kmemtrace: SLOB hooks.
[linux-2.6/kmemtrace.git] / drivers / md / md.c
blob2580ac1b9b0ff06f34d37f12ea829682017e5ef1
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
48 #include <linux/init.h>
50 #include <linux/file.h>
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
56 #include <asm/unaligned.h>
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
75 static void md_print_devices(void);
77 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
79 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83 * is 1000 KB/sec, so the extra system load does not show up that much.
84 * Increase it if you want to have more _guaranteed_ speed. Note that
85 * the RAID driver will use the maximum available bandwidth if the IO
86 * subsystem is idle. There is also an 'absolute maximum' reconstruction
87 * speed limit - in case reconstruction slows down your system despite
88 * idle IO detection.
90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91 * or /sys/block/mdX/md/sync_speed_{min,max}
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
98 return mddev->sync_speed_min ?
99 mddev->sync_speed_min : sysctl_speed_limit_min;
102 static inline int speed_max(mddev_t *mddev)
104 return mddev->sync_speed_max ?
105 mddev->sync_speed_max : sysctl_speed_limit_max;
108 static struct ctl_table_header *raid_table_header;
110 static ctl_table raid_table[] = {
112 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
113 .procname = "speed_limit_min",
114 .data = &sysctl_speed_limit_min,
115 .maxlen = sizeof(int),
116 .mode = S_IRUGO|S_IWUSR,
117 .proc_handler = &proc_dointvec,
120 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = &proc_dointvec,
127 { .ctl_name = 0 }
130 static ctl_table raid_dir_table[] = {
132 .ctl_name = DEV_RAID,
133 .procname = "raid",
134 .maxlen = 0,
135 .mode = S_IRUGO|S_IXUGO,
136 .child = raid_table,
138 { .ctl_name = 0 }
141 static ctl_table raid_root_table[] = {
143 .ctl_name = CTL_DEV,
144 .procname = "dev",
145 .maxlen = 0,
146 .mode = 0555,
147 .child = raid_dir_table,
149 { .ctl_name = 0 }
152 static struct block_device_operations md_fops;
154 static int start_readonly;
157 * We have a system wide 'event count' that is incremented
158 * on any 'interesting' event, and readers of /proc/mdstat
159 * can use 'poll' or 'select' to find out when the event
160 * count increases.
162 * Events are:
163 * start array, stop array, error, add device, remove device,
164 * start build, activate spare
166 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
167 static atomic_t md_event_count;
168 void md_new_event(mddev_t *mddev)
170 atomic_inc(&md_event_count);
171 wake_up(&md_event_waiters);
172 sysfs_notify(&mddev->kobj, NULL, "sync_action");
174 EXPORT_SYMBOL_GPL(md_new_event);
176 /* Alternate version that can be called from interrupts
177 * when calling sysfs_notify isn't needed.
179 static void md_new_event_inintr(mddev_t *mddev)
181 atomic_inc(&md_event_count);
182 wake_up(&md_event_waiters);
186 * Enables to iterate over all existing md arrays
187 * all_mddevs_lock protects this list.
189 static LIST_HEAD(all_mddevs);
190 static DEFINE_SPINLOCK(all_mddevs_lock);
194 * iterates through all used mddevs in the system.
195 * We take care to grab the all_mddevs_lock whenever navigating
196 * the list, and to always hold a refcount when unlocked.
197 * Any code which breaks out of this loop while own
198 * a reference to the current mddev and must mddev_put it.
200 #define for_each_mddev(mddev,tmp) \
202 for (({ spin_lock(&all_mddevs_lock); \
203 tmp = all_mddevs.next; \
204 mddev = NULL;}); \
205 ({ if (tmp != &all_mddevs) \
206 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
207 spin_unlock(&all_mddevs_lock); \
208 if (mddev) mddev_put(mddev); \
209 mddev = list_entry(tmp, mddev_t, all_mddevs); \
210 tmp != &all_mddevs;}); \
211 ({ spin_lock(&all_mddevs_lock); \
212 tmp = tmp->next;}) \
216 static int md_fail_request (struct request_queue *q, struct bio *bio)
218 bio_io_error(bio);
219 return 0;
222 static inline mddev_t *mddev_get(mddev_t *mddev)
224 atomic_inc(&mddev->active);
225 return mddev;
228 static void mddev_put(mddev_t *mddev)
230 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
231 return;
232 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
233 list_del(&mddev->all_mddevs);
234 spin_unlock(&all_mddevs_lock);
235 blk_cleanup_queue(mddev->queue);
236 kobject_put(&mddev->kobj);
237 } else
238 spin_unlock(&all_mddevs_lock);
241 static mddev_t * mddev_find(dev_t unit)
243 mddev_t *mddev, *new = NULL;
245 retry:
246 spin_lock(&all_mddevs_lock);
247 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
248 if (mddev->unit == unit) {
249 mddev_get(mddev);
250 spin_unlock(&all_mddevs_lock);
251 kfree(new);
252 return mddev;
255 if (new) {
256 list_add(&new->all_mddevs, &all_mddevs);
257 spin_unlock(&all_mddevs_lock);
258 return new;
260 spin_unlock(&all_mddevs_lock);
262 new = kzalloc(sizeof(*new), GFP_KERNEL);
263 if (!new)
264 return NULL;
266 new->unit = unit;
267 if (MAJOR(unit) == MD_MAJOR)
268 new->md_minor = MINOR(unit);
269 else
270 new->md_minor = MINOR(unit) >> MdpMinorShift;
272 mutex_init(&new->reconfig_mutex);
273 INIT_LIST_HEAD(&new->disks);
274 INIT_LIST_HEAD(&new->all_mddevs);
275 init_timer(&new->safemode_timer);
276 atomic_set(&new->active, 1);
277 spin_lock_init(&new->write_lock);
278 init_waitqueue_head(&new->sb_wait);
279 init_waitqueue_head(&new->recovery_wait);
280 new->reshape_position = MaxSector;
281 new->resync_max = MaxSector;
282 new->level = LEVEL_NONE;
284 new->queue = blk_alloc_queue(GFP_KERNEL);
285 if (!new->queue) {
286 kfree(new);
287 return NULL;
289 /* Can be unlocked because the queue is new: no concurrency */
290 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, new->queue);
292 blk_queue_make_request(new->queue, md_fail_request);
294 goto retry;
297 static inline int mddev_lock(mddev_t * mddev)
299 return mutex_lock_interruptible(&mddev->reconfig_mutex);
302 static inline int mddev_trylock(mddev_t * mddev)
304 return mutex_trylock(&mddev->reconfig_mutex);
307 static inline void mddev_unlock(mddev_t * mddev)
309 mutex_unlock(&mddev->reconfig_mutex);
311 md_wakeup_thread(mddev->thread);
314 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
316 mdk_rdev_t * rdev;
317 struct list_head *tmp;
319 rdev_for_each(rdev, tmp, mddev) {
320 if (rdev->desc_nr == nr)
321 return rdev;
323 return NULL;
326 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
328 struct list_head *tmp;
329 mdk_rdev_t *rdev;
331 rdev_for_each(rdev, tmp, mddev) {
332 if (rdev->bdev->bd_dev == dev)
333 return rdev;
335 return NULL;
338 static struct mdk_personality *find_pers(int level, char *clevel)
340 struct mdk_personality *pers;
341 list_for_each_entry(pers, &pers_list, list) {
342 if (level != LEVEL_NONE && pers->level == level)
343 return pers;
344 if (strcmp(pers->name, clevel)==0)
345 return pers;
347 return NULL;
350 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
352 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
353 return MD_NEW_SIZE_BLOCKS(size);
356 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
358 sector_t size;
360 size = rdev->sb_offset;
362 if (chunk_size)
363 size &= ~((sector_t)chunk_size/1024 - 1);
364 return size;
367 static int alloc_disk_sb(mdk_rdev_t * rdev)
369 if (rdev->sb_page)
370 MD_BUG();
372 rdev->sb_page = alloc_page(GFP_KERNEL);
373 if (!rdev->sb_page) {
374 printk(KERN_ALERT "md: out of memory.\n");
375 return -EINVAL;
378 return 0;
381 static void free_disk_sb(mdk_rdev_t * rdev)
383 if (rdev->sb_page) {
384 put_page(rdev->sb_page);
385 rdev->sb_loaded = 0;
386 rdev->sb_page = NULL;
387 rdev->sb_offset = 0;
388 rdev->size = 0;
393 static void super_written(struct bio *bio, int error)
395 mdk_rdev_t *rdev = bio->bi_private;
396 mddev_t *mddev = rdev->mddev;
398 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
399 printk("md: super_written gets error=%d, uptodate=%d\n",
400 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
401 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
402 md_error(mddev, rdev);
405 if (atomic_dec_and_test(&mddev->pending_writes))
406 wake_up(&mddev->sb_wait);
407 bio_put(bio);
410 static void super_written_barrier(struct bio *bio, int error)
412 struct bio *bio2 = bio->bi_private;
413 mdk_rdev_t *rdev = bio2->bi_private;
414 mddev_t *mddev = rdev->mddev;
416 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
417 error == -EOPNOTSUPP) {
418 unsigned long flags;
419 /* barriers don't appear to be supported :-( */
420 set_bit(BarriersNotsupp, &rdev->flags);
421 mddev->barriers_work = 0;
422 spin_lock_irqsave(&mddev->write_lock, flags);
423 bio2->bi_next = mddev->biolist;
424 mddev->biolist = bio2;
425 spin_unlock_irqrestore(&mddev->write_lock, flags);
426 wake_up(&mddev->sb_wait);
427 bio_put(bio);
428 } else {
429 bio_put(bio2);
430 bio->bi_private = rdev;
431 super_written(bio, error);
435 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
436 sector_t sector, int size, struct page *page)
438 /* write first size bytes of page to sector of rdev
439 * Increment mddev->pending_writes before returning
440 * and decrement it on completion, waking up sb_wait
441 * if zero is reached.
442 * If an error occurred, call md_error
444 * As we might need to resubmit the request if BIO_RW_BARRIER
445 * causes ENOTSUPP, we allocate a spare bio...
447 struct bio *bio = bio_alloc(GFP_NOIO, 1);
448 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
450 bio->bi_bdev = rdev->bdev;
451 bio->bi_sector = sector;
452 bio_add_page(bio, page, size, 0);
453 bio->bi_private = rdev;
454 bio->bi_end_io = super_written;
455 bio->bi_rw = rw;
457 atomic_inc(&mddev->pending_writes);
458 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
459 struct bio *rbio;
460 rw |= (1<<BIO_RW_BARRIER);
461 rbio = bio_clone(bio, GFP_NOIO);
462 rbio->bi_private = bio;
463 rbio->bi_end_io = super_written_barrier;
464 submit_bio(rw, rbio);
465 } else
466 submit_bio(rw, bio);
469 void md_super_wait(mddev_t *mddev)
471 /* wait for all superblock writes that were scheduled to complete.
472 * if any had to be retried (due to BARRIER problems), retry them
474 DEFINE_WAIT(wq);
475 for(;;) {
476 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
477 if (atomic_read(&mddev->pending_writes)==0)
478 break;
479 while (mddev->biolist) {
480 struct bio *bio;
481 spin_lock_irq(&mddev->write_lock);
482 bio = mddev->biolist;
483 mddev->biolist = bio->bi_next ;
484 bio->bi_next = NULL;
485 spin_unlock_irq(&mddev->write_lock);
486 submit_bio(bio->bi_rw, bio);
488 schedule();
490 finish_wait(&mddev->sb_wait, &wq);
493 static void bi_complete(struct bio *bio, int error)
495 complete((struct completion*)bio->bi_private);
498 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
499 struct page *page, int rw)
501 struct bio *bio = bio_alloc(GFP_NOIO, 1);
502 struct completion event;
503 int ret;
505 rw |= (1 << BIO_RW_SYNC);
507 bio->bi_bdev = bdev;
508 bio->bi_sector = sector;
509 bio_add_page(bio, page, size, 0);
510 init_completion(&event);
511 bio->bi_private = &event;
512 bio->bi_end_io = bi_complete;
513 submit_bio(rw, bio);
514 wait_for_completion(&event);
516 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
517 bio_put(bio);
518 return ret;
520 EXPORT_SYMBOL_GPL(sync_page_io);
522 static int read_disk_sb(mdk_rdev_t * rdev, int size)
524 char b[BDEVNAME_SIZE];
525 if (!rdev->sb_page) {
526 MD_BUG();
527 return -EINVAL;
529 if (rdev->sb_loaded)
530 return 0;
533 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
534 goto fail;
535 rdev->sb_loaded = 1;
536 return 0;
538 fail:
539 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
540 bdevname(rdev->bdev,b));
541 return -EINVAL;
544 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
546 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
547 (sb1->set_uuid1 == sb2->set_uuid1) &&
548 (sb1->set_uuid2 == sb2->set_uuid2) &&
549 (sb1->set_uuid3 == sb2->set_uuid3))
551 return 1;
553 return 0;
557 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
559 int ret;
560 mdp_super_t *tmp1, *tmp2;
562 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
563 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
565 if (!tmp1 || !tmp2) {
566 ret = 0;
567 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
568 goto abort;
571 *tmp1 = *sb1;
572 *tmp2 = *sb2;
575 * nr_disks is not constant
577 tmp1->nr_disks = 0;
578 tmp2->nr_disks = 0;
580 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
581 ret = 0;
582 else
583 ret = 1;
585 abort:
586 kfree(tmp1);
587 kfree(tmp2);
588 return ret;
592 static u32 md_csum_fold(u32 csum)
594 csum = (csum & 0xffff) + (csum >> 16);
595 return (csum & 0xffff) + (csum >> 16);
598 static unsigned int calc_sb_csum(mdp_super_t * sb)
600 u64 newcsum = 0;
601 u32 *sb32 = (u32*)sb;
602 int i;
603 unsigned int disk_csum, csum;
605 disk_csum = sb->sb_csum;
606 sb->sb_csum = 0;
608 for (i = 0; i < MD_SB_BYTES/4 ; i++)
609 newcsum += sb32[i];
610 csum = (newcsum & 0xffffffff) + (newcsum>>32);
613 #ifdef CONFIG_ALPHA
614 /* This used to use csum_partial, which was wrong for several
615 * reasons including that different results are returned on
616 * different architectures. It isn't critical that we get exactly
617 * the same return value as before (we always csum_fold before
618 * testing, and that removes any differences). However as we
619 * know that csum_partial always returned a 16bit value on
620 * alphas, do a fold to maximise conformity to previous behaviour.
622 sb->sb_csum = md_csum_fold(disk_csum);
623 #else
624 sb->sb_csum = disk_csum;
625 #endif
626 return csum;
631 * Handle superblock details.
632 * We want to be able to handle multiple superblock formats
633 * so we have a common interface to them all, and an array of
634 * different handlers.
635 * We rely on user-space to write the initial superblock, and support
636 * reading and updating of superblocks.
637 * Interface methods are:
638 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
639 * loads and validates a superblock on dev.
640 * if refdev != NULL, compare superblocks on both devices
641 * Return:
642 * 0 - dev has a superblock that is compatible with refdev
643 * 1 - dev has a superblock that is compatible and newer than refdev
644 * so dev should be used as the refdev in future
645 * -EINVAL superblock incompatible or invalid
646 * -othererror e.g. -EIO
648 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
649 * Verify that dev is acceptable into mddev.
650 * The first time, mddev->raid_disks will be 0, and data from
651 * dev should be merged in. Subsequent calls check that dev
652 * is new enough. Return 0 or -EINVAL
654 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
655 * Update the superblock for rdev with data in mddev
656 * This does not write to disc.
660 struct super_type {
661 char *name;
662 struct module *owner;
663 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
664 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
665 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
669 * load_super for 0.90.0
671 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
673 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
674 mdp_super_t *sb;
675 int ret;
676 sector_t sb_offset;
679 * Calculate the position of the superblock,
680 * it's at the end of the disk.
682 * It also happens to be a multiple of 4Kb.
684 sb_offset = calc_dev_sboffset(rdev->bdev);
685 rdev->sb_offset = sb_offset;
687 ret = read_disk_sb(rdev, MD_SB_BYTES);
688 if (ret) return ret;
690 ret = -EINVAL;
692 bdevname(rdev->bdev, b);
693 sb = (mdp_super_t*)page_address(rdev->sb_page);
695 if (sb->md_magic != MD_SB_MAGIC) {
696 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
698 goto abort;
701 if (sb->major_version != 0 ||
702 sb->minor_version < 90 ||
703 sb->minor_version > 91) {
704 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
705 sb->major_version, sb->minor_version,
707 goto abort;
710 if (sb->raid_disks <= 0)
711 goto abort;
713 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
714 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
716 goto abort;
719 rdev->preferred_minor = sb->md_minor;
720 rdev->data_offset = 0;
721 rdev->sb_size = MD_SB_BYTES;
723 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
724 if (sb->level != 1 && sb->level != 4
725 && sb->level != 5 && sb->level != 6
726 && sb->level != 10) {
727 /* FIXME use a better test */
728 printk(KERN_WARNING
729 "md: bitmaps not supported for this level.\n");
730 goto abort;
734 if (sb->level == LEVEL_MULTIPATH)
735 rdev->desc_nr = -1;
736 else
737 rdev->desc_nr = sb->this_disk.number;
739 if (!refdev) {
740 ret = 1;
741 } else {
742 __u64 ev1, ev2;
743 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
744 if (!uuid_equal(refsb, sb)) {
745 printk(KERN_WARNING "md: %s has different UUID to %s\n",
746 b, bdevname(refdev->bdev,b2));
747 goto abort;
749 if (!sb_equal(refsb, sb)) {
750 printk(KERN_WARNING "md: %s has same UUID"
751 " but different superblock to %s\n",
752 b, bdevname(refdev->bdev, b2));
753 goto abort;
755 ev1 = md_event(sb);
756 ev2 = md_event(refsb);
757 if (ev1 > ev2)
758 ret = 1;
759 else
760 ret = 0;
762 rdev->size = calc_dev_size(rdev, sb->chunk_size);
764 if (rdev->size < sb->size && sb->level > 1)
765 /* "this cannot possibly happen" ... */
766 ret = -EINVAL;
768 abort:
769 return ret;
773 * validate_super for 0.90.0
775 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
777 mdp_disk_t *desc;
778 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
779 __u64 ev1 = md_event(sb);
781 rdev->raid_disk = -1;
782 clear_bit(Faulty, &rdev->flags);
783 clear_bit(In_sync, &rdev->flags);
784 clear_bit(WriteMostly, &rdev->flags);
785 clear_bit(BarriersNotsupp, &rdev->flags);
787 if (mddev->raid_disks == 0) {
788 mddev->major_version = 0;
789 mddev->minor_version = sb->minor_version;
790 mddev->patch_version = sb->patch_version;
791 mddev->external = 0;
792 mddev->chunk_size = sb->chunk_size;
793 mddev->ctime = sb->ctime;
794 mddev->utime = sb->utime;
795 mddev->level = sb->level;
796 mddev->clevel[0] = 0;
797 mddev->layout = sb->layout;
798 mddev->raid_disks = sb->raid_disks;
799 mddev->size = sb->size;
800 mddev->events = ev1;
801 mddev->bitmap_offset = 0;
802 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
804 if (mddev->minor_version >= 91) {
805 mddev->reshape_position = sb->reshape_position;
806 mddev->delta_disks = sb->delta_disks;
807 mddev->new_level = sb->new_level;
808 mddev->new_layout = sb->new_layout;
809 mddev->new_chunk = sb->new_chunk;
810 } else {
811 mddev->reshape_position = MaxSector;
812 mddev->delta_disks = 0;
813 mddev->new_level = mddev->level;
814 mddev->new_layout = mddev->layout;
815 mddev->new_chunk = mddev->chunk_size;
818 if (sb->state & (1<<MD_SB_CLEAN))
819 mddev->recovery_cp = MaxSector;
820 else {
821 if (sb->events_hi == sb->cp_events_hi &&
822 sb->events_lo == sb->cp_events_lo) {
823 mddev->recovery_cp = sb->recovery_cp;
824 } else
825 mddev->recovery_cp = 0;
828 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
829 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
830 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
831 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
833 mddev->max_disks = MD_SB_DISKS;
835 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
836 mddev->bitmap_file == NULL)
837 mddev->bitmap_offset = mddev->default_bitmap_offset;
839 } else if (mddev->pers == NULL) {
840 /* Insist on good event counter while assembling */
841 ++ev1;
842 if (ev1 < mddev->events)
843 return -EINVAL;
844 } else if (mddev->bitmap) {
845 /* if adding to array with a bitmap, then we can accept an
846 * older device ... but not too old.
848 if (ev1 < mddev->bitmap->events_cleared)
849 return 0;
850 } else {
851 if (ev1 < mddev->events)
852 /* just a hot-add of a new device, leave raid_disk at -1 */
853 return 0;
856 if (mddev->level != LEVEL_MULTIPATH) {
857 desc = sb->disks + rdev->desc_nr;
859 if (desc->state & (1<<MD_DISK_FAULTY))
860 set_bit(Faulty, &rdev->flags);
861 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
862 desc->raid_disk < mddev->raid_disks */) {
863 set_bit(In_sync, &rdev->flags);
864 rdev->raid_disk = desc->raid_disk;
866 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
867 set_bit(WriteMostly, &rdev->flags);
868 } else /* MULTIPATH are always insync */
869 set_bit(In_sync, &rdev->flags);
870 return 0;
874 * sync_super for 0.90.0
876 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
878 mdp_super_t *sb;
879 struct list_head *tmp;
880 mdk_rdev_t *rdev2;
881 int next_spare = mddev->raid_disks;
884 /* make rdev->sb match mddev data..
