kmemtrace: SLOB hooks.
[linux-2.6/kmemtrace.git] / drivers / input / input.c
blob27006fc1830567f30c87bc16a323cd826bd0ab46
1 /*
2 * The input core
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
25 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
26 MODULE_DESCRIPTION("Input core");
27 MODULE_LICENSE("GPL");
29 #define INPUT_DEVICES 256
31 static LIST_HEAD(input_dev_list);
32 static LIST_HEAD(input_handler_list);
35 * input_mutex protects access to both input_dev_list and input_handler_list.
36 * This also causes input_[un]register_device and input_[un]register_handler
37 * be mutually exclusive which simplifies locking in drivers implementing
38 * input handlers.
40 static DEFINE_MUTEX(input_mutex);
42 static struct input_handler *input_table[8];
44 static inline int is_event_supported(unsigned int code,
45 unsigned long *bm, unsigned int max)
47 return code <= max && test_bit(code, bm);
50 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
52 if (fuzz) {
53 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
54 return old_val;
56 if (value > old_val - fuzz && value < old_val + fuzz)
57 return (old_val * 3 + value) / 4;
59 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
60 return (old_val + value) / 2;
63 return value;
67 * Pass event through all open handles. This function is called with
68 * dev->event_lock held and interrupts disabled.
70 static void input_pass_event(struct input_dev *dev,
71 unsigned int type, unsigned int code, int value)
73 struct input_handle *handle;
75 rcu_read_lock();
77 handle = rcu_dereference(dev->grab);
78 if (handle)
79 handle->handler->event(handle, type, code, value);
80 else
81 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
82 if (handle->open)
83 handle->handler->event(handle,
84 type, code, value);
85 rcu_read_unlock();
89 * Generate software autorepeat event. Note that we take
90 * dev->event_lock here to avoid racing with input_event
91 * which may cause keys get "stuck".
93 static void input_repeat_key(unsigned long data)
95 struct input_dev *dev = (void *) data;
96 unsigned long flags;
98 spin_lock_irqsave(&dev->event_lock, flags);
100 if (test_bit(dev->repeat_key, dev->key) &&
101 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
103 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
105 if (dev->sync) {
107 * Only send SYN_REPORT if we are not in a middle
108 * of driver parsing a new hardware packet.
109 * Otherwise assume that the driver will send
110 * SYN_REPORT once it's done.
112 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
115 if (dev->rep[REP_PERIOD])
116 mod_timer(&dev->timer, jiffies +
117 msecs_to_jiffies(dev->rep[REP_PERIOD]));
120 spin_unlock_irqrestore(&dev->event_lock, flags);
123 static void input_start_autorepeat(struct input_dev *dev, int code)
125 if (test_bit(EV_REP, dev->evbit) &&
126 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
127 dev->timer.data) {
128 dev->repeat_key = code;
129 mod_timer(&dev->timer,
130 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
134 #define INPUT_IGNORE_EVENT 0
135 #define INPUT_PASS_TO_HANDLERS 1
136 #define INPUT_PASS_TO_DEVICE 2
137 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
139 static void input_handle_event(struct input_dev *dev,
140 unsigned int type, unsigned int code, int value)
142 int disposition = INPUT_IGNORE_EVENT;
144 switch (type) {
146 case EV_SYN:
147 switch (code) {
148 case SYN_CONFIG:
149 disposition = INPUT_PASS_TO_ALL;
150 break;
152 case SYN_REPORT:
153 if (!dev->sync) {
154 dev->sync = 1;
155 disposition = INPUT_PASS_TO_HANDLERS;
157 break;
159 break;
161 case EV_KEY:
162 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
163 !!test_bit(code, dev->key) != value) {
165 if (value != 2) {
166 __change_bit(code, dev->key);
167 if (value)
168 input_start_autorepeat(dev, code);
171 disposition = INPUT_PASS_TO_HANDLERS;
173 break;
175 case EV_SW:
176 if (is_event_supported(code, dev->swbit, SW_MAX) &&
177 !!test_bit(code, dev->sw) != value) {
179 __change_bit(code, dev->sw);
180 disposition = INPUT_PASS_TO_HANDLERS;
182 break;
184 case EV_ABS:
185 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
187 value = input_defuzz_abs_event(value,
188 dev->abs[code], dev->absfuzz[code]);
190 if (dev->abs[code] != value) {
191 dev->abs[code] = value;
192 disposition = INPUT_PASS_TO_HANDLERS;
195 break;
197 case EV_REL:
198 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
199 disposition = INPUT_PASS_TO_HANDLERS;
201 break;
203 case EV_MSC:
204 if (is_event_supported(code, dev->mscbit, MSC_MAX))
205 disposition = INPUT_PASS_TO_ALL;
207 break;
209 case EV_LED:
210 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
211 !!test_bit(code, dev->led) != value) {
213 __change_bit(code, dev->led);
214 disposition = INPUT_PASS_TO_ALL;
216 break;
218 case EV_SND:
219 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
221 if (!!test_bit(code, dev->snd) != !!value)
222 __change_bit(code, dev->snd);
223 disposition = INPUT_PASS_TO_ALL;
225 break;
227 case EV_REP:
228 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
229 dev->rep[code] = value;
230 disposition = INPUT_PASS_TO_ALL;
232 break;
234 case EV_FF:
235 if (value >= 0)
236 disposition = INPUT_PASS_TO_ALL;
237 break;
239 case EV_PWR:
240 disposition = INPUT_PASS_TO_ALL;
241 break;
244 if (type != EV_SYN)
245 dev->sync = 0;
247 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
248 dev->event(dev, type, code, value);
250 if (disposition & INPUT_PASS_TO_HANDLERS)
251 input_pass_event(dev, type, code, value);
255 * input_event() - report new input event
256 * @dev: device that generated the event
257 * @type: type of the event
258 * @code: event code
259 * @value: value of the event
261 * This function should be used by drivers implementing various input
262 * devices. See also input_inject_event().
