eeepc-laptop: Register as a pci-hotplug device
[linux-2.6/linux-acpi-2.6.git] / arch / sparc / kernel / smp_64.c
blobfa44eaf8d897b1f110e96d7e48ce8fdea686212f
1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/cpu.h>
27 #include <asm/head.h>
28 #include <asm/ptrace.h>
29 #include <asm/atomic.h>
30 #include <asm/tlbflush.h>
31 #include <asm/mmu_context.h>
32 #include <asm/cpudata.h>
33 #include <asm/hvtramp.h>
34 #include <asm/io.h>
35 #include <asm/timer.h>
37 #include <asm/irq.h>
38 #include <asm/irq_regs.h>
39 #include <asm/page.h>
40 #include <asm/pgtable.h>
41 #include <asm/oplib.h>
42 #include <asm/uaccess.h>
43 #include <asm/starfire.h>
44 #include <asm/tlb.h>
45 #include <asm/sections.h>
46 #include <asm/prom.h>
47 #include <asm/mdesc.h>
48 #include <asm/ldc.h>
49 #include <asm/hypervisor.h>
51 #include "cpumap.h"
53 int sparc64_multi_core __read_mostly;
55 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
56 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
57 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
59 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
60 EXPORT_SYMBOL(cpu_core_map);
62 static cpumask_t smp_commenced_mask;
64 void smp_info(struct seq_file *m)
66 int i;
68 seq_printf(m, "State:\n");
69 for_each_online_cpu(i)
70 seq_printf(m, "CPU%d:\t\tonline\n", i);
73 void smp_bogo(struct seq_file *m)
75 int i;
77 for_each_online_cpu(i)
78 seq_printf(m,
79 "Cpu%dClkTck\t: %016lx\n",
80 i, cpu_data(i).clock_tick);
83 extern void setup_sparc64_timer(void);
85 static volatile unsigned long callin_flag = 0;
87 void __cpuinit smp_callin(void)
89 int cpuid = hard_smp_processor_id();
91 __local_per_cpu_offset = __per_cpu_offset(cpuid);
93 if (tlb_type == hypervisor)
94 sun4v_ktsb_register();
96 __flush_tlb_all();
98 setup_sparc64_timer();
100 if (cheetah_pcache_forced_on)
101 cheetah_enable_pcache();
103 local_irq_enable();
105 callin_flag = 1;
106 __asm__ __volatile__("membar #Sync\n\t"
107 "flush %%g6" : : : "memory");
109 /* Clear this or we will die instantly when we
110 * schedule back to this idler...
112 current_thread_info()->new_child = 0;
114 /* Attach to the address space of init_task. */
115 atomic_inc(&init_mm.mm_count);
116 current->active_mm = &init_mm;
118 /* inform the notifiers about the new cpu */
119 notify_cpu_starting(cpuid);
121 while (!cpu_isset(cpuid, smp_commenced_mask))
122 rmb();
124 ipi_call_lock_irq();
125 cpu_set(cpuid, cpu_online_map);
126 ipi_call_unlock_irq();
128 /* idle thread is expected to have preempt disabled */
129 preempt_disable();
132 void cpu_panic(void)
134 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
135 panic("SMP bolixed\n");
138 /* This tick register synchronization scheme is taken entirely from
139 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
141 * The only change I've made is to rework it so that the master
142 * initiates the synchonization instead of the slave. -DaveM
145 #define MASTER 0
146 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
148 #define NUM_ROUNDS 64 /* magic value */
149 #define NUM_ITERS 5 /* likewise */
151 static DEFINE_SPINLOCK(itc_sync_lock);
152 static unsigned long go[SLAVE + 1];
154 #define DEBUG_TICK_SYNC 0
156 static inline long get_delta (long *rt, long *master)
158 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
159 unsigned long tcenter, t0, t1, tm;
160 unsigned long i;
162 for (i = 0; i < NUM_ITERS; i++) {
163 t0 = tick_ops->get_tick();
164 go[MASTER] = 1;
165 membar_safe("#StoreLoad");
166 while (!(tm = go[SLAVE]))
167 rmb();
168 go[SLAVE] = 0;
169 wmb();
170 t1 = tick_ops->get_tick();
172 if (t1 - t0 < best_t1 - best_t0)
173 best_t0 = t0, best_t1 = t1, best_tm = tm;
176 *rt = best_t1 - best_t0;
177 *master = best_tm - best_t0;
179 /* average best_t0 and best_t1 without overflow: */
