2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
7 #include <linux/sched.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/security.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/mman.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/userfaultfd_k.h>
18 #include <asm/sections.h>
19 #include <linux/uaccess.h>
23 static inline int is_kernel_rodata(unsigned long addr
)
25 return addr
>= (unsigned long)__start_rodata
&&
26 addr
< (unsigned long)__end_rodata
;
30 * kfree_const - conditionally free memory
31 * @x: pointer to the memory
33 * Function calls kfree only if @x is not in .rodata section.
35 void kfree_const(const void *x
)
37 if (!is_kernel_rodata((unsigned long)x
))
40 EXPORT_SYMBOL(kfree_const
);
43 * kstrdup - allocate space for and copy an existing string
44 * @s: the string to duplicate
45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
47 char *kstrdup(const char *s
, gfp_t gfp
)
56 buf
= kmalloc_track_caller(len
, gfp
);
61 EXPORT_SYMBOL(kstrdup
);
64 * kstrdup_const - conditionally duplicate an existing const string
65 * @s: the string to duplicate
66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
68 * Function returns source string if it is in .rodata section otherwise it
69 * fallbacks to kstrdup.
70 * Strings allocated by kstrdup_const should be freed by kfree_const.
72 const char *kstrdup_const(const char *s
, gfp_t gfp
)
74 if (is_kernel_rodata((unsigned long)s
))
77 return kstrdup(s
, gfp
);
79 EXPORT_SYMBOL(kstrdup_const
);
82 * kstrndup - allocate space for and copy an existing string
83 * @s: the string to duplicate
84 * @max: read at most @max chars from @s
85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
87 * Note: Use kmemdup_nul() instead if the size is known exactly.
89 char *kstrndup(const char *s
, size_t max
, gfp_t gfp
)
97 len
= strnlen(s
, max
);
98 buf
= kmalloc_track_caller(len
+1, gfp
);
105 EXPORT_SYMBOL(kstrndup
);
108 * kmemdup - duplicate region of memory
110 * @src: memory region to duplicate
111 * @len: memory region length
112 * @gfp: GFP mask to use
114 void *kmemdup(const void *src
, size_t len
, gfp_t gfp
)
118 p
= kmalloc_track_caller(len
, gfp
);
123 EXPORT_SYMBOL(kmemdup
);
126 * kmemdup_nul - Create a NUL-terminated string from unterminated data
127 * @s: The data to stringify
128 * @len: The size of the data
129 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
131 char *kmemdup_nul(const char *s
, size_t len
, gfp_t gfp
)
138 buf
= kmalloc_track_caller(len
+ 1, gfp
);
145 EXPORT_SYMBOL(kmemdup_nul
);
148 * memdup_user - duplicate memory region from user space
150 * @src: source address in user space
151 * @len: number of bytes to copy
153 * Returns an ERR_PTR() on failure. Result is physically
154 * contiguous, to be freed by kfree().
156 void *memdup_user(const void __user
*src
, size_t len
)
160 p
= kmalloc_track_caller(len
, GFP_USER
);
162 return ERR_PTR(-ENOMEM
);
164 if (copy_from_user(p
, src
, len
)) {
166 return ERR_PTR(-EFAULT
);
171 EXPORT_SYMBOL(memdup_user
);
174 * vmemdup_user - duplicate memory region from user space
176 * @src: source address in user space
177 * @len: number of bytes to copy
179 * Returns an ERR_PTR() on failure. Result may be not
180 * physically contiguous. Use kvfree() to free.
182 void *vmemdup_user(const void __user
*src
, size_t len
)
186 p
= kvmalloc(len
, GFP_USER
);
188 return ERR_PTR(-ENOMEM
);
190 if (copy_from_user(p
, src
, len
)) {
192 return ERR_PTR(-EFAULT
);
197 EXPORT_SYMBOL(vmemdup_user
);
200 * strndup_user - duplicate an existing string from user space
201 * @s: The string to duplicate
202 * @n: Maximum number of bytes to copy, including the trailing NUL.
204 char *strndup_user(const char __user
*s
, long n
)
209 length
= strnlen_user(s
, n
);
212 return ERR_PTR(-EFAULT
);
215 return ERR_PTR(-EINVAL
);
217 p
= memdup_user(s
, length
);
222 p
[length
- 1] = '\0';
226 EXPORT_SYMBOL(strndup_user
);
229 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
231 * @src: source address in user space
232 * @len: number of bytes to copy
234 * Returns an ERR_PTR() on failure.