886 * 1/ zero out disks
887 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
888 * 3/ any empty disks < next_spare become removed
890 * disks[0] gets initialised to REMOVED because
891 * we cannot be sure from other fields if it has
892 * been initialised or not.
894 int i;
895 int active=0, working=0,failed=0,spare=0,nr_disks=0;
897 rdev->sb_size = MD_SB_BYTES;
899 sb = (mdp_super_t*)page_address(rdev->sb_page);
901 memset(sb, 0, sizeof(*sb));
903 sb->md_magic = MD_SB_MAGIC;
904 sb->major_version = mddev->major_version;
905 sb->patch_version = mddev->patch_version;
906 sb->gvalid_words = 0; /* ignored */
907 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
908 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
909 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
910 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
912 sb->ctime = mddev->ctime;
913 sb->level = mddev->level;
914 sb->size = mddev->size;
915 sb->raid_disks = mddev->raid_disks;
916 sb->md_minor = mddev->md_minor;
917 sb->not_persistent = 0;
918 sb->utime = mddev->utime;
919 sb->state = 0;
920 sb->events_hi = (mddev->events>>32);
921 sb->events_lo = (u32)mddev->events;
923 if (mddev->reshape_position == MaxSector)
924 sb->minor_version = 90;
925 else {
926 sb->minor_version = 91;
927 sb->reshape_position = mddev->reshape_position;
928 sb->new_level = mddev->new_level;
929 sb->delta_disks = mddev->delta_disks;
930 sb->new_layout = mddev->new_layout;
931 sb->new_chunk = mddev->new_chunk;
933 mddev->minor_version = sb->minor_version;
934 if (mddev->in_sync)
936 sb->recovery_cp = mddev->recovery_cp;
937 sb->cp_events_hi = (mddev->events>>32);
938 sb->cp_events_lo = (u32)mddev->events;
939 if (mddev->recovery_cp == MaxSector)
940 sb->state = (1<< MD_SB_CLEAN);
941 } else
942 sb->recovery_cp = 0;
944 sb->layout = mddev->layout;
945 sb->chunk_size = mddev->chunk_size;
947 if (mddev->bitmap && mddev->bitmap_file == NULL)
948 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
950 sb->disks[0].state = (1<<MD_DISK_REMOVED);
951 rdev_for_each(rdev2, tmp, mddev) {
952 mdp_disk_t *d;
953 int desc_nr;
954 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
955 && !test_bit(Faulty, &rdev2->flags))
956 desc_nr = rdev2->raid_disk;
957 else
958 desc_nr = next_spare++;
959 rdev2->desc_nr = desc_nr;
960 d = &sb->disks[rdev2->desc_nr];
961 nr_disks++;
962 d->number = rdev2->desc_nr;
963 d->major = MAJOR(rdev2->bdev->bd_dev);
964 d->minor = MINOR(rdev2->bdev->bd_dev);
965 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
966 && !test_bit(Faulty, &rdev2->flags))
967 d->raid_disk = rdev2->raid_disk;
968 else
969 d->raid_disk = rdev2->desc_nr; /* compatibility */
970 if (test_bit(Faulty, &rdev2->flags))
971 d->state = (1<<MD_DISK_FAULTY);
972 else if (test_bit(In_sync, &rdev2->flags)) {
973 d->state = (1<<MD_DISK_ACTIVE);
974 d->state |= (1<<MD_DISK_SYNC);
975 active++;
976 working++;
977 } else {
978 d->state = 0;
979 spare++;
980 working++;
982 if (test_bit(WriteMostly, &rdev2->flags))
983 d->state |= (1<<MD_DISK_WRITEMOSTLY);
985 /* now set the "removed" and "faulty" bits on any missing devices */
986 for (i=0 ; i < mddev->raid_disks ; i++) {
987 mdp_disk_t *d = &sb->disks[i];
988 if (d->state == 0 && d->number == 0) {
989 d->number = i;
990 d->raid_disk = i;
991 d->state = (1<<MD_DISK_REMOVED);
992 d->state |= (1<<MD_DISK_FAULTY);
993 failed++;
996 sb->nr_disks = nr_disks;
997 sb->active_disks = active;
998 sb->working_disks = working;
999 sb->failed_disks = failed;
1000 sb->spare_disks = spare;
1002 sb->this_disk = sb->disks[rdev->desc_nr];
1003 sb->sb_csum = calc_sb_csum(sb);
1007 * version 1 superblock
1010 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1012 __le32 disk_csum;
1013 u32 csum;
1014 unsigned long long newcsum;
1015 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1016 __le32 *isuper = (__le32*)sb;
1017 int i;
1019 disk_csum = sb->sb_csum;
1020 sb->sb_csum = 0;
1021 newcsum = 0;
1022 for (i=0; size>=4; size -= 4 )
1023 newcsum += le32_to_cpu(*isuper++);
1025 if (size == 2)
1026 newcsum += le16_to_cpu(*(__le16*) isuper);
1028 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1029 sb->sb_csum = disk_csum;
1030 return cpu_to_le32(csum);
1033 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1035 struct mdp_superblock_1 *sb;
1036 int ret;
1037 sector_t sb_offset;
1038 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1039 int bmask;
1042 * Calculate the position of the superblock.
1043 * It is always aligned to a 4K boundary and
1044 * depeding on minor_version, it can be:
1045 * 0: At least 8K, but less than 12K, from end of device
1046 * 1: At start of device
1047 * 2: 4K from start of device.
1049 switch(minor_version) {
1050 case 0:
1051 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1052 sb_offset -= 8*2;
1053 sb_offset &= ~(sector_t)(4*2-1);
1054 /* convert from sectors to K */
1055 sb_offset /= 2;
1056 break;
1057 case 1:
1058 sb_offset = 0;
1059 break;
1060 case 2:
1061 sb_offset = 4;
1062 break;
1063 default:
1064 return -EINVAL;
1066 rdev->sb_offset = sb_offset;
1068 /* superblock is rarely larger than 1K, but it can be larger,
1069 * and it is safe to read 4k, so we do that
1071 ret = read_disk_sb(rdev, 4096);
1072 if (ret) return ret;
1075 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1077 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1078 sb->major_version != cpu_to_le32(1) ||
1079 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1080 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1081 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1082 return -EINVAL;
1084 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1085 printk("md: invalid superblock checksum on %s\n",
1086 bdevname(rdev->bdev,b));
1087 return -EINVAL;
1089 if (le64_to_cpu(sb->data_size) < 10) {
1090 printk("md: data_size too small on %s\n",
1091 bdevname(rdev->bdev,b));
1092 return -EINVAL;
1094 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1095 if (sb->level != cpu_to_le32(1) &&
1096 sb->level != cpu_to_le32(4) &&
1097 sb->level != cpu_to_le32(5) &&
1098 sb->level != cpu_to_le32(6) &&
1099 sb->level != cpu_to_le32(10)) {
1100 printk(KERN_WARNING
1101 "md: bitmaps not supported for this level.\n");
1102 return -EINVAL;
1106 rdev->preferred_minor = 0xffff;
1107 rdev->data_offset = le64_to_cpu(sb->data_offset);
1108 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1110 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1111 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1112 if (rdev->sb_size & bmask)
1113 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1115 if (minor_version
1116 && rdev->data_offset < sb_offset + (rdev->sb_size/512))
1117 return -EINVAL;
1119 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1120 rdev->desc_nr = -1;
1121 else
1122 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1124 if (!refdev) {
1125 ret = 1;
1126 } else {
1127 __u64 ev1, ev2;
1128 struct mdp_superblock_1 *refsb =
1129 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1131 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1132 sb->level != refsb->level ||
1133 sb->layout != refsb->layout ||
1134 sb->chunksize != refsb->chunksize) {
1135 printk(KERN_WARNING "md: %s has strangely different"
1136 " superblock to %s\n",
1137 bdevname(rdev->bdev,b),
1138 bdevname(refdev->bdev,b2));
1139 return -EINVAL;
1141 ev1 = le64_to_cpu(sb->events);
1142 ev2 = le64_to_cpu(refsb->events);
1144 if (ev1 > ev2)
1145 ret = 1;
1146 else
1147 ret = 0;
1149 if (minor_version)
1150 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1151 else
1152 rdev->size = rdev->sb_offset;
1153 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1154 return -EINVAL;
1155 rdev->size = le64_to_cpu(sb->data_size)/2;
1156 if (le32_to_cpu(sb->chunksize))
1157 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1159 if (le64_to_cpu(sb->size) > rdev->size*2)
1160 return -EINVAL;
1161 return ret;
1164 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1166 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1167 __u64 ev1 = le64_to_cpu(sb->events);
1169 rdev->raid_disk = -1;
1170 clear_bit(Faulty, &rdev->flags);
1171 clear_bit(In_sync, &rdev->flags);
1172 clear_bit(WriteMostly, &rdev->flags);
1173 clear_bit(BarriersNotsupp, &rdev->flags);
1175 if (mddev->raid_disks == 0) {
1176 mddev->major_version = 1;
1177 mddev->patch_version = 0;
1178 mddev->external = 0;
1179 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1180 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1181 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1182 mddev->level = le32_to_cpu(sb->level);
1183 mddev->clevel[0] = 0;
1184 mddev->layout = le32_to_cpu(sb->layout);
1185 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1186 mddev->size = le64_to_cpu(sb->size)/2;
1187 mddev->events = ev1;
1188 mddev->bitmap_offset = 0;
1189 mddev->default_bitmap_offset = 1024 >> 9;
1191 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1192 memcpy(mddev->uuid, sb->set_uuid, 16);
1194 mddev->max_disks = (4096-256)/2;
1196 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1197 mddev->bitmap_file == NULL )
1198 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1200 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1201 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1202 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1203 mddev->new_level = le32_to_cpu(sb->new_level);
1204 mddev->new_layout = le32_to_cpu(sb->new_layout);
1205 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1206 } else {
1207 mddev->reshape_position = MaxSector;
1208 mddev->delta_disks = 0;
1209 mddev->new_level = mddev->level;
1210 mddev->new_layout = mddev->layout;
1211 mddev->new_chunk = mddev->chunk_size;
1214 } else if (mddev->pers == NULL) {
1215 /* Insist of good event counter while assembling */
1216 ++ev1;
1217 if (ev1 < mddev->events)
1218 return -EINVAL;
1219 } else if (mddev->bitmap) {
1220 /* If adding to array with a bitmap, then we can accept an
1221 * older device, but not too old.
1223 if (ev1 < mddev->bitmap->events_cleared)
1224 return 0;
1225 } else {
1226 if (ev1 < mddev->events)
1227 /* just a hot-add of a new device, leave raid_disk at -1 */
1228 return 0;
1230 if (mddev->level != LEVEL_MULTIPATH) {
1231 int role;
1232 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1233 switch(role) {
1234 case 0xffff: /* spare */
1235 break;
1236 case 0xfffe: /* faulty */
1237 set_bit(Faulty, &rdev->flags);
1238 break;
1239 default:
1240 if ((le32_to_cpu(sb->feature_map) &
1241 MD_FEATURE_RECOVERY_OFFSET))
1242 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1243 else
1244 set_bit(In_sync, &rdev->flags);
1245 rdev->raid_disk = role;
1246 break;
1248 if (sb->devflags & WriteMostly1)
1249 set_bit(WriteMostly, &rdev->flags);
1250 } else /* MULTIPATH are always insync */
1251 set_bit(In_sync, &rdev->flags);
1253 return 0;
1256 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1258 struct mdp_superblock_1 *sb;
1259 struct list_head *tmp;
1260 mdk_rdev_t *rdev2;
1261 int max_dev, i;
1262 /* make rdev->sb match mddev and rdev data. */
1264 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1266 sb->feature_map = 0;
1267 sb->pad0 = 0;
1268 sb->recovery_offset = cpu_to_le64(0);
1269 memset(sb->pad1, 0, sizeof(sb->pad1));
1270 memset(sb->pad2, 0, sizeof(sb->pad2));
1271 memset(sb->pad3, 0, sizeof(sb->pad3));
1273 sb->utime = cpu_to_le64((__u64)mddev->utime);
1274 sb->events = cpu_to_le64(mddev->events);
1275 if (mddev->in_sync)
1276 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1277 else
1278 sb->resync_offset = cpu_to_le64(0);
1280 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1282 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1283 sb->size = cpu_to_le64(mddev->size<<1);
1285 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1286 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1287 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1290 if (rdev->raid_disk >= 0 &&
1291 !test_bit(In_sync, &rdev->flags) &&
1292 rdev->recovery_offset > 0) {
1293 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1294 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1297 if (mddev->reshape_position != MaxSector) {
1298 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1299 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1300 sb->new_layout = cpu_to_le32(mddev->new_layout);
1301 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1302 sb->new_level = cpu_to_le32(mddev->new_level);
1303 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1306 max_dev = 0;
1307 rdev_for_each(rdev2, tmp, mddev)
1308 if (rdev2->desc_nr+1 > max_dev)
1309 max_dev = rdev2->desc_nr+1;
1311 if (max_dev > le32_to_cpu(sb->max_dev))
1312 sb->max_dev = cpu_to_le32(max_dev);
1313 for (i=0; i<max_dev;i++)
1314 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1316 rdev_for_each(rdev2, tmp, mddev) {
1317 i = rdev2->desc_nr;
1318 if (test_bit(Faulty, &rdev2->flags))
1319 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1320 else if (test_bit(In_sync, &rdev2->flags))
1321 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1322 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1323 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1324 else
1325 sb->dev_roles[i] = cpu_to_le16(0xffff);
1328 sb->sb_csum = calc_sb_1_csum(sb);
1332 static struct super_type super_types[] = {
1333 [0] = {
1334 .name = "0.90.0",
1335 .owner = THIS_MODULE,
1336 .load_super = super_90_load,
1337 .validate_super = super_90_validate,
1338 .sync_super = super_90_sync,
1340 [1] = {
1341 .name = "md-1",
1342 .owner = THIS_MODULE,
1343 .load_super = super_1_load,
1344 .validate_super = super_1_validate,
1345 .sync_super = super_1_sync,
1349 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1351 struct list_head *tmp, *tmp2;
1352 mdk_rdev_t *rdev, *rdev2;
1354 rdev_for_each(rdev, tmp, mddev1)
1355 rdev_for_each(rdev2, tmp2, mddev2)
1356 if (rdev->bdev->bd_contains ==
1357 rdev2->bdev->bd_contains)
1358 return 1;
1360 return 0;
1363 static LIST_HEAD(pending_raid_disks);
1365 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1367 char b[BDEVNAME_SIZE];
1368 struct kobject *ko;
1369 char *s;
1370 int err;
1372 if (rdev->mddev) {
1373 MD_BUG();
1374 return -EINVAL;
1377 /* prevent duplicates */
1378 if (find_rdev(mddev, rdev->bdev->bd_dev))
1379 return -EEXIST;
1381 /* make sure rdev->size exceeds mddev->size */
1382 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1383 if (mddev->pers) {
1384 /* Cannot change size, so fail
1385 * If mddev->level <= 0, then we don't care
1386 * about aligning sizes (e.g. linear)
1388 if (mddev->level > 0)
1389 return -ENOSPC;
1390 } else
1391 mddev->size = rdev->size;
1394 /* Verify rdev->desc_nr is unique.
1395 * If it is -1, assign a free number, else
1396 * check number is not in use
1398 if (rdev->desc_nr < 0) {
1399 int choice = 0;
1400 if (mddev->pers) choice = mddev->raid_disks;
1401 while (find_rdev_nr(mddev, choice))
1402 choice++;
1403 rdev->desc_nr = choice;
1404 } else {
1405 if (find_rdev_nr(mddev, rdev->desc_nr))
1406 return -EBUSY;
1408 bdevname(rdev->bdev,b);
1409 while ( (s=strchr(b, '/')) != NULL)
1410 *s = '!';
1412 rdev->mddev = mddev;
1413 printk(KERN_INFO "md: bind<%s>\n", b);
1415 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1416 goto fail;
1418 if (rdev->bdev->bd_part)
1419 ko = &rdev->bdev->bd_part->dev.kobj;
1420 else
1421 ko = &rdev->bdev->bd_disk->dev.kobj;
1422 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1423 kobject_del(&rdev->kobj);
1424 goto fail;
1426 list_add(&rdev->same_set, &mddev->disks);
1427 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1428 return 0;
1430 fail:
1431 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1432 b, mdname(mddev));
1433 return err;
1436 static void md_delayed_delete(struct work_struct *ws)
1438 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1439 kobject_del(&rdev->kobj);
1440 kobject_put(&rdev->kobj);
1443 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1445 char b[BDEVNAME_SIZE];
1446 if (!rdev->mddev) {
1447 MD_BUG();
1448 return;
1450 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1451 list_del_init(&rdev->same_set);
1452 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1453 rdev->mddev = NULL;
1454 sysfs_remove_link(&rdev->kobj, "block");
1456 /* We need to delay this, otherwise we can deadlock when
1457 * writing to 'remove' to "dev/state"
1459 INIT_WORK(&rdev->del_work, md_delayed_delete);
1460 kobject_get(&rdev->kobj);
1461 schedule_work(&rdev->del_work);
1465 * prevent the device from being mounted, repartitioned or
1466 * otherwise reused by a RAID array (or any other kernel
1467 * subsystem), by bd_claiming the device.
1469 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1471 int err = 0;
1472 struct block_device *bdev;
1473 char b[BDEVNAME_SIZE];
1475 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1476 if (IS_ERR(bdev)) {
1477 printk(KERN_ERR "md: could not open %s.\n",
1478 __bdevname(dev, b));
1479 return PTR_ERR(bdev);
1481 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1482 if (err) {
1483 printk(KERN_ERR "md: could not bd_claim %s.\n",
1484 bdevname(bdev, b));
1485 blkdev_put(bdev);
1486 return err;
1488 if (!shared)
1489 set_bit(AllReserved, &rdev->flags);
1490 rdev->bdev = bdev;
1491 return err;
1494 static void unlock_rdev(mdk_rdev_t *rdev)
1496 struct block_device *bdev = rdev->bdev;
1497 rdev->bdev = NULL;
1498 if (!bdev)
1499 MD_BUG();
1500 bd_release(bdev);
1501 blkdev_put(bdev);
1504 void md_autodetect_dev(dev_t dev);
1506 static void export_rdev(mdk_rdev_t * rdev)
1508 char b[BDEVNAME_SIZE];
1509 printk(KERN_INFO "md: export_rdev(%s)\n",
1510 bdevname(rdev->bdev,b));
1511 if (rdev->mddev)
1512 MD_BUG();
1513 free_disk_sb(rdev);
1514 list_del_init(&rdev->same_set);
1515 #ifndef MODULE
1516 if (test_bit(AutoDetected, &rdev->flags))
1517 md_autodetect_dev(rdev->bdev->bd_dev);
1518 #endif
1519 unlock_rdev(rdev);
1520 kobject_put(&rdev->kobj);
1523 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1525 unbind_rdev_from_array(rdev);
1526 export_rdev(rdev);
1529 static void export_array(mddev_t *mddev)
1531 struct list_head *tmp;
1532 mdk_rdev_t *rdev;
1534 rdev_for_each(rdev, tmp, mddev) {
1535 if (!rdev->mddev) {
1536 MD_BUG();
1537 continue;
1539 kick_rdev_from_array(rdev);
1541 if (!list_empty(&mddev->disks))
1542 MD_BUG();
1543 mddev->raid_disks = 0;
1544 mddev->major_version = 0;
1547 static void print_desc(mdp_disk_t *desc)
1549 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1550 desc->major,desc->minor,desc->raid_disk,desc->state);
1553 static void print_sb(mdp_super_t *sb)
1555 int i;
1557 printk(KERN_INFO
1558 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1559 sb->major_version, sb->minor_version, sb->patch_version,
1560 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1561 sb->ctime);
1562 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1563 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1564 sb->md_minor, sb->layout, sb->chunk_size);
1565 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1566 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1567 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1568 sb->failed_disks, sb->spare_disks,
1569 sb->sb_csum, (unsigned long)sb->events_lo);
1571 printk(KERN_INFO);
1572 for (i = 0; i < MD_SB_DISKS; i++) {
1573 mdp_disk_t *desc;
1575 desc = sb->disks + i;
1576 if (desc->number || desc->major || desc->minor ||
1577 desc->raid_disk || (desc->state && (desc->state != 4))) {
1578 printk(" D %2d: ", i);
1579 print_desc(desc);
1582 printk(KERN_INFO "md: THIS: ");
1583 print_desc(&sb->this_disk);
1587 static void print_rdev(mdk_rdev_t *rdev)
1589 char b[BDEVNAME_SIZE];
1590 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1591 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1592 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1593 rdev->desc_nr);
1594 if (rdev->sb_loaded) {
1595 printk(KERN_INFO "md: rdev superblock:\n");
1596 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1597 } else
1598 printk(KERN_INFO "md: no rdev superblock!\n");
1601 static void md_print_devices(void)
1603 struct list_head *tmp, *tmp2;
1604 mdk_rdev_t *rdev;
1605 mddev_t *mddev;
1606 char b[BDEVNAME_SIZE];
1608 printk("\n");
1609 printk("md: **********************************\n");
1610 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1611 printk("md: **********************************\n");
1612 for_each_mddev(mddev, tmp) {
1614 if (mddev->bitmap)
1615 bitmap_print_sb(mddev->bitmap);
1616 else
1617 printk("%s: ", mdname(mddev));
1618 rdev_for_each(rdev, tmp2, mddev)
1619 printk("<%s>", bdevname(rdev->bdev,b));
1620 printk("\n");
1622 rdev_for_each(rdev, tmp2, mddev)
1623 print_rdev(rdev);
1625 printk("md: **********************************\n");
1626 printk("\n");
1630 static void sync_sbs(mddev_t * mddev, int nospares)
1632 /* Update each superblock (in-memory image), but
1633 * if we are allowed to, skip spares which already
1634 * have the right event counter, or have one earlier
1635 * (which would mean they aren't being marked as dirty
1636 * with the rest of the array)
1638 mdk_rdev_t *rdev;
1639 struct list_head *tmp;
1641 rdev_for_each(rdev, tmp, mddev) {
1642 if (rdev->sb_events == mddev->events ||
1643 (nospares &&
1644 rdev->raid_disk < 0 &&
1645 (rdev->sb_events&1)==0 &&
1646 rdev->sb_events+1 == mddev->events)) {
1647 /* Don't update this superblock */
1648 rdev->sb_loaded = 2;
1649 } else {
1650 super_types[mddev->major_version].