265 void input_event(struct input_dev *dev,
266 unsigned int type, unsigned int code, int value)
268 unsigned long flags;
270 if (is_event_supported(type, dev->evbit, EV_MAX)) {
272 spin_lock_irqsave(&dev->event_lock, flags);
273 add_input_randomness(type, code, value);
274 input_handle_event(dev, type, code, value);
275 spin_unlock_irqrestore(&dev->event_lock, flags);
278 EXPORT_SYMBOL(input_event);
281 * input_inject_event() - send input event from input handler
282 * @handle: input handle to send event through
283 * @type: type of the event
284 * @code: event code
285 * @value: value of the event
287 * Similar to input_event() but will ignore event if device is
288 * "grabbed" and handle injecting event is not the one that owns
289 * the device.
291 void input_inject_event(struct input_handle *handle,
292 unsigned int type, unsigned int code, int value)
294 struct input_dev *dev = handle->dev;
295 struct input_handle *grab;
296 unsigned long flags;
298 if (is_event_supported(type, dev->evbit, EV_MAX)) {
299 spin_lock_irqsave(&dev->event_lock, flags);
301 rcu_read_lock();
302 grab = rcu_dereference(dev->grab);
303 if (!grab || grab == handle)
304 input_handle_event(dev, type, code, value);
305 rcu_read_unlock();
307 spin_unlock_irqrestore(&dev->event_lock, flags);
310 EXPORT_SYMBOL(input_inject_event);
313 * input_grab_device - grabs device for exclusive use
314 * @handle: input handle that wants to own the device
316 * When a device is grabbed by an input handle all events generated by
317 * the device are delivered only to this handle. Also events injected
318 * by other input handles are ignored while device is grabbed.
320 int input_grab_device(struct input_handle *handle)
322 struct input_dev *dev = handle->dev;
323 int retval;
325 retval = mutex_lock_interruptible(&dev->mutex);
326 if (retval)
327 return retval;
329 if (dev->grab) {
330 retval = -EBUSY;
331 goto out;
334 rcu_assign_pointer(dev->grab, handle);
335 synchronize_rcu();
337 out:
338 mutex_unlock(&dev->mutex);
339 return retval;
341 EXPORT_SYMBOL(input_grab_device);
343 static void __input_release_device(struct input_handle *handle)
345 struct input_dev *dev = handle->dev;
347 if (dev->grab == handle) {
348 rcu_assign_pointer(dev->grab, NULL);
349 /* Make sure input_pass_event() notices that grab is gone */
350 synchronize_rcu();
352 list_for_each_entry(handle, &dev->h_list, d_node)
353 if (handle->open && handle->handler->start)
354 handle->handler->start(handle);
359 * input_release_device - release previously grabbed device
360 * @handle: input handle that owns the device
362 * Releases previously grabbed device so that other input handles can
363 * start receiving input events. Upon release all handlers attached
364 * to the device have their start() method called so they have a change
365 * to synchronize device state with the rest of the system.
367 void input_release_device(struct input_handle *handle)
369 struct input_dev *dev = handle->dev;
371 mutex_lock(&dev->mutex);
372 __input_release_device(handle);
373 mutex_unlock(&dev->mutex);
375 EXPORT_SYMBOL(input_release_device);
378 * input_open_device - open input device
379 * @handle: handle through which device is being accessed
381 * This function should be called by input handlers when they
382 * want to start receive events from given input device.
384 int input_open_device(struct input_handle *handle)
386 struct input_dev *dev = handle->dev;
387 int retval;
389 retval = mutex_lock_interruptible(&dev->mutex);
390 if (retval)
391 return retval;
393 if (dev->going_away) {
394 retval = -ENODEV;
395 goto out;
398 handle->open++;
400 if (!dev->users++ && dev->open)
401 retval = dev->open(dev);
403 if (retval) {
404 dev->users--;
405 if (!--handle->open) {
407 * Make sure we are not delivering any more events
408 * through this handle
410 synchronize_rcu();
414 out:
415 mutex_unlock(&dev->mutex);
416 return retval;
418 EXPORT_SYMBOL(input_open_device);
420 int input_flush_device(struct input_handle *handle, struct file *file)
422 struct input_dev *dev = handle->dev;
423 int retval;
425 retval = mutex_lock_interruptible(&dev->mutex);
426 if (retval)
427 return retval;
429 if (dev->flush)
430 retval = dev->flush(dev, file);
432 mutex_unlock(&dev->mutex);
433 return retval;
435 EXPORT_SYMBOL(input_flush_device);
438 * input_close_device - close input device
439 * @handle: handle through which device is being accessed
441 * This function should be called by input handlers when they
442 * want to stop receive events from given input device.
