Linux 2.6.33-rc8
[linux-2.6/lguest.git] / net / ipv4 / udp.c
blobf0126fdd7e04ba8fd3da4b90aadd663411b0617d
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <net/tcp_states.h>
99 #include <linux/skbuff.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <net/net_namespace.h>
103 #include <net/icmp.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include "udp_impl.h"
109 struct udp_table udp_table __read_mostly;
110 EXPORT_SYMBOL(udp_table);
112 int sysctl_udp_mem[3] __read_mostly;
113 EXPORT_SYMBOL(sysctl_udp_mem);
115 int sysctl_udp_rmem_min __read_mostly;
116 EXPORT_SYMBOL(sysctl_udp_rmem_min);
118 int sysctl_udp_wmem_min __read_mostly;
119 EXPORT_SYMBOL(sysctl_udp_wmem_min);
121 atomic_t udp_memory_allocated;
122 EXPORT_SYMBOL(udp_memory_allocated);
124 #define MAX_UDP_PORTS 65536
125 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127 static int udp_lib_lport_inuse(struct net *net, __u16 num,
128 const struct udp_hslot *hslot,
129 unsigned long *bitmap,
130 struct sock *sk,
131 int (*saddr_comp)(const struct sock *sk1,
132 const struct sock *sk2),
133 unsigned int log)
135 struct sock *sk2;
136 struct hlist_nulls_node *node;
138 sk_nulls_for_each(sk2, node, &hslot->head)
139 if (net_eq(sock_net(sk2), net) &&
140 sk2 != sk &&
141 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
142 (!sk2->sk_reuse || !sk->sk_reuse) &&
143 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
144 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
145 (*saddr_comp)(sk, sk2)) {
146 if (bitmap)
147 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
148 bitmap);
149 else
150 return 1;
152 return 0;
156 * Note: we still hold spinlock of primary hash chain, so no other writer
157 * can insert/delete a socket with local_port == num
159 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
160 struct udp_hslot *hslot2,
161 struct sock *sk,
162 int (*saddr_comp)(const struct sock *sk1,
163 const struct sock *sk2))
165 struct sock *sk2;
166 struct hlist_nulls_node *node;
167 int res = 0;
169 spin_lock(&hslot2->lock);
170 udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
171 if (net_eq(sock_net(sk2), net) &&
172 sk2 != sk &&
173 (udp_sk(sk2)->udp_port_hash == num) &&
174 (!sk2->sk_reuse || !sk->sk_reuse) &&
175 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
176 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
177 (*saddr_comp)(sk, sk2)) {
178 res = 1;
179 break;
181 spin_unlock(&hslot2->lock);
182 return res;
186 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
188 * @sk: socket struct in question
189 * @snum: port number to look up
190 * @saddr_comp: AF-dependent comparison of bound local IP addresses
191 * @hash2_nulladdr: AF-dependant hash value in secondary hash chains,
192 * with NULL address
194 int udp_lib_get_port(struct sock *sk, unsigned short snum,
195 int (*saddr_comp)(const struct sock *sk1,
196 const struct sock *sk2),
197 unsigned int hash2_nulladdr)
199 struct udp_hslot *hslot, *hslot2;
200 struct udp_table *udptable = sk->sk_prot->h.udp_table;
201 int error = 1;
202 struct net *net = sock_net(sk);
204 if (!snum) {
205 int low, high, remaining;
206 unsigned rand;
207 unsigned short first, last;
208 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
210 inet_get_local_port_range(&low, &high);
211 remaining = (high - low) + 1;
213 rand = net_random();
214 first = (((u64)rand * remaining) >> 32) + low;
216 * force rand to be an odd multiple of UDP_HTABLE_SIZE
218 rand = (rand | 1) * (udptable->mask + 1);
219 last = first + udptable->mask + 1;
220 do {
221 hslot = udp_hashslot(udptable, net, first);
222 bitmap_zero(bitmap, PORTS_PER_CHAIN);
223 spin_lock_bh(&hslot->lock);
224 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
225 saddr_comp, udptable->log);
227 snum = first;
229 * Iterate on all possible values of snum for this hash.
230 * Using steps of an odd multiple of UDP_HTABLE_SIZE
231 * give us randomization and full range coverage.
233 do {
234 if (low <= snum && snum <= high &&
235 !test_bit(snum >> udptable->log, bitmap))
236 goto found;
237 snum += rand;
238 } while (snum != first);
239 spin_unlock_bh(&hslot->lock);
240 } while (++first != last);
241 goto fail;
242 } else {
243 hslot = udp_hashslot(udptable, net, snum);
244 spin_lock_bh(&hslot->lock);
245 if (hslot->count > 10) {
246 int exist;
247 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
249 slot2 &= udptable->mask;
250 hash2_nulladdr &= udptable->mask;
252 hslot2 = udp_hashslot2(udptable, slot2);
253 if (hslot->count < hslot2->count)
254 goto scan_primary_hash;
256 exist = udp_lib_lport_inuse2(net, snum, hslot2,
257 sk, saddr_comp);
258 if (!exist && (hash2_nulladdr != slot2)) {
259 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
260 exist = udp_lib_lport_inuse2(net, snum, hslot2,
261 sk, saddr_comp);
263 if (exist)
264 goto fail_unlock;
265 else
266 goto found;
268 scan_primary_hash:
269 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
270 saddr_comp, 0))
271 goto fail_unlock;
273 found:
274 inet_sk(sk)->inet_num = snum;
275 udp_sk(sk)->udp_port_hash = snum;
276 udp_sk(sk)->udp_portaddr_hash ^= snum;
277 if (sk_unhashed(sk)) {
278 sk_nulls_add_node_rcu(sk, &hslot->head);
279 hslot->count++;
280 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
282 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
283 spin_lock(&hslot2->lock);
284 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
285 &hslot2->head);
286 hslot2->count++;
287 spin_unlock(&hslot2->lock);
289 error = 0;
290 fail_unlock:
291 spin_unlock_bh(&hslot->lock);
292 fail:
293 return error;
295 EXPORT_SYMBOL(udp_lib_get_port);
297 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
299 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
301 return (!ipv6_only_sock(sk2) &&
302 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
303 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
306 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
307 unsigned int port)
309 return jhash_1word(saddr, net_hash_mix(net)) ^ port;
312 int udp_v4_get_port(struct sock *sk, unsigned short snum)
314 unsigned int hash2_nulladdr =
315 udp4_portaddr_hash(sock_net(sk), INADDR_ANY, snum);
316 unsigned int hash2_partial =
317 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
319 /* precompute partial secondary hash */
320 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
321 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
324 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
325 unsigned short hnum,
326 __be16 sport, __be32 daddr, __be16 dport, int dif)
328 int score = -1;
330 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
331 !ipv6_only_sock(sk)) {
332 struct inet_sock *inet = inet_sk(sk);
334 score = (sk->sk_family == PF_INET ? 1 : 0);
335 if (inet->inet_rcv_saddr) {
336 if (inet->inet_rcv_saddr != daddr)
337 return -1;
338 score += 2;
340 if (inet->inet_daddr) {
341 if (inet->inet_daddr != saddr)
342 return -1;
343 score += 2;
345 if (inet->inet_dport) {
346 if (inet->inet_dport != sport)
347 return -1;
348 score += 2;
350 if (sk->sk_bound_dev_if) {
351 if (sk->sk_bound_dev_if != dif)
352 return -1;
353 score += 2;
356 return score;
360 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
362 #define SCORE2_MAX (1 + 2 + 2 + 2)
363 static inline int compute_score2(struct sock *sk, struct net *net,
364 __be32 saddr, __be16 sport,
365 __be32 daddr, unsigned int hnum, int dif)
367 int score = -1;
369 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
370 struct inet_sock *inet = inet_sk(sk);
372 if (inet->inet_rcv_saddr != daddr)
373 return -1;
374 if (inet->inet_num != hnum)
375 return -1;
377 score = (sk->sk_family == PF_INET ? 1 : 0);
378 if (inet->inet_daddr) {
379 if (inet->inet_daddr != saddr)
380 return -1;
381 score += 2;
383 if (inet->inet_dport) {
384 if (inet->inet_dport != sport)
385 return -1;
386 score += 2;
388 if (sk->sk_bound_dev_if) {
389 if (sk->sk_bound_dev_if != dif)
390 return -1;
391 score += 2;
394 return score;
398 /* called with read_rcu_lock() */
399 static struct sock *udp4_lib_lookup2(struct net *net,
400 __be32 saddr, __be16 sport,
401 __be32 daddr, unsigned int hnum, int dif,
402 struct udp_hslot *hslot2, unsigned int slot2)
404 struct sock *sk, *result;
405 struct hlist_nulls_node *node;
406 int score, badness;
408 begin:
409 result = NULL;
410 badness = -1;
411 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
412 score = compute_score2(sk, net, saddr, sport,
413 daddr, hnum, dif);
414 if (score > badness) {
415 result = sk;
416 badness = score;
417 if (score == SCORE2_MAX)
418 goto exact_match;
422 * if the nulls value we got at the end of this lookup is
423 * not the expected one, we must restart lookup.
