eeepc-laptop: Register as a pci-hotplug device
[linux-2.6/linux-acpi-2.6.git] / arch / powerpc / include / asm / pgtable-ppc32.h
blobc9ff9d75990eb94eaf55944482dff6b5301d3afe
1 #ifndef _ASM_POWERPC_PGTABLE_PPC32_H
2 #define _ASM_POWERPC_PGTABLE_PPC32_H
4 #include <asm-generic/pgtable-nopmd.h>
6 #ifndef __ASSEMBLY__
7 #include <linux/sched.h>
8 #include <linux/threads.h>
9 #include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
11 extern unsigned long va_to_phys(unsigned long address);
12 extern pte_t *va_to_pte(unsigned long address);
13 extern unsigned long ioremap_bot;
15 #ifdef CONFIG_44x
16 extern int icache_44x_need_flush;
17 #endif
19 #endif /* __ASSEMBLY__ */
22 * The normal case is that PTEs are 32-bits and we have a 1-page
23 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
25 * For any >32-bit physical address platform, we can use the following
26 * two level page table layout where the pgdir is 8KB and the MS 13 bits
27 * are an index to the second level table. The combined pgdir/pmd first
28 * level has 2048 entries and the second level has 512 64-bit PTE entries.
29 * -Matt
31 /* PGDIR_SHIFT determines what a top-level page table entry can map */
32 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT)
33 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
34 #define PGDIR_MASK (~(PGDIR_SIZE-1))
37 * entries per page directory level: our page-table tree is two-level, so
38 * we don't really have any PMD directory.
40 #ifndef __ASSEMBLY__
41 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_SHIFT)
42 #define PGD_TABLE_SIZE (sizeof(pgd_t) << (32 - PGDIR_SHIFT))
43 #endif /* __ASSEMBLY__ */
45 #define PTRS_PER_PTE (1 << PTE_SHIFT)
46 #define PTRS_PER_PMD 1
47 #define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
49 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
50 #define FIRST_USER_ADDRESS 0
52 #define pte_ERROR(e) \
53 printk("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
54 (unsigned long long)pte_val(e))
55 #define pgd_ERROR(e) \
56 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
59 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
60 * value (for now) on others, from where we can start layout kernel
61 * virtual space that goes below PKMAP and FIXMAP
63 #ifdef CONFIG_HIGHMEM
64 #define KVIRT_TOP PKMAP_BASE
65 #else
66 #define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */
67 #endif
70 * ioremap_bot starts at that address. Early ioremaps move down from there,
71 * until mem_init() at which point this becomes the top of the vmalloc
72 * and ioremap space
74 #ifdef CONFIG_NOT_COHERENT_CACHE
75 #define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
76 #else
77 #define IOREMAP_TOP KVIRT_TOP
78 #endif
81 * Just any arbitrary offset to the start of the vmalloc VM area: the
82 * current 16MB value just means that there will be a 64MB "hole" after the
83 * physical memory until the kernel virtual memory starts. That means that
84 * any out-of-bounds memory accesses will hopefully be caught.
85 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
86 * area for the same reason. ;)
88 * We no longer map larger than phys RAM with the BATs so we don't have
89 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
90 * about clashes between our early calls to ioremap() that start growing down
91 * from ioremap_base being run into the VM area allocations (growing upwards
92 * from VMALLOC_START). For this reason we have ioremap_bot to check when
93 * we actually run into our mappings setup in the early boot with the VM
94 * system. This really does become a problem for machines with good amounts
95 * of RAM. -- Cort
97 #define VMALLOC_OFFSET (0x1000000) /* 16M */
98 #ifdef PPC_PIN_SIZE
99 #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
100 #else
101 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
102 #endif
103 #define VMALLOC_END ioremap_bot
106 * Bits in a linux-style PTE. These match the bits in the
107 * (hardware-defined) PowerPC PTE as closely as possible.
110 #if defined(CONFIG_40x)
111 #include <asm/pte-40x.h>
112 #elif defined(CONFIG_44x)
113 #include <asm/pte-44x.h>
114 #elif defined(CONFIG_FSL_BOOKE)
115 #include <asm/pte-fsl-booke.h>
116 #elif defined(CONFIG_8xx)
117 #include <asm/pte-8xx.h>
118 #else /* CONFIG_6xx */
119 #include <asm/pte-hash32.h>
120 #endif
122 /* And here we include common definitions */
123 #include <asm/pte-common.h>
125 #ifndef __ASSEMBLY__
127 #define pte_clear(mm, addr, ptep) \
128 do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
130 #define pmd_none(pmd) (!pmd_val(pmd))
131 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
132 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
133 #define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
136 * When flushing the tlb entry for a page, we also need to flush the hash
137 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
139 extern int flush_hash_pages(unsigned context, unsigned long va,
140 unsigned long pmdval, int count);
142 /* Add an HPTE to the hash table */
143 extern void add_hash_page(unsigned context, unsigned long va,
144 unsigned long pmdval);
146 /* Flush an entry from the TLB/hash table */
147 extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
148 unsigned long address);
151 * PTE updates. This function is called whenever an existing
152 * valid PTE is updated. This does -not- include set_pte_at()
153 * which nowadays only sets a new PTE.
155 * Depending on the type of MMU, we may need to use atomic updates
156 * and the PTE may be either 32 or 64 bit wide. In the later case,
157 * when using atomic updates, only the low part of the PTE is
158 * accessed atomically.