1651 sync_super(mddev, rdev);
1652 rdev->sb_loaded = 1;
1657 static void md_update_sb(mddev_t * mddev, int force_change)
1659 struct list_head *tmp;
1660 mdk_rdev_t *rdev;
1661 int sync_req;
1662 int nospares = 0;
1664 if (mddev->external)
1665 return;
1666 repeat:
1667 spin_lock_irq(&mddev->write_lock);
1669 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1670 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1671 force_change = 1;
1672 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1673 /* just a clean<-> dirty transition, possibly leave spares alone,
1674 * though if events isn't the right even/odd, we will have to do
1675 * spares after all
1677 nospares = 1;
1678 if (force_change)
1679 nospares = 0;
1680 if (mddev->degraded)
1681 /* If the array is degraded, then skipping spares is both
1682 * dangerous and fairly pointless.
1683 * Dangerous because a device that was removed from the array
1684 * might have a event_count that still looks up-to-date,
1685 * so it can be re-added without a resync.
1686 * Pointless because if there are any spares to skip,
1687 * then a recovery will happen and soon that array won't
1688 * be degraded any more and the spare can go back to sleep then.
1690 nospares = 0;
1692 sync_req = mddev->in_sync;
1693 mddev->utime = get_seconds();
1695 /* If this is just a dirty<->clean transition, and the array is clean
1696 * and 'events' is odd, we can roll back to the previous clean state */
1697 if (nospares
1698 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1699 && (mddev->events & 1)
1700 && mddev->events != 1)
1701 mddev->events--;
1702 else {
1703 /* otherwise we have to go forward and ... */
1704 mddev->events ++;
1705 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1706 /* .. if the array isn't clean, insist on an odd 'events' */
1707 if ((mddev->events&1)==0) {
1708 mddev->events++;
1709 nospares = 0;
1711 } else {
1712 /* otherwise insist on an even 'events' (for clean states) */
1713 if ((mddev->events&1)) {
1714 mddev->events++;
1715 nospares = 0;
1720 if (!mddev->events) {
1722 * oops, this 64-bit counter should never wrap.
1723 * Either we are in around ~1 trillion A.C., assuming
1724 * 1 reboot per second, or we have a bug:
1726 MD_BUG();
1727 mddev->events --;
1731 * do not write anything to disk if using
1732 * nonpersistent superblocks
1734 if (!mddev->persistent) {
1735 if (!mddev->external)
1736 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1738 spin_unlock_irq(&mddev->write_lock);
1739 wake_up(&mddev->sb_wait);
1740 return;
1742 sync_sbs(mddev, nospares);
1743 spin_unlock_irq(&mddev->write_lock);
1745 dprintk(KERN_INFO
1746 "md: updating %s RAID superblock on device (in sync %d)\n",
1747 mdname(mddev),mddev->in_sync);
1749 bitmap_update_sb(mddev->bitmap);
1750 rdev_for_each(rdev, tmp, mddev) {
1751 char b[BDEVNAME_SIZE];
1752 dprintk(KERN_INFO "md: ");
1753 if (rdev->sb_loaded != 1)
1754 continue; /* no noise on spare devices */
1755 if (test_bit(Faulty, &rdev->flags))
1756 dprintk("(skipping faulty ");
1758 dprintk("%s ", bdevname(rdev->bdev,b));
1759 if (!test_bit(Faulty, &rdev->flags)) {
1760 md_super_write(mddev,rdev,
1761 rdev->sb_offset<<1, rdev->sb_size,
1762 rdev->sb_page);
1763 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1764 bdevname(rdev->bdev,b),
1765 (unsigned long long)rdev->sb_offset);
1766 rdev->sb_events = mddev->events;
1768 } else
1769 dprintk(")\n");
1770 if (mddev->level == LEVEL_MULTIPATH)
1771 /* only need to write one superblock... */
1772 break;
1774 md_super_wait(mddev);
1775 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1777 spin_lock_irq(&mddev->write_lock);
1778 if (mddev->in_sync != sync_req ||
1779 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1780 /* have to write it out again */
1781 spin_unlock_irq(&mddev->write_lock);
1782 goto repeat;
1784 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1785 spin_unlock_irq(&mddev->write_lock);
1786 wake_up(&mddev->sb_wait);
1790 /* words written to sysfs files may, or my not, be \n terminated.
1791 * We want to accept with case. For this we use cmd_match.
1793 static int cmd_match(const char *cmd, const char *str)
1795 /* See if cmd, written into a sysfs file, matches
1796 * str. They must either be the same, or cmd can
1797 * have a trailing newline
1799 while (*cmd && *str && *cmd == *str) {
1800 cmd++;
1801 str++;
1803 if (*cmd == '\n')
1804 cmd++;
1805 if (*str || *cmd)
1806 return 0;
1807 return 1;
1810 struct rdev_sysfs_entry {
1811 struct attribute attr;
1812 ssize_t (*show)(mdk_rdev_t *, char *);
1813 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1816 static ssize_t
1817 state_show(mdk_rdev_t *rdev, char *page)
1819 char *sep = "";
1820 size_t len = 0;
1822 if (test_bit(Faulty, &rdev->flags)) {
1823 len+= sprintf(page+len, "%sfaulty",sep);
1824 sep = ",";
1826 if (test_bit(In_sync, &rdev->flags)) {
1827 len += sprintf(page+len, "%sin_sync",sep);
1828 sep = ",";
1830 if (test_bit(WriteMostly, &rdev->flags)) {
1831 len += sprintf(page+len, "%swrite_mostly",sep);
1832 sep = ",";
1834 if (test_bit(Blocked, &rdev->flags)) {
1835 len += sprintf(page+len, "%sblocked", sep);
1836 sep = ",";
1838 if (!test_bit(Faulty, &rdev->flags) &&
1839 !test_bit(In_sync, &rdev->flags)) {
1840 len += sprintf(page+len, "%sspare", sep);
1841 sep = ",";
1843 return len+sprintf(page+len, "\n");
1846 static ssize_t
1847 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1849 /* can write
1850 * faulty - simulates and error
1851 * remove - disconnects the device
1852 * writemostly - sets write_mostly
1853 * -writemostly - clears write_mostly
1854 * blocked - sets the Blocked flag
1855 * -blocked - clears the Blocked flag
1857 int err = -EINVAL;
1858 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1859 md_error(rdev->mddev, rdev);
1860 err = 0;
1861 } else if (cmd_match(buf, "remove")) {
1862 if (rdev->raid_disk >= 0)
1863 err = -EBUSY;
1864 else {
1865 mddev_t *mddev = rdev->mddev;
1866 kick_rdev_from_array(rdev);
1867 if (mddev->pers)
1868 md_update_sb(mddev, 1);
1869 md_new_event(mddev);
1870 err = 0;
1872 } else if (cmd_match(buf, "writemostly")) {
1873 set_bit(WriteMostly, &rdev->flags);
1874 err = 0;
1875 } else if (cmd_match(buf, "-writemostly")) {
1876 clear_bit(WriteMostly, &rdev->flags);
1877 err = 0;
1878 } else if (cmd_match(buf, "blocked")) {
1879 set_bit(Blocked, &rdev->flags);
1880 err = 0;
1881 } else if (cmd_match(buf, "-blocked")) {
1882 clear_bit(Blocked, &rdev->flags);
1883 wake_up(&rdev->blocked_wait);
1884 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
1885 md_wakeup_thread(rdev->mddev->thread);
1887 err = 0;
1889 return err ? err : len;
1891 static struct rdev_sysfs_entry rdev_state =
1892 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1894 static ssize_t
1895 errors_show(mdk_rdev_t *rdev, char *page)
1897 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1900 static ssize_t
1901 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1903 char *e;
1904 unsigned long n = simple_strtoul(buf, &e, 10);
1905 if (*buf && (*e == 0 || *e == '\n')) {
1906 atomic_set(&rdev->corrected_errors, n);
1907 return len;
1909 return -EINVAL;
1911 static struct rdev_sysfs_entry rdev_errors =
1912 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1914 static ssize_t
1915 slot_show(mdk_rdev_t *rdev, char *page)
1917 if (rdev->raid_disk < 0)
1918 return sprintf(page, "none\n");
1919 else
1920 return sprintf(page, "%d\n", rdev->raid_disk);
1923 static ssize_t
1924 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1926 char *e;
1927 int err;
1928 char nm[20];
1929 int slot = simple_strtoul(buf, &e, 10);
1930 if (strncmp(buf, "none", 4)==0)
1931 slot = -1;
1932 else if (e==buf || (*e && *e!= '\n'))
1933 return -EINVAL;
1934 if (rdev->mddev->pers) {
1935 /* Setting 'slot' on an active array requires also
1936 * updating the 'rd%d' link, and communicating
1937 * with the personality with ->hot_*_disk.
1938 * For now we only support removing
1939 * failed/spare devices. This normally happens automatically,
1940 * but not when the metadata is externally managed.
1942 if (slot != -1)
1943 return -EBUSY;
1944 if (rdev->raid_disk == -1)
1945 return -EEXIST;
1946 /* personality does all needed checks */
1947 if (rdev->mddev->pers->hot_add_disk == NULL)
1948 return -EINVAL;
1949 err = rdev->mddev->pers->
1950 hot_remove_disk(rdev->mddev, rdev->raid_disk);
1951 if (err)
1952 return err;
1953 sprintf(nm, "rd%d", rdev->raid_disk);
1954 sysfs_remove_link(&rdev->mddev->kobj, nm);
1955 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
1956 md_wakeup_thread(rdev->mddev->thread);
1957 } else {
1958 if (slot >= rdev->mddev->raid_disks)
1959 return -ENOSPC;
1960 rdev->raid_disk = slot;
1961 /* assume it is working */
1962 clear_bit(Faulty, &rdev->flags);
1963 clear_bit(WriteMostly, &rdev->flags);
1964 set_bit(In_sync, &rdev->flags);
1966 return len;
1970 static struct rdev_sysfs_entry rdev_slot =
1971 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1973 static ssize_t
1974 offset_show(mdk_rdev_t *rdev, char *page)
1976 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1979 static ssize_t
1980 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1982 char *e;
1983 unsigned long long offset = simple_strtoull(buf, &e, 10);
1984 if (e==buf || (*e && *e != '\n'))
1985 return -EINVAL;
1986 if (rdev->mddev->pers)
1987 return -EBUSY;
1988 if (rdev->size && rdev->mddev->external)
1989 /* Must set offset before size, so overlap checks
1990 * can be sane */
1991 return -EBUSY;
1992 rdev->data_offset = offset;
1993 return len;
1996 static struct rdev_sysfs_entry rdev_offset =
1997 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1999 static ssize_t
2000 rdev_size_show(mdk_rdev_t *rdev, char *page)
2002 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
2005 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2007 /* check if two start/length pairs overlap */
2008 if (s1+l1 <= s2)
2009 return 0;
2010 if (s2+l2 <= s1)
2011 return 0;
2012 return 1;
2015 static ssize_t
2016 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2018 char *e;
2019 unsigned long long size = simple_strtoull(buf, &e, 10);
2020 unsigned long long oldsize = rdev->size;
2021 mddev_t *my_mddev = rdev->mddev;
2023 if (e==buf || (*e && *e != '\n'))
2024 return -EINVAL;
2025 if (my_mddev->pers)
2026 return -EBUSY;
2027 rdev->size = size;
2028 if (size > oldsize && rdev->mddev->external) {
2029 /* need to check that all other rdevs with the same ->bdev
2030 * do not overlap. We need to unlock the mddev to avoid
2031 * a deadlock. We have already changed rdev->size, and if
2032 * we have to change it back, we will have the lock again.
2034 mddev_t *mddev;
2035 int overlap = 0;
2036 struct list_head *tmp, *tmp2;
2038 mddev_unlock(my_mddev);
2039 for_each_mddev(mddev, tmp) {
2040 mdk_rdev_t *rdev2;
2042 mddev_lock(mddev);
2043 rdev_for_each(rdev2, tmp2, mddev)
2044 if (test_bit(AllReserved, &rdev2->flags) ||
2045 (rdev->bdev == rdev2->bdev &&
2046 rdev != rdev2 &&
2047 overlaps(rdev->data_offset, rdev->size,
2048 rdev2->data_offset, rdev2->size))) {
2049 overlap = 1;
2050 break;
2052 mddev_unlock(mddev);
2053 if (overlap) {
2054 mddev_put(mddev);
2055 break;
2058 mddev_lock(my_mddev);
2059 if (overlap) {
2060 /* Someone else could have slipped in a size
2061 * change here, but doing so is just silly.
2062 * We put oldsize back because we *know* it is
2063 * safe, and trust userspace not to race with
2064 * itself
2066 rdev->size = oldsize;
2067 return -EBUSY;
2070 if (size < my_mddev->size || my_mddev->size == 0)
2071 my_mddev->size = size;
2072 return len;
2075 static struct rdev_sysfs_entry rdev_size =
2076 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2078 static struct attribute *rdev_default_attrs[] = {
2079 &rdev_state.attr,
2080 &rdev_errors.attr,
2081 &rdev_slot.attr,
2082 &rdev_offset.attr,
2083 &rdev_size.attr,
2084 NULL,
2086 static ssize_t
2087 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2089 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2090 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2091 mddev_t *mddev = rdev->mddev;
2092 ssize_t rv;
2094 if (!entry->show)
2095 return -EIO;
2097 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2098 if (!rv) {
2099 if (rdev->mddev == NULL)
2100 rv = -EBUSY;
2101 else
2102 rv = entry->show(rdev, page);
2103 mddev_unlock(mddev);
2105 return rv;
2108 static ssize_t
2109 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2110 const char *page, size_t length)
2112 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2113 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2114 ssize_t rv;
2115 mddev_t *mddev = rdev->mddev;
2117 if (!entry->store)
2118 return -EIO;
2119 if (!capable(CAP_SYS_ADMIN))
2120 return -EACCES;
2121 rv = mddev ? mddev_lock(mddev): -EBUSY;
2122 if (!rv) {
2123 if (rdev->mddev == NULL)
2124 rv = -EBUSY;
2125 else
2126 rv = entry->store(rdev, page, length);
2127 mddev_unlock(mddev);
2129 return rv;
2132 static void rdev_free(struct kobject *ko)
2134 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2135 kfree(rdev);
2137 static struct sysfs_ops rdev_sysfs_ops = {
2138 .show = rdev_attr_show,
2139 .store = rdev_attr_store,
2141 static struct kobj_type rdev_ktype = {
2142 .release = rdev_free,
2143 .sysfs_ops = &rdev_sysfs_ops,
2144 .default_attrs = rdev_default_attrs,
2148 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2150 * mark the device faulty if:
2152 * - the device is nonexistent (zero size)
2153 * - the device has no valid superblock
2155 * a faulty rdev _never_ has rdev->sb set.
2157 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2159 char b[BDEVNAME_SIZE];
2160 int err;
2161 mdk_rdev_t *rdev;
2162 sector_t size;
2164 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2165 if (!rdev) {
2166 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2167 return ERR_PTR(-ENOMEM);
2170 if ((err = alloc_disk_sb(rdev)))
2171 goto abort_free;
2173 err = lock_rdev(rdev, newdev, super_format == -2);
2174 if (err)
2175 goto abort_free;
2177 kobject_init(&rdev->kobj, &rdev_ktype);
2179 rdev->desc_nr = -1;
2180 rdev->saved_raid_disk = -1;
2181 rdev->raid_disk = -1;
2182 rdev->flags = 0;
2183 rdev->data_offset = 0;
2184 rdev->sb_events = 0;
2185 atomic_set(&rdev->nr_pending, 0);
2186 atomic_set(&rdev->read_errors, 0);
2187 atomic_set(&rdev->corrected_errors, 0);
2189 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2190 if (!size) {
2191 printk(KERN_WARNING
2192 "md: %s has zero or unknown size, marking faulty!\n",
2193 bdevname(rdev->bdev,b));
2194 err = -EINVAL;
2195 goto abort_free;
2198 if (super_format >= 0) {
2199 err = super_types[super_format].
2200 load_super(rdev, NULL, super_minor);
2201 if (err == -EINVAL) {
2202 printk(KERN_WARNING
2203 "md: %s does not have a valid v%d.%d "
2204 "superblock, not importing!\n",
2205 bdevname(rdev->bdev,b),
2206 super_format, super_minor);
2207 goto abort_free;
2209 if (err < 0) {
2210 printk(KERN_WARNING
2211 "md: could not read %s's sb, not importing!\n",
2212 bdevname(rdev->bdev,b));
2213 goto abort_free;
2217 INIT_LIST_HEAD(&rdev->same_set);
2218 init_waitqueue_head(&rdev->blocked_wait);
2220 return rdev;
2222 abort_free:
2223 if (rdev->sb_page) {
2224 if (rdev->bdev)
2225 unlock_rdev(rdev);
2226 free_disk_sb(rdev);
2228 kfree(rdev);
2229 return ERR_PTR(err);
2233 * Check a full RAID array for plausibility
2237 static void analyze_sbs(mddev_t * mddev)
2239 int i;
2240 struct list_head *tmp;
2241 mdk_rdev_t *rdev, *freshest;
2242 char b[BDEVNAME_SIZE];
2244 freshest = NULL;
2245 rdev_for_each(rdev, tmp, mddev)
2246 switch (super_types[mddev->major_version].
2247 load_super(rdev, freshest, mddev->minor_version)) {
2248 case 1:
2249 freshest = rdev;
2250 break;
2251 case 0:
2252 break;
2253 default:
2254 printk( KERN_ERR \
2255 "md: fatal superblock inconsistency in %s"
2256 " -- removing from array\n",
2257 bdevname(rdev->bdev,b));
2258 kick_rdev_from_array(rdev);
2262 super_types[mddev->major_version].
2263 validate_super(mddev, freshest);
2265 i = 0;
2266 rdev_for_each(rdev, tmp, mddev) {
2267 if (rdev != freshest)
2268 if (super_types[mddev->major_version].