424 * We probably met an item that was moved to another chain.
426 if (get_nulls_value(node) != slot2)
427 goto begin;
429 if (result) {
430 exact_match:
431 if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
432 result = NULL;
433 else if (unlikely(compute_score2(result, net, saddr, sport,
434 daddr, hnum, dif) < badness)) {
435 sock_put(result);
436 goto begin;
439 return result;
442 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
443 * harder than this. -DaveM
445 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
446 __be16 sport, __be32 daddr, __be16 dport,
447 int dif, struct udp_table *udptable)
449 struct sock *sk, *result;
450 struct hlist_nulls_node *node;
451 unsigned short hnum = ntohs(dport);
452 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
453 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
454 int score, badness;
456 rcu_read_lock();
457 if (hslot->count > 10) {
458 hash2 = udp4_portaddr_hash(net, daddr, hnum);
459 slot2 = hash2 & udptable->mask;
460 hslot2 = &udptable->hash2[slot2];
461 if (hslot->count < hslot2->count)
462 goto begin;
464 result = udp4_lib_lookup2(net, saddr, sport,
465 daddr, hnum, dif,
466 hslot2, slot2);
467 if (!result) {
468 hash2 = udp4_portaddr_hash(net, INADDR_ANY, hnum);
469 slot2 = hash2 & udptable->mask;
470 hslot2 = &udptable->hash2[slot2];
471 if (hslot->count < hslot2->count)
472 goto begin;
474 result = udp4_lib_lookup2(net, INADDR_ANY, sport,
475 daddr, hnum, dif,
476 hslot2, slot2);
478 rcu_read_unlock();
479 return result;
481 begin:
482 result = NULL;
483 badness = -1;
484 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
485 score = compute_score(sk, net, saddr, hnum, sport,
486 daddr, dport, dif);
487 if (score > badness) {
488 result = sk;
489 badness = score;
493 * if the nulls value we got at the end of this lookup is
494 * not the expected one, we must restart lookup.
495 * We probably met an item that was moved to another chain.
497 if (get_nulls_value(node) != slot)
498 goto begin;
500 if (result) {
501 if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
502 result = NULL;
503 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
504 daddr, dport, dif) < badness)) {
505 sock_put(result);
506 goto begin;
509 rcu_read_unlock();
510 return result;
513 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
514 __be16 sport, __be16 dport,
515 struct udp_table *udptable)
517 struct sock *sk;
518 const struct iphdr *iph = ip_hdr(skb);
520 if (unlikely(sk = skb_steal_sock(skb)))
521 return sk;
522 else
523 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
524 iph->daddr, dport, inet_iif(skb),
525 udptable);
528 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
529 __be32 daddr, __be16 dport, int dif)
531 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
533 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
535 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
536 __be16 loc_port, __be32 loc_addr,
537 __be16 rmt_port, __be32 rmt_addr,
538 int dif)
540 struct hlist_nulls_node *node;
541 struct sock *s = sk;
542 unsigned short hnum = ntohs(loc_port);
544 sk_nulls_for_each_from(s, node) {
545 struct inet_sock *inet = inet_sk(s);
547 if (!net_eq(sock_net(s), net) ||
548 udp_sk(s)->udp_port_hash != hnum ||
549 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
550 (inet->inet_dport != rmt_port && inet->inet_dport) ||
551 (inet->inet_rcv_saddr &&
552 inet->inet_rcv_saddr != loc_addr) ||
553 ipv6_only_sock(s) ||
554 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
555 continue;
556 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
557 continue;
558 goto found;
560 s = NULL;
561 found:
562 return s;
566 * This routine is called by the ICMP module when it gets some
567 * sort of error condition. If err < 0 then the socket should
568 * be closed and the error returned to the user. If err > 0
569 * it's just the icmp type << 8 | icmp code.
570 * Header points to the ip header of the error packet. We move
571 * on past this. Then (as it used to claim before adjustment)
572 * header points to the first 8 bytes of the udp header. We need
573 * to find the appropriate port.
576 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
578 struct inet_sock *inet;
579 struct iphdr *iph = (struct iphdr *)skb->data;
580 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
581 const int type = icmp_hdr(skb)->type;
582 const int code = icmp_hdr(skb)->code;
583 struct sock *sk;
584 int harderr;
585 int err;
586 struct net *net = dev_net(skb->dev);
588 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
589 iph->saddr, uh->source, skb->dev->ifindex, udptable);
590 if (sk == NULL) {
591 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
592 return; /* No socket for error */
595 err = 0;
596 harderr = 0;
597 inet = inet_sk(sk);
599 switch (type) {
600 default:
601 case ICMP_TIME_EXCEEDED:
602 err = EHOSTUNREACH;
603 break;
604 case ICMP_SOURCE_QUENCH:
605 goto out;
606 case ICMP_PARAMETERPROB:
607 err = EPROTO;
608 harderr = 1;
609 break;
610 case ICMP_DEST_UNREACH:
611 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
612 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
613 err = EMSGSIZE;
614 harderr = 1;
615 break;
617 goto out;
619 err = EHOSTUNREACH;
620 if (code <= NR_ICMP_UNREACH) {
621 harderr = icmp_err_convert[code].fatal;
622 err = icmp_err_convert[code].errno;
624 break;
628 * RFC1122: OK. Passes ICMP errors back to application, as per
629 * 4.1.3.3.