236 void *memdup_user_nul(const void __user
*src
, size_t len
)
241 * Always use GFP_KERNEL, since copy_from_user() can sleep and
242 * cause pagefault, which makes it pointless to use GFP_NOFS
245 p
= kmalloc_track_caller(len
+ 1, GFP_KERNEL
);
247 return ERR_PTR(-ENOMEM
);
249 if (copy_from_user(p
, src
, len
)) {
251 return ERR_PTR(-EFAULT
);
257 EXPORT_SYMBOL(memdup_user_nul
);
259 void __vma_link_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
260 struct vm_area_struct
*prev
, struct rb_node
*rb_parent
)
262 struct vm_area_struct
*next
;
266 next
= prev
->vm_next
;
271 next
= rb_entry(rb_parent
,
272 struct vm_area_struct
, vm_rb
);
281 /* Check if the vma is being used as a stack by this task */
282 int vma_is_stack_for_current(struct vm_area_struct
*vma
)
284 struct task_struct
* __maybe_unused t
= current
;
286 return (vma
->vm_start
<= KSTK_ESP(t
) && vma
->vm_end
>= KSTK_ESP(t
));
289 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
290 void arch_pick_mmap_layout(struct mm_struct
*mm
, struct rlimit
*rlim_stack
)
292 mm
->mmap_base
= TASK_UNMAPPED_BASE
;
293 mm
->get_unmapped_area
= arch_get_unmapped_area
;
298 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
299 * back to the regular GUP.
300 * Note a difference with get_user_pages_fast: this always returns the
301 * number of pages pinned, 0 if no pages were pinned.
302 * If the architecture does not support this function, simply return with no
305 int __weak
__get_user_pages_fast(unsigned long start
,
306 int nr_pages
, int write
, struct page
**pages
)
310 EXPORT_SYMBOL_GPL(__get_user_pages_fast
);
313 * get_user_pages_fast() - pin user pages in memory
314 * @start: starting user address
315 * @nr_pages: number of pages from start to pin
316 * @write: whether pages will be written to
317 * @pages: array that receives pointers to the pages pinned.
318 * Should be at least nr_pages long.
320 * Returns number of pages pinned. This may be fewer than the number
321 * requested. If nr_pages is 0 or negative, returns 0. If no pages
322 * were pinned, returns -errno.
324 * get_user_pages_fast provides equivalent functionality to get_user_pages,
325 * operating on current and current->mm, with force=0 and vma=NULL. However
326 * unlike get_user_pages, it must be called without mmap_sem held.
328 * get_user_pages_fast may take mmap_sem and page table locks, so no
329 * assumptions can be made about lack of locking. get_user_pages_fast is to be
330 * implemented in a way that is advantageous (vs get_user_pages()) when the
331 * user memory area is already faulted in and present in ptes. However if the
332 * pages have to be faulted in, it may turn out to be slightly slower so
333 * callers need to carefully consider what to use. On many architectures,
334 * get_user_pages_fast simply falls back to get_user_pages.
336 int __weak
get_user_pages_fast(unsigned long start
,
337 int nr_pages
, int write
, struct page
**pages
)
339 return get_user_pages_unlocked(start
, nr_pages
, pages
,
340 write
? FOLL_WRITE
: 0);
342 EXPORT_SYMBOL_GPL(get_user_pages_fast
);
344 unsigned long vm_mmap_pgoff(struct file
*file
, unsigned long addr
,
345 unsigned long len
, unsigned long prot
,
346 unsigned long flag
, unsigned long pgoff
)
349 struct mm_struct
*mm
= current
->mm
;
350 unsigned long populate
;
353 ret
= security_mmap_file(file
, prot
, flag
);
355 if (down_write_killable(&mm
->mmap_sem
))
357 ret
= do_mmap_pgoff(file
, addr
, len
, prot
, flag
, pgoff
,
359 up_write(&mm
->mmap_sem
);
360 userfaultfd_unmap_complete(mm
, &uf
);
362 mm_populate(ret
, populate
);
367 unsigned long vm_mmap(struct file
*file
, unsigned long addr
,
368 unsigned long len
, unsigned long prot
,
369 unsigned long flag
, unsigned long offset
)
371 if (unlikely(offset
+ PAGE_ALIGN(len
) < offset
))
373 if (unlikely(offset_in_page(offset
)))
376 return vm_mmap_pgoff(file
, addr
, len
, prot
, flag
, offset
>> PAGE_SHIFT
);
378 EXPORT_SYMBOL(vm_mmap
);
381 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
382 * failure, fall back to non-contiguous (vmalloc) allocation.
383 * @size: size of the request.
384 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
385 * @node: numa node to allocate from
387 * Uses kmalloc to get the memory but if the allocation fails then falls back
388 * to the vmalloc allocator. Use kvfree for freeing the memory.
390 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
391 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
392 * preferable to the vmalloc fallback, due to visible performance drawbacks.
394 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
395 * fall back to vmalloc.
397 void *kvmalloc_node(size_t size
, gfp_t flags
, int node
)
399 gfp_t kmalloc_flags
= flags
;
403 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
404 * so the given set of flags has to be compatible.