444 void input_close_device(struct input_handle *handle)
446 struct input_dev *dev = handle->dev;
448 mutex_lock(&dev->mutex);
450 __input_release_device(handle);
452 if (!--dev->users && dev->close)
453 dev->close(dev);
455 if (!--handle->open) {
457 * synchronize_rcu() makes sure that input_pass_event()
458 * completed and that no more input events are delivered
459 * through this handle
461 synchronize_rcu();
464 mutex_unlock(&dev->mutex);
466 EXPORT_SYMBOL(input_close_device);
469 * Prepare device for unregistering
471 static void input_disconnect_device(struct input_dev *dev)
473 struct input_handle *handle;
474 int code;
477 * Mark device as going away. Note that we take dev->mutex here
478 * not to protect access to dev->going_away but rather to ensure
479 * that there are no threads in the middle of input_open_device()
481 mutex_lock(&dev->mutex);
482 dev->going_away = 1;
483 mutex_unlock(&dev->mutex);
485 spin_lock_irq(&dev->event_lock);
488 * Simulate keyup events for all pressed keys so that handlers
489 * are not left with "stuck" keys. The driver may continue
490 * generate events even after we done here but they will not
491 * reach any handlers.
493 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
494 for (code = 0; code <= KEY_MAX; code++) {
495 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
496 __test_and_clear_bit(code, dev->key)) {
497 input_pass_event(dev, EV_KEY, code, 0);
500 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
503 list_for_each_entry(handle, &dev->h_list, d_node)
504 handle->open = 0;
506 spin_unlock_irq(&dev->event_lock);
509 static int input_fetch_keycode(struct input_dev *dev, int scancode)
511 switch (dev->keycodesize) {
512 case 1:
513 return ((u8 *)dev->keycode)[scancode];
515 case 2:
516 return ((u16 *)dev->keycode)[scancode];
518 default:
519 return ((u32 *)dev->keycode)[scancode];
523 static int input_default_getkeycode(struct input_dev *dev,
524 int scancode, int *keycode)
526 if (!dev->keycodesize)
527 return -EINVAL;
529 if (scancode >= dev->keycodemax)
530 return -EINVAL;
532 *keycode = input_fetch_keycode(dev, scancode);
534 return 0;
537 static int input_default_setkeycode(struct input_dev *dev,
538 int scancode, int keycode)
540 int old_keycode;
541 int i;
543 if (scancode >= dev->keycodemax)
544 return -EINVAL;
546 if (!dev->keycodesize)
547 return -EINVAL;
549 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
550 return -EINVAL;
552 switch (dev->keycodesize) {
553 case 1: {
554 u8 *k = (u8 *)dev->keycode;
555 old_keycode = k[scancode];
556 k[scancode] = keycode;
557 break;
559 case 2: {
560 u16 *k = (u16 *)dev->keycode;
561 old_keycode = k[scancode];
562 k[scancode] = keycode;
563 break;
565 default: {
566 u32 *k = (u32 *)dev->keycode;
567 old_keycode = k[scancode];
568 k[scancode] = keycode;
569 break;
573 clear_bit(old_keycode, dev->keybit);
574 set_bit(keycode, dev->keybit);
576 for (i = 0; i < dev->keycodemax; i++) {
577 if (input_fetch_keycode(dev, i) == old_keycode) {
578 set_bit(old_keycode, dev->keybit);
579 break; /* Setting the bit twice is useless, so break */
583 return 0;
587 * input_get_keycode - retrieve keycode currently mapped to a given scancode
588 * @dev: input device which keymap is being queried
589 * @scancode: scancode (or its equivalent for device in question) for which
590 * keycode is needed
591 * @keycode: result
593 * This function should be called by anyone interested in retrieving current
594 * keymap. Presently keyboard and evdev handlers use it.
596 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
598 if (scancode < 0)
599 return -EINVAL;
601 return dev->getkeycode(dev, scancode, keycode);
603 EXPORT_SYMBOL(input_get_keycode);
606 * input_get_keycode - assign new keycode to a given scancode
607 * @dev: input device which keymap is being updated
608 * @scancode: scancode (or its equivalent for device in question)
609 * @keycode: new keycode to be assigned to the scancode
611 * This function should be called by anyone needing to update current
612 * keymap. Presently keyboard and evdev handlers use it.