631 if (!inet->recverr) {
632 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
633 goto out;
634 } else {
635 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
637 sk->sk_err = err;
638 sk->sk_error_report(sk);
639 out:
640 sock_put(sk);
643 void udp_err(struct sk_buff *skb, u32 info)
645 __udp4_lib_err(skb, info, &udp_table);
649 * Throw away all pending data and cancel the corking. Socket is locked.
651 void udp_flush_pending_frames(struct sock *sk)
653 struct udp_sock *up = udp_sk(sk);
655 if (up->pending) {
656 up->len = 0;
657 up->pending = 0;
658 ip_flush_pending_frames(sk);
661 EXPORT_SYMBOL(udp_flush_pending_frames);
664 * udp4_hwcsum_outgoing - handle outgoing HW checksumming
665 * @sk: socket we are sending on
666 * @skb: sk_buff containing the filled-in UDP header
667 * (checksum field must be zeroed out)
669 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
670 __be32 src, __be32 dst, int len)
672 unsigned int offset;
673 struct udphdr *uh = udp_hdr(skb);
674 __wsum csum = 0;
676 if (skb_queue_len(&sk->sk_write_queue) == 1) {
678 * Only one fragment on the socket.
680 skb->csum_start = skb_transport_header(skb) - skb->head;
681 skb->csum_offset = offsetof(struct udphdr, check);
682 uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
683 } else {
685 * HW-checksum won't work as there are two or more
686 * fragments on the socket so that all csums of sk_buffs
687 * should be together
689 offset = skb_transport_offset(skb);
690 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
692 skb->ip_summed = CHECKSUM_NONE;
694 skb_queue_walk(&sk->sk_write_queue, skb) {
695 csum = csum_add(csum, skb->csum);
698 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
699 if (uh->check == 0)
700 uh->check = CSUM_MANGLED_0;
705 * Push out all pending data as one UDP datagram. Socket is locked.
707 static int udp_push_pending_frames(struct sock *sk)
709 struct udp_sock *up = udp_sk(sk);
710 struct inet_sock *inet = inet_sk(sk);
711 struct flowi *fl = &inet->cork.fl;
712 struct sk_buff *skb;
713 struct udphdr *uh;
714 int err = 0;
715 int is_udplite = IS_UDPLITE(sk);
716 __wsum csum = 0;
718 /* Grab the skbuff where UDP header space exists. */
719 if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
720 goto out;
723 * Create a UDP header
725 uh = udp_hdr(skb);
726 uh->source = fl->fl_ip_sport;
727 uh->dest = fl->fl_ip_dport;
728 uh->len = htons(up->len);
729 uh->check = 0;
731 if (is_udplite) /* UDP-Lite */
732 csum = udplite_csum_outgoing(sk, skb);
734 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
736 skb->ip_summed = CHECKSUM_NONE;
737 goto send;
739 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
741 udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len);
742 goto send;
744 } else /* `normal' UDP */
745 csum = udp_csum_outgoing(sk, skb);
747 /* add protocol-dependent pseudo-header */
748 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
749 sk->sk_protocol, csum);
750 if (uh->check == 0)
751 uh->check = CSUM_MANGLED_0;
753 send:
754 err = ip_push_pending_frames(sk);
755 if (err) {
756 if (err == -ENOBUFS && !inet->recverr) {
757 UDP_INC_STATS_USER(sock_net(sk),
758 UDP_MIB_SNDBUFERRORS, is_udplite);
759 err = 0;
761 } else
762 UDP_INC_STATS_USER(sock_net(sk),
763 UDP_MIB_OUTDATAGRAMS, is_udplite);
764 out:
765 up->len = 0;
766 up->pending = 0;
767 return err;
770 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
771 size_t len)
773 struct inet_sock *inet = inet_sk(sk);
774 struct udp_sock *up = udp_sk(sk);
775 int ulen = len;
776 struct ipcm_cookie ipc;
777 struct rtable *rt = NULL;
778 int free = 0;
779 int connected = 0;
780 __be32 daddr, faddr, saddr;
781 __be16 dport;
782 u8 tos;
783 int err, is_udplite = IS_UDPLITE(sk);
784 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
785 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
787 if (len > 0xFFFF)
788 return -EMSGSIZE;
791 * Check the flags.
794 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
795 return -EOPNOTSUPP;
797 ipc.opt = NULL;
798 ipc.shtx.flags = 0;
800 if (up->pending) {
802 * There are pending frames.
803 * The socket lock must be held while it's corked.
805 lock_sock(sk);
806 if (likely(up->pending)) {
807 if (unlikely(up->pending != AF_INET)) {
808 release_sock(sk);
809 return -EINVAL;
811 goto do_append_data;
813 release_sock(sk);
815 ulen += sizeof(struct udphdr);
818 * Get and verify the address.
820 if (msg->msg_name) {
821 struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
822 if (msg->msg_namelen < sizeof(*usin))
823 return -EINVAL;
824 if (usin->sin_family != AF_INET) {
825 if (usin->sin_family != AF_UNSPEC)
826 return -EAFNOSUPPORT;
829 daddr = usin->sin_addr.s_addr;
830 dport = usin->sin_port;
831 if (dport == 0)
832 return -EINVAL;
833 } else {
834 if (sk->sk_state != TCP_ESTABLISHED)
835 return -EDESTADDRREQ;
836 daddr = inet->inet_daddr;
837 dport = inet->inet_dport;
838 /* Open fast path for connected socket.