160 * In addition, on 44x, we also maintain a global flag indicating
161 * that an executable user mapping was modified, which is needed
162 * to properly flush the virtually tagged instruction cache of
163 * those implementations.
165 #ifndef CONFIG_PTE_64BIT
166 static inline unsigned long pte_update(pte_t *p,
167 unsigned long clr,
168 unsigned long set)
170 #ifdef PTE_ATOMIC_UPDATES
171 unsigned long old, tmp;
173 __asm__ __volatile__("\
174 1: lwarx %0,0,%3\n\
175 andc %1,%0,%4\n\
176 or %1,%1,%5\n"
177 PPC405_ERR77(0,%3)
178 " stwcx. %1,0,%3\n\
179 bne- 1b"
180 : "=&r" (old), "=&r" (tmp), "=m" (*p)
181 : "r" (p), "r" (clr), "r" (set), "m" (*p)
182 : "cc" );
183 #else /* PTE_ATOMIC_UPDATES */
184 unsigned long old = pte_val(*p);
185 *p = __pte((old & ~clr) | set);
186 #endif /* !PTE_ATOMIC_UPDATES */
188 #ifdef CONFIG_44x
189 if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
190 icache_44x_need_flush = 1;
191 #endif
192 return old;
194 #else /* CONFIG_PTE_64BIT */
195 static inline unsigned long long pte_update(pte_t *p,
196 unsigned long clr,
197 unsigned long set)
199 #ifdef PTE_ATOMIC_UPDATES
200 unsigned long long old;
201 unsigned long tmp;
203 __asm__ __volatile__("\
204 1: lwarx %L0,0,%4\n\
205 lwzx %0,0,%3\n\
206 andc %1,%L0,%5\n\
207 or %1,%1,%6\n"
208 PPC405_ERR77(0,%3)
209 " stwcx. %1,0,%4\n\
210 bne- 1b"
211 : "=&r" (old), "=&r" (tmp), "=m" (*p)
212 : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
213 : "cc" );
214 #else /* PTE_ATOMIC_UPDATES */
215 unsigned long long old = pte_val(*p);
216 *p = __pte((old & ~(unsigned long long)clr) | set);
217 #endif /* !PTE_ATOMIC_UPDATES */
219 #ifdef CONFIG_44x
220 if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
221 icache_44x_need_flush = 1;
222 #endif
223 return old;
225 #endif /* CONFIG_PTE_64BIT */
228 * 2.6 calls this without flushing the TLB entry; this is wrong
229 * for our hash-based implementation, we fix that up here.
231 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
232 static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
234 unsigned long old;
235 old = pte_update(ptep, _PAGE_ACCESSED, 0);
236 #if _PAGE_HASHPTE != 0
237 if (old & _PAGE_HASHPTE) {
238 unsigned long ptephys = __pa(ptep) & PAGE_MASK;
239 flush_hash_pages(context, addr, ptephys, 1);
241 #endif
242 return (old & _PAGE_ACCESSED) != 0;
244 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
245 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
247 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
248 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
249 pte_t *ptep)
251 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
254 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
255 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
256 pte_t *ptep)
258 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
260 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
261 unsigned long addr, pte_t *ptep)
263 ptep_set_wrprotect(mm, addr, ptep);
267 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
269 unsigned long bits = pte_val(entry) &
270 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW |
271 _PAGE_HWEXEC | _PAGE_EXEC);
272 pte_update(ptep, 0, bits);
275 #define __HAVE_ARCH_PTE_SAME
276 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
279 * Note that on Book E processors, the pmd contains the kernel virtual
280 * (lowmem) address of the pte page. The physical address is less useful
281 * because everything runs with translation enabled (even the TLB miss
282 * handler). On everything else the pmd contains the physical address
283 * of the pte page. -- paulus
285 #ifndef CONFIG_BOOKE
286 #define pmd_page_vaddr(pmd) \
287 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
288 #define pmd_page(pmd) \
289 (mem_map + (pmd_val(pmd) >> PAGE_SHIFT))
290 #else
291 #define pmd_page_vaddr(pmd) \
292 ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
293 #define pmd_page(pmd) \
294 pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
295 #endif
297 /* to find an entry in a kernel page-table-directory */
298 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
300 /* to find an entry in a page-table-directory */
301 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
302 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
304 /* Find an entry in the third-level page table.. */
305 #define pte_index(address) \
306 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
307 #define pte_offset_kernel(dir, addr) \
308 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
309 #define pte_offset_map(dir, addr) \
310 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
311 #define pte_offset_map_nested(dir, addr) \
312 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
314 #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
315 #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
318 * Encode and decode a swap entry.
319 * Note that the bits we use in a PTE for representing a swap entry
320 * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the
321 *_PAGE_HASHPTE bit (if used). -- paulus
323 #define __swp_type(entry) ((entry).val & 0x1f)
324 #define __swp_offset(entry) ((entry).val >> 5)
325 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
326 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
327 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
329 /* Encode and decode a nonlinear file mapping entry */
330 #define PTE_FILE_MAX_BITS 29
331 #define pte_to_pgoff(pte) (pte_val(pte) >> 3)
332 #define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
335 * No page table caches to initialise
337 #define pgtable_cache_init() do { } while (0)
339 extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
340 pmd_t **pmdp);
342 #endif /* !__ASSEMBLY__ */
344 #endif /* _ASM_POWERPC_PGTABLE_PPC32_H */