2269 validate_super(mddev, rdev)) {
2270 printk(KERN_WARNING "md: kicking non-fresh %s"
2271 " from array!\n",
2272 bdevname(rdev->bdev,b));
2273 kick_rdev_from_array(rdev);
2274 continue;
2276 if (mddev->level == LEVEL_MULTIPATH) {
2277 rdev->desc_nr = i++;
2278 rdev->raid_disk = rdev->desc_nr;
2279 set_bit(In_sync, &rdev->flags);
2280 } else if (rdev->raid_disk >= mddev->raid_disks) {
2281 rdev->raid_disk = -1;
2282 clear_bit(In_sync, &rdev->flags);
2288 if (mddev->recovery_cp != MaxSector &&
2289 mddev->level >= 1)
2290 printk(KERN_ERR "md: %s: raid array is not clean"
2291 " -- starting background reconstruction\n",
2292 mdname(mddev));
2296 static ssize_t
2297 safe_delay_show(mddev_t *mddev, char *page)
2299 int msec = (mddev->safemode_delay*1000)/HZ;
2300 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2302 static ssize_t
2303 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2305 int scale=1;
2306 int dot=0;
2307 int i;
2308 unsigned long msec;
2309 char buf[30];
2310 char *e;
2311 /* remove a period, and count digits after it */
2312 if (len >= sizeof(buf))
2313 return -EINVAL;
2314 strlcpy(buf, cbuf, len);
2315 buf[len] = 0;
2316 for (i=0; i<len; i++) {
2317 if (dot) {
2318 if (isdigit(buf[i])) {
2319 buf[i-1] = buf[i];
2320 scale *= 10;
2322 buf[i] = 0;
2323 } else if (buf[i] == '.') {
2324 dot=1;
2325 buf[i] = 0;
2328 msec = simple_strtoul(buf, &e, 10);
2329 if (e == buf || (*e && *e != '\n'))
2330 return -EINVAL;
2331 msec = (msec * 1000) / scale;
2332 if (msec == 0)
2333 mddev->safemode_delay = 0;
2334 else {
2335 mddev->safemode_delay = (msec*HZ)/1000;
2336 if (mddev->safemode_delay == 0)
2337 mddev->safemode_delay = 1;
2339 return len;
2341 static struct md_sysfs_entry md_safe_delay =
2342 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2344 static ssize_t
2345 level_show(mddev_t *mddev, char *page)
2347 struct mdk_personality *p = mddev->pers;
2348 if (p)
2349 return sprintf(page, "%s\n", p->name);
2350 else if (mddev->clevel[0])
2351 return sprintf(page, "%s\n", mddev->clevel);
2352 else if (mddev->level != LEVEL_NONE)
2353 return sprintf(page, "%d\n", mddev->level);
2354 else
2355 return 0;
2358 static ssize_t
2359 level_store(mddev_t *mddev, const char *buf, size_t len)
2361 ssize_t rv = len;
2362 if (mddev->pers)
2363 return -EBUSY;
2364 if (len == 0)
2365 return 0;
2366 if (len >= sizeof(mddev->clevel))
2367 return -ENOSPC;
2368 strncpy(mddev->clevel, buf, len);
2369 if (mddev->clevel[len-1] == '\n')
2370 len--;
2371 mddev->clevel[len] = 0;
2372 mddev->level = LEVEL_NONE;
2373 return rv;
2376 static struct md_sysfs_entry md_level =
2377 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2380 static ssize_t
2381 layout_show(mddev_t *mddev, char *page)
2383 /* just a number, not meaningful for all levels */
2384 if (mddev->reshape_position != MaxSector &&
2385 mddev->layout != mddev->new_layout)
2386 return sprintf(page, "%d (%d)\n",
2387 mddev->new_layout, mddev->layout);
2388 return sprintf(page, "%d\n", mddev->layout);
2391 static ssize_t
2392 layout_store(mddev_t *mddev, const char *buf, size_t len)
2394 char *e;
2395 unsigned long n = simple_strtoul(buf, &e, 10);
2397 if (!*buf || (*e && *e != '\n'))
2398 return -EINVAL;
2400 if (mddev->pers)
2401 return -EBUSY;
2402 if (mddev->reshape_position != MaxSector)
2403 mddev->new_layout = n;
2404 else
2405 mddev->layout = n;
2406 return len;
2408 static struct md_sysfs_entry md_layout =
2409 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2412 static ssize_t
2413 raid_disks_show(mddev_t *mddev, char *page)
2415 if (mddev->raid_disks == 0)
2416 return 0;
2417 if (mddev->reshape_position != MaxSector &&
2418 mddev->delta_disks != 0)
2419 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2420 mddev->raid_disks - mddev->delta_disks);
2421 return sprintf(page, "%d\n", mddev->raid_disks);
2424 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2426 static ssize_t
2427 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2429 char *e;
2430 int rv = 0;
2431 unsigned long n = simple_strtoul(buf, &e, 10);
2433 if (!*buf || (*e && *e != '\n'))
2434 return -EINVAL;
2436 if (mddev->pers)
2437 rv = update_raid_disks(mddev, n);
2438 else if (mddev->reshape_position != MaxSector) {
2439 int olddisks = mddev->raid_disks - mddev->delta_disks;
2440 mddev->delta_disks = n - olddisks;
2441 mddev->raid_disks = n;
2442 } else
2443 mddev->raid_disks = n;
2444 return rv ? rv : len;
2446 static struct md_sysfs_entry md_raid_disks =
2447 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2449 static ssize_t
2450 chunk_size_show(mddev_t *mddev, char *page)
2452 if (mddev->reshape_position != MaxSector &&
2453 mddev->chunk_size != mddev->new_chunk)
2454 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2455 mddev->chunk_size);
2456 return sprintf(page, "%d\n", mddev->chunk_size);
2459 static ssize_t
2460 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2462 /* can only set chunk_size if array is not yet active */
2463 char *e;
2464 unsigned long n = simple_strtoul(buf, &e, 10);
2466 if (!*buf || (*e && *e != '\n'))
2467 return -EINVAL;
2469 if (mddev->pers)
2470 return -EBUSY;
2471 else if (mddev->reshape_position != MaxSector)
2472 mddev->new_chunk = n;
2473 else
2474 mddev->chunk_size = n;
2475 return len;
2477 static struct md_sysfs_entry md_chunk_size =
2478 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2480 static ssize_t
2481 resync_start_show(mddev_t *mddev, char *page)
2483 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2486 static ssize_t
2487 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2489 char *e;
2490 unsigned long long n = simple_strtoull(buf, &e, 10);
2492 if (mddev->pers)
2493 return -EBUSY;
2494 if (!*buf || (*e && *e != '\n'))
2495 return -EINVAL;
2497 mddev->recovery_cp = n;
2498 return len;
2500 static struct md_sysfs_entry md_resync_start =
2501 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2504 * The array state can be:
2506 * clear
2507 * No devices, no size, no level
2508 * Equivalent to STOP_ARRAY ioctl
2509 * inactive
2510 * May have some settings, but array is not active
2511 * all IO results in error
2512 * When written, doesn't tear down array, but just stops it
2513 * suspended (not supported yet)
2514 * All IO requests will block. The array can be reconfigured.
2515 * Writing this, if accepted, will block until array is quiessent
2516 * readonly
2517 * no resync can happen. no superblocks get written.
2518 * write requests fail
2519 * read-auto
2520 * like readonly, but behaves like 'clean' on a write request.
2522 * clean - no pending writes, but otherwise active.
2523 * When written to inactive array, starts without resync
2524 * If a write request arrives then
2525 * if metadata is known, mark 'dirty' and switch to 'active'.
2526 * if not known, block and switch to write-pending
2527 * If written to an active array that has pending writes, then fails.
2528 * active
2529 * fully active: IO and resync can be happening.
2530 * When written to inactive array, starts with resync
2532 * write-pending
2533 * clean, but writes are blocked waiting for 'active' to be written.
2535 * active-idle
2536 * like active, but no writes have been seen for a while (100msec).
2539 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2540 write_pending, active_idle, bad_word};
2541 static char *array_states[] = {
2542 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2543 "write-pending", "active-idle", NULL };
2545 static int match_word(const char *word, char **list)
2547 int n;
2548 for (n=0; list[n]; n++)
2549 if (cmd_match(word, list[n]))
2550 break;
2551 return n;
2554 static ssize_t
2555 array_state_show(mddev_t *mddev, char *page)
2557 enum array_state st = inactive;
2559 if (mddev->pers)
2560 switch(mddev->ro) {
2561 case 1:
2562 st = readonly;
2563 break;
2564 case 2:
2565 st = read_auto;
2566 break;
2567 case 0:
2568 if (mddev->in_sync)
2569 st = clean;
2570 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2571 st = write_pending;
2572 else if (mddev->safemode)
2573 st = active_idle;
2574 else
2575 st = active;
2577 else {
2578 if (list_empty(&mddev->disks) &&
2579 mddev->raid_disks == 0 &&
2580 mddev->size == 0)
2581 st = clear;
2582 else
2583 st = inactive;
2585 return sprintf(page, "%s\n", array_states[st]);
2588 static int do_md_stop(mddev_t * mddev, int ro);
2589 static int do_md_run(mddev_t * mddev);
2590 static int restart_array(mddev_t *mddev);
2592 static ssize_t
2593 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2595 int err = -EINVAL;
2596 enum array_state st = match_word(buf, array_states);
2597 switch(st) {
2598 case bad_word:
2599 break;
2600 case clear:
2601 /* stopping an active array */
2602 if (atomic_read(&mddev->active) > 1)
2603 return -EBUSY;
2604 err = do_md_stop(mddev, 0);
2605 break;
2606 case inactive:
2607 /* stopping an active array */
2608 if (mddev->pers) {
2609 if (atomic_read(&mddev->active) > 1)
2610 return -EBUSY;
2611 err = do_md_stop(mddev, 2);
2612 } else
2613 err = 0; /* already inactive */
2614 break;
2615 case suspended:
2616 break; /* not supported yet */
2617 case readonly:
2618 if (mddev->pers)
2619 err = do_md_stop(mddev, 1);
2620 else {
2621 mddev->ro = 1;
2622 set_disk_ro(mddev->gendisk, 1);
2623 err = do_md_run(mddev);
2625 break;
2626 case read_auto:
2627 if (mddev->pers) {
2628 if (mddev->ro != 1)
2629 err = do_md_stop(mddev, 1);
2630 else
2631 err = restart_array(mddev);
2632 if (err == 0) {
2633 mddev->ro = 2;
2634 set_disk_ro(mddev->gendisk, 0);
2636 } else {
2637 mddev->ro = 2;
2638 err = do_md_run(mddev);
2640 break;
2641 case clean:
2642 if (mddev->pers) {
2643 restart_array(mddev);
2644 spin_lock_irq(&mddev->write_lock);
2645 if (atomic_read(&mddev->writes_pending) == 0) {
2646 if (mddev->in_sync == 0) {
2647 mddev->in_sync = 1;
2648 if (mddev->safemode == 1)
2649 mddev->safemode = 0;
2650 if (mddev->persistent)
2651 set_bit(MD_CHANGE_CLEAN,
2652 &mddev->flags);
2654 err = 0;
2655 } else
2656 err = -EBUSY;
2657 spin_unlock_irq(&mddev->write_lock);
2658 } else {
2659 mddev->ro = 0;
2660 mddev->recovery_cp = MaxSector;
2661 err = do_md_run(mddev);
2663 break;
2664 case active:
2665 if (mddev->pers) {
2666 restart_array(mddev);
2667 if (mddev->external)
2668 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2669 wake_up(&mddev->sb_wait);
2670 err = 0;
2671 } else {
2672 mddev->ro = 0;
2673 set_disk_ro(mddev->gendisk, 0);
2674 err = do_md_run(mddev);
2676 break;
2677 case write_pending:
2678 case active_idle:
2679 /* these cannot be set */
2680 break;
2682 if (err)
2683 return err;
2684 else
2685 return len;
2687 static struct md_sysfs_entry md_array_state =
2688 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2690 static ssize_t
2691 null_show(mddev_t *mddev, char *page)
2693 return -EINVAL;
2696 static ssize_t
2697 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2699 /* buf must be %d:%d\n? giving major and minor numbers */
2700 /* The new device is added to the array.
2701 * If the array has a persistent superblock, we read the
2702 * superblock to initialise info and check validity.
2703 * Otherwise, only checking done is that in bind_rdev_to_array,
2704 * which mainly checks size.
2706 char *e;
2707 int major = simple_strtoul(buf, &e, 10);
2708 int minor;
2709 dev_t dev;
2710 mdk_rdev_t *rdev;
2711 int err;
2713 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2714 return -EINVAL;
2715 minor = simple_strtoul(e+1, &e, 10);
2716 if (*e && *e != '\n')
2717 return -EINVAL;
2718 dev = MKDEV(major, minor);
2719 if (major != MAJOR(dev) ||
2720 minor != MINOR(dev))
2721 return -EOVERFLOW;
2724 if (mddev->persistent) {
2725 rdev = md_import_device(dev, mddev->major_version,
2726 mddev->minor_version);
2727 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2728 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2729 mdk_rdev_t, same_set);
2730 err = super_types[mddev->major_version]
2731 .load_super(rdev, rdev0, mddev->minor_version);
2732 if (err < 0)
2733 goto out;
2735 } else if (mddev->external)
2736 rdev = md_import_device(dev, -2, -1);
2737 else
2738 rdev = md_import_device(dev, -1, -1);
2740 if (IS_ERR(rdev))
2741 return PTR_ERR(rdev);
2742 err = bind_rdev_to_array(rdev, mddev);
2743 out:
2744 if (err)
2745 export_rdev(rdev);
2746 return err ? err : len;
2749 static struct md_sysfs_entry md_new_device =
2750 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2752 static ssize_t
2753 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2755 char *end;
2756 unsigned long chunk, end_chunk;
2758 if (!mddev->bitmap)
2759 goto out;
2760 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2761 while (*buf) {
2762 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2763 if (buf == end) break;
2764 if (*end == '-') { /* range */
2765 buf = end + 1;
2766 end_chunk = simple_strtoul(buf, &end, 0);
2767 if (buf == end) break;
2769 if (*end && !isspace(*end)) break;
2770 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2771 buf = end;
2772 while (isspace(*buf)) buf++;
2774 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2775 out:
2776 return len;
2779 static struct md_sysfs_entry md_bitmap =
2780 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2782 static ssize_t
2783 size_show(mddev_t *mddev, char *page)
2785 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2788 static int update_size(mddev_t *mddev, unsigned long size);
2790 static ssize_t
2791 size_store(mddev_t *mddev, const char *buf, size_t len)
2793 /* If array is inactive, we can reduce the component size, but
2794 * not increase it (except from 0).
2795 * If array is active, we can try an on-line resize
2797 char *e;
2798 int err = 0;
2799 unsigned long long size = simple_strtoull(buf, &e, 10);
2800 if (!*buf || *buf == '\n' ||
2801 (*e && *e != '\n'))
2802 return -EINVAL;
2804 if (mddev->pers) {
2805 err = update_size(mddev, size);
2806 md_update_sb(mddev, 1);
2807 } else {
2808 if (mddev->size == 0 ||
2809 mddev->size > size)
2810 mddev->size = size;
2811 else
2812 err = -ENOSPC;
2814 return err ? err : len;
2817 static struct md_sysfs_entry md_size =
2818 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2821 /* Metdata version.
2822 * This is one of
2823 * 'none' for arrays with no metadata (good luck...)
2824 * 'external' for arrays with externally managed metadata,
2825 * or N.M for internally known formats
2827 static ssize_t
2828 metadata_show(mddev_t *mddev, char *page)
2830 if (mddev->persistent)
2831 return sprintf(page, "%d.%d\n",
2832 mddev->major_version, mddev->minor_version);
2833 else if (mddev->external)
2834 return sprintf(page, "external:%s\n", mddev->metadata_type);
2835 else
2836 return sprintf(page, "none\n");
2839 static ssize_t
2840 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2842 int major, minor;
2843 char *e;
2844 if (!list_empty(&mddev->disks))
2845 return -EBUSY;
2847 if (cmd_match(buf, "none")) {
2848 mddev->persistent = 0;
2849 mddev->external = 0;
2850 mddev->major_version = 0;
2851 mddev->minor_version = 90;
2852 return len;
2854 if (strncmp(buf, "external:", 9) == 0) {
2855 size_t namelen = len-9;
2856 if (namelen >= sizeof(mddev->metadata_type))
2857 namelen = sizeof(mddev->metadata_type)-1;
2858 strncpy(mddev->metadata_type, buf+9, namelen);
2859 mddev->metadata_type[namelen] = 0;
2860 if (namelen && mddev->metadata_type[namelen-1] == '\n')
2861 mddev->metadata_type[--namelen] = 0;
2862 mddev->persistent = 0;
2863 mddev->external = 1;
2864 mddev->major_version = 0;
2865 mddev->minor_version = 90;
2866 return len;
2868 major = simple_strtoul(buf, &e, 10);
2869 if (e==buf || *e != '.')
2870 return -EINVAL;
2871 buf = e+1;
2872 minor = simple_strtoul(buf, &e, 10);
2873 if (e==buf || (*e && *e != '\n') )
2874 return -EINVAL;
2875 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2876 return -ENOENT;
2877 mddev->major_version = major;
2878 mddev->minor_version = minor;
2879 mddev->persistent = 1;
2880 mddev->external = 0;
2881 return len;
2884 static struct md_sysfs_entry md_metadata =
2885 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2887 static ssize_t
2888 action_show(mddev_t *mddev, char *page)
2890 char *type = "idle";
2891 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2892 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2893 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2894 type = "reshape";
2895 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2896 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2897 type = "resync";
2898 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2899 type = "check";
2900 else
2901 type = "repair";
2902 } else
2903 type = "recover";
2905 return sprintf(page, "%s\n", type);
2908 static ssize_t
2909 action_store(mddev_t *mddev, const char *page, size_t len)
2911 if (!mddev->pers || !mddev->pers->sync_request)
2912 return -EINVAL;
2914 if (cmd_match(page, "idle")) {
2915 if (mddev->sync_thread) {
2916 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2917 md_unregister_thread(mddev->sync_thread);
2918 mddev->sync_thread = NULL;
2919 mddev->recovery = 0;
2921 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2922 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2923 return -EBUSY;
2924 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2925 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2926 else if (cmd_match(page, "reshape")) {
2927 int err;
2928 if (mddev->pers->start_reshape == NULL)
2929 return -EINVAL;
2930 err = mddev->pers->start_reshape(mddev);
2931 if (err)
2932 return err;
2933 } else {
2934 if (cmd_match(page, "check"))
2935 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2936 else if (!cmd_match(page, "repair"))
2937 return -EINVAL;
2938 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2939 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2941 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2942 md_wakeup_thread(mddev->thread);
2943 return len;
2946 static ssize_t
2947 mismatch_cnt_show(mddev_t *mddev, char *page)
2949 return sprintf(page, "%llu\n",
2950 (unsigned long long) mddev->resync_mismatches);
2953 static struct md_sysfs_entry md_scan_mode =
2954 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2957 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2959 static ssize_t
2960 sync_min_show(mddev_t *mddev, char *page)
2962 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2963 mddev->sync_speed_min ? "local": "system");
2966 static ssize_t
2967 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2969 int min;
2970 char *e;
2971 if (strncmp(buf, "system", 6)==0) {
2972 mddev->sync_speed_min = 0;
2973 return len;
2975 min = simple_strtoul(buf, &e, 10);
2976 if (buf == e || (*e && *e != '\n') || min <= 0)
2977 return -EINVAL;
2978 mddev->sync_speed_min = min;
2979 return len;
2982 static struct md_sysfs_entry md_sync_min =
2983 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2985 static ssize_t
2986 sync_max_show(mddev_t *mddev, char *page)
2988 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2989 mddev->sync_speed_max ? "local": "system");
2992 static ssize_t
2993 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2995 int max;
2996 char *e;
2997 if (strncmp(buf, "system", 6)==0) {
2998 mddev->sync_speed_max = 0;
2999 return len;
3001 max = simple_strtoul(buf, &e, 10);
3002 if (buf == e || (*e && *e != '\n') || max <= 0)
3003 return -EINVAL;
3004 mddev->sync_speed_max = max;
3005 return len;
3008 static struct md_sysfs_entry md_sync_max =
3009 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3011 static ssize_t
3012 degraded_show(mddev_t *mddev, char *page)
3014 return sprintf(page, "%d\n", mddev->degraded);
3016 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3018 static ssize_t
3019 sync_force_parallel_show(mddev_t *mddev, char *page)
3021 return sprintf(page, "%d\n", mddev->parallel_resync);
3024 static ssize_t
3025 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3027 long n;
3029 if (strict_strtol(buf, 10, &n))
3030 return -EINVAL;
3032 if (n != 0 && n != 1)
3033 return -EINVAL;
3035 mddev->parallel_resync = n;
3037 if (mddev->sync_thread)
3038 wake_up(&resync_wait);
3040 return len;
3043 /* force parallel resync, even with shared block devices */
3044 static struct md_sysfs_entry md_sync_force_parallel =
3045 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3046 sync_force_parallel_show, sync_force_parallel_store);
3048 static ssize_t
3049 sync_speed_show(mddev_t *mddev, char *page)
3051 unsigned long resync, dt, db;
3052 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
3053 dt = ((jiffies - mddev->resync_mark) / HZ);
3054 if (!dt) dt++;
3055 db = resync - (mddev->resync_mark_cnt);
3056 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
3059 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3061 static ssize_t
3062 sync_completed_show(mddev_t *mddev, char *page)
3064 unsigned long max_blocks, resync;
3066 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3067 max_blocks = mddev->resync_max_sectors;
3068 else
3069 max_blocks = mddev->size << 1;
3071 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3072 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
3075 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3077 static ssize_t
3078 max_sync_show(mddev_t *mddev, char *page)
3080 if (mddev->resync_max == MaxSector)
3081 return sprintf(page, "max\n");
3082 else
3083 return sprintf(page, "%llu\n",
3084 (unsigned long long)mddev->resync_max);
3086 static ssize_t
3087 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3089 if (strncmp(buf, "max", 3) == 0)
3090 mddev->resync_max = MaxSector;
3091 else {
3092 char *ep;
3093 unsigned long long max = simple_strtoull(buf, &ep, 10);
3094 if (ep == buf || (*ep != 0 && *ep != '\n'))
3095 return -EINVAL;
3096 if (max < mddev->resync_max &&
3097 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3098 return -EBUSY;
3100 /* Must be a multiple of chunk_size */
3101 if (mddev->chunk_size) {
3102 if (max & (sector_t)((mddev->chunk_size>>9)-1))
3103 return -EINVAL;
3105 mddev->resync_max = max;
3107 wake_up(&mddev->recovery_wait);
3108 return len;
3111 static struct md_sysfs_entry md_max_sync =
3112 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3114 static ssize_t
3115 suspend_lo_show(mddev_t *mddev, char *page)
3117 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3120 static ssize_t
3121 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3123 char *e;
3124 unsigned long long new = simple_strtoull(buf, &e, 10);
3126 if (mddev->pers->quiesce == NULL)
3127 return -EINVAL;
3128 if (buf == e || (*e && *e != '\n'))
3129 return -EINVAL;
3130 if (new >= mddev->suspend_hi ||
3131 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3132 mddev->suspend_lo = new;
3133 mddev->pers->quiesce(mddev, 2);
3134 return len;
3135 } else
3136 return -EINVAL;
3138 static struct md_sysfs_entry md_suspend_lo =
3139 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3142 static ssize_t
3143 suspend_hi_show(mddev_t *mddev, char *page)
3145 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3148 static ssize_t
3149 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3151 char *e;
3152 unsigned long long new = simple_strtoull(buf, &e, 10);
3154 if (mddev->pers->quiesce == NULL)
3155 return -EINVAL;
3156 if (buf == e || (*e && *e != '\n'))
3157 return -EINVAL;
3158 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3159 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3160 mddev->suspend_hi = new;
3161 mddev->pers->quiesce(mddev, 1);
3162 mddev->pers->quiesce(mddev, 0);
3163 return len;
3164 } else
3165 return -EINVAL;
3167 static struct md_sysfs_entry md_suspend_hi =
3168 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3170 static ssize_t
3171 reshape_position_show(mddev_t *mddev, char *page)
3173 if (mddev->reshape_position != MaxSector)
3174 return sprintf(page, "%llu\n",
3175 (unsigned long long)mddev->reshape_position);
3176 strcpy(page, "none\n");
3177 return 5;
3180 static ssize_t
3181 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3183 char *e;
3184 unsigned long long new = simple_strtoull(buf, &e, 10);
3185 if (mddev->pers)
3186 return -EBUSY;
3187 if (buf == e || (*e && *e != '\n'))
3188 return -EINVAL;
3189 mddev->reshape_position = new;
3190 mddev->delta_disks = 0;
3191 mddev->new_level = mddev->level;
3192 mddev->new_layout = mddev->layout;
3193 mddev->new_chunk = mddev->chunk_size;
3194 return len;
3197 static struct md_sysfs_entry md_reshape_position =
3198 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3199 reshape_position_store);
3202 static struct attribute *md_default_attrs[] = {
3203 &md_level.attr,
3204 &md_layout.attr,
3205 &md_raid_disks.attr,
3206 &md_chunk_size.attr,
3207 &md_size.attr,
3208 &md_resync_start.attr,
3209 &md_metadata.attr,
3210 &md_new_device.attr,
3211 &md_safe_delay.attr,
3212 &md_array_state.attr,
3213 &md_reshape_position.attr,
3214 NULL,
3217 static struct attribute *md_redundancy_attrs[] = {
3218 &md_scan_mode.attr,
3219 &md_mismatches.attr,
3220 &md_sync_min.attr,
3221 &md_sync_max.attr,
3222 &md_sync_speed.attr,
3223 &md_sync_force_parallel.attr,
3224 &md_sync_completed.attr,
3225 &md_max_sync.attr,
3226 &md_suspend_lo.attr,
3227 &md_suspend_hi.attr,
3228 &md_bitmap.attr,
3229 &md_degraded.attr,
3230 NULL,
3232 static struct attribute_group md_redundancy_group = {
3233 .name = NULL,
3234 .attrs = md_redundancy_attrs,
3238 static ssize_t
3239 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3241 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3242 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3243 ssize_t rv;
3245 if (!entry->show)
3246 return -EIO;
3247 rv = mddev_lock(mddev);
3248 if (!rv) {
3249 rv = entry->show(mddev, page);
3250 mddev_unlock(mddev);
3252 return rv;
3255 static ssize_t
3256 md_attr_store(struct kobject *kobj, struct attribute *attr,
3257 const char *page, size_t length)
3259 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3260 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3261 ssize_t rv;
3263 if (!entry->store)
3264 return -EIO;
3265 if (!capable(CAP_SYS_ADMIN))
3266 return -EACCES;
3267 rv = mddev_lock(mddev);
3268 if (!rv) {
3269 rv = entry->store(mddev, page, length);
3270 mddev_unlock(mddev);
3272 return rv;
3275 static void md_free(struct kobject *ko)
3277 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3278 kfree(mddev);
3281 static struct sysfs_ops md_sysfs_ops = {
3282 .show = md_attr_show,
3283 .store = md_attr_store,
3285 static struct kobj_type md_ktype = {
3286 .release = md_free,
3287 .sysfs_ops = &md_sysfs_ops,
3288 .default_attrs = md_default_attrs,
3291 int mdp_major = 0;
3293 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3295 static DEFINE_MUTEX(disks_mutex);
3296 mddev_t *mddev = mddev_find(dev);
3297 struct gendisk *disk;
3298 int partitioned = (MAJOR(dev) != MD_MAJOR);
3299 int shift = partitioned ? MdpMinorShift : 0;
3300 int unit = MINOR(dev) >> shift;
3301 int error;
3303 if (!mddev)
3304 return NULL;
3306 mutex_lock(&disks_mutex);
3307 if (mddev->gendisk) {
3308 mutex_unlock(&disks_mutex);
3309 mddev_put(mddev);
3310 return NULL;
3312 disk = alloc_disk(1 << shift);
3313 if (!disk) {
3314 mutex_unlock(&disks_mutex);
3315 mddev_put(mddev);
3316 return NULL;
3318 disk->major = MAJOR(dev);
3319 disk->first_minor = unit << shift;
3320 if (partitioned)
3321 sprintf(disk->disk_name, "md_d%d", unit);
3322 else
3323 sprintf(disk->disk_name, "md%d", unit);
3324 disk->fops = &md_fops;
3325 disk->private_data = mddev;
3326 disk->queue = mddev->queue;
3327 add_disk(disk);
3328 mddev->gendisk = disk;
3329 mutex_unlock(&disks_mutex);
3330 error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj,
3331 "%s", "md");
3332 if (error)
3333 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3334 disk->disk_name);
3335 else
3336 kobject_uevent(&mddev->kobj, KOBJ_ADD);
3337 return NULL;
3340 static void md_safemode_timeout(unsigned long data)
3342 mddev_t *mddev = (mddev_t *) data;
3344 mddev->safemode = 1;
3345 md_wakeup_thread(mddev->thread);
3348 static int start_dirty_degraded;
3350 static int do_md_run(mddev_t * mddev)
3352 int err;
3353 int chunk_size;
3354 struct list_head *tmp;
3355 mdk_rdev_t *rdev;
3356 struct gendisk *disk;
3357 struct mdk_personality *pers;
3358 char b[BDEVNAME_SIZE];
3360 if (list_empty(&mddev->disks))
3361 /* cannot run an array with no devices.. */
3362 return -EINVAL;
3364 if (mddev->pers)
3365 return -EBUSY;
3368 * Analyze all RAID superblock(s)
3370 if (!mddev->raid_disks) {
3371 if (!mddev->persistent)
3372 return -EINVAL;
3373 analyze_sbs(mddev);
3376 chunk_size = mddev->chunk_size;
3378 if (chunk_size) {
3379 if (chunk_size > MAX_CHUNK_SIZE) {
3380 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3381 chunk_size, MAX_CHUNK_SIZE);
3382 return -EINVAL;
3385 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3387 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3388 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3389 return -EINVAL;
3391 if (chunk_size < PAGE_SIZE) {
3392 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3393 chunk_size, PAGE_SIZE);
3394 return -EINVAL;
3397 /* devices must have minimum size of one chunk */
3398 rdev_for_each(rdev, tmp, mddev) {
3399 if (test_bit(Faulty, &rdev->flags))
3400 continue;
3401 if (rdev->size < chunk_size / 1024) {
3402 printk(KERN_WARNING
3403 "md: Dev %s smaller than chunk_size:"
3404 " %lluk < %dk\n",
3405 bdevname(rdev->bdev,b),
3406 (unsigned long long)rdev->size,
3407 chunk_size / 1024);
3408 return -EINVAL;
3413 #ifdef CONFIG_KMOD
3414 if (mddev->level != LEVEL_NONE)
3415 request_module("md-level-%d", mddev->level);
3416 else if (mddev->clevel[0])
3417 request_module("md-%s", mddev->clevel);
3418 #endif
3421 * Drop all container device buffers, from now on
3422 * the only valid external interface is through the md
3423 * device.