839 Route will not be used, if at least one option is set.
841 connected = 1;
843 ipc.addr = inet->inet_saddr;
845 ipc.oif = sk->sk_bound_dev_if;
846 err = sock_tx_timestamp(msg, sk, &ipc.shtx);
847 if (err)
848 return err;
849 if (msg->msg_controllen) {
850 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
851 if (err)
852 return err;
853 if (ipc.opt)
854 free = 1;
855 connected = 0;
857 if (!ipc.opt)
858 ipc.opt = inet->opt;
860 saddr = ipc.addr;
861 ipc.addr = faddr = daddr;
863 if (ipc.opt && ipc.opt->srr) {
864 if (!daddr)
865 return -EINVAL;
866 faddr = ipc.opt->faddr;
867 connected = 0;
869 tos = RT_TOS(inet->tos);
870 if (sock_flag(sk, SOCK_LOCALROUTE) ||
871 (msg->msg_flags & MSG_DONTROUTE) ||
872 (ipc.opt && ipc.opt->is_strictroute)) {
873 tos |= RTO_ONLINK;
874 connected = 0;
877 if (ipv4_is_multicast(daddr)) {
878 if (!ipc.oif)
879 ipc.oif = inet->mc_index;
880 if (!saddr)
881 saddr = inet->mc_addr;
882 connected = 0;
885 if (connected)
886 rt = (struct rtable *)sk_dst_check(sk, 0);
888 if (rt == NULL) {
889 struct flowi fl = { .oif = ipc.oif,
890 .mark = sk->sk_mark,
891 .nl_u = { .ip4_u =
892 { .daddr = faddr,
893 .saddr = saddr,
894 .tos = tos } },
895 .proto = sk->sk_protocol,
896 .flags = inet_sk_flowi_flags(sk),
897 .uli_u = { .ports =
898 { .sport = inet->inet_sport,
899 .dport = dport } } };
900 struct net *net = sock_net(sk);
902 security_sk_classify_flow(sk, &fl);
903 err = ip_route_output_flow(net, &rt, &fl, sk, 1);
904 if (err) {
905 if (err == -ENETUNREACH)
906 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
907 goto out;
910 err = -EACCES;
911 if ((rt->rt_flags & RTCF_BROADCAST) &&
912 !sock_flag(sk, SOCK_BROADCAST))
913 goto out;
914 if (connected)
915 sk_dst_set(sk, dst_clone(&rt->u.dst));
918 if (msg->msg_flags&MSG_CONFIRM)
919 goto do_confirm;
920 back_from_confirm:
922 saddr = rt->rt_src;
923 if (!ipc.addr)
924 daddr = ipc.addr = rt->rt_dst;
926 lock_sock(sk);
927 if (unlikely(up->pending)) {
928 /* The socket is already corked while preparing it. */
929 /* ... which is an evident application bug. --ANK */
930 release_sock(sk);
932 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
933 err = -EINVAL;
934 goto out;
937 * Now cork the socket to pend data.
939 inet->cork.fl.fl4_dst = daddr;
940 inet->cork.fl.fl_ip_dport = dport;
941 inet->cork.fl.fl4_src = saddr;
942 inet->cork.fl.fl_ip_sport = inet->inet_sport;
943 up->pending = AF_INET;
945 do_append_data:
946 up->len += ulen;
947 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
948 err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
949 sizeof(struct udphdr), &ipc, &rt,
950 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
951 if (err)
952 udp_flush_pending_frames(sk);
953 else if (!corkreq)
954 err = udp_push_pending_frames(sk);
955 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
956 up->pending = 0;
957 release_sock(sk);
959 out:
960 ip_rt_put(rt);
961 if (free)
962 kfree(ipc.opt);
963 if (!err)
964 return len;
966 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
967 * ENOBUFS might not be good (it's not tunable per se), but otherwise
968 * we don't have a good statistic (IpOutDiscards but it can be too many
969 * things). We could add another new stat but at least for now that
970 * seems like overkill.
972 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
973 UDP_INC_STATS_USER(sock_net(sk),
974 UDP_MIB_SNDBUFERRORS, is_udplite);
976 return err;
978 do_confirm:
979 dst_confirm(&rt->u.dst);
980 if (!(msg->msg_flags&MSG_PROBE) || len)
981 goto back_from_confirm;
982 err = 0;
983 goto out;
985 EXPORT_SYMBOL(udp_sendmsg);
987 int udp_sendpage(struct sock *sk, struct page *page, int offset,
988 size_t size, int flags)
990 struct udp_sock *up = udp_sk(sk);
991 int ret;
993 if (!up->pending) {
994 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
996 /* Call udp_sendmsg to specify destination address which
997 * sendpage interface can't pass.
998 * This will succeed only when the socket is connected.
1000 ret = udp_sendmsg(NULL, sk, &msg, 0);
1001 if (ret < 0)
1002 return ret;
1005 lock_sock(sk);
1007 if (unlikely(!up->pending)) {
1008 release_sock(sk);
1010 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
1011 return -EINVAL;
1014 ret = ip_append_page(sk, page, offset, size, flags);
1015 if (ret == -EOPNOTSUPP) {
1016 release_sock(sk);
1017 return sock_no_sendpage(sk->sk_socket, page, offset,
1018 size, flags);
1020 if (ret < 0) {
1021 udp_flush_pending_frames(sk);
1022 goto out;
1025 up->len += size;
1026 if (!(up->corkflag || (flags&MSG_MORE)))
1027 ret = udp_push_pending_frames(sk);
1028 if (!ret)
1029 ret = size;
1030 out:
1031 release_sock(sk);
1032 return ret;
1037 * first_packet_length - return length of first packet in receive queue
1038 * @sk: socket
1040 * Drops all bad checksum frames, until a valid one is found.
1041 * Returns the length of found skb, or 0 if none is found.
1043 static unsigned int first_packet_length(struct sock *sk)
1045 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1046 struct sk_buff *skb;
1047 unsigned int res;
1049 __skb_queue_head_init(&list_kill);
1051 spin_lock_bh(&rcvq->lock);
1052 while ((skb = skb_peek(rcvq)) != NULL &&
1053 udp_lib_checksum_complete(skb)) {
1054 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1055 IS_UDPLITE(sk));
1056 atomic_inc(&sk->sk_drops);
1057 __skb_unlink(skb, rcvq);
1058 __skb_queue_tail(&list_kill, skb);
1060 res = skb ? skb->len : 0;
1061 spin_unlock_bh(&rcvq->lock);
1063 if (!skb_queue_empty(&list_kill)) {
1064 lock_sock(sk);
1065 __skb_queue_purge(&list_kill);
1066 sk_mem_reclaim_partial(sk);
1067 release_sock(sk);
1069 return res;
1073 * IOCTL requests applicable to the UDP protocol
1076 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1078 switch (cmd) {
1079 case SIOCOUTQ:
1081 int amount = sk_wmem_alloc_get(sk);
1083 return put_user(amount, (int __user *)arg);
1086 case SIOCINQ:
1088 unsigned int amount = first_packet_length(sk);
1090 if (amount)
1092 * We will only return the amount
1093 * of this packet since that is all
1094 * that will be read.
1096 amount -= sizeof(struct udphdr);
1098 return put_user(amount, (int __user *)arg);
1101 default:
1102 return -ENOIOCTLCMD;
1105 return 0;
1107 EXPORT_SYMBOL(udp_ioctl);
1110 * This should be easy, if there is something there we
1111 * return it, otherwise we block.
1114 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1115 size_t len, int noblock, int flags, int *addr_len)
1117 struct inet_sock *inet = inet_sk(sk);
1118 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1119 struct sk_buff *skb;
1120 unsigned int ulen, copied;
1121 int peeked;
1122 int err;
1123 int is_udplite = IS_UDPLITE(sk);
1126 * Check any passed addresses
1128 if (addr_len)
1129 *addr_len = sizeof(*sin);
1131 if (flags & MSG_ERRQUEUE)
1132 return ip_recv_error(sk, msg, len);
1134 try_again:
1135 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1136 &peeked, &err);
1137 if (!skb)
1138 goto out;
1140 ulen = skb->len - sizeof(struct udphdr);
1141 copied = len;
1142 if (copied > ulen)
1143 copied = ulen;
1144 else if (copied < ulen)
1145 msg->msg_flags |= MSG_TRUNC;
1148 * If checksum is needed at all, try to do it while copying the
1149 * data. If the data is truncated, or if we only want a partial
1150 * coverage checksum (UDP-Lite), do it before the copy.