614 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
616 unsigned long flags;
617 int old_keycode;
618 int retval;
620 if (scancode < 0)
621 return -EINVAL;
623 if (keycode < 0 || keycode > KEY_MAX)
624 return -EINVAL;
626 spin_lock_irqsave(&dev->event_lock, flags);
628 retval = dev->getkeycode(dev, scancode, &old_keycode);
629 if (retval)
630 goto out;
632 retval = dev->setkeycode(dev, scancode, keycode);
633 if (retval)
634 goto out;
637 * Simulate keyup event if keycode is not present
638 * in the keymap anymore
640 if (test_bit(EV_KEY, dev->evbit) &&
641 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
642 __test_and_clear_bit(old_keycode, dev->key)) {
644 input_pass_event(dev, EV_KEY, old_keycode, 0);
645 if (dev->sync)
646 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
649 out:
650 spin_unlock_irqrestore(&dev->event_lock, flags);
652 return retval;
654 EXPORT_SYMBOL(input_set_keycode);
656 #define MATCH_BIT(bit, max) \
657 for (i = 0; i < BITS_TO_LONGS(max); i++) \
658 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
659 break; \
660 if (i != BITS_TO_LONGS(max)) \
661 continue;
663 static const struct input_device_id *input_match_device(const struct input_device_id *id,
664 struct input_dev *dev)
666 int i;
668 for (; id->flags || id->driver_info; id++) {
670 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
671 if (id->bustype != dev->id.bustype)
672 continue;
674 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
675 if (id->vendor != dev->id.vendor)
676 continue;
678 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
679 if (id->product != dev->id.product)
680 continue;
682 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
683 if (id->version != dev->id.version)
684 continue;
686 MATCH_BIT(evbit, EV_MAX);
687 MATCH_BIT(keybit, KEY_MAX);
688 MATCH_BIT(relbit, REL_MAX);
689 MATCH_BIT(absbit, ABS_MAX);
690 MATCH_BIT(mscbit, MSC_MAX);
691 MATCH_BIT(ledbit, LED_MAX);
692 MATCH_BIT(sndbit, SND_MAX);
693 MATCH_BIT(ffbit, FF_MAX);
694 MATCH_BIT(swbit, SW_MAX);
696 return id;
699 return NULL;
702 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
704 const struct input_device_id *id;
705 int error;
707 if (handler->blacklist && input_match_device(handler->blacklist, dev))
708 return -ENODEV;
710 id = input_match_device(handler->id_table, dev);
711 if (!id)
712 return -ENODEV;
714 error = handler->connect(handler, dev, id);
715 if (error && error != -ENODEV)
716 printk(KERN_ERR
717 "input: failed to attach handler %s to device %s, "
718 "error: %d\n",
719 handler->name, kobject_name(&dev->dev.kobj), error);
721 return error;
725 #ifdef CONFIG_PROC_FS
727 static struct proc_dir_entry *proc_bus_input_dir;
728 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
729 static int input_devices_state;
731 static inline void input_wakeup_procfs_readers(void)
733 input_devices_state++;
734 wake_up(&input_devices_poll_wait);
737 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
739 int state = input_devices_state;
741 poll_wait(file, &input_devices_poll_wait, wait);
742 if (state != input_devices_state)
743 return POLLIN | POLLRDNORM;
745 return 0;
748 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
750 if (mutex_lock_interruptible(&input_mutex))
751 return NULL;
753 return seq_list_start(&input_dev_list, *pos);
756 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
758 return seq_list_next(v, &input_dev_list, pos);
761 static void input_devices_seq_stop(struct seq_file *seq, void *v)
763 mutex_unlock(&input_mutex);
766 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
767 unsigned long *bitmap, int max)
769 int i;
771 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
772 if (bitmap[i])
773 break;
775 seq_printf(seq, "B: %s=", name);
776 for (; i >= 0; i--)
777 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
778 seq_putc(seq, '\n');
781 static int input_devices_seq_show(struct seq_file *seq, void *v)
783 struct input_dev *dev = container_of(v, struct input_dev, node);
784 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
785 struct input_handle *handle;
787 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
788 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
790 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
791 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
792 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
793 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
794 seq_printf(seq, "H: Handlers=");
796 list_for_each_entry(handle, &dev->h_list, d_node)
797 seq_printf(seq, "%s ", handle->name);
798 seq_putc(seq, '\n');
800 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
801 if (test_bit(EV_KEY, dev->evbit))
802 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
803 if (test_bit(EV_REL, dev->evbit))
804 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
805 if (test_bit(EV_ABS, dev->evbit))
806 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
807 if (test_bit(EV_MSC, dev->evbit))
808 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
809 if (test_bit(EV_LED, dev->evbit))
810 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
811 if (test_bit(EV_SND, dev->evbit))
812 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
813 if (test_bit(EV_FF, dev->evbit))
814 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
815 if (test_bit(EV_SW, dev->evbit))
816 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
818 seq_putc(seq, '\n');
820 kfree(path);
821 return 0;
824 static const struct seq_operations input_devices_seq_ops = {
825 .start = input_devices_seq_start,
826 .next = input_devices_seq_next,
827 .stop = input_devices_seq_stop,
828 .show = input_devices_seq_show,
