)buf);
4559 up_read(&mm->mmap_sem);
4562 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4563 void __might_fault(const char *file, int line)
4566 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4567 * holding the mmap_sem, this is safe because kernel memory doesn't
4568 * get paged out, therefore we'll never actually fault, and the
4569 * below annotations will generate false positives.
4571 if (uaccess_kernel())
4572 return;
4573 if (pagefault_disabled())
4574 return;
4575 __might_sleep(file, line, 0);
4576 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4577 if (current->mm)
4578 might_lock_read(&current->mm->mmap_sem);
4579 #endif
4581 EXPORT_SYMBOL(__might_fault);
4582 #endif
4584 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4586 * Process all subpages of the specified huge page with the specified
4587 * operation. The target subpage will be processed last to keep its
4588 * cache lines hot.
4590 static inline void process_huge_page(
4591 unsigned long addr_hint, unsigned int pages_per_huge_page,
4592 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4593 void *arg)
4595 int i, n, base, l;
4596 unsigned long addr = addr_hint &
4597 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4599 /* Process target subpage last to keep its cache lines hot */
4600 might_sleep();
4601 n = (addr_hint - addr) / PAGE_SIZE;
4602 if (2 * n <= pages_per_huge_page) {
4603 /* If target subpage in first half of huge page */
4604 base = 0;
4605 l = n;
4606 /* Process subpages at the end of huge page */
4607 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4608 cond_resched();
4609 process_subpage(addr + i * PAGE_SIZE, i, arg);
4611 } else {
4612 /* If target subpage in second half of huge page */
4613 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4614 l = pages_per_huge_page - n;
4615 /* Process subpages at the begin of huge page */
4616 for (i = 0; i < base; i++) {
4617 cond_resched();
4618 process_subpage(addr + i * PAGE_SIZE, i, arg);
4622 * Process remaining subpages in left-right-left-right pattern
4623 * towards the target subpage
4625 for (i = 0; i < l; i++) {
4626 int left_idx = base + i;
4627 int right_idx = base + 2 * l - 1 - i;
4629 cond_resched();
4630 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4631 cond_resched();
4632 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4636 static void clear_gigantic_page(struct page *page,
4637 unsigned long addr,
4638 unsigned int pages_per_huge_page)
4640 int i;
4641 struct page *p = page;
4643 might_sleep();
4644 for (i = 0; i < pages_per_huge_page;
4645 i++, p = mem_map_next(p, page, i)) {
4646 cond_resched();
4647 clear_user_highpage(p, addr + i * PAGE_SIZE);
4651 static void clear_subpage(unsigned long addr, int idx, void *arg)
4653 struct page *page = arg;
4655 clear_user_highpage(page + idx, addr);
4658 void clear_huge_page(struct page *page,
4659 unsigned long addr_hint, unsigned int pages_per_huge_page)
4661 unsigned long addr = addr_hint &
4662 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4664 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4665 clear_gigantic_page(page, addr, pages_per_huge_page);
4666 return;
4669 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4672 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4673 unsigned long addr,
4674 struct vm_area_struct *vma,
4675 unsigned int pages_per_huge_page)
4677 int i;
4678 struct page *dst_base = dst;
4679 struct page *src_base = src;
4681 for (i = 0; i < pages_per_huge_page; ) {
4682 cond_resched();
4683 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4685 i++;
4686 dst = mem_map_next(dst, dst_base, i);
4687 src = mem_map_next(src, src_base, i);
4691 struct copy_subpage_arg {
4692 struct page *dst;
4693 struct page *src;
4694 struct vm_area_struct *vma;
4697 static void copy_subpage(unsigned long addr, int idx, void *arg)
4699 struct copy_subpage_arg *copy_arg = arg;
4701 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4702 addr, copy_arg->vma);
4705 void copy_user_huge_page(struct page *dst, struct page *src,
4706 unsigned long addr_hint, struct vm_area_struct *vma,
4707 unsigned int pages_per_huge_page)
4709 unsigned long addr = addr_hint &
4710 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4711 struct copy_subpage_arg arg = {
4712 .dst = dst,
4713 .src = src,
4714 .vma = vma,
4717 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4718 copy_user_gigantic_page(dst, src, addr, vma,
4719 pages_per_huge_page);
4720 return;
4723 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4726 long copy_huge_page_from_user(struct page *dst_page,
4727 const void __user *usr_src,
4728 unsigned int pages_per_huge_page,
4729 bool allow_pagefault)
4731 void *src = (void *)usr_src;
4732 void *page_kaddr;
4733 unsigned long i, rc = 0;
4734 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4736 for (i = 0; i < pages_per_huge_page; i++) {
4737 if (allow_pagefault)
4738 page_kaddr = kmap(dst_page + i);
4739 else
4740 page_kaddr = kmap_atomic(dst_page + i);
4741 rc = copy_from_user(page_kaddr,
4742 (const void __user *)(src + i * PAGE_SIZE),
4743 PAGE_SIZE);
4744 if (allow_pagefault)
4745 kunmap(dst_page + i);
4746 else
4747 kunmap_atomic(page_kaddr);
4749 ret_val -= (PAGE_SIZE - rc);
4750 if (rc)
4751 break;
4753 cond_resched();
4755 return ret_val;
4757 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4759 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4761 static struct kmem_cache *page_ptl_cachep;
4763 void __init ptlock_cache_init(void)
4765 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4766 SLAB_PANIC, NULL);
4769 bool ptlock_alloc(struct page *page)
4771 spinlock_t *ptl;
4773 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4774 if (!ptl)
4775 return false;
4776 page->ptl = ptl;
4777 return true;
4780 void ptlock_free(struct page *page)
4782 kmem_cache_free(page_ptl_cachep, page->ptl);
4784 #endif