1153 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1154 if (udp_lib_checksum_complete(skb))
1155 goto csum_copy_err;
1158 if (skb_csum_unnecessary(skb))
1159 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1160 msg->msg_iov, copied);
1161 else {
1162 err = skb_copy_and_csum_datagram_iovec(skb,
1163 sizeof(struct udphdr),
1164 msg->msg_iov);
1166 if (err == -EINVAL)
1167 goto csum_copy_err;
1170 if (err)
1171 goto out_free;
1173 if (!peeked)
1174 UDP_INC_STATS_USER(sock_net(sk),
1175 UDP_MIB_INDATAGRAMS, is_udplite);
1177 sock_recv_ts_and_drops(msg, sk, skb);
1179 /* Copy the address. */
1180 if (sin) {
1181 sin->sin_family = AF_INET;
1182 sin->sin_port = udp_hdr(skb)->source;
1183 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1184 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1186 if (inet->cmsg_flags)
1187 ip_cmsg_recv(msg, skb);
1189 err = copied;
1190 if (flags & MSG_TRUNC)
1191 err = ulen;
1193 out_free:
1194 skb_free_datagram_locked(sk, skb);
1195 out:
1196 return err;
1198 csum_copy_err:
1199 lock_sock(sk);
1200 if (!skb_kill_datagram(sk, skb, flags))
1201 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1202 release_sock(sk);
1204 if (noblock)
1205 return -EAGAIN;
1206 goto try_again;
1210 int udp_disconnect(struct sock *sk, int flags)
1212 struct inet_sock *inet = inet_sk(sk);
1214 * 1003.1g - break association.
1217 sk->sk_state = TCP_CLOSE;
1218 inet->inet_daddr = 0;
1219 inet->inet_dport = 0;
1220 sk->sk_bound_dev_if = 0;
1221 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1222 inet_reset_saddr(sk);
1224 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1225 sk->sk_prot->unhash(sk);
1226 inet->inet_sport = 0;
1228 sk_dst_reset(sk);
1229 return 0;
1231 EXPORT_SYMBOL(udp_disconnect);
1233 void udp_lib_unhash(struct sock *sk)
1235 if (sk_hashed(sk)) {
1236 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1237 struct udp_hslot *hslot, *hslot2;
1239 hslot = udp_hashslot(udptable, sock_net(sk),
1240 udp_sk(sk)->udp_port_hash);
1241 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1243 spin_lock_bh(&hslot->lock);
1244 if (sk_nulls_del_node_init_rcu(sk)) {
1245 hslot->count--;
1246 inet_sk(sk)->inet_num = 0;
1247 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1249 spin_lock(&hslot2->lock);
1250 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1251 hslot2->count--;
1252 spin_unlock(&hslot2->lock);
1254 spin_unlock_bh(&hslot->lock);
1257 EXPORT_SYMBOL(udp_lib_unhash);
1259 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1261 int rc = sock_queue_rcv_skb(sk, skb);
1263 if (rc < 0) {
1264 int is_udplite = IS_UDPLITE(sk);
1266 /* Note that an ENOMEM error is charged twice */
1267 if (rc == -ENOMEM)
1268 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1269 is_udplite);
1270 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1271 kfree_skb(skb);
1272 return -1;
1275 return 0;
1279 /* returns:
1280 * -1: error
1281 * 0: success
1282 * >0: "udp encap" protocol resubmission
1284 * Note that in the success and error cases, the skb is assumed to
1285 * have either been requeued or freed.
1287 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1289 struct udp_sock *up = udp_sk(sk);
1290 int rc;
1291 int is_udplite = IS_UDPLITE(sk);
1294 * Charge it to the socket, dropping if the queue is full.
1296 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1297 goto drop;
1298 nf_reset(skb);
1300 if (up->encap_type) {
1302 * This is an encapsulation socket so pass the skb to
1303 * the socket's udp_encap_rcv() hook. Otherwise, just
1304 * fall through and pass this up the UDP socket.
1305 * up->encap_rcv() returns the following value:
1306 * =0 if skb was successfully passed to the encap
1307 * handler or was discarded by it.
1308 * >0 if skb should be passed on to UDP.
1309 * <0 if skb should be resubmitted as proto -N
1312 /* if we're overly short, let UDP handle it */
1313 if (skb->len > sizeof(struct udphdr) &&
1314 up->encap_rcv != NULL) {
1315 int ret;
1317 ret = (*up->encap_rcv)(sk, skb);
1318 if (ret <= 0) {
1319 UDP_INC_STATS_BH(sock_net(sk),
1320 UDP_MIB_INDATAGRAMS,
1321 is_udplite);
1322 return -ret;
1326 /* FALLTHROUGH -- it's a UDP Packet */
1330 * UDP-Lite specific tests, ignored on UDP sockets
1332 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1335 * MIB statistics other than incrementing the error count are
1336 * disabled for the following two types of errors: these depend
1337 * on the application settings, not on the functioning of the
1338 * protocol stack as such.
1340 * RFC 3828 here recommends (sec 3.3): "There should also be a
1341 * way ... to ... at least let the receiving application block
1342 * delivery of packets with coverage values less than a value
1343 * provided by the application."
1345 if (up->pcrlen == 0) { /* full coverage was set */
1346 LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1347 "%d while full coverage %d requested\n",
1348 UDP_SKB_CB(skb)->cscov, skb->len);
1349 goto drop;
1351 /* The next case involves violating the min. coverage requested
1352 * by the receiver. This is subtle: if receiver wants x and x is
1353 * greater than the buffersize/MTU then receiver will complain
1354 * that it wants x while sender emits packets of smaller size y.
1355 * Therefore the above ...()->partial_cov statement is essential.
1357 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1358 LIMIT_NETDEBUG(KERN_WARNING
1359 "UDPLITE: coverage %d too small, need min %d\n",
1360 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1361 goto drop;
1365 if (sk->sk_filter) {
1366 if (udp_lib_checksum_complete(skb))
1367 goto drop;
1370 rc = 0;
1372 bh_lock_sock(sk);
1373 if (!sock_owned_by_user(sk))
1374 rc = __udp_queue_rcv_skb(sk, skb);
1375 else
1376 sk_add_backlog(sk, skb);
1377 bh_unlock_sock(sk);
1379 return rc;
1381 drop:
1382 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1383 atomic_inc(&sk->sk_drops);
1384 kfree_skb(skb);
1385 return -1;
1389 static void flush_stack(struct sock **stack, unsigned int count,
1390 struct sk_buff *skb, unsigned int final)
1392 unsigned int i;
1393 struct sk_buff *skb1 = NULL;
1394 struct sock *sk;
1396 for (i = 0; i < count; i++) {
1397 sk = stack[i];
1398 if (likely(skb1 == NULL))
1399 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1401 if (!skb1) {
1402 atomic_inc(&sk->sk_drops);
1403 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1404 IS_UDPLITE(sk));
1405 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1406 IS_UDPLITE(sk));
1409 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1410 skb1 = NULL;
1412 if (unlikely(skb1))
1413 kfree_skb(skb1);
1417 * Multicasts and broadcasts go to each listener.