3425 rdev_for_each(rdev, tmp, mddev) {
3426 if (test_bit(Faulty, &rdev->flags))
3427 continue;
3428 sync_blockdev(rdev->bdev);
3429 invalidate_bdev(rdev->bdev);
3431 /* perform some consistency tests on the device.
3432 * We don't want the data to overlap the metadata,
3433 * Internal Bitmap issues has handled elsewhere.
3435 if (rdev->data_offset < rdev->sb_offset) {
3436 if (mddev->size &&
3437 rdev->data_offset + mddev->size*2
3438 > rdev->sb_offset*2) {
3439 printk("md: %s: data overlaps metadata\n",
3440 mdname(mddev));
3441 return -EINVAL;
3443 } else {
3444 if (rdev->sb_offset*2 + rdev->sb_size/512
3445 > rdev->data_offset) {
3446 printk("md: %s: metadata overlaps data\n",
3447 mdname(mddev));
3448 return -EINVAL;
3453 md_probe(mddev->unit, NULL, NULL);
3454 disk = mddev->gendisk;
3455 if (!disk)
3456 return -ENOMEM;
3458 spin_lock(&pers_lock);
3459 pers = find_pers(mddev->level, mddev->clevel);
3460 if (!pers || !try_module_get(pers->owner)) {
3461 spin_unlock(&pers_lock);
3462 if (mddev->level != LEVEL_NONE)
3463 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3464 mddev->level);
3465 else
3466 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3467 mddev->clevel);
3468 return -EINVAL;
3470 mddev->pers = pers;
3471 spin_unlock(&pers_lock);
3472 mddev->level = pers->level;
3473 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3475 if (mddev->reshape_position != MaxSector &&
3476 pers->start_reshape == NULL) {
3477 /* This personality cannot handle reshaping... */
3478 mddev->pers = NULL;
3479 module_put(pers->owner);
3480 return -EINVAL;
3483 if (pers->sync_request) {
3484 /* Warn if this is a potentially silly
3485 * configuration.
3487 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3488 mdk_rdev_t *rdev2;
3489 struct list_head *tmp2;
3490 int warned = 0;
3491 rdev_for_each(rdev, tmp, mddev) {
3492 rdev_for_each(rdev2, tmp2, mddev) {
3493 if (rdev < rdev2 &&
3494 rdev->bdev->bd_contains ==
3495 rdev2->bdev->bd_contains) {
3496 printk(KERN_WARNING
3497 "%s: WARNING: %s appears to be"
3498 " on the same physical disk as"
3499 " %s.\n",
3500 mdname(mddev),
3501 bdevname(rdev->bdev,b),
3502 bdevname(rdev2->bdev,b2));
3503 warned = 1;
3507 if (warned)
3508 printk(KERN_WARNING
3509 "True protection against single-disk"
3510 " failure might be compromised.\n");
3513 mddev->recovery = 0;
3514 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3515 mddev->barriers_work = 1;
3516 mddev->ok_start_degraded = start_dirty_degraded;
3518 if (start_readonly)
3519 mddev->ro = 2; /* read-only, but switch on first write */
3521 err = mddev->pers->run(mddev);
3522 if (!err && mddev->pers->sync_request) {
3523 err = bitmap_create(mddev);
3524 if (err) {
3525 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3526 mdname(mddev), err);
3527 mddev->pers->stop(mddev);
3530 if (err) {
3531 printk(KERN_ERR "md: pers->run() failed ...\n");
3532 module_put(mddev->pers->owner);
3533 mddev->pers = NULL;
3534 bitmap_destroy(mddev);
3535 return err;
3537 if (mddev->pers->sync_request) {
3538 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3539 printk(KERN_WARNING
3540 "md: cannot register extra attributes for %s\n",
3541 mdname(mddev));
3542 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
3543 mddev->ro = 0;
3545 atomic_set(&mddev->writes_pending,0);
3546 mddev->safemode = 0;
3547 mddev->safemode_timer.function = md_safemode_timeout;
3548 mddev->safemode_timer.data = (unsigned long) mddev;
3549 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3550 mddev->in_sync = 1;
3552 rdev_for_each(rdev, tmp, mddev)
3553 if (rdev->raid_disk >= 0) {
3554 char nm[20];
3555 sprintf(nm, "rd%d", rdev->raid_disk);
3556 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3557 printk("md: cannot register %s for %s\n",
3558 nm, mdname(mddev));
3561 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3563 if (mddev->flags)
3564 md_update_sb(mddev, 0);
3566 set_capacity(disk, mddev->array_size<<1);
3568 /* If we call blk_queue_make_request here, it will
3569 * re-initialise max_sectors etc which may have been
3570 * refined inside -> run. So just set the bits we need to set.
3571 * Most initialisation happended when we called
3572 * blk_queue_make_request(..., md_fail_request)
3573 * earlier.
3575 mddev->queue->queuedata = mddev;
3576 mddev->queue->make_request_fn = mddev->pers->make_request;
3578 /* If there is a partially-recovered drive we need to
3579 * start recovery here. If we leave it to md_check_recovery,
3580 * it will remove the drives and not do the right thing
3582 if (mddev->degraded && !mddev->sync_thread) {
3583 struct list_head *rtmp;
3584 int spares = 0;
3585 rdev_for_each(rdev, rtmp, mddev)
3586 if (rdev->raid_disk >= 0 &&
3587 !test_bit(In_sync, &rdev->flags) &&
3588 !test_bit(Faulty, &rdev->flags))
3589 /* complete an interrupted recovery */
3590 spares++;
3591 if (spares && mddev->pers->sync_request) {
3592 mddev->recovery = 0;
3593 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3594 mddev->sync_thread = md_register_thread(md_do_sync,
3595 mddev,
3596 "%s_resync");
3597 if (!mddev->sync_thread) {
3598 printk(KERN_ERR "%s: could not start resync"
3599 " thread...\n",
3600 mdname(mddev));
3601 /* leave the spares where they are, it shouldn't hurt */
3602 mddev->recovery = 0;
3606 md_wakeup_thread(mddev->thread);
3607 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3609 mddev->changed = 1;
3610 md_new_event(mddev);
3611 kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE);
3612 return 0;
3615 static int restart_array(mddev_t *mddev)
3617 struct gendisk *disk = mddev->gendisk;
3618 int err;
3621 * Complain if it has no devices
3623 err = -ENXIO;
3624 if (list_empty(&mddev->disks))
3625 goto out;
3627 if (mddev->pers) {
3628 err = -EBUSY;
3629 if (!mddev->ro)
3630 goto out;
3632 mddev->safemode = 0;
3633 mddev->ro = 0;
3634 set_disk_ro(disk, 0);
3636 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3637 mdname(mddev));
3639 * Kick recovery or resync if necessary
3641 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3642 md_wakeup_thread(mddev->thread);
3643 md_wakeup_thread(mddev->sync_thread);
3644 err = 0;
3645 } else
3646 err = -EINVAL;
3648 out:
3649 return err;
3652 /* similar to deny_write_access, but accounts for our holding a reference
3653 * to the file ourselves */
3654 static int deny_bitmap_write_access(struct file * file)
3656 struct inode *inode = file->f_mapping->host;
3658 spin_lock(&inode->i_lock);
3659 if (atomic_read(&inode->i_writecount) > 1) {
3660 spin_unlock(&inode->i_lock);
3661 return -ETXTBSY;
3663 atomic_set(&inode->i_writecount, -1);
3664 spin_unlock(&inode->i_lock);
3666 return 0;
3669 static void restore_bitmap_write_access(struct file *file)
3671 struct inode *inode = file->f_mapping->host;
3673 spin_lock(&inode->i_lock);
3674 atomic_set(&inode->i_writecount, 1);
3675 spin_unlock(&inode->i_lock);
3678 /* mode:
3679 * 0 - completely stop and dis-assemble array
3680 * 1 - switch to readonly
3681 * 2 - stop but do not disassemble array
3683 static int do_md_stop(mddev_t * mddev, int mode)
3685 int err = 0;
3686 struct gendisk *disk = mddev->gendisk;
3688 if (mddev->pers) {
3689 if (atomic_read(&mddev->active)>2) {
3690 printk("md: %s still in use.\n",mdname(mddev));
3691 return -EBUSY;
3694 if (mddev->sync_thread) {
3695 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3696 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3697 md_unregister_thread(mddev->sync_thread);
3698 mddev->sync_thread = NULL;
3701 del_timer_sync(&mddev->safemode_timer);
3703 invalidate_partition(disk, 0);
3705 switch(mode) {
3706 case 1: /* readonly */
3707 err = -ENXIO;
3708 if (mddev->ro==1)
3709 goto out;
3710 mddev->ro = 1;
3711 break;
3712 case 0: /* disassemble */
3713 case 2: /* stop */
3714 bitmap_flush(mddev);
3715 md_super_wait(mddev);
3716 if (mddev->ro)
3717 set_disk_ro(disk, 0);
3718 blk_queue_make_request(mddev->queue, md_fail_request);
3719 mddev->pers->stop(mddev);
3720 mddev->queue->merge_bvec_fn = NULL;
3721 mddev->queue->unplug_fn = NULL;
3722 mddev->queue->backing_dev_info.congested_fn = NULL;
3723 if (mddev->pers->sync_request)
3724 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3726 module_put(mddev->pers->owner);
3727 mddev->pers = NULL;
3728 /* tell userspace to handle 'inactive' */
3729 sysfs_notify(&mddev->kobj, NULL, "array_state");
3731 set_capacity(disk, 0);
3732 mddev->changed = 1;
3734 if (mddev->ro)
3735 mddev->ro = 0;
3737 if (!mddev->in_sync || mddev->flags) {
3738 /* mark array as shutdown cleanly */
3739 mddev->in_sync = 1;
3740 md_update_sb(mddev, 1);
3742 if (mode == 1)
3743 set_disk_ro(disk, 1);
3744 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3748 * Free resources if final stop
3750 if (mode == 0) {
3751 mdk_rdev_t *rdev;
3752 struct list_head *tmp;
3754 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3756 bitmap_destroy(mddev);
3757 if (mddev->bitmap_file) {
3758 restore_bitmap_write_access(mddev->bitmap_file);
3759 fput(mddev->bitmap_file);
3760 mddev->bitmap_file = NULL;
3762 mddev->bitmap_offset = 0;
3764 rdev_for_each(rdev, tmp, mddev)
3765 if (rdev->raid_disk >= 0) {
3766 char nm[20];
3767 sprintf(nm, "rd%d", rdev->raid_disk);
3768 sysfs_remove_link(&mddev->kobj, nm);
3771 /* make sure all md_delayed_delete calls have finished */
3772 flush_scheduled_work();
3774 export_array(mddev);
3776 mddev->array_size = 0;
3777 mddev->size = 0;
3778 mddev->raid_disks = 0;
3779 mddev->recovery_cp = 0;
3780 mddev->resync_max = MaxSector;
3781 mddev->reshape_position = MaxSector;
3782 mddev->external = 0;
3783 mddev->persistent = 0;
3784 mddev->level = LEVEL_NONE;
3785 mddev->clevel[0] = 0;
3786 mddev->flags = 0;
3787 mddev->ro = 0;
3788 mddev->metadata_type[0] = 0;
3789 mddev->chunk_size = 0;
3790 mddev->ctime = mddev->utime = 0;
3791 mddev->layout = 0;
3792 mddev->max_disks = 0;
3793 mddev->events = 0;
3794 mddev->delta_disks = 0;
3795 mddev->new_level = LEVEL_NONE;
3796 mddev->new_layout = 0;
3797 mddev->new_chunk = 0;
3798 mddev->curr_resync = 0;
3799 mddev->resync_mismatches = 0;
3800 mddev->suspend_lo = mddev->suspend_hi = 0;
3801 mddev->sync_speed_min = mddev->sync_speed_max = 0;
3802 mddev->recovery = 0;
3803 mddev->in_sync = 0;
3804 mddev->changed = 0;
3805 mddev->degraded = 0;
3806 mddev->barriers_work = 0;
3807 mddev->safemode = 0;
3809 } else if (mddev->pers)
3810 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3811 mdname(mddev));
3812 err = 0;
3813 md_new_event(mddev);
3814 out:
3815 return err;
3818 #ifndef MODULE
3819 static void autorun_array(mddev_t *mddev)
3821 mdk_rdev_t *rdev;
3822 struct list_head *tmp;
3823 int err;
3825 if (list_empty(&mddev->disks))
3826 return;
3828 printk(KERN_INFO "md: running: ");
3830 rdev_for_each(rdev, tmp, mddev) {
3831 char b[BDEVNAME_SIZE];
3832 printk("<%s>", bdevname(rdev->bdev,b));
3834 printk("\n");
3836 err = do_md_run (mddev);
3837 if (err) {
3838 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3839 do_md_stop (mddev, 0);
3844 * lets try to run arrays based on all disks that have arrived
3845 * until now. (those are in pending_raid_disks)
3847 * the method: pick the first pending disk, collect all disks with
3848 * the same UUID, remove all from the pending list and put them into
3849 * the 'same_array' list. Then order this list based on superblock
3850 * update time (freshest comes first), kick out 'old' disks and
3851 * compare superblocks. If everything's fine then run it.
3853 * If "unit" is allocated, then bump its reference count
3855 static void autorun_devices(int part)
3857 struct list_head *tmp;
3858 mdk_rdev_t *rdev0, *rdev;
3859 mddev_t *mddev;
3860 char b[BDEVNAME_SIZE];
3862 printk(KERN_INFO "md: autorun ...\n");
3863 while (!list_empty(&pending_raid_disks)) {
3864 int unit;
3865 dev_t dev;
3866 LIST_HEAD(candidates);
3867 rdev0 = list_entry(pending_raid_disks.next,
3868 mdk_rdev_t, same_set);
3870 printk(KERN_INFO "md: considering %s ...\n",
3871 bdevname(rdev0->bdev,b));
3872 INIT_LIST_HEAD(&candidates);
3873 rdev_for_each_list(rdev, tmp, pending_raid_disks)
3874 if (super_90_load(rdev, rdev0, 0) >= 0) {
3875 printk(KERN_INFO "md: adding %s ...\n",
3876 bdevname(rdev->bdev,b));
3877 list_move(&rdev->same_set, &candidates);
3880 * now we have a set of devices, with all of them having
3881 * mostly sane superblocks. It's time to allocate the
3882 * mddev.
3884 if (part) {
3885 dev = MKDEV(mdp_major,
3886 rdev0->preferred_minor << MdpMinorShift);
3887 unit = MINOR(dev) >> MdpMinorShift;
3888 } else {
3889 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3890 unit = MINOR(dev);
3892 if (rdev0->preferred_minor != unit) {
3893 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3894 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3895 break;
3898 md_probe(dev, NULL, NULL);
3899 mddev = mddev_find(dev);
3900 if (!mddev || !mddev->gendisk) {
3901 if (mddev)
3902 mddev_put(mddev);
3903 printk(KERN_ERR
3904 "md: cannot allocate memory for md drive.\n");
3905 break;
3907 if (mddev_lock(mddev))
3908 printk(KERN_WARNING "md: %s locked, cannot run\n",
3909 mdname(mddev));
3910 else if (mddev->raid_disks || mddev->major_version
3911 || !list_empty(&mddev->disks)) {
3912 printk(KERN_WARNING
3913 "md: %s already running, cannot run %s\n",
3914 mdname(mddev), bdevname(rdev0->bdev,b));
3915 mddev_unlock(mddev);
3916 } else {
3917 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3918 mddev->persistent = 1;
3919 rdev_for_each_list(rdev, tmp, candidates) {
3920 list_del_init(&rdev->same_set);
3921 if (bind_rdev_to_array(rdev, mddev))
3922 export_rdev(rdev);
3924 autorun_array(mddev);
3925 mddev_unlock(mddev);
3927 /* on success, candidates will be empty, on error
3928 * it won't...