180 tcenter = (best_t0/2 + best_t1/2);
181 if (best_t0 % 2 + best_t1 % 2 == 2)
182 tcenter++;
183 return tcenter - best_tm;
186 void smp_synchronize_tick_client(void)
188 long i, delta, adj, adjust_latency = 0, done = 0;
189 unsigned long flags, rt, master_time_stamp, bound;
190 #if DEBUG_TICK_SYNC
191 struct {
192 long rt; /* roundtrip time */
193 long master; /* master's timestamp */
194 long diff; /* difference between midpoint and master's timestamp */
195 long lat; /* estimate of itc adjustment latency */
196 } t[NUM_ROUNDS];
197 #endif
199 go[MASTER] = 1;
201 while (go[MASTER])
202 rmb();
204 local_irq_save(flags);
206 for (i = 0; i < NUM_ROUNDS; i++) {
207 delta = get_delta(&rt, &master_time_stamp);
208 if (delta == 0) {
209 done = 1; /* let's lock on to this... */
210 bound = rt;
213 if (!done) {
214 if (i > 0) {
215 adjust_latency += -delta;
216 adj = -delta + adjust_latency/4;
217 } else
218 adj = -delta;
220 tick_ops->add_tick(adj);
222 #if DEBUG_TICK_SYNC
223 t[i].rt = rt;
224 t[i].master = master_time_stamp;
225 t[i].diff = delta;
226 t[i].lat = adjust_latency/4;
227 #endif
230 local_irq_restore(flags);
232 #if DEBUG_TICK_SYNC
233 for (i = 0; i < NUM_ROUNDS; i++)
234 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
235 t[i].rt, t[i].master, t[i].diff, t[i].lat);
236 #endif
238 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
239 "(last diff %ld cycles, maxerr %lu cycles)\n",
240 smp_processor_id(), delta, rt);
243 static void smp_start_sync_tick_client(int cpu);
245 static void smp_synchronize_one_tick(int cpu)
247 unsigned long flags, i;
249 go[MASTER] = 0;
251 smp_start_sync_tick_client(cpu);
253 /* wait for client to be ready */
254 while (!go[MASTER])
255 rmb();
257 /* now let the client proceed into his loop */
258 go[MASTER] = 0;
259 membar_safe("#StoreLoad");
261 spin_lock_irqsave(&itc_sync_lock, flags);
263 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
264 while (!go[MASTER])
265 rmb();
266 go[MASTER] = 0;
267 wmb();
268 go[SLAVE] = tick_ops->get_tick();
269 membar_safe("#StoreLoad");
272 spin_unlock_irqrestore(&itc_sync_lock, flags);
275 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
276 /* XXX Put this in some common place. XXX */
277 static unsigned long kimage_addr_to_ra(void *p)
279 unsigned long val = (unsigned long) p;
281 return kern_base + (val - KERNBASE);
284 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
286 extern unsigned long sparc64_ttable_tl0;
287 extern unsigned long kern_locked_tte_data;
288 struct hvtramp_descr *hdesc;
289 unsigned long trampoline_ra;
290 struct trap_per_cpu *tb;
291 u64 tte_vaddr, tte_data;
292 unsigned long hv_err;
293 int i;
295 hdesc = kzalloc(sizeof(*hdesc) +
296 (sizeof(struct hvtramp_mapping) *
297 num_kernel_image_mappings - 1),
298 GFP_KERNEL);
299 if (!hdesc) {
300 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
301 "hvtramp_descr.\n");
302 return;
304 *descrp = hdesc;
306 hdesc->cpu = cpu;
307 hdesc->num_mappings = num_kernel_image_mappings;
309 tb = &trap_block[cpu];
311 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
312 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
314 hdesc->thread_reg = thread_reg;
316 tte_vaddr = (unsigned long) KERNBASE;
317 tte_data = kern_locked_tte_data;
319 for (i = 0; i < hdesc->num_mappings; i++) {
320 hdesc->maps[i].vaddr = tte_vaddr;
321 hdesc->maps[i].tte = tte_data;
322 tte_vaddr += 0x400000;
323 tte_data += 0x400000;
326 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
328 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
329 kimage_addr_to_ra(&sparc64_ttable_tl0),
330 __pa(hdesc));
331 if (hv_err)
332 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
333 "gives error %lu\n", hv_err);
335 #endif
337 extern unsigned long sparc64_cpu_startup;