1419 * Note: called only from the BH handler context.
1421 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1422 struct udphdr *uh,
1423 __be32 saddr, __be32 daddr,
1424 struct udp_table *udptable)
1426 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1427 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1428 int dif;
1429 unsigned int i, count = 0;
1431 spin_lock(&hslot->lock);
1432 sk = sk_nulls_head(&hslot->head);
1433 dif = skb->dev->ifindex;
1434 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1435 while (sk) {
1436 stack[count++] = sk;
1437 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1438 daddr, uh->source, saddr, dif);
1439 if (unlikely(count == ARRAY_SIZE(stack))) {
1440 if (!sk)
1441 break;
1442 flush_stack(stack, count, skb, ~0);
1443 count = 0;
1447 * before releasing chain lock, we must take a reference on sockets
1449 for (i = 0; i < count; i++)
1450 sock_hold(stack[i]);
1452 spin_unlock(&hslot->lock);
1455 * do the slow work with no lock held
1457 if (count) {
1458 flush_stack(stack, count, skb, count - 1);
1460 for (i = 0; i < count; i++)
1461 sock_put(stack[i]);
1462 } else {
1463 kfree_skb(skb);
1465 return 0;
1468 /* Initialize UDP checksum. If exited with zero value (success),
1469 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1470 * Otherwise, csum completion requires chacksumming packet body,
1471 * including udp header and folding it to skb->csum.
1473 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1474 int proto)
1476 const struct iphdr *iph;
1477 int err;
1479 UDP_SKB_CB(skb)->partial_cov = 0;
1480 UDP_SKB_CB(skb)->cscov = skb->len;
1482 if (proto == IPPROTO_UDPLITE) {
1483 err = udplite_checksum_init(skb, uh);
1484 if (err)
1485 return err;
1488 iph = ip_hdr(skb);
1489 if (uh->check == 0) {
1490 skb->ip_summed = CHECKSUM_UNNECESSARY;
1491 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1492 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1493 proto, skb->csum))
1494 skb->ip_summed = CHECKSUM_UNNECESSARY;
1496 if (!skb_csum_unnecessary(skb))
1497 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1498 skb->len, proto, 0);
1499 /* Probably, we should checksum udp header (it should be in cache
1500 * in any case) and data in tiny packets (< rx copybreak).
1503 return 0;
1507 * All we need to do is get the socket, and then do a checksum.
1510 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1511 int proto)
1513 struct sock *sk;
1514 struct udphdr *uh;
1515 unsigned short ulen;
1516 struct rtable *rt = skb_rtable(skb);
1517 __be32 saddr, daddr;
1518 struct net *net = dev_net(skb->dev);
1521 * Validate the packet.
1523 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1524 goto drop; /* No space for header. */
1526 uh = udp_hdr(skb);
1527 ulen = ntohs(uh->len);
1528 if (ulen > skb->len)
1529 goto short_packet;
1531 if (proto == IPPROTO_UDP) {
1532 /* UDP validates ulen. */
1533 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1534 goto short_packet;
1535 uh = udp_hdr(skb);
1538 if (udp4_csum_init(skb, uh, proto))
1539 goto csum_error;
1541 saddr = ip_hdr(skb)->saddr;
1542 daddr = ip_hdr(skb)->daddr;
1544 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1545 return __udp4_lib_mcast_deliver(net, skb, uh,
1546 saddr, daddr, udptable);
1548 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1550 if (sk != NULL) {
1551 int ret = udp_queue_rcv_skb(sk, skb);
1552 sock_put(sk);
1554 /* a return value > 0 means to resubmit the input, but
1555 * it wants the return to be -protocol, or 0
1557 if (ret > 0)
1558 return -ret;
1559 return 0;
1562 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1563 goto drop;
1564 nf_reset(skb);
1566 /* No socket. Drop packet silently, if checksum is wrong */
1567 if (udp_lib_checksum_complete(skb))
1568 goto csum_error;
1570 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1571 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1574 * Hmm. We got an UDP packet to a port to which we
1575 * don't wanna listen. Ignore it.
1577 kfree_skb(skb);
1578 return 0;
1580 short_packet:
1581 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1582 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1583 &saddr,
1584 ntohs(uh->source),
1585 ulen,
1586 skb->len,
1587 &daddr,
1588 ntohs(uh->dest));
1589 goto drop;
1591 csum_error:
1593 * RFC1122: OK. Discards the bad packet silently (as far as
1594 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1596 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1597 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1598 &saddr,
1599 ntohs(uh->source),
1600 &daddr,
1601 ntohs(uh->dest),
1602 ulen);
1603 drop:
1604 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1605 kfree_skb(skb);
1606 return 0;
1609 int udp_rcv(struct sk_buff *skb)
1611 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1614 void udp_destroy_sock(struct sock *sk)
1616 lock_sock(sk);
1617 udp_flush_pending_frames(sk);
1618 release_sock(sk);
1622 * Socket option code for UDP
1624 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1625 char __user *optval, unsigned int optlen,
1626 int (*push_pending_frames)(struct sock *))
1628 struct udp_sock *up = udp_sk(sk);
1629 int val;
1630 int err = 0;
1631 int is_udplite = IS_UDPLITE(sk);
1633 if (optlen < sizeof(int))
1634 return -EINVAL;
1636 if (get_user(val, (int __user *)optval))
1637 return -EFAULT;
1639 switch (optname) {
1640 case UDP_CORK:
1641 if (val != 0) {
1642 up->corkflag = 1;
1643 } else {
1644 up->corkflag = 0;
1645 lock_sock(sk);
1646 (*push_pending_frames)(sk);
1647 release_sock(sk);
1649 break;
1651 case UDP_ENCAP:
1652 switch (val) {
1653 case 0:
1654 case UDP_ENCAP_ESPINUDP:
1655 case UDP_ENCAP_ESPINUDP_NON_IKE:
1656 up->encap_rcv = xfrm4_udp_encap_rcv;
1657 /* FALLTHROUGH */
1658 case UDP_ENCAP_L2TPINUDP:
1659 up->encap_type = val;
1660 break;
1661 default:
1662 err = -ENOPROTOOPT;
1663 break;
1665 break;
1668 * UDP-Lite's partial checksum coverage (RFC 3828).
1670 /* The sender sets actual checksum coverage length via this option.