3930 rdev_for_each_list(rdev, tmp, candidates)
3931 export_rdev(rdev);
3932 mddev_put(mddev);
3934 printk(KERN_INFO "md: ... autorun DONE.\n");
3936 #endif /* !MODULE */
3938 static int get_version(void __user * arg)
3940 mdu_version_t ver;
3942 ver.major = MD_MAJOR_VERSION;
3943 ver.minor = MD_MINOR_VERSION;
3944 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3946 if (copy_to_user(arg, &ver, sizeof(ver)))
3947 return -EFAULT;
3949 return 0;
3952 static int get_array_info(mddev_t * mddev, void __user * arg)
3954 mdu_array_info_t info;
3955 int nr,working,active,failed,spare;
3956 mdk_rdev_t *rdev;
3957 struct list_head *tmp;
3959 nr=working=active=failed=spare=0;
3960 rdev_for_each(rdev, tmp, mddev) {
3961 nr++;
3962 if (test_bit(Faulty, &rdev->flags))
3963 failed++;
3964 else {
3965 working++;
3966 if (test_bit(In_sync, &rdev->flags))
3967 active++;
3968 else
3969 spare++;
3973 info.major_version = mddev->major_version;
3974 info.minor_version = mddev->minor_version;
3975 info.patch_version = MD_PATCHLEVEL_VERSION;
3976 info.ctime = mddev->ctime;
3977 info.level = mddev->level;
3978 info.size = mddev->size;
3979 if (info.size != mddev->size) /* overflow */
3980 info.size = -1;
3981 info.nr_disks = nr;
3982 info.raid_disks = mddev->raid_disks;
3983 info.md_minor = mddev->md_minor;
3984 info.not_persistent= !mddev->persistent;
3986 info.utime = mddev->utime;
3987 info.state = 0;
3988 if (mddev->in_sync)
3989 info.state = (1<<MD_SB_CLEAN);
3990 if (mddev->bitmap && mddev->bitmap_offset)
3991 info.state = (1<<MD_SB_BITMAP_PRESENT);
3992 info.active_disks = active;
3993 info.working_disks = working;
3994 info.failed_disks = failed;
3995 info.spare_disks = spare;
3997 info.layout = mddev->layout;
3998 info.chunk_size = mddev->chunk_size;
4000 if (copy_to_user(arg, &info, sizeof(info)))
4001 return -EFAULT;
4003 return 0;
4006 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4008 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4009 char *ptr, *buf = NULL;
4010 int err = -ENOMEM;
4012 md_allow_write(mddev);
4014 file = kmalloc(sizeof(*file), GFP_KERNEL);
4015 if (!file)
4016 goto out;
4018 /* bitmap disabled, zero the first byte and copy out */
4019 if (!mddev->bitmap || !mddev->bitmap->file) {
4020 file->pathname[0] = '\0';
4021 goto copy_out;
4024 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4025 if (!buf)
4026 goto out;
4028 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4029 if (IS_ERR(ptr))
4030 goto out;
4032 strcpy(file->pathname, ptr);
4034 copy_out:
4035 err = 0;
4036 if (copy_to_user(arg, file, sizeof(*file)))
4037 err = -EFAULT;
4038 out:
4039 kfree(buf);
4040 kfree(file);
4041 return err;
4044 static int get_disk_info(mddev_t * mddev, void __user * arg)
4046 mdu_disk_info_t info;
4047 unsigned int nr;
4048 mdk_rdev_t *rdev;
4050 if (copy_from_user(&info, arg, sizeof(info)))
4051 return -EFAULT;
4053 nr = info.number;
4055 rdev = find_rdev_nr(mddev, nr);
4056 if (rdev) {
4057 info.major = MAJOR(rdev->bdev->bd_dev);
4058 info.minor = MINOR(rdev->bdev->bd_dev);
4059 info.raid_disk = rdev->raid_disk;
4060 info.state = 0;
4061 if (test_bit(Faulty, &rdev->flags))
4062 info.state |= (1<<MD_DISK_FAULTY);
4063 else if (test_bit(In_sync, &rdev->flags)) {
4064 info.state |= (1<<MD_DISK_ACTIVE);
4065 info.state |= (1<<MD_DISK_SYNC);
4067 if (test_bit(WriteMostly, &rdev->flags))
4068 info.state |= (1<<MD_DISK_WRITEMOSTLY);
4069 } else {
4070 info.major = info.minor = 0;
4071 info.raid_disk = -1;
4072 info.state = (1<<MD_DISK_REMOVED);
4075 if (copy_to_user(arg, &info, sizeof(info)))
4076 return -EFAULT;
4078 return 0;
4081 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4083 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4084 mdk_rdev_t *rdev;
4085 dev_t dev = MKDEV(info->major,info->minor);
4087 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4088 return -EOVERFLOW;
4090 if (!mddev->raid_disks) {
4091 int err;
4092 /* expecting a device which has a superblock */
4093 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4094 if (IS_ERR(rdev)) {
4095 printk(KERN_WARNING
4096 "md: md_import_device returned %ld\n",
4097 PTR_ERR(rdev));
4098 return PTR_ERR(rdev);
4100 if (!list_empty(&mddev->disks)) {
4101 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4102 mdk_rdev_t, same_set);
4103 int err = super_types[mddev->major_version]
4104 .load_super(rdev, rdev0, mddev->minor_version);
4105 if (err < 0) {
4106 printk(KERN_WARNING
4107 "md: %s has different UUID to %s\n",
4108 bdevname(rdev->bdev,b),
4109 bdevname(rdev0->bdev,b2));
4110 export_rdev(rdev);
4111 return -EINVAL;
4114 err = bind_rdev_to_array(rdev, mddev);
4115 if (err)
4116 export_rdev(rdev);
4117 return err;
4121 * add_new_disk can be used once the array is assembled
4122 * to add "hot spares". They must already have a superblock
4123 * written
4125 if (mddev->pers) {
4126 int err;
4127 if (!mddev->pers->hot_add_disk) {
4128 printk(KERN_WARNING
4129 "%s: personality does not support diskops!\n",
4130 mdname(mddev));
4131 return -EINVAL;
4133 if (mddev->persistent)
4134 rdev = md_import_device(dev, mddev->major_version,
4135 mddev->minor_version);
4136 else
4137 rdev = md_import_device(dev, -1, -1);
4138 if (IS_ERR(rdev)) {
4139 printk(KERN_WARNING
4140 "md: md_import_device returned %ld\n",
4141 PTR_ERR(rdev));
4142 return PTR_ERR(rdev);
4144 /* set save_raid_disk if appropriate */
4145 if (!mddev->persistent) {
4146 if (info->state & (1<<MD_DISK_SYNC) &&
4147 info->raid_disk < mddev->raid_disks)
4148 rdev->raid_disk = info->raid_disk;
4149 else
4150 rdev->raid_disk = -1;
4151 } else
4152 super_types[mddev->major_version].
4153 validate_super(mddev, rdev);
4154 rdev->saved_raid_disk = rdev->raid_disk;
4156 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4157 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4158 set_bit(WriteMostly, &rdev->flags);
4160 rdev->raid_disk = -1;
4161 err = bind_rdev_to_array(rdev, mddev);
4162 if (!err && !mddev->pers->hot_remove_disk) {
4163 /* If there is hot_add_disk but no hot_remove_disk
4164 * then added disks for geometry changes,
4165 * and should be added immediately.
4167 super_types[mddev->major_version].
4168 validate_super(mddev, rdev);
4169 err = mddev->pers->hot_add_disk(mddev, rdev);
4170 if (err)
4171 unbind_rdev_from_array(rdev);
4173 if (err)
4174 export_rdev(rdev);
4176 md_update_sb(mddev, 1);
4177 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4178 md_wakeup_thread(mddev->thread);
4179 return err;
4182 /* otherwise, add_new_disk is only allowed
4183 * for major_version==0 superblocks
4185 if (mddev->major_version != 0) {
4186 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4187 mdname(mddev));
4188 return -EINVAL;
4191 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4192 int err;
4193 rdev = md_import_device (dev, -1, 0);
4194 if (IS_ERR(rdev)) {
4195 printk(KERN_WARNING
4196 "md: error, md_import_device() returned %ld\n",
4197 PTR_ERR(rdev));
4198 return PTR_ERR(rdev);
4200 rdev->desc_nr = info->number;
4201 if (info->raid_disk < mddev->raid_disks)
4202 rdev->raid_disk = info->raid_disk;
4203 else
4204 rdev->raid_disk = -1;
4206 if (rdev->raid_disk < mddev->raid_disks)
4207 if (info->state & (1<<MD_DISK_SYNC))
4208 set_bit(In_sync, &rdev->flags);
4210 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4211 set_bit(WriteMostly, &rdev->flags);
4213 if (!mddev->persistent) {
4214 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4215 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4216 } else
4217 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4218 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
4220 err = bind_rdev_to_array(rdev, mddev);
4221 if (err) {
4222 export_rdev(rdev);
4223 return err;
4227 return 0;
4230 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4232 char b[BDEVNAME_SIZE];
4233 mdk_rdev_t *rdev;
4235 if (!mddev->pers)
4236 return -ENODEV;
4238 rdev = find_rdev(mddev, dev);
4239 if (!rdev)
4240 return -ENXIO;
4242 if (rdev->raid_disk >= 0)
4243 goto busy;
4245 kick_rdev_from_array(rdev);
4246 md_update_sb(mddev, 1);
4247 md_new_event(mddev);
4249 return 0;
4250 busy:
4251 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4252 bdevname(rdev->bdev,b), mdname(mddev));
4253 return -EBUSY;
4256 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4258 char b[BDEVNAME_SIZE];
4259 int err;
4260 unsigned int size;
4261 mdk_rdev_t *rdev;
4263 if (!mddev->pers)
4264 return -ENODEV;
4266 if (mddev->major_version != 0) {
4267 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4268 " version-0 superblocks.\n",
4269 mdname(mddev));
4270 return -EINVAL;
4272 if (!mddev->pers->hot_add_disk) {
4273 printk(KERN_WARNING
4274 "%s: personality does not support diskops!\n",
4275 mdname(mddev));
4276 return -EINVAL;
4279 rdev = md_import_device (dev, -1, 0);
4280 if (IS_ERR(rdev)) {
4281 printk(KERN_WARNING
4282 "md: error, md_import_device() returned %ld\n",
4283 PTR_ERR(rdev));
4284 return -EINVAL;
4287 if (mddev->persistent)
4288 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4289 else
4290 rdev->sb_offset =
4291 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4293 size = calc_dev_size(rdev, mddev->chunk_size);
4294 rdev->size = size;
4296 if (test_bit(Faulty, &rdev->flags)) {
4297 printk(KERN_WARNING
4298 "md: can not hot-add faulty %s disk to %s!\n",
4299 bdevname(rdev->bdev,b), mdname(mddev));
4300 err = -EINVAL;
4301 goto abort_export;
4303 clear_bit(In_sync, &rdev->flags);
4304 rdev->desc_nr = -1;
4305 rdev->saved_raid_disk = -1;
4306 err = bind_rdev_to_array(rdev, mddev);
4307 if (err)
4308 goto abort_export;
4311 * The rest should better be atomic, we can have disk failures
4312 * noticed in interrupt contexts ...
4315 if (rdev->desc_nr == mddev->max_disks) {
4316 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4317 mdname(mddev));
4318 err = -EBUSY;
4319 goto abort_unbind_export;
4322 rdev->raid_disk = -1;
4324 md_update_sb(mddev, 1);
4327 * Kick recovery, maybe this spare has to be added to the
4328 * array immediately.
4330 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4331 md_wakeup_thread(mddev->thread);
4332 md_new_event(mddev);
4333 return 0;
4335 abort_unbind_export:
4336 unbind_rdev_from_array(rdev);
4338 abort_export:
4339 export_rdev(rdev);
4340 return err;
4343 static int set_bitmap_file(mddev_t *mddev, int fd)
4345 int err;
4347 if (mddev->pers) {
4348 if (!mddev->pers->quiesce)
4349 return -EBUSY;
4350 if (mddev->recovery || mddev->sync_thread)
4351 return -EBUSY;
4352 /* we should be able to change the bitmap.. */
4356 if (fd >= 0) {
4357 if (mddev->bitmap)
4358 return -EEXIST; /* cannot add when bitmap is present */
4359 mddev->bitmap_file = fget(fd);
4361 if (mddev->bitmap_file == NULL) {
4362 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4363 mdname(mddev));
4364 return -EBADF;
4367 err = deny_bitmap_write_access(mddev->bitmap_file);
4368 if (err) {
4369 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4370 mdname(mddev));
4371 fput(mddev->bitmap_file);
4372 mddev->bitmap_file = NULL;
4373 return err;
4375 mddev->bitmap_offset = 0; /* file overrides offset */
4376 } else if (mddev->bitmap == NULL)
4377 return -ENOENT; /* cannot remove what isn't there */
4378 err = 0;
4379 if (mddev->pers) {
4380 mddev->pers->quiesce(mddev, 1);
4381 if (fd >= 0)
4382 err = bitmap_create(mddev);
4383 if (fd < 0 || err) {
4384 bitmap_destroy(mddev);
4385 fd = -1; /* make sure to put the file */
4387 mddev->pers->quiesce(mddev, 0);
4389 if (fd < 0) {
4390 if (mddev->bitmap_file) {
4391 restore_bitmap_write_access(mddev->bitmap_file);
4392 fput(mddev->bitmap_file);
4394 mddev->bitmap_file = NULL;
4397 return err;
4401 * set_array_info is used two different ways
4402 * The original usage is when creating a new array.
4403 * In this usage, raid_disks is > 0 and it together with
4404 * level, size, not_persistent,layout,chunksize determine the
4405 * shape of the array.
4406 * This will always create an array with a type-0.90.0 superblock.
4407 * The newer usage is when assembling an array.
4408 * In this case raid_disks will be 0, and the major_version field is
4409 * use to determine which style super-blocks are to be found on the devices.
4410 * The minor and patch _version numbers are also kept incase the
4411 * super_block handler wishes to interpret them.
4413 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4416 if (info->raid_disks == 0) {
4417 /* just setting version number for superblock loading */
4418 if (info->major_version < 0 ||
4419 info->major_version >= ARRAY_SIZE(super_types) ||
4420 super_types[info->major_version].name == NULL) {
4421 /* maybe try to auto-load a module? */
4422 printk(KERN_INFO
4423 "md: superblock version %d not known\n",
4424 info->major_version);
4425 return -EINVAL;
4427 mddev->major_version = info->major_version;
4428 mddev->minor_version = info->minor_version;
4429 mddev->patch_version = info->patch_version;
4430 mddev->persistent = !info->not_persistent;
4431 return 0;
4433 mddev->major_version = MD_MAJOR_VERSION;
4434 mddev->minor_version = MD_MINOR_VERSION;
4435 mddev->patch_version = MD_PATCHLEVEL_VERSION;
4436 mddev->ctime = get_seconds();
4438 mddev->level = info->level;
4439 mddev->clevel[0] = 0;
4440 mddev->size = info->size;
4441 mddev->raid_disks = info->raid_disks;
4442 /* don't set md_minor, it is determined by which /dev/md* was
4443 * openned
4445 if (info->state & (1<<MD_SB_CLEAN))
4446 mddev->recovery_cp = MaxSector;
4447 else
4448 mddev->recovery_cp = 0;
4449 mddev->persistent = ! info->not_persistent;
4450 mddev->external = 0;
4452 mddev->layout = info->layout;
4453 mddev->chunk_size = info->chunk_size;
4455 mddev->max_disks = MD_SB_DISKS;
4457 if (mddev->persistent)
4458 mddev->flags = 0;
4459 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4461 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4462 mddev->bitmap_offset = 0;
4464 mddev->reshape_position = MaxSector;
4467 * Generate a 128 bit UUID
4469 get_random_bytes(mddev->uuid, 16);
4471 mddev->new_level = mddev->level;
4472 mddev->new_chunk = mddev->chunk_size;
4473 mddev->new_layout = mddev->layout;
4474 mddev->delta_disks = 0;
4476 return 0;
4479 static int update_size(mddev_t *mddev, unsigned long size)
4481 mdk_rdev_t * rdev;
4482 int rv;
4483 struct list_head *tmp;
4484 int fit = (size == 0);
4486 if (mddev->pers->resize == NULL)
4487 return -EINVAL;
4488 /* The "size" is the amount of each device that is used.
4489 * This can only make sense for arrays with redundancy.
4490 * linear and raid0 always use whatever space is available
4491 * We can only consider changing the size if no resync
4492 * or reconstruction is happening, and if the new size
4493 * is acceptable. It must fit before the sb_offset or,
4494 * if that is <data_offset, it must fit before the
4495 * size of each device.
4496 * If size is zero, we find the largest size that fits.
4498 if (mddev->sync_thread)
4499 return -EBUSY;
4500 rdev_for_each(rdev, tmp, mddev) {
4501 sector_t avail;
4502 avail = rdev->size * 2;
4504 if (fit && (size == 0 || size > avail/2))
4505 size = avail/2;
4506 if (avail < ((sector_t)size << 1))
4507 return -ENOSPC;
4509 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4510 if (!rv) {
4511 struct block_device *bdev;
4513 bdev = bdget_disk(mddev->gendisk, 0);
4514 if (bdev) {
4515 mutex_lock(&bdev->bd_inode->i_mutex);
4516 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4517 mutex_unlock(&bdev->bd_inode->i_mutex);
4518 bdput(bdev);
4521 return rv;
4524 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4526 int rv;
4527 /* change the number of raid disks */
4528 if (mddev->pers->check_reshape == NULL)
4529 return -EINVAL;
4530 if (raid_disks <= 0 ||
4531 raid_disks >= mddev->max_disks)
4532 return -EINVAL;
4533 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4534 return -EBUSY;
4535 mddev->delta_disks = raid_disks - mddev->raid_disks;
4537 rv = mddev->pers->check_reshape(mddev);
4538 return rv;
4543 * update_array_info is used to change the configuration of an
4544 * on-line array.
4545 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4546 * fields in the info are checked against the array.
4547 * Any differences that cannot be handled will cause an error.
4548 * Normally, only one change can be managed at a time.
4550 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4552 int rv = 0;
4553 int cnt = 0;
4554 int state = 0;
4556 /* calculate expected state,ignoring low bits */
4557 if (mddev->bitmap && mddev->bitmap_offset)
4558 state |= (1 << MD_SB_BITMAP_PRESENT);
4560 if (mddev->major_version != info->major_version ||
4561 mddev->minor_version != info->minor_version ||
4562 /* mddev->patch_version != info->patch_version || */
4563 mddev->ctime != info->ctime ||
4564 mddev->level != info->level ||
4565 /* mddev->layout != info->layout || */
4566 !mddev->persistent != info->not_persistent||
4567 mddev->chunk_size != info->chunk_size ||
4568 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4569 ((state^info->state) & 0xfffffe00)
4571 return -EINVAL;
4572 /* Check there is only one change */
4573 if (info->size >= 0 && mddev->size != info->size) cnt++;
4574 if (mddev->raid_disks != info->raid_disks) cnt++;
4575 if (mddev->layout != info->layout) cnt++;
4576 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4577 if (cnt == 0) return 0;
4578 if (cnt > 1) return -EINVAL;
4580 if (mddev->layout != info->layout) {
4581 /* Change layout
4582 * we don't need to do anything at the md level, the
4583 * personality will take care of it all.