406 if ((flags
& GFP_KERNEL
) != GFP_KERNEL
)
407 return kmalloc_node(size
, flags
, node
);
410 * We want to attempt a large physically contiguous block first because
411 * it is less likely to fragment multiple larger blocks and therefore
412 * contribute to a long term fragmentation less than vmalloc fallback.
413 * However make sure that larger requests are not too disruptive - no
414 * OOM killer and no allocation failure warnings as we have a fallback.
416 if (size
> PAGE_SIZE
) {
417 kmalloc_flags
|= __GFP_NOWARN
;
419 if (!(kmalloc_flags
& __GFP_RETRY_MAYFAIL
))
420 kmalloc_flags
|= __GFP_NORETRY
;
423 ret
= kmalloc_node(size
, kmalloc_flags
, node
);
426 * It doesn't really make sense to fallback to vmalloc for sub page
429 if (ret
|| size
<= PAGE_SIZE
)
432 return __vmalloc_node_flags_caller(size
, node
, flags
,
433 __builtin_return_address(0));
435 EXPORT_SYMBOL(kvmalloc_node
);
438 * kvfree() - Free memory.
439 * @addr: Pointer to allocated memory.
441 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
442 * It is slightly more efficient to use kfree() or vfree() if you are certain
443 * that you know which one to use.
445 * Context: Any context except NMI.
447 void kvfree(const void *addr
)
449 if (is_vmalloc_addr(addr
))
454 EXPORT_SYMBOL(kvfree
);
456 static inline void *__page_rmapping(struct page
*page
)
458 unsigned long mapping
;
460 mapping
= (unsigned long)page
->mapping
;
461 mapping
&= ~PAGE_MAPPING_FLAGS
;
463 return (void *)mapping
;
466 /* Neutral page->mapping pointer to address_space or anon_vma or other */
467 void *page_rmapping(struct page
*page
)
469 page
= compound_head(page
);
470 return __page_rmapping(page
);
474 * Return true if this page is mapped into pagetables.
475 * For compound page it returns true if any subpage of compound page is mapped.
477 bool page_mapped(struct page
*page
)
481 if (likely(!PageCompound(page
)))
482 return atomic_read(&page
->_mapcount
) >= 0;
483 page
= compound_head(page
);
484 if (atomic_read(compound_mapcount_ptr(page
)) >= 0)
488 for (i
= 0; i
< hpage_nr_pages(page
); i
++) {
489 if (atomic_read(&page
[i
]._mapcount
) >= 0)
494 EXPORT_SYMBOL(page_mapped
);
496 struct anon_vma
*page_anon_vma(struct page
*page
)
498 unsigned long mapping
;
500 page
= compound_head(page
);
501 mapping
= (unsigned long)page
->mapping
;
502 if ((mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
504 return __page_rmapping(page
);
507 struct address_space
*page_mapping(struct page
*page
)
509 struct address_space
*mapping
;
511 page
= compound_head(page
);
513 /* This happens if someone calls flush_dcache_page on slab page */
514 if (unlikely(PageSlab(page
)))
517 if (unlikely(PageSwapCache(page
))) {
520 entry
.val
= page_private(page
);
521 return swap_address_space(entry
);
524 mapping
= page
->mapping
;
525 if ((unsigned long)mapping
& PAGE_MAPPING_ANON
)
528 return (void *)((unsigned long)mapping
& ~PAGE_MAPPING_FLAGS
);
530 EXPORT_SYMBOL(page_mapping
);
533 * For file cache pages, return the address_space, otherwise return NULL
535 struct address_space
*page_mapping_file(struct page
*page
)
537 if (unlikely(PageSwapCache(page
)))
539 return page_mapping(page
);
542 /* Slow path of page_mapcount() for compound pages */
543 int __page_mapcount(struct page
*page
)
547 ret
= atomic_read(&page
->_mapcount
) + 1;
549 * For file THP page->_mapcount contains total number of mapping
550 * of the page: no need to look into compound_mapcount.