1671 * The case coverage > packet length is handled by send module. */
1672 case UDPLITE_SEND_CSCOV:
1673 if (!is_udplite) /* Disable the option on UDP sockets */
1674 return -ENOPROTOOPT;
1675 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1676 val = 8;
1677 else if (val > USHORT_MAX)
1678 val = USHORT_MAX;
1679 up->pcslen = val;
1680 up->pcflag |= UDPLITE_SEND_CC;
1681 break;
1683 /* The receiver specifies a minimum checksum coverage value. To make
1684 * sense, this should be set to at least 8 (as done below). If zero is
1685 * used, this again means full checksum coverage. */
1686 case UDPLITE_RECV_CSCOV:
1687 if (!is_udplite) /* Disable the option on UDP sockets */
1688 return -ENOPROTOOPT;
1689 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1690 val = 8;
1691 else if (val > USHORT_MAX)
1692 val = USHORT_MAX;
1693 up->pcrlen = val;
1694 up->pcflag |= UDPLITE_RECV_CC;
1695 break;
1697 default:
1698 err = -ENOPROTOOPT;
1699 break;
1702 return err;
1704 EXPORT_SYMBOL(udp_lib_setsockopt);
1706 int udp_setsockopt(struct sock *sk, int level, int optname,
1707 char __user *optval, unsigned int optlen)
1709 if (level == SOL_UDP || level == SOL_UDPLITE)
1710 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1711 udp_push_pending_frames);
1712 return ip_setsockopt(sk, level, optname, optval, optlen);
1715 #ifdef CONFIG_COMPAT
1716 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1717 char __user *optval, unsigned int optlen)
1719 if (level == SOL_UDP || level == SOL_UDPLITE)
1720 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1721 udp_push_pending_frames);
1722 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1724 #endif
1726 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1727 char __user *optval, int __user *optlen)
1729 struct udp_sock *up = udp_sk(sk);
1730 int val, len;
1732 if (get_user(len, optlen))
1733 return -EFAULT;
1735 len = min_t(unsigned int, len, sizeof(int));
1737 if (len < 0)
1738 return -EINVAL;
1740 switch (optname) {
1741 case UDP_CORK:
1742 val = up->corkflag;
1743 break;
1745 case UDP_ENCAP:
1746 val = up->encap_type;
1747 break;
1749 /* The following two cannot be changed on UDP sockets, the return is
1750 * always 0 (which corresponds to the full checksum coverage of UDP). */
1751 case UDPLITE_SEND_CSCOV:
1752 val = up->pcslen;
1753 break;
1755 case UDPLITE_RECV_CSCOV:
1756 val = up->pcrlen;
1757 break;
1759 default:
1760 return -ENOPROTOOPT;
1763 if (put_user(len, optlen))
1764 return -EFAULT;
1765 if (copy_to_user(optval, &val, len))
1766 return -EFAULT;
1767 return 0;
1769 EXPORT_SYMBOL(udp_lib_getsockopt);
1771 int udp_getsockopt(struct sock *sk, int level, int optname,
1772 char __user *optval, int __user *optlen)
1774 if (level == SOL_UDP || level == SOL_UDPLITE)
1775 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1776 return ip_getsockopt(sk, level, optname, optval, optlen);
1779 #ifdef CONFIG_COMPAT
1780 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1781 char __user *optval, int __user *optlen)
1783 if (level == SOL_UDP || level == SOL_UDPLITE)
1784 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1785 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1787 #endif
1789 * udp_poll - wait for a UDP event.
1790 * @file - file struct
1791 * @sock - socket
1792 * @wait - poll table
1794 * This is same as datagram poll, except for the special case of
1795 * blocking sockets. If application is using a blocking fd
1796 * and a packet with checksum error is in the queue;
1797 * then it could get return from select indicating data available
1798 * but then block when reading it. Add special case code
1799 * to work around these arguably broken applications.
1801 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1803 unsigned int mask = datagram_poll(file, sock, wait);
1804 struct sock *sk = sock->sk;
1806 /* Check for false positives due to checksum errors */
1807 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1808 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1809 mask &= ~(POLLIN | POLLRDNORM);
1811 return mask;
1814 EXPORT_SYMBOL(udp_poll);
1816 struct proto udp_prot = {
1817 .name = "UDP",
1818 .owner = THIS_MODULE,
1819 .close = udp_lib_close,
1820 .connect = ip4_datagram_connect,
1821 .disconnect = udp_disconnect,
1822 .ioctl = udp_ioctl,
1823 .destroy = udp_destroy_sock,
1824 .setsockopt = udp_setsockopt,
1825 .getsockopt = udp_getsockopt,
1826 .sendmsg = udp_sendmsg,
1827 .recvmsg = udp_recvmsg,
1828 .sendpage = udp_sendpage,
1829 .backlog_rcv = __udp_queue_rcv_skb,
1830 .hash = udp_lib_hash,
1831 .unhash = udp_lib_unhash,
1832 .get_port = udp_v4_get_port,
1833 .memory_allocated = &udp_memory_allocated,
1834 .sysctl_mem = sysctl_udp_mem,
1835 .sysctl_wmem = &sysctl_udp_wmem_min,
1836 .sysctl_rmem = &sysctl_udp_rmem_min,
1837 .obj_size = sizeof(struct udp_sock),
1838 .slab_flags = SLAB_DESTROY_BY_RCU,
1839 .h.udp_table = &udp_table,
1840 #ifdef CONFIG_COMPAT
1841 .compat_setsockopt = compat_udp_setsockopt,
1842 .compat_getsockopt = compat_udp_getsockopt,
1843 #endif
1845 EXPORT_SYMBOL(udp_prot);
1847 /* ------------------------------------------------------------------------ */
1848 #ifdef CONFIG_PROC_FS
1850 static struct sock *udp_get_first(struct seq_file *seq, int start)
1852 struct sock *sk;
1853 struct udp_iter_state *state = seq->private;
1854 struct net *net = seq_file_net(seq);
1856 for (state->bucket = start; state->bucket <= state->udp_table->mask;
1857 ++state->bucket) {
1858 struct hlist_nulls_node *node;
1859 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1861 if (hlist_nulls_empty(&hslot->head))
1862 continue;
1864 spin_lock_bh(&hslot->lock);
1865 sk_nulls_for_each(sk, node, &hslot->head) {
1866 if (!net_eq(sock_net(sk), net))
1867 continue;
1868 if (sk->sk_family == state->family)
1869 goto found;
1871 spin_unlock_bh(&hslot->lock);
1873 sk = NULL;
1874 found:
1875 return sk;
1878 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1880 struct udp_iter_state *state = seq->private;
1881 struct net *net = seq_file_net(seq);
1883 do {
1884 sk = sk_nulls_next(sk);
1885 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1887 if (!sk) {
1888 if (state->bucket <= state->udp_table->mask)
1889 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1890 return udp_get_first(seq, state->bucket + 1);
1892 return sk;
1895 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1897 struct sock *sk = udp_get_first(seq, 0);
1899 if (sk)
1900 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1901 --pos;
1902 return pos ? NULL : sk;
1905 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1907 struct udp_iter_state *state = seq->private;
1908 state->bucket = MAX_UDP_PORTS;
1910 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1913 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1915 struct sock *sk;
1917 if (v == SEQ_START_TOKEN)
1918 sk = udp_get_idx(seq, 0);
1919 else
1920 sk = udp_get_next(seq, v);
1922 ++*pos;
1923 return sk;
1926 static void udp_seq_stop(struct seq_file *seq, void *v)
1928 struct udp_iter_state *state = seq->private;
1930 if (state->bucket <= state->udp_table->mask)