831 static int input_proc_devices_open(struct inode *inode, struct file *file)
833 return seq_open(file, &input_devices_seq_ops);
836 static const struct file_operations input_devices_fileops = {
837 .owner = THIS_MODULE,
838 .open = input_proc_devices_open,
839 .poll = input_proc_devices_poll,
840 .read = seq_read,
841 .llseek = seq_lseek,
842 .release = seq_release,
845 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
847 if (mutex_lock_interruptible(&input_mutex))
848 return NULL;
850 seq->private = (void *)(unsigned long)*pos;
851 return seq_list_start(&input_handler_list, *pos);
854 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
856 seq->private = (void *)(unsigned long)(*pos + 1);
857 return seq_list_next(v, &input_handler_list, pos);
860 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
862 mutex_unlock(&input_mutex);
865 static int input_handlers_seq_show(struct seq_file *seq, void *v)
867 struct input_handler *handler = container_of(v, struct input_handler, node);
869 seq_printf(seq, "N: Number=%ld Name=%s",
870 (unsigned long)seq->private, handler->name);
871 if (handler->fops)
872 seq_printf(seq, " Minor=%d", handler->minor);
873 seq_putc(seq, '\n');
875 return 0;
877 static const struct seq_operations input_handlers_seq_ops = {
878 .start = input_handlers_seq_start,
879 .next = input_handlers_seq_next,
880 .stop = input_handlers_seq_stop,
881 .show = input_handlers_seq_show,
884 static int input_proc_handlers_open(struct inode *inode, struct file *file)
886 return seq_open(file, &input_handlers_seq_ops);
889 static const struct file_operations input_handlers_fileops = {
890 .owner = THIS_MODULE,
891 .open = input_proc_handlers_open,
892 .read = seq_read,
893 .llseek = seq_lseek,
894 .release = seq_release,
897 static int __init input_proc_init(void)
899 struct proc_dir_entry *entry;
901 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
902 if (!proc_bus_input_dir)
903 return -ENOMEM;
905 proc_bus_input_dir->owner = THIS_MODULE;
907 entry = proc_create("devices", 0, proc_bus_input_dir,
908 &input_devices_fileops);
909 if (!entry)
910 goto fail1;
912 entry = proc_create("handlers", 0, proc_bus_input_dir,
913 &input_handlers_fileops);
914 if (!entry)
915 goto fail2;
917 return 0;
919 fail2: remove_proc_entry("devices", proc_bus_input_dir);
920 fail1: remove_proc_entry("bus/input", NULL);
921 return -ENOMEM;
924 static void input_proc_exit(void)
926 remove_proc_entry("devices", proc_bus_input_dir);
927 remove_proc_entry("handlers", proc_bus_input_dir);
928 remove_proc_entry("bus/input", NULL);
931 #else /* !CONFIG_PROC_FS */
932 static inline void input_wakeup_procfs_readers(void) { }
933 static inline int input_proc_init(void) { return 0; }
934 static inline void input_proc_exit(void) { }
935 #endif
937 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
938 static ssize_t input_dev_show_##name(struct device *dev, \
939 struct device_attribute *attr, \
940 char *buf) \
942 struct input_dev *input_dev = to_input_dev(dev); \
944 return scnprintf(buf, PAGE_SIZE, "%s\n", \
945 input_dev->name ? input_dev->name : ""); \
947 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
949 INPUT_DEV_STRING_ATTR_SHOW(name);
950 INPUT_DEV_STRING_ATTR_SHOW(phys);
951 INPUT_DEV_STRING_ATTR_SHOW(uniq);
953 static int input_print_modalias_bits(char *buf, int size,
954 char name, unsigned long *bm,
955 unsigned int min_bit, unsigned int max_bit)
957 int len = 0, i;
959 len += snprintf(buf, max(size, 0), "%c", name);
960 for (i = min_bit; i < max_bit; i++)
961 if (bm[BIT_WORD(i)] & BIT_MASK(i))
962 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
963 return len;
966 static int input_print_modalias(char *buf, int size, struct input_dev *id,
967 int add_cr)
969 int len;
971 len = snprintf(buf, max(size, 0),
972 "input:b%04Xv%04Xp%04Xe%04X-",
973 id->id.bustype, id->id.vendor,
974 id->id.product, id->id.version);
976 len += input_print_modalias_bits(buf + len, size - len,
977 'e', id->evbit, 0, EV_MAX);
978 len += input_print_modalias_bits(buf + len, size - len,
979 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
980 len += input_print_modalias_bits(buf + len, size - len,
981 'r', id->relbit, 0, REL_MAX);
982 len += input_print_modalias_bits(buf + len, size - len,
983 'a', id->absbit, 0, ABS_MAX);
984 len += input_print_modalias_bits(buf + len, size - len,
985 'm', id->mscbit, 0, MSC_MAX);
986 len += input_print_modalias_bits(buf + len, size - len,
987 'l', id->ledbit, 0, LED_MAX);
988 len += input_print_modalias_bits(buf + len, size - len,
989 's', id->sndbit, 0, SND_MAX);
990 len += input_print_modalias_bits(buf + len, size - len,
991 'f', id->ffbit, 0, FF_MAX);
992 len += input_print_modalias_bits(buf + len, size - len,
993 'w', id->swbit, 0, SW_MAX);
995 if (add_cr)
996 len += snprintf(buf + len, max(size - len, 0), "\n");
998 return len;
1001 static ssize_t input_dev_show_modalias(struct device *dev,
1002 struct device_attribute *attr,
1003 char *buf)
1005 struct input_dev *id = to_input_dev(dev);
1006 ssize_t len;
1008 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1010 return min_t(int, len, PAGE_SIZE);
1012 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1014 static struct attribute *input_dev_attrs[] = {
1015 &dev_attr_name.attr,
1016 &dev_attr_phys.attr,
1017 &dev_attr_uniq.attr,
1018 &dev_attr_modalias.attr,
1019 NULL
1022 static struct attribute_group input_dev_attr_group = {
1023 .attrs = input_dev_attrs,
1026 #define INPUT_DEV_ID_ATTR(name) \
1027 static ssize_t input_dev_show_id_##name(struct device *dev, \
1028 struct device_attribute *attr, \
1029 char *buf) \
1031 struct input_dev *input_dev = to_input_dev(dev); \
1032 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1034 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1036 INPUT_DEV_ID_ATTR(bustype);