552 if (!PageAnon(page
) && !PageHuge(page
))
554 page
= compound_head(page
);
555 ret
+= atomic_read(compound_mapcount_ptr(page
)) + 1;
556 if (PageDoubleMap(page
))
560 EXPORT_SYMBOL_GPL(__page_mapcount
);
562 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
;
563 int sysctl_overcommit_ratio __read_mostly
= 50;
564 unsigned long sysctl_overcommit_kbytes __read_mostly
;
565 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
566 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
567 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
569 int overcommit_ratio_handler(struct ctl_table
*table
, int write
,
570 void __user
*buffer
, size_t *lenp
,
575 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
576 if (ret
== 0 && write
)
577 sysctl_overcommit_kbytes
= 0;
581 int overcommit_kbytes_handler(struct ctl_table
*table
, int write
,
582 void __user
*buffer
, size_t *lenp
,
587 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
588 if (ret
== 0 && write
)
589 sysctl_overcommit_ratio
= 0;
594 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
596 unsigned long vm_commit_limit(void)
598 unsigned long allowed
;
600 if (sysctl_overcommit_kbytes
)
601 allowed
= sysctl_overcommit_kbytes
>> (PAGE_SHIFT
- 10);
603 allowed
= ((totalram_pages
- hugetlb_total_pages())
604 * sysctl_overcommit_ratio
/ 100);
605 allowed
+= total_swap_pages
;
611 * Make sure vm_committed_as in one cacheline and not cacheline shared with
612 * other variables. It can be updated by several CPUs frequently.
614 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
617 * The global memory commitment made in the system can be a metric
618 * that can be used to drive ballooning decisions when Linux is hosted
619 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
620 * balancing memory across competing virtual machines that are hosted.
621 * Several metrics drive this policy engine including the guest reported
624 unsigned long vm_memory_committed(void)
626 return percpu_counter_read_positive(&vm_committed_as
);
628 EXPORT_SYMBOL_GPL(vm_memory_committed
);
631 * Check that a process has enough memory to allocate a new virtual
632 * mapping. 0 means there is enough memory for the allocation to
633 * succeed and -ENOMEM implies there is not.
635 * We currently support three overcommit policies, which are set via the
636 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
638 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
639 * Additional code 2002 Jul 20 by Robert Love.
641 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
643 * Note this is a helper function intended to be used by LSMs which
644 * wish to use this logic.
646 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
648 long free
, allowed
, reserve
;
650 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as
) <
651 -(s64
)vm_committed_as_batch
* num_online_cpus(),
652 "memory commitment underflow");
654 vm_acct_memory(pages
);
657 * Sometimes we want to use more memory than we have
659 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
662 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
663 free
= global_zone_page_state(NR_FREE_PAGES
);
664 free
+= global_node_page_state(NR_FILE_PAGES
);
667 * shmem pages shouldn't be counted as free in this
668 * case, they can't be purged, only swapped out, and
669 * that won't affect the overall amount of available
670 * memory in the system.
672 free
-= global_node_page_state(NR_SHMEM
);
674 free
+= get_nr_swap_pages();
677 * Any slabs which are created with the
678 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
679 * which are reclaimable, under pressure. The dentry
680 * cache and most inode caches should fall into this
682 free
+= global_node_page_state(NR_SLAB_RECLAIMABLE
);
685 * Part of the kernel memory, which can be released
686 * under memory pressure.
688 free
+= global_node_page_state(
689 NR_INDIRECTLY_RECLAIMABLE_BYTES
) >> PAGE_SHIFT
;
692 * Leave reserved pages. The pages are not for anonymous pages.
694 if (free
<= totalreserve_pages
)
697 free
-= totalreserve_pages
;
700 * Reserve some for root
703 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
711 allowed
= vm_commit_limit();
713 * Reserve some for root
716 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
719 * Don't let a single process grow so big a user can't recover
722 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
723 allowed
-= min_t(long, mm
->total_vm
/ 32, reserve
);
726 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
729 vm_unacct_memory(pages
);
735 * get_cmdline() - copy the cmdline value to a buffer.
736 * @task: the task whose cmdline value to copy.
737 * @buffer: the buffer to copy to.
738 * @buflen: the length of the buffer. Larger cmdline values are truncated
740 * Returns the size of the cmdline field copied. Note that the copy does
741 * not guarantee an ending NULL byte.
743 int get_cmdline(struct task_struct
*task
, char *buffer
, int buflen
)
747 struct mm_struct
*mm
= get_task_mm(task
);
748 unsigned long arg_start
, arg_end
, env_start
, env_end
;
752 goto out_mm
; /* Shh! No looking before we're done */
754 down_read(&mm
->mmap_sem
);
755 arg_start
= mm
->arg_start
;
756 arg_end
= mm
->arg_end
;
757 env_start
= mm
->env_start
;
758 env_end
= mm
->env_end
;
759 up_read(&mm
->mmap_sem
);
761 len
= arg_end
- arg_start
;
766 res
= access_process_vm(task
, arg_start
, buffer
, len
, FOLL_FORCE
);
769 * If the nul at the end of args has been overwritten, then
770 * assume application is using setproctitle(3).
772 if (res
> 0 && buffer
[res
-1] != '\0' && len
< buflen
) {
773 len
= strnlen(buffer
, res
);
777 len
= env_end
- env_start
;
778 if (len
> buflen
- res
)
780 res
+= access_process_vm(task
, env_start
,
783 res
= strnlen(buffer
, res
);