4585 if (mddev->pers->reconfig == NULL)
4586 return -EINVAL;
4587 else
4588 return mddev->pers->reconfig(mddev, info->layout, -1);
4590 if (info->size >= 0 && mddev->size != info->size)
4591 rv = update_size(mddev, info->size);
4593 if (mddev->raid_disks != info->raid_disks)
4594 rv = update_raid_disks(mddev, info->raid_disks);
4596 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4597 if (mddev->pers->quiesce == NULL)
4598 return -EINVAL;
4599 if (mddev->recovery || mddev->sync_thread)
4600 return -EBUSY;
4601 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4602 /* add the bitmap */
4603 if (mddev->bitmap)
4604 return -EEXIST;
4605 if (mddev->default_bitmap_offset == 0)
4606 return -EINVAL;
4607 mddev->bitmap_offset = mddev->default_bitmap_offset;
4608 mddev->pers->quiesce(mddev, 1);
4609 rv = bitmap_create(mddev);
4610 if (rv)
4611 bitmap_destroy(mddev);
4612 mddev->pers->quiesce(mddev, 0);
4613 } else {
4614 /* remove the bitmap */
4615 if (!mddev->bitmap)
4616 return -ENOENT;
4617 if (mddev->bitmap->file)
4618 return -EINVAL;
4619 mddev->pers->quiesce(mddev, 1);
4620 bitmap_destroy(mddev);
4621 mddev->pers->quiesce(mddev, 0);
4622 mddev->bitmap_offset = 0;
4625 md_update_sb(mddev, 1);
4626 return rv;
4629 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4631 mdk_rdev_t *rdev;
4633 if (mddev->pers == NULL)
4634 return -ENODEV;
4636 rdev = find_rdev(mddev, dev);
4637 if (!rdev)
4638 return -ENODEV;
4640 md_error(mddev, rdev);
4641 return 0;
4644 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4646 mddev_t *mddev = bdev->bd_disk->private_data;
4648 geo->heads = 2;
4649 geo->sectors = 4;
4650 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4651 return 0;
4654 static int md_ioctl(struct inode *inode, struct file *file,
4655 unsigned int cmd, unsigned long arg)
4657 int err = 0;
4658 void __user *argp = (void __user *)arg;
4659 mddev_t *mddev = NULL;
4661 if (!capable(CAP_SYS_ADMIN))
4662 return -EACCES;
4665 * Commands dealing with the RAID driver but not any
4666 * particular array:
4668 switch (cmd)
4670 case RAID_VERSION:
4671 err = get_version(argp);
4672 goto done;
4674 case PRINT_RAID_DEBUG:
4675 err = 0;
4676 md_print_devices();
4677 goto done;
4679 #ifndef MODULE
4680 case RAID_AUTORUN:
4681 err = 0;
4682 autostart_arrays(arg);
4683 goto done;
4684 #endif
4685 default:;
4689 * Commands creating/starting a new array:
4692 mddev = inode->i_bdev->bd_disk->private_data;
4694 if (!mddev) {
4695 BUG();
4696 goto abort;
4699 err = mddev_lock(mddev);
4700 if (err) {
4701 printk(KERN_INFO
4702 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4703 err, cmd);
4704 goto abort;
4707 switch (cmd)
4709 case SET_ARRAY_INFO:
4711 mdu_array_info_t info;
4712 if (!arg)
4713 memset(&info, 0, sizeof(info));
4714 else if (copy_from_user(&info, argp, sizeof(info))) {
4715 err = -EFAULT;
4716 goto abort_unlock;
4718 if (mddev->pers) {
4719 err = update_array_info(mddev, &info);
4720 if (err) {
4721 printk(KERN_WARNING "md: couldn't update"
4722 " array info. %d\n", err);
4723 goto abort_unlock;
4725 goto done_unlock;
4727 if (!list_empty(&mddev->disks)) {
4728 printk(KERN_WARNING
4729 "md: array %s already has disks!\n",
4730 mdname(mddev));
4731 err = -EBUSY;
4732 goto abort_unlock;
4734 if (mddev->raid_disks) {
4735 printk(KERN_WARNING
4736 "md: array %s already initialised!\n",
4737 mdname(mddev));
4738 err = -EBUSY;
4739 goto abort_unlock;
4741 err = set_array_info(mddev, &info);
4742 if (err) {
4743 printk(KERN_WARNING "md: couldn't set"
4744 " array info. %d\n", err);
4745 goto abort_unlock;
4748 goto done_unlock;
4750 default:;
4754 * Commands querying/configuring an existing array:
4756 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4757 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4758 if ((!mddev->raid_disks && !mddev->external)
4759 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4760 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4761 && cmd != GET_BITMAP_FILE) {
4762 err = -ENODEV;
4763 goto abort_unlock;
4767 * Commands even a read-only array can execute:
4769 switch (cmd)
4771 case GET_ARRAY_INFO:
4772 err = get_array_info(mddev, argp);
4773 goto done_unlock;
4775 case GET_BITMAP_FILE:
4776 err = get_bitmap_file(mddev, argp);
4777 goto done_unlock;
4779 case GET_DISK_INFO:
4780 err = get_disk_info(mddev, argp);
4781 goto done_unlock;
4783 case RESTART_ARRAY_RW:
4784 err = restart_array(mddev);
4785 goto done_unlock;
4787 case STOP_ARRAY:
4788 err = do_md_stop (mddev, 0);
4789 goto done_unlock;
4791 case STOP_ARRAY_RO:
4792 err = do_md_stop (mddev, 1);
4793 goto done_unlock;
4796 * We have a problem here : there is no easy way to give a CHS
4797 * virtual geometry. We currently pretend that we have a 2 heads
4798 * 4 sectors (with a BIG number of cylinders...). This drives
4799 * dosfs just mad... ;-)
4804 * The remaining ioctls are changing the state of the
4805 * superblock, so we do not allow them on read-only arrays.
4806 * However non-MD ioctls (e.g. get-size) will still come through
4807 * here and hit the 'default' below, so only disallow
4808 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4810 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4811 mddev->ro && mddev->pers) {
4812 if (mddev->ro == 2) {
4813 mddev->ro = 0;
4814 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4815 md_wakeup_thread(mddev->thread);
4817 } else {
4818 err = -EROFS;
4819 goto abort_unlock;
4823 switch (cmd)
4825 case ADD_NEW_DISK:
4827 mdu_disk_info_t info;
4828 if (copy_from_user(&info, argp, sizeof(info)))
4829 err = -EFAULT;
4830 else
4831 err = add_new_disk(mddev, &info);
4832 goto done_unlock;
4835 case HOT_REMOVE_DISK:
4836 err = hot_remove_disk(mddev, new_decode_dev(arg));
4837 goto done_unlock;
4839 case HOT_ADD_DISK:
4840 err = hot_add_disk(mddev, new_decode_dev(arg));
4841 goto done_unlock;
4843 case SET_DISK_FAULTY:
4844 err = set_disk_faulty(mddev, new_decode_dev(arg));
4845 goto done_unlock;
4847 case RUN_ARRAY:
4848 err = do_md_run (mddev);
4849 goto done_unlock;
4851 case SET_BITMAP_FILE:
4852 err = set_bitmap_file(mddev, (int)arg);
4853 goto done_unlock;
4855 default:
4856 err = -EINVAL;
4857 goto abort_unlock;
4860 done_unlock:
4861 abort_unlock:
4862 mddev_unlock(mddev);
4864 return err;
4865 done:
4866 if (err)
4867 MD_BUG();
4868 abort:
4869 return err;
4872 static int md_open(struct inode *inode, struct file *file)
4875 * Succeed if we can lock the mddev, which confirms that
4876 * it isn't being stopped right now.
4878 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4879 int err;
4881 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4882 goto out;
4884 err = 0;
4885 mddev_get(mddev);
4886 mddev_unlock(mddev);
4888 check_disk_change(inode->i_bdev);
4889 out:
4890 return err;
4893 static int md_release(struct inode *inode, struct file * file)
4895 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4897 BUG_ON(!mddev);
4898 mddev_put(mddev);
4900 return 0;
4903 static int md_media_changed(struct gendisk *disk)
4905 mddev_t *mddev = disk->private_data;
4907 return mddev->changed;
4910 static int md_revalidate(struct gendisk *disk)
4912 mddev_t *mddev = disk->private_data;
4914 mddev->changed = 0;
4915 return 0;
4917 static struct block_device_operations md_fops =
4919 .owner = THIS_MODULE,
4920 .open = md_open,
4921 .release = md_release,
4922 .ioctl = md_ioctl,
4923 .getgeo = md_getgeo,
4924 .media_changed = md_media_changed,
4925 .revalidate_disk= md_revalidate,
4928 static int md_thread(void * arg)
4930 mdk_thread_t *thread = arg;
4933 * md_thread is a 'system-thread', it's priority should be very
4934 * high. We avoid resource deadlocks individually in each
4935 * raid personality. (RAID5 does preallocation) We also use RR and
4936 * the very same RT priority as kswapd, thus we will never get
4937 * into a priority inversion deadlock.
4939 * we definitely have to have equal or higher priority than
4940 * bdflush, otherwise bdflush will deadlock if there are too
4941 * many dirty RAID5 blocks.
4944 allow_signal(SIGKILL);
4945 while (!kthread_should_stop()) {
4947 /* We need to wait INTERRUPTIBLE so that
4948 * we don't add to the load-average.
4949 * That means we need to be sure no signals are
4950 * pending
4952 if (signal_pending(current))
4953 flush_signals(current);
4955 wait_event_interruptible_timeout
4956 (thread->wqueue,
4957 test_bit(THREAD_WAKEUP, &thread->flags)
4958 || kthread_should_stop(),
4959 thread->timeout);
4961 clear_bit(THREAD_WAKEUP, &thread->flags);
4963 thread->run(thread->mddev);
4966 return 0;
4969 void md_wakeup_thread(mdk_thread_t *thread)
4971 if (thread) {
4972 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4973 set_bit(THREAD_WAKEUP, &thread->flags);
4974 wake_up(&thread->wqueue);
4978 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4979 const char *name)
4981 mdk_thread_t *thread;
4983 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4984 if (!thread)
4985 return NULL;
4987 init_waitqueue_head(&thread->wqueue);
4989 thread->run = run;
4990 thread->mddev = mddev;
4991 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4992 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4993 if (IS_ERR(thread->tsk)) {
4994 kfree(thread);
4995 return NULL;
4997 return thread;
5000 void md_unregister_thread(mdk_thread_t *thread)
5002 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5004 kthread_stop(thread->tsk);
5005 kfree(thread);
5008 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5010 if (!mddev) {
5011 MD_BUG();
5012 return;
5015 if (!rdev || test_bit(Faulty, &rdev->flags))
5016 return;
5018 if (mddev->external)
5019 set_bit(Blocked, &rdev->flags);
5021 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5022 mdname(mddev),
5023 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5024 __builtin_return_address(0),__builtin_return_address(1),
5025 __builtin_return_address(2),__builtin_return_address(3));
5027 if (!mddev->pers)
5028 return;
5029 if (!mddev->pers->error_handler)
5030 return;
5031 mddev->pers->error_handler(mddev,rdev);
5032 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5033 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5034 md_wakeup_thread(mddev->thread);
5035 md_new_event_inintr(mddev);
5038 /* seq_file implementation /proc/mdstat */
5040 static void status_unused(struct seq_file *seq)
5042 int i = 0;
5043 mdk_rdev_t *rdev;
5044 struct list_head *tmp;
5046 seq_printf(seq, "unused devices: ");
5048 rdev_for_each_list(rdev, tmp, pending_raid_disks) {
5049 char b[BDEVNAME_SIZE];
5050 i++;
5051 seq_printf(seq, "%s ",
5052 bdevname(rdev->bdev,b));
5054 if (!i)
5055 seq_printf(seq, "<none>");
5057 seq_printf(seq, "\n");
5061 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5063 sector_t max_blocks, resync, res;
5064 unsigned long dt, db, rt;
5065 int scale;
5066 unsigned int per_milli;
5068 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
5070 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5071 max_blocks = mddev->resync_max_sectors >> 1;
5072 else
5073 max_blocks = mddev->size;
5076 * Should not happen.
5078 if (!max_blocks) {
5079 MD_BUG();
5080 return;
5082 /* Pick 'scale' such that (resync>>scale)*1000 will fit
5083 * in a sector_t, and (max_blocks>>scale) will fit in a
5084 * u32, as those are the requirements for sector_div.
5085 * Thus 'scale' must be at least 10
5087 scale = 10;
5088 if (sizeof(sector_t) > sizeof(unsigned long)) {
5089 while ( max_blocks/2 > (1ULL<<(scale+32)))
5090 scale++;
5092 res = (resync>>scale)*1000;
5093 sector_div(res, (u32)((max_blocks>>scale)+1));
5095 per_milli = res;
5097 int i, x = per_milli/50, y = 20-x;
5098 seq_printf(seq, "[");
5099 for (i = 0; i < x; i++)
5100 seq_printf(seq, "=");
5101 seq_printf(seq, ">");
5102 for (i = 0; i < y; i++)
5103 seq_printf(seq, ".");
5104 seq_printf(seq, "] ");
5106 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5107 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5108 "reshape" :
5109 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5110 "check" :
5111 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5112 "resync" : "recovery"))),
5113 per_milli/10, per_milli % 10,
5114 (unsigned long long) resync,
5115 (unsigned long long) max_blocks);
5118 * We do not want to overflow, so the order of operands and
5119 * the * 100 / 100 trick are important. We do a +1 to be
5120 * safe against division by zero. We only estimate anyway.
5122 * dt: time from mark until now
5123 * db: blocks written from mark until now
5124 * rt: remaining time
5126 dt = ((jiffies - mddev->resync_mark) / HZ);
5127 if (!dt) dt++;
5128 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5129 - mddev->resync_mark_cnt;
5130 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5132 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5134 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5137 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5139 struct list_head *tmp;
5140 loff_t l = *pos;
5141 mddev_t *mddev;
5143 if (l >= 0x10000)
5144 return NULL;
5145 if (!l--)
5146 /* header */
5147 return (void*)1;
5149 spin_lock(&all_mddevs_lock);
5150 list_for_each(tmp,&all_mddevs)
5151 if (!l--) {
5152 mddev = list_entry(tmp, mddev_t, all_mddevs);
5153 mddev_get(mddev);
5154 spin_unlock(&all_mddevs_lock);
5155 return mddev;
5157 spin_unlock(&all_mddevs_lock);
5158 if (!l--)
5159 return (void*)2;/* tail */
5160 return NULL;
5163 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5165 struct list_head *tmp;
5166 mddev_t *next_mddev, *mddev = v;
5168 ++*pos;
5169 if (v == (void*)2)
5170 return NULL;
5172 spin_lock(&all_mddevs_lock);
5173 if (v == (void*)1)
5174 tmp = all_mddevs.next;
5175 else
5176 tmp = mddev->all_mddevs.next;
5177 if (tmp != &all_mddevs)
5178 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5179 else {
5180 next_mddev = (void*)2;
5181 *pos = 0x10000;
5183 spin_unlock(&all_mddevs_lock);
5185 if (v != (void*)1)
5186 mddev_put(mddev);
5187 return next_mddev;
5191 static void md_seq_stop(struct seq_file *seq, void *v)
5193 mddev_t *mddev = v;
5195 if (mddev && v != (void*)1 && v != (void*)2)
5196 mddev_put(mddev);
5199 struct mdstat_info {
5200 int event;
5203 static int md_seq_show(struct seq_file *seq, void *v)
5205 mddev_t *mddev = v;
5206 sector_t size;
5207 struct list_head *tmp2;
5208 mdk_rdev_t *rdev;
5209 struct mdstat_info *mi = seq->private;
5210 struct bitmap *bitmap;
5212 if (v == (void*)1) {
5213 struct mdk_personality *pers;
5214 seq_printf(seq, "Personalities : ");
5215 spin_lock(&pers_lock);
5216 list_for_each_entry(pers, &pers_list, list)
5217 seq_printf(seq, "[%s] ", pers->name);
5219 spin_unlock(&pers_lock);
5220 seq_printf(seq, "\n");
5221 mi->event = atomic_read(&md_event_count);
5222 return 0;
5224 if (v == (void*)2) {
5225 status_unused(seq);
5226 return 0;
5229 if (mddev_lock(mddev) < 0)
5230 return -EINTR;
5232 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5233 seq_printf(seq, "%s : %sactive", mdname(mddev),
5234 mddev->pers ? "" : "in");
5235 if (mddev->pers) {
5236 if (mddev->ro==1)
5237 seq_printf(seq, " (read-only)");
5238 if (mddev->ro==2)
5239 seq_printf(seq, " (auto-read-only)");
5240 seq_printf(seq, " %s", mddev->pers->name);
5243 size = 0;
5244 rdev_for_each(rdev, tmp2, mddev) {
5245 char b[BDEVNAME_SIZE];
5246 seq_printf(seq, " %s[%d]",
5247 bdevname(rdev->bdev,b), rdev->desc_nr);
5248 if (test_bit(WriteMostly, &rdev->flags))
5249 seq_printf(seq, "(W)");
5250 if (test_bit(Faulty, &rdev->flags)) {
5251 seq_printf(seq, "(F)");
5252 continue;
5253 } else if (rdev->raid_disk < 0)
5254 seq_printf(seq, "(S)"); /* spare */
5255 size += rdev->size;
5258 if (!list_empty(&mddev->disks)) {
5259 if (mddev->pers)
5260 seq_printf(seq, "\n %llu blocks",
5261 (unsigned long long)mddev->array_size);
5262 else
5263 seq_printf(seq, "\n %llu blocks",
5264 (unsigned long long)size);
5266 if (mddev->persistent) {
5267 if (mddev->major_version != 0 ||
5268 mddev->minor_version != 90) {
5269 seq_printf(seq," super %d.%d",
5270 mddev->major_version,
5271 mddev->minor_version);
5273 } else if (mddev->external)
5274 seq_printf(seq, " super external:%s",
5275 mddev->metadata_type);
5276 else
5277 seq_printf(seq, " super non-persistent");
5279 if (mddev->pers) {
5280 mddev->pers->status (seq, mddev);
5281 seq_printf(seq, "\n ");
5282 if (mddev->pers->sync_request) {
5283 if (mddev->curr_resync > 2) {
5284 status_resync (seq, mddev);
5285 seq_printf(seq, "\n ");
5286 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5287 seq_printf(seq, "\tresync=DELAYED\n ");
5288 else if (mddev->recovery_cp < MaxSector)
5289 seq_printf(seq, "\tresync=PENDING\n ");
5291 } else
5292 seq_printf(seq, "\n ");
5294 if ((bitmap = mddev->bitmap)) {
5295 unsigned long chunk_kb;
5296 unsigned long flags;
5297 spin_lock_irqsave(&bitmap->lock, flags);
5298 chunk_kb = bitmap->chunksize >> 10;
5299 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5300 "%lu%s chunk",
5301 bitmap->pages - bitmap->missing_pages,
5302 bitmap->pages,
5303 (bitmap->pages - bitmap->missing_pages)
5304 << (PAGE_SHIFT - 10),
5305 chunk_kb ? chunk_kb : bitmap->chunksize,
5306 chunk_kb ? "KB" : "B");
5307 if (bitmap->file) {
5308 seq_printf(seq, ", file: ");
5309 seq_path(seq, &bitmap->file->f_path, " \t\n");
5312 seq_printf(seq, "\n");
5313 spin_unlock_irqrestore(&bitmap->lock, flags);
5316 seq_printf(seq, "\n");
5318 mddev_unlock(mddev);
5320 return 0;
5323 static struct seq_operations md_seq_ops = {
5324 .start = md_seq_start,
5325 .next = md_seq_next,
5326 .stop = md_seq_stop,
5327 .show = md_seq_show,
5330 static int md_seq_open(struct inode *inode, struct file *file)
5332 int error;
5333 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5334 if (mi == NULL)
5335 return -ENOMEM;
5337 error = seq_open(file, &md_seq_ops);
5338 if (error)
5339 kfree(mi);
5340 else {
5341 struct seq_file *p = file->private_data;
5342 p->private = mi;
5343 mi->event = atomic_read(&md_event_count);
5345 return error;
5348 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5350 struct seq_file *m = filp->private_data;
5351 struct mdstat_info *mi = m->private;
5352 int mask;
5354 poll_wait(filp, &md_event_waiters, wait);
5356 /* always allow read */
5357 mask = POLLIN | POLLRDNORM;
5359 if (mi->event != atomic_read(&md_event_count))
5360 mask |= POLLERR | POLLPRI;
5361 return mask;
5364 static const struct file_operations md_seq_fops = {
5365 .owner = THIS_MODULE,
5366 .open = md_seq_open,
5367 .read = seq_read,
5368 .llseek = seq_lseek,
5369 .release = seq_release_private,
5370 .poll = mdstat_poll,
5373 int register_md_personality(struct mdk_personality *p)
5375 spin_lock(&pers_lock);
5376 list_add_tail(&p->list, &pers_list);
5377 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5378 spin_unlock(&pers_lock);
5379 return 0;
5382 int unregister_md_personality(struct mdk_personality *p)
5384 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5385 spin_lock(&pers_lock);
5386 list_del_init(&p->list);
5387 spin_unlock(&pers_lock);
5388 return 0;
5391 static int is_mddev_idle(mddev_t *mddev)
5393 mdk_rdev_t * rdev;
5394 struct list_head *tmp;
5395 int idle;
5396 long curr_events;
5398 idle = 1;
5399 rdev_for_each(rdev, tmp, mddev) {
5400 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5401 curr_events = disk_stat_read(disk, sectors[0]) +
5402 disk_stat_read(disk, sectors[1]) -
5403 atomic_read(&disk->sync_io);
5404 /* sync IO will cause sync_io to increase before the disk_stats
5405 * as sync_io is counted when a request starts, and
5406 * disk_stats is counted when it completes.
5407 * So resync activity will cause curr_events to be smaller than
5408 * when there was no such activity.
5409 * non-sync IO will cause disk_stat to increase without
5410 * increasing sync_io so curr_events will (eventually)
5411 * be larger than it was before. Once it becomes
5412 * substantially larger, the test below will cause
5413 * the array to appear non-idle, and resync will slow
5414 * down.
5415 * If there is a lot of outstanding resync activity when
5416 * we set last_event to curr_events, then all that activity
5417 * completing might cause the array to appear non-idle
5418 * and resync will be slowed down even though there might
5419 * not have been non-resync activity. This will only
5420 * happen once though. 'last_events' will soon reflect
5421 * the state where there is little or no outstanding
5422 * resync requests, and further resync activity will
5423 * always make curr_events less than last_events.
5426 if (curr_events - rdev->last_events > 4096) {
5427 rdev->last_events = curr_events;
5428 idle = 0;
5431 return idle;
5434 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5436 /* another "blocks" (512byte) blocks have been synced */
5437 atomic_sub(blocks, &mddev->recovery_active);
5438 wake_up(&mddev->recovery_wait);
5439 if (!ok) {
5440 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5441 md_wakeup_thread(mddev->thread);
5442 // stop recovery, signal do_sync ....
5447 /* md_write_start(mddev, bi)
5448 * If we need to update some array metadata (e.g. 'active' flag
5449 * in superblock) before writing, schedule a superblock update
5450 * and wait for it to complete.