1037 INPUT_DEV_ID_ATTR(vendor);
1038 INPUT_DEV_ID_ATTR(product);
1039 INPUT_DEV_ID_ATTR(version);
1041 static struct attribute *input_dev_id_attrs[] = {
1042 &dev_attr_bustype.attr,
1043 &dev_attr_vendor.attr,
1044 &dev_attr_product.attr,
1045 &dev_attr_version.attr,
1046 NULL
1049 static struct attribute_group input_dev_id_attr_group = {
1050 .name = "id",
1051 .attrs = input_dev_id_attrs,
1054 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1055 int max, int add_cr)
1057 int i;
1058 int len = 0;
1060 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1061 if (bitmap[i])
1062 break;
1064 for (; i >= 0; i--)
1065 len += snprintf(buf + len, max(buf_size - len, 0),
1066 "%lx%s", bitmap[i], i > 0 ? " " : "");
1068 if (add_cr)
1069 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1071 return len;
1074 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1075 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1076 struct device_attribute *attr, \
1077 char *buf) \
1079 struct input_dev *input_dev = to_input_dev(dev); \
1080 int len = input_print_bitmap(buf, PAGE_SIZE, \
1081 input_dev->bm##bit, ev##_MAX, 1); \
1082 return min_t(int, len, PAGE_SIZE); \
1084 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1086 INPUT_DEV_CAP_ATTR(EV, ev);
1087 INPUT_DEV_CAP_ATTR(KEY, key);
1088 INPUT_DEV_CAP_ATTR(REL, rel);
1089 INPUT_DEV_CAP_ATTR(ABS, abs);
1090 INPUT_DEV_CAP_ATTR(MSC, msc);
1091 INPUT_DEV_CAP_ATTR(LED, led);
1092 INPUT_DEV_CAP_ATTR(SND, snd);
1093 INPUT_DEV_CAP_ATTR(FF, ff);
1094 INPUT_DEV_CAP_ATTR(SW, sw);
1096 static struct attribute *input_dev_caps_attrs[] = {
1097 &dev_attr_ev.attr,
1098 &dev_attr_key.attr,
1099 &dev_attr_rel.attr,
1100 &dev_attr_abs.attr,
1101 &dev_attr_msc.attr,
1102 &dev_attr_led.attr,
1103 &dev_attr_snd.attr,
1104 &dev_attr_ff.attr,
1105 &dev_attr_sw.attr,
1106 NULL
1109 static struct attribute_group input_dev_caps_attr_group = {
1110 .name = "capabilities",
1111 .attrs = input_dev_caps_attrs,
1114 static struct attribute_group *input_dev_attr_groups[] = {
1115 &input_dev_attr_group,
1116 &input_dev_id_attr_group,
1117 &input_dev_caps_attr_group,
1118 NULL
1121 static void input_dev_release(struct device *device)
1123 struct input_dev *dev = to_input_dev(device);
1125 input_ff_destroy(dev);
1126 kfree(dev);
1128 module_put(THIS_MODULE);
1132 * Input uevent interface - loading event handlers based on
1133 * device bitfields.
1135 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1136 const char *name, unsigned long *bitmap, int max)
1138 int len;
1140 if (add_uevent_var(env, "%s=", name))
1141 return -ENOMEM;
1143 len = input_print_bitmap(&env->buf[env->buflen - 1],
1144 sizeof(env->buf) - env->buflen,
1145 bitmap, max, 0);
1146 if (len >= (sizeof(env->buf) - env->buflen))
1147 return -ENOMEM;
1149 env->buflen += len;
1150 return 0;
1153 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1154 struct input_dev *dev)
1156 int len;
1158 if (add_uevent_var(env, "MODALIAS="))
1159 return -ENOMEM;
1161 len = input_print_modalias(&env->buf[env->buflen - 1],
1162 sizeof(env->buf) - env->buflen,
1163 dev, 0);
1164 if (len >= (sizeof(env->buf) - env->buflen))
1165 return -ENOMEM;
1167 env->buflen += len;
1168 return 0;
1171 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1172 do { \
1173 int err = add_uevent_var(env, fmt, val); \
1174 if (err) \
1175 return err; \
1176 } while (0)
1178 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1179 do { \
1180 int err = input_add_uevent_bm_var(env, name, bm, max); \
1181 if (err) \
1182 return err; \
1183 } while (0)
1185 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1186 do { \
1187 int err = input_add_uevent_modalias_var(env, dev); \
1188 if (err) \
1189 return err; \
1190 } while (0)
1192 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1194 struct input_dev *dev = to_input_dev(device);
1196 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1197 dev->id.bustype, dev->id.vendor,
1198 dev->id.product, dev->id.version);
1199 if (dev->name)
1200 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1201 if (dev->phys)
1202 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1203 if (dev->uniq)
1204 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1206 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1207 if (test_bit(EV_KEY, dev->evbit))
1208 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1209 if (test_bit(EV_REL, dev->evbit))
1210 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1211 if (test_bit(EV_ABS, dev->evbit))
1212 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1213 if (test_bit(EV_MSC, dev->evbit))
1214 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1215 if (test_bit(EV_LED, dev->evbit))
1216 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1217 if (test_bit(EV_SND, dev->evbit))
1218 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1219 if (test_bit(EV_FF, dev->evbit))
1220 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1221 if (test_bit(EV_SW, dev->evbit))
1222 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1224 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1226 return 0;
1229 static struct device_type input_dev_type = {
1230 .groups = input_dev_attr_groups,
1231 .release = input_dev_release,
1232 .uevent = input_dev_uevent,
1235 struct class input_class = {
1236 .name = "input",
1238 EXPORT_SYMBOL_GPL(input_class);
1241 * input_allocate_device - allocate memory for new input device
1243 * Returns prepared struct input_dev or NULL.
1245 * NOTE: Use input_free_device() to free devices that have not been
1246 * registered; input_unregister_device() should be used for already
1247 * registered devices.