1931 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1934 static int udp_seq_open(struct inode *inode, struct file *file)
1936 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1937 struct udp_iter_state *s;
1938 int err;
1940 err = seq_open_net(inode, file, &afinfo->seq_ops,
1941 sizeof(struct udp_iter_state));
1942 if (err < 0)
1943 return err;
1945 s = ((struct seq_file *)file->private_data)->private;
1946 s->family = afinfo->family;
1947 s->udp_table = afinfo->udp_table;
1948 return err;
1951 /* ------------------------------------------------------------------------ */
1952 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1954 struct proc_dir_entry *p;
1955 int rc = 0;
1957 afinfo->seq_fops.open = udp_seq_open;
1958 afinfo->seq_fops.read = seq_read;
1959 afinfo->seq_fops.llseek = seq_lseek;
1960 afinfo->seq_fops.release = seq_release_net;
1962 afinfo->seq_ops.start = udp_seq_start;
1963 afinfo->seq_ops.next = udp_seq_next;
1964 afinfo->seq_ops.stop = udp_seq_stop;
1966 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1967 &afinfo->seq_fops, afinfo);
1968 if (!p)
1969 rc = -ENOMEM;
1970 return rc;
1972 EXPORT_SYMBOL(udp_proc_register);
1974 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1976 proc_net_remove(net, afinfo->name);
1978 EXPORT_SYMBOL(udp_proc_unregister);
1980 /* ------------------------------------------------------------------------ */
1981 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1982 int bucket, int *len)
1984 struct inet_sock *inet = inet_sk(sp);
1985 __be32 dest = inet->inet_daddr;
1986 __be32 src = inet->inet_rcv_saddr;
1987 __u16 destp = ntohs(inet->inet_dport);
1988 __u16 srcp = ntohs(inet->inet_sport);
1990 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
1991 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
1992 bucket, src, srcp, dest, destp, sp->sk_state,
1993 sk_wmem_alloc_get(sp),
1994 sk_rmem_alloc_get(sp),
1995 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1996 atomic_read(&sp->sk_refcnt), sp,
1997 atomic_read(&sp->sk_drops), len);
2000 int udp4_seq_show(struct seq_file *seq, void *v)
2002 if (v == SEQ_START_TOKEN)
2003 seq_printf(seq, "%-127s\n",
2004 " sl local_address rem_address st tx_queue "
2005 "rx_queue tr tm->when retrnsmt uid timeout "
2006 "inode ref pointer drops");
2007 else {
2008 struct udp_iter_state *state = seq->private;
2009 int len;
2011 udp4_format_sock(v, seq, state->bucket, &len);
2012 seq_printf(seq, "%*s\n", 127 - len, "");
2014 return 0;
2017 /* ------------------------------------------------------------------------ */
2018 static struct udp_seq_afinfo udp4_seq_afinfo = {
2019 .name = "udp",
2020 .family = AF_INET,
2021 .udp_table = &udp_table,
2022 .seq_fops = {
2023 .owner = THIS_MODULE,
2025 .seq_ops = {
2026 .show = udp4_seq_show,
2030 static int udp4_proc_init_net(struct net *net)
2032 return udp_proc_register(net, &udp4_seq_afinfo);
2035 static void udp4_proc_exit_net(struct net *net)
2037 udp_proc_unregister(net, &udp4_seq_afinfo);
2040 static struct pernet_operations udp4_net_ops = {
2041 .init = udp4_proc_init_net,
2042 .exit = udp4_proc_exit_net,
2045 int __init udp4_proc_init(void)
2047 return register_pernet_subsys(&udp4_net_ops);
2050 void udp4_proc_exit(void)
2052 unregister_pernet_subsys(&udp4_net_ops);
2054 #endif /* CONFIG_PROC_FS */
2056 static __initdata unsigned long uhash_entries;
2057 static int __init set_uhash_entries(char *str)
2059 if (!str)
2060 return 0;
2061 uhash_entries = simple_strtoul(str, &str, 0);
2062 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2063 uhash_entries = UDP_HTABLE_SIZE_MIN;
2064 return 1;
2066 __setup("uhash_entries=", set_uhash_entries);
2068 void __init udp_table_init(struct udp_table *table, const char *name)
2070 unsigned int i;
2072 if (!CONFIG_BASE_SMALL)
2073 table->hash = alloc_large_system_hash(name,
2074 2 * sizeof(struct udp_hslot),
2075 uhash_entries,
2076 21, /* one slot per 2 MB */
2078 &table->log,
2079 &table->mask,
2080 64 * 1024);
2082 * Make sure hash table has the minimum size
2084 if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2085 table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2086 2 * sizeof(struct udp_hslot), GFP_KERNEL);
2087 if (!table->hash)
2088 panic(name);
2089 table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2090 table->mask = UDP_HTABLE_SIZE_MIN - 1;
2092 table->hash2 = table->hash + (table->mask + 1);
2093 for (i = 0; i <= table->mask; i++) {
2094 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2095 table->hash[i].count = 0;
2096 spin_lock_init(&table->hash[i].lock);
2098 for (i = 0; i <= table->mask; i++) {
2099 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2100 table->hash2[i].count = 0;
2101 spin_lock_init(&table->hash2[i].lock);
2105 void __init udp_init(void)
2107 unsigned long nr_pages, limit;
2109 udp_table_init(&udp_table, "UDP");
2110 /* Set the pressure threshold up by the same strategy of TCP. It is a
2111 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
2112 * toward zero with the amount of memory, with a floor of 128 pages.
2114 nr_pages = totalram_pages - totalhigh_pages;
2115 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2116 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2117 limit = max(limit, 128UL);
2118 sysctl_udp_mem[0] = limit / 4 * 3;
2119 sysctl_udp_mem[1] = limit;
2120 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2122 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2123 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2126 int udp4_ufo_send_check(struct sk_buff *skb)
2128 const struct iphdr *iph;
2129 struct udphdr *uh;
2131 if (!pskb_may_pull(skb, sizeof(*uh)))
2132 return -EINVAL;
2134 iph = ip_hdr(skb);
2135 uh = udp_hdr(skb);
2137 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2138 IPPROTO_UDP, 0);
2139 skb->csum_start = skb_transport_header(skb) - skb->head;
2140 skb->csum_offset = offsetof(struct udphdr, check);
2141 skb->ip_summed = CHECKSUM_PARTIAL;
2142 return 0;
2145 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features)
2147 struct sk_buff *segs = ERR_PTR(-EINVAL);
2148 unsigned int mss;
2149 int offset;
2150 __wsum csum;
2152 mss = skb_shinfo(skb)->gso_size;
2153 if (unlikely(skb->len <= mss))
2154 goto out;
2156 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2157 /* Packet is from an untrusted source, reset gso_segs. */
2158 int type = skb_shinfo(skb)->gso_type;
2160 if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2161 !(type & (SKB_GSO_UDP))))
2162 goto out;
2164 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2166 segs = NULL;
2167 goto out;
2170 /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2171 * do checksum of UDP packets sent as multiple IP fragments.
2173 offset = skb->csum_start - skb_headroom(skb);
2174 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2175 offset += skb->csum_offset;
2176 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2177 skb->ip_summed = CHECKSUM_NONE;
2179 /* Fragment the skb. IP headers of the fragments are updated in
2180 * inet_gso_segment()
2182 segs = skb_segment(skb, features);
2183 out:
2184 return segs;