5452 void md_write_start(mddev_t *mddev, struct bio *bi)
5454 if (bio_data_dir(bi) != WRITE)
5455 return;
5457 BUG_ON(mddev->ro == 1);
5458 if (mddev->ro == 2) {
5459 /* need to switch to read/write */
5460 mddev->ro = 0;
5461 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5462 md_wakeup_thread(mddev->thread);
5463 md_wakeup_thread(mddev->sync_thread);
5465 atomic_inc(&mddev->writes_pending);
5466 if (mddev->safemode == 1)
5467 mddev->safemode = 0;
5468 if (mddev->in_sync) {
5469 spin_lock_irq(&mddev->write_lock);
5470 if (mddev->in_sync) {
5471 mddev->in_sync = 0;
5472 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5473 md_wakeup_thread(mddev->thread);
5475 spin_unlock_irq(&mddev->write_lock);
5476 sysfs_notify(&mddev->kobj, NULL, "array_state");
5478 wait_event(mddev->sb_wait,
5479 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
5480 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5483 void md_write_end(mddev_t *mddev)
5485 if (atomic_dec_and_test(&mddev->writes_pending)) {
5486 if (mddev->safemode == 2)
5487 md_wakeup_thread(mddev->thread);
5488 else if (mddev->safemode_delay)
5489 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5493 /* md_allow_write(mddev)
5494 * Calling this ensures that the array is marked 'active' so that writes
5495 * may proceed without blocking. It is important to call this before
5496 * attempting a GFP_KERNEL allocation while holding the mddev lock.
5497 * Must be called with mddev_lock held.
5499 void md_allow_write(mddev_t *mddev)
5501 if (!mddev->pers)
5502 return;
5503 if (mddev->ro)
5504 return;
5506 spin_lock_irq(&mddev->write_lock);
5507 if (mddev->in_sync) {
5508 mddev->in_sync = 0;
5509 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5510 if (mddev->safemode_delay &&
5511 mddev->safemode == 0)
5512 mddev->safemode = 1;
5513 spin_unlock_irq(&mddev->write_lock);
5514 md_update_sb(mddev, 0);
5516 sysfs_notify(&mddev->kobj, NULL, "array_state");
5517 /* wait for the dirty state to be recorded in the metadata */
5518 wait_event(mddev->sb_wait,
5519 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
5520 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5521 } else
5522 spin_unlock_irq(&mddev->write_lock);
5524 EXPORT_SYMBOL_GPL(md_allow_write);
5526 #define SYNC_MARKS 10
5527 #define SYNC_MARK_STEP (3*HZ)
5528 void md_do_sync(mddev_t *mddev)
5530 mddev_t *mddev2;
5531 unsigned int currspeed = 0,
5532 window;
5533 sector_t max_sectors,j, io_sectors;
5534 unsigned long mark[SYNC_MARKS];
5535 sector_t mark_cnt[SYNC_MARKS];
5536 int last_mark,m;
5537 struct list_head *tmp;
5538 sector_t last_check;
5539 int skipped = 0;
5540 struct list_head *rtmp;
5541 mdk_rdev_t *rdev;
5542 char *desc;
5544 /* just incase thread restarts... */
5545 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5546 return;
5547 if (mddev->ro) /* never try to sync a read-only array */
5548 return;
5550 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5551 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5552 desc = "data-check";
5553 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5554 desc = "requested-resync";
5555 else
5556 desc = "resync";
5557 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5558 desc = "reshape";
5559 else
5560 desc = "recovery";
5562 /* we overload curr_resync somewhat here.
5563 * 0 == not engaged in resync at all
5564 * 2 == checking that there is no conflict with another sync
5565 * 1 == like 2, but have yielded to allow conflicting resync to
5566 * commense
5567 * other == active in resync - this many blocks
5569 * Before starting a resync we must have set curr_resync to
5570 * 2, and then checked that every "conflicting" array has curr_resync
5571 * less than ours. When we find one that is the same or higher
5572 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5573 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5574 * This will mean we have to start checking from the beginning again.
5578 do {
5579 mddev->curr_resync = 2;
5581 try_again:
5582 if (kthread_should_stop()) {
5583 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5584 goto skip;
5586 for_each_mddev(mddev2, tmp) {
5587 if (mddev2 == mddev)
5588 continue;
5589 if (!mddev->parallel_resync
5590 && mddev2->curr_resync
5591 && match_mddev_units(mddev, mddev2)) {
5592 DEFINE_WAIT(wq);
5593 if (mddev < mddev2 && mddev->curr_resync == 2) {
5594 /* arbitrarily yield */
5595 mddev->curr_resync = 1;
5596 wake_up(&resync_wait);
5598 if (mddev > mddev2 && mddev->curr_resync == 1)
5599 /* no need to wait here, we can wait the next
5600 * time 'round when curr_resync == 2
5602 continue;
5603 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5604 if (!kthread_should_stop() &&
5605 mddev2->curr_resync >= mddev->curr_resync) {
5606 printk(KERN_INFO "md: delaying %s of %s"
5607 " until %s has finished (they"
5608 " share one or more physical units)\n",
5609 desc, mdname(mddev), mdname(mddev2));
5610 mddev_put(mddev2);
5611 schedule();
5612 finish_wait(&resync_wait, &wq);
5613 goto try_again;
5615 finish_wait(&resync_wait, &wq);
5618 } while (mddev->curr_resync < 2);
5620 j = 0;
5621 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5622 /* resync follows the size requested by the personality,
5623 * which defaults to physical size, but can be virtual size
5625 max_sectors = mddev->resync_max_sectors;
5626 mddev->resync_mismatches = 0;
5627 /* we don't use the checkpoint if there's a bitmap */
5628 if (!mddev->bitmap &&
5629 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5630 j = mddev->recovery_cp;
5631 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5632 max_sectors = mddev->size << 1;
5633 else {
5634 /* recovery follows the physical size of devices */
5635 max_sectors = mddev->size << 1;
5636 j = MaxSector;
5637 rdev_for_each(rdev, rtmp, mddev)
5638 if (rdev->raid_disk >= 0 &&
5639 !test_bit(Faulty, &rdev->flags) &&
5640 !test_bit(In_sync, &rdev->flags) &&
5641 rdev->recovery_offset < j)
5642 j = rdev->recovery_offset;
5645 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5646 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5647 " %d KB/sec/disk.\n", speed_min(mddev));
5648 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5649 "(but not more than %d KB/sec) for %s.\n",
5650 speed_max(mddev), desc);
5652 is_mddev_idle(mddev); /* this also initializes IO event counters */
5654 io_sectors = 0;
5655 for (m = 0; m < SYNC_MARKS; m++) {
5656 mark[m] = jiffies;
5657 mark_cnt[m] = io_sectors;
5659 last_mark = 0;
5660 mddev->resync_mark = mark[last_mark];
5661 mddev->resync_mark_cnt = mark_cnt[last_mark];
5664 * Tune reconstruction:
5666 window = 32*(PAGE_SIZE/512);
5667 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5668 window/2,(unsigned long long) max_sectors/2);
5670 atomic_set(&mddev->recovery_active, 0);
5671 last_check = 0;
5673 if (j>2) {
5674 printk(KERN_INFO
5675 "md: resuming %s of %s from checkpoint.\n",
5676 desc, mdname(mddev));
5677 mddev->curr_resync = j;
5680 while (j < max_sectors) {
5681 sector_t sectors;
5683 skipped = 0;
5684 if (j >= mddev->resync_max) {
5685 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5686 wait_event(mddev->recovery_wait,
5687 mddev->resync_max > j
5688 || kthread_should_stop());
5690 if (kthread_should_stop())
5691 goto interrupted;
5692 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5693 currspeed < speed_min(mddev));
5694 if (sectors == 0) {
5695 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5696 goto out;
5699 if (!skipped) { /* actual IO requested */
5700 io_sectors += sectors;
5701 atomic_add(sectors, &mddev->recovery_active);
5704 j += sectors;
5705 if (j>1) mddev->curr_resync = j;
5706 mddev->curr_mark_cnt = io_sectors;
5707 if (last_check == 0)
5708 /* this is the earliers that rebuilt will be
5709 * visible in /proc/mdstat
5711 md_new_event(mddev);
5713 if (last_check + window > io_sectors || j == max_sectors)
5714 continue;
5716 last_check = io_sectors;
5718 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5719 break;
5721 repeat:
5722 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5723 /* step marks */
5724 int next = (last_mark+1) % SYNC_MARKS;
5726 mddev->resync_mark = mark[next];
5727 mddev->resync_mark_cnt = mark_cnt[next];
5728 mark[next] = jiffies;
5729 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5730 last_mark = next;
5734 if (kthread_should_stop())
5735 goto interrupted;
5739 * this loop exits only if either when we are slower than
5740 * the 'hard' speed limit, or the system was IO-idle for
5741 * a jiffy.
5742 * the system might be non-idle CPU-wise, but we only care
5743 * about not overloading the IO subsystem. (things like an
5744 * e2fsck being done on the RAID array should execute fast)
5746 blk_unplug(mddev->queue);
5747 cond_resched();
5749 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5750 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5752 if (currspeed > speed_min(mddev)) {
5753 if ((currspeed > speed_max(mddev)) ||
5754 !is_mddev_idle(mddev)) {
5755 msleep(500);
5756 goto repeat;
5760 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5762 * this also signals 'finished resyncing' to md_stop
5764 out:
5765 blk_unplug(mddev->queue);
5767 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5769 /* tell personality that we are finished */
5770 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5772 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5773 mddev->curr_resync > 2) {
5774 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5775 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5776 if (mddev->curr_resync >= mddev->recovery_cp) {
5777 printk(KERN_INFO
5778 "md: checkpointing %s of %s.\n",
5779 desc, mdname(mddev));
5780 mddev->recovery_cp = mddev->curr_resync;
5782 } else
5783 mddev->recovery_cp = MaxSector;
5784 } else {
5785 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5786 mddev->curr_resync = MaxSector;
5787 rdev_for_each(rdev, rtmp, mddev)
5788 if (rdev->raid_disk >= 0 &&
5789 !test_bit(Faulty, &rdev->flags) &&
5790 !test_bit(In_sync, &rdev->flags) &&
5791 rdev->recovery_offset < mddev->curr_resync)
5792 rdev->recovery_offset = mddev->curr_resync;
5795 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5797 skip:
5798 mddev->curr_resync = 0;
5799 mddev->resync_max = MaxSector;
5800 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5801 wake_up(&resync_wait);
5802 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5803 md_wakeup_thread(mddev->thread);
5804 return;
5806 interrupted:
5808 * got a signal, exit.
5810 printk(KERN_INFO
5811 "md: md_do_sync() got signal ... exiting\n");
5812 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5813 goto out;
5816 EXPORT_SYMBOL_GPL(md_do_sync);
5819 static int remove_and_add_spares(mddev_t *mddev)
5821 mdk_rdev_t *rdev;
5822 struct list_head *rtmp;
5823 int spares = 0;
5825 rdev_for_each(rdev, rtmp, mddev)
5826 if (rdev->raid_disk >= 0 &&
5827 !test_bit(Blocked, &rdev->flags) &&
5828 (test_bit(Faulty, &rdev->flags) ||
5829 ! test_bit(In_sync, &rdev->flags)) &&
5830 atomic_read(&rdev->nr_pending)==0) {
5831 if (mddev->pers->hot_remove_disk(
5832 mddev, rdev->raid_disk)==0) {
5833 char nm[20];
5834 sprintf(nm,"rd%d", rdev->raid_disk);
5835 sysfs_remove_link(&mddev->kobj, nm);
5836 rdev->raid_disk = -1;
5840 if (mddev->degraded) {
5841 rdev_for_each(rdev, rtmp, mddev) {
5842 if (rdev->raid_disk >= 0 &&
5843 !test_bit(In_sync, &rdev->flags))
5844 spares++;
5845 if (rdev->raid_disk < 0
5846 && !test_bit(Faulty, &rdev->flags)) {
5847 rdev->recovery_offset = 0;
5848 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5849 char nm[20];
5850 sprintf(nm, "rd%d", rdev->raid_disk);
5851 if (sysfs_create_link(&mddev->kobj,
5852 &rdev->kobj, nm))
5853 printk(KERN_WARNING
5854 "md: cannot register "
5855 "%s for %s\n",
5856 nm, mdname(mddev));
5857 spares++;
5858 md_new_event(mddev);
5859 } else
5860 break;
5864 return spares;
5867 * This routine is regularly called by all per-raid-array threads to
5868 * deal with generic issues like resync and super-block update.
5869 * Raid personalities that don't have a thread (linear/raid0) do not
5870 * need this as they never do any recovery or update the superblock.
5872 * It does not do any resync itself, but rather "forks" off other threads
5873 * to do that as needed.
5874 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5875 * "->recovery" and create a thread at ->sync_thread.
5876 * When the thread finishes it sets MD_RECOVERY_DONE
5877 * and wakeups up this thread which will reap the thread and finish up.
5878 * This thread also removes any faulty devices (with nr_pending == 0).
5880 * The overall approach is:
5881 * 1/ if the superblock needs updating, update it.
5882 * 2/ If a recovery thread is running, don't do anything else.
5883 * 3/ If recovery has finished, clean up, possibly marking spares active.
5884 * 4/ If there are any faulty devices, remove them.
5885 * 5/ If array is degraded, try to add spares devices
5886 * 6/ If array has spares or is not in-sync, start a resync thread.
5888 void md_check_recovery(mddev_t *mddev)
5890 mdk_rdev_t *rdev;
5891 struct list_head *rtmp;
5894 if (mddev->bitmap)
5895 bitmap_daemon_work(mddev->bitmap);
5897 if (mddev->ro)
5898 return;
5900 if (signal_pending(current)) {
5901 if (mddev->pers->sync_request && !mddev->external) {
5902 printk(KERN_INFO "md: %s in immediate safe mode\n",
5903 mdname(mddev));
5904 mddev->safemode = 2;
5906 flush_signals(current);
5909 if ( ! (
5910 (mddev->flags && !mddev->external) ||
5911 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5912 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5913 (mddev->external == 0 && mddev->safemode == 1) ||
5914 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5915 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5917 return;
5919 if (mddev_trylock(mddev)) {
5920 int spares = 0;
5922 if (!mddev->external) {
5923 spin_lock_irq(&mddev->write_lock);
5924 if (mddev->safemode &&
5925 !atomic_read(&mddev->writes_pending) &&
5926 !mddev->in_sync &&
5927 mddev->recovery_cp == MaxSector) {
5928 mddev->in_sync = 1;
5929 if (mddev->persistent)
5930 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5932 if (mddev->safemode == 1)
5933 mddev->safemode = 0;
5934 spin_unlock_irq(&mddev->write_lock);
5937 if (mddev->flags)
5938 md_update_sb(mddev, 0);
5941 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5942 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5943 /* resync/recovery still happening */
5944 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5945 goto unlock;
5947 if (mddev->sync_thread) {
5948 /* resync has finished, collect result */
5949 md_unregister_thread(mddev->sync_thread);
5950 mddev->sync_thread = NULL;
5951 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5952 /* success...*/
5953 /* activate any spares */
5954 mddev->pers->spare_active(mddev);
5956 md_update_sb(mddev, 1);
5958 /* if array is no-longer degraded, then any saved_raid_disk
5959 * information must be scrapped
5961 if (!mddev->degraded)
5962 rdev_for_each(rdev, rtmp, mddev)
5963 rdev->saved_raid_disk = -1;
5965 mddev->recovery = 0;
5966 /* flag recovery needed just to double check */
5967 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5968 md_new_event(mddev);
5969 goto unlock;
5971 /* Clear some bits that don't mean anything, but
5972 * might be left set
5974 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5975 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5976 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5978 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5979 goto unlock;
5980 /* no recovery is running.
5981 * remove any failed drives, then
5982 * add spares if possible.
5983 * Spare are also removed and re-added, to allow
5984 * the personality to fail the re-add.
5987 if (mddev->reshape_position != MaxSector) {
5988 if (mddev->pers->check_reshape(mddev) != 0)
5989 /* Cannot proceed */
5990 goto unlock;
5991 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5992 } else if ((spares = remove_and_add_spares(mddev))) {
5993 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5994 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5995 } else if (mddev->recovery_cp < MaxSector) {
5996 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5997 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5998 /* nothing to be done ... */
5999 goto unlock;
6001 if (mddev->pers->sync_request) {
6002 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6003 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6004 /* We are adding a device or devices to an array
6005 * which has the bitmap stored on all devices.
6006 * So make sure all bitmap pages get written
6008 bitmap_write_all(mddev->bitmap);
6010 mddev->sync_thread = md_register_thread(md_do_sync,
6011 mddev,
6012 "%s_resync");
6013 if (!mddev->sync_thread) {
6014 printk(KERN_ERR "%s: could not start resync"
6015 " thread...\n",
6016 mdname(mddev));
6017 /* leave the spares where they are, it shouldn't hurt */
6018 mddev->recovery = 0;
6019 } else
6020 md_wakeup_thread(mddev->sync_thread);
6021 md_new_event(mddev);
6023 unlock:
6024 mddev_unlock(mddev);
6028 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6030 sysfs_notify(&rdev->kobj, NULL, "state");
6031 wait_event_timeout(rdev->blocked_wait,
6032 !test_bit(Blocked, &rdev->flags),
6033 msecs_to_jiffies(5000));
6034 rdev_dec_pending(rdev, mddev);
6036 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6038 static int md_notify_reboot(struct notifier_block *this,
6039 unsigned long code, void *x)
6041 struct list_head *tmp;
6042 mddev_t *mddev;
6044 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6046 printk(KERN_INFO "md: stopping all md devices.\n");
6048 for_each_mddev(mddev, tmp)
6049 if (mddev_trylock(mddev)) {
6050 do_md_stop (mddev, 1);
6051 mddev_unlock(mddev);
6054 * certain more exotic SCSI devices are known to be
6055 * volatile wrt too early system reboots. While the
6056 * right place to handle this issue is the given
6057 * driver, we do want to have a safe RAID driver ...
6059 mdelay(1000*1);
6061 return NOTIFY_DONE;
6064 static struct notifier_block md_notifier = {
6065 .notifier_call = md_notify_reboot,
6066 .next = NULL,
6067 .priority = INT_MAX, /* before any real devices */
6070 static void md_geninit(void)
6072 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6074 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6077 static int __init md_init(void)
6079 if (register_blkdev(MAJOR_NR, "md"))
6080 return -1;
6081 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6082 unregister_blkdev(MAJOR_NR, "md");
6083 return -1;
6085 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
6086 md_probe, NULL, NULL);
6087 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6088 md_probe, NULL, NULL);
6090 register_reboot_notifier(&md_notifier);
6091 raid_table_header = register_sysctl_table(raid_root_table);
6093 md_geninit();
6094 return (0);
6098 #ifndef MODULE
6101 * Searches all registered partitions for autorun RAID arrays
6102 * at boot time.
6105 static LIST_HEAD(all_detected_devices);
6106 struct detected_devices_node {
6107 struct list_head list;
6108 dev_t dev;
6111 void md_autodetect_dev(dev_t dev)
6113 struct detected_devices_node *node_detected_dev;
6115 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6116 if (node_detected_dev) {
6117 node_detected_dev->dev = dev;
6118 list_add_tail(&node_detected_dev->list, &all_detected_devices);
6119 } else {
6120 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6121 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6126 static void autostart_arrays(int part)
6128 mdk_rdev_t *rdev;
6129 struct detected_devices_node *node_detected_dev;
6130 dev_t dev;
6131 int i_scanned, i_passed;
6133 i_scanned = 0;
6134 i_passed = 0;
6136 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6138 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6139 i_scanned++;
6140 node_detected_dev = list_entry(all_detected_devices.next,
6141 struct detected_devices_node, list);
6142 list_del(&node_detected_dev->list);
6143 dev = node_detected_dev->dev;
6144 kfree(node_detected_dev);
6145 rdev = md_import_device(dev,0, 90);
6146 if (IS_ERR(rdev))
6147 continue;
6149 if (test_bit(Faulty, &rdev->flags)) {
6150 MD_BUG();
6151 continue;
6153 set_bit(AutoDetected, &rdev->flags);
6154 list_add(&rdev->same_set, &pending_raid_disks);
6155 i_passed++;
6158 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6159 i_scanned, i_passed);
6161 autorun_devices(part);
6164 #endif /* !MODULE */
6166 static __exit void md_exit(void)
6168 mddev_t *mddev;
6169 struct list_head *tmp;
6171 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
6172 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6174 unregister_blkdev(MAJOR_NR,"md");
6175 unregister_blkdev(mdp_major, "mdp");
6176 unregister_reboot_notifier(&md_notifier);
6177 unregister_sysctl_table(raid_table_header);
6178 remove_proc_entry("mdstat", NULL);
6179 for_each_mddev(mddev, tmp) {
6180 struct gendisk *disk = mddev->gendisk;
6181 if (!disk)
6182 continue;
6183 export_array(mddev);
6184 del_gendisk(disk);
6185 put_disk(disk);
6186 mddev->gendisk = NULL;
6187 mddev_put(mddev);
6191 subsys_initcall(md_init);
6192 module_exit(md_exit)
6194 static int get_ro(char *buffer, struct kernel_param *kp)
6196 return sprintf(buffer, "%d", start_readonly);
6198 static int set_ro(const char *val, struct kernel_param *kp)
6200 char *e;
6201 int num = simple_strtoul(val, &e, 10);
6202 if (*val && (*e == '\0' || *e == '\n')) {
6203 start_readonly = num;
6204 return 0;
6206 return -EINVAL;
6209 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6210 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6213 EXPORT_SYMBOL(register_md_personality);
6214 EXPORT_SYMBOL(unregister_md_personality);
6215 EXPORT_SYMBOL(md_error);
6216 EXPORT_SYMBOL(md_done_sync);
6217 EXPORT_SYMBOL(md_write_start);
6218 EXPORT_SYMBOL(md_write_end);
6219 EXPORT_SYMBOL(md_register_thread);
6220 EXPORT_SYMBOL(md_unregister_thread);
6221 EXPORT_SYMBOL(md_wakeup_thread);
6222 EXPORT_SYMBOL(md_check_recovery);
6223 MODULE_LICENSE("GPL");
6224 MODULE_ALIAS("md");
6225 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);