1249 struct input_dev *input_allocate_device(void)
1251 struct input_dev *dev;
1253 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1254 if (dev) {
1255 dev->dev.type = &input_dev_type;
1256 dev->dev.class = &input_class;
1257 device_initialize(&dev->dev);
1258 mutex_init(&dev->mutex);
1259 spin_lock_init(&dev->event_lock);
1260 INIT_LIST_HEAD(&dev->h_list);
1261 INIT_LIST_HEAD(&dev->node);
1263 __module_get(THIS_MODULE);
1266 return dev;
1268 EXPORT_SYMBOL(input_allocate_device);
1271 * input_free_device - free memory occupied by input_dev structure
1272 * @dev: input device to free
1274 * This function should only be used if input_register_device()
1275 * was not called yet or if it failed. Once device was registered
1276 * use input_unregister_device() and memory will be freed once last
1277 * reference to the device is dropped.
1279 * Device should be allocated by input_allocate_device().
1281 * NOTE: If there are references to the input device then memory
1282 * will not be freed until last reference is dropped.
1284 void input_free_device(struct input_dev *dev)
1286 if (dev)
1287 input_put_device(dev);
1289 EXPORT_SYMBOL(input_free_device);
1292 * input_set_capability - mark device as capable of a certain event
1293 * @dev: device that is capable of emitting or accepting event
1294 * @type: type of the event (EV_KEY, EV_REL, etc...)
1295 * @code: event code
1297 * In addition to setting up corresponding bit in appropriate capability
1298 * bitmap the function also adjusts dev->evbit.
1300 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1302 switch (type) {
1303 case EV_KEY:
1304 __set_bit(code, dev->keybit);
1305 break;
1307 case EV_REL:
1308 __set_bit(code, dev->relbit);
1309 break;
1311 case EV_ABS:
1312 __set_bit(code, dev->absbit);
1313 break;
1315 case EV_MSC:
1316 __set_bit(code, dev->mscbit);
1317 break;
1319 case EV_SW:
1320 __set_bit(code, dev->swbit);
1321 break;
1323 case EV_LED:
1324 __set_bit(code, dev->ledbit);
1325 break;
1327 case EV_SND:
1328 __set_bit(code, dev->sndbit);
1329 break;
1331 case EV_FF:
1332 __set_bit(code, dev->ffbit);
1333 break;
1335 case EV_PWR:
1336 /* do nothing */
1337 break;
1339 default:
1340 printk(KERN_ERR
1341 "input_set_capability: unknown type %u (code %u)\n",
1342 type, code);
1343 dump_stack();
1344 return;
1347 __set_bit(type, dev->evbit);
1349 EXPORT_SYMBOL(input_set_capability);
1352 * input_register_device - register device with input core
1353 * @dev: device to be registered
1355 * This function registers device with input core. The device must be
1356 * allocated with input_allocate_device() and all it's capabilities
1357 * set up before registering.
1358 * If function fails the device must be freed with input_free_device().
1359 * Once device has been successfully registered it can be unregistered
1360 * with input_unregister_device(); input_free_device() should not be
1361 * called in this case.
1363 int input_register_device(struct input_dev *dev)
1365 static atomic_t input_no = ATOMIC_INIT(0);
1366 struct input_handler *handler;
1367 const char *path;
1368 int error;
1370 __set_bit(EV_SYN, dev->evbit);
1373 * If delay and period are pre-set by the driver, then autorepeating
1374 * is handled by the driver itself and we don't do it in input.c.
1377 init_timer(&dev->timer);
1378 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1379 dev->timer.data = (long) dev;
1380 dev->timer.function = input_repeat_key;
1381 dev->rep[REP_DELAY] = 250;
1382 dev->rep[REP_PERIOD] = 33;
1385 if (!dev->getkeycode)
1386 dev->getkeycode = input_default_getkeycode;
1388 if (!dev->setkeycode)
1389 dev->setkeycode = input_default_setkeycode;
1391 snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
1392 "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
1394 error = device_add(&dev->dev);
1395 if (error)
1396 return error;
1398 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1399 printk(KERN_INFO "input: %s as %s\n",
1400 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1401 kfree(path);
1403 error = mutex_lock_interruptible(&input_mutex);
1404 if (error) {
1405 device_del(&dev->dev);
1406 return error;
1409 list_add_tail(&dev->node, &input_dev_list);
1411 list_for_each_entry(handler, &input_handler_list, node)
1412 input_attach_handler(dev, handler);
1414 input_wakeup_procfs_readers();
1416 mutex_unlock(&input_mutex);
1418 return 0;
1420 EXPORT_SYMBOL(input_register_device);
1423 * input_unregister_device - unregister previously registered device
1424 * @dev: device to be unregistered
1426 * This function unregisters an input device. Once device is unregistered
1427 * the caller should not try to access it as it may get freed at any moment.
1429 void input_unregister_device(struct input_dev *dev)
1431 struct input_handle *handle, *next;
1433 input_disconnect_device(dev);
1435 mutex_lock(&input_mutex);
1437 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1438 handle->handler->disconnect(handle);
1439 WARN_ON(!list_empty(&dev->h_list));
1441 del_timer_sync(&dev->timer);
1442 list_del_init(&dev->node);
1444 input_wakeup_procfs_readers();
1446 mutex_unlock(&input_mutex);
1448 device_unregister(&dev->dev);
1450 EXPORT_SYMBOL(input_unregister_device);
1453 * input_register_handler - register a new input handler
1454 * @handler: handler to be registered
1456 * This function registers a new input handler (interface) for input
1457 * devices in the system and attaches it to all input devices that
1458 * are compatible with the handler.
1460 int input_register_handler(struct input_handler *handler)
1462 struct input_dev *dev;
1463 int retval;
1465 retval = mutex_lock_interruptible(&input_mutex);
1466 if (retval)
1467 return retval;
1469 INIT_LIST_HEAD(&handler->h_list);
1471 if (handler->fops != NULL) {
1472 if (input_table[handler->minor >> 5]) {
1473 retval = -EBUSY;
1474 goto out;
1476 input_table[handler->minor >> 5] = handler;
1479 list_add_tail(&handler->node, &input_handler_list);
1481 list_for_each_entry(dev, &input_dev_list, node)
1482 input_attach_handler(dev, handler);
1484 input_wakeup_procfs_readers();
1486 out:
1487 mutex_unlock(&input_mutex);
1488 return retval;
1490 EXPORT_SYMBOL(input_register_handler);
1493 * input_unregister_handler - unregisters an input handler
1494 * @handler: handler to be unregistered
1496 * This function disconnects a handler from its input devices and
1497 * removes it from lists of known handlers.
1499 void input_unregister_handler(struct input_handler *handler)
1501 struct input_handle *handle, *next;
1503 mutex_lock(&input_mutex);
1505 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1506 handler->disconnect(handle);
1507 WARN_ON(!list_empty(&handler->h_list));
1509 list_del_init(&handler->node);
1511 if (handler->fops != NULL)
1512 input_table[handler->minor >> 5] = NULL;
1514 input_wakeup_procfs_readers();
1516 mutex_unlock(&input_mutex);
1518 EXPORT_SYMBOL(input_unregister_handler);
1521 * input_register_handle - register a new input handle
1522 * @handle: handle to register
1524 * This function puts a new input handle onto device's
1525 * and handler's lists so that events can flow through
1526 * it once it is opened using input_open_device().
1528 * This function is supposed to be called from handler's
1529 * connect() method.
1531 int input_register_handle(struct input_handle *handle)
1533 struct input_handler *handler = handle->handler;
1534 struct input_dev *dev = handle->dev;
1535 int error;
1538 * We take dev->mutex here to prevent race with
1539 * input_release_device().
1541 error = mutex_lock_interruptible(&dev->mutex);
1542 if (error)
1543 return error;
1544 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1545 mutex_unlock(&dev->mutex);
1546 synchronize_rcu();
1549 * Since we are supposed to be called from ->connect()
1550 * which is mutually exclusive with ->disconnect()
1551 * we can't be racing with input_unregister_handle()
1552 * and so separate lock is not needed here.
1554 list_add_tail(&handle->h_node, &handler->h_list);
1556 if (handler->start)
1557 handler->start(handle);
1559 return 0;
1561 EXPORT_SYMBOL(input_register_handle);
1564 * input_unregister_handle - unregister an input handle
1565 * @handle: handle to unregister
1567 * This function removes input handle from device's
1568 * and handler's lists.
1570 * This function is supposed to be called from handler's
1571 * disconnect() method.
1573 void input_unregister_handle(struct input_handle *handle)
1575 struct input_dev *dev = handle->dev;
1577 list_del_init(&handle->h_node);
1580 * Take dev->mutex to prevent race with input_release_device().
1582 mutex_lock(&dev->mutex);
1583 list_del_rcu(&handle->d_node);
1584 mutex_unlock(&dev->mutex);
1585 synchronize_rcu();
1587 EXPORT_SYMBOL(input_unregister_handle);
1589 static int input_open_file(struct inode *inode, struct file *file)
1591 struct input_handler *handler = input_table[iminor(inode) >> 5];
1592 const struct file_operations *old_fops, *new_fops = NULL;
1593 int err;
1595 /* No load-on-demand here? */
1596 if (!handler || !(new_fops = fops_get(handler->fops)))
1597 return -ENODEV;
1600 * That's _really_ odd. Usually NULL ->open means "nothing special",
1601 * not "no device". Oh, well...
1603 if (!new_fops->open) {
1604 fops_put(new_fops);
1605 return -ENODEV;
1607 old_fops = file->f_op;
1608 file->f_op = new_fops;
1610 err = new_fops->open(inode, file);
1612 if (err) {
1613 fops_put(file->f_op);
1614 file->f_op = fops_get(old_fops);
1616 fops_put(old_fops);
1617 return err;
1620 static const struct file_operations input_fops = {
1621 .owner = THIS_MODULE,
1622 .open = input_open_file,
1625 static int __init input_init(void)
1627 int err;
1629 err = class_register(&input_class);
1630 if (err) {
1631 printk(KERN_ERR "input: unable to register input_dev class\n");
1632 return err;
1635 err = input_proc_init();
1636 if (err)
1637 goto fail1;
1639 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1640 if (err) {
1641 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1642 goto fail2;
1645 return 0;
1647 fail2: input_proc_exit();
1648 fail1: class_unregister(&input_class);
1649 return err;
1652 static void __exit input_exit(void)
1654 input_proc_exit();
1655 unregister_chrdev(INPUT_MAJOR, "input");
1656 class_unregister(&input_class);
1659 subsys_initcall(input_init);
1660 module_exit(input_exit);