339 /* The OBP cpu startup callback truncates the 3rd arg cookie to
340 * 32-bits (I think) so to be safe we have it read the pointer
341 * contained here so we work on >4GB machines. -DaveM
343 static struct thread_info *cpu_new_thread = NULL;
345 static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
347 unsigned long entry =
348 (unsigned long)(&sparc64_cpu_startup);
349 unsigned long cookie =
350 (unsigned long)(&cpu_new_thread);
351 struct task_struct *p;
352 void *descr = NULL;
353 int timeout, ret;
355 p = fork_idle(cpu);
356 if (IS_ERR(p))
357 return PTR_ERR(p);
358 callin_flag = 0;
359 cpu_new_thread = task_thread_info(p);
361 if (tlb_type == hypervisor) {
362 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
363 if (ldom_domaining_enabled)
364 ldom_startcpu_cpuid(cpu,
365 (unsigned long) cpu_new_thread,
366 &descr);
367 else
368 #endif
369 prom_startcpu_cpuid(cpu, entry, cookie);
370 } else {
371 struct device_node *dp = of_find_node_by_cpuid(cpu);
373 prom_startcpu(dp->node, entry, cookie);
376 for (timeout = 0; timeout < 50000; timeout++) {
377 if (callin_flag)
378 break;
379 udelay(100);
382 if (callin_flag) {
383 ret = 0;
384 } else {
385 printk("Processor %d is stuck.\n", cpu);
386 ret = -ENODEV;
388 cpu_new_thread = NULL;
390 kfree(descr);
392 return ret;
395 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
397 u64 result, target;
398 int stuck, tmp;
400 if (this_is_starfire) {
401 /* map to real upaid */
402 cpu = (((cpu & 0x3c) << 1) |
403 ((cpu & 0x40) >> 4) |
404 (cpu & 0x3));
407 target = (cpu << 14) | 0x70;
408 again:
409 /* Ok, this is the real Spitfire Errata #54.
410 * One must read back from a UDB internal register
411 * after writes to the UDB interrupt dispatch, but
412 * before the membar Sync for that write.
413 * So we use the high UDB control register (ASI 0x7f,
414 * ADDR 0x20) for the dummy read. -DaveM
416 tmp = 0x40;
417 __asm__ __volatile__(
418 "wrpr %1, %2, %%pstate\n\t"
419 "stxa %4, [%0] %3\n\t"
420 "stxa %5, [%0+%8] %3\n\t"
421 "add %0, %8, %0\n\t"
422 "stxa %6, [%0+%8] %3\n\t"
423 "membar #Sync\n\t"
424 "stxa %%g0, [%7] %3\n\t"
425 "membar #Sync\n\t"
426 "mov 0x20, %%g1\n\t"
427 "ldxa [%%g1] 0x7f, %%g0\n\t"
428 "membar #Sync"
429 : "=r" (tmp)
430 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
431 "r" (data0), "r" (data1), "r" (data2), "r" (target),
432 "r" (0x10), "0" (tmp)
433 : "g1");
435 /* NOTE: PSTATE_IE is still clear. */
436 stuck = 100000;
437 do {
438 __asm__ __volatile__("ldxa [%%g0] %1, %0"
439 : "=r" (result)
440 : "i" (ASI_INTR_DISPATCH_STAT));
441 if (result == 0) {
442 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
443 : : "r" (pstate));
444 return;
446 stuck -= 1;
447 if (stuck == 0)
448 break;
449 } while (result & 0x1);
450 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
451 : : "r" (pstate));
452 if (stuck == 0) {
453 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
454 smp_processor_id(), result);
455 } else {
456 udelay(2);
457 goto again;
461 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
463 u64 *mondo, data0, data1, data2;
464 u16 *cpu_list;
465 u64 pstate;
466 int i;
468 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
469 cpu_list = __va(tb->cpu_list_pa);
470 mondo = __va(tb->cpu_mondo_block_pa);
471 data0 = mondo[0];
472 data1 = mondo[1];
473 data2 = mondo[2];
474 for (i = 0; i < cnt; i++)
475 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
478 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
479 * packet, but we have no use for that. However we do take advantage of
480 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
482 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
484 int nack_busy_id, is_jbus, need_more;
485 u64 *mondo, pstate, ver, busy_mask;
486 u16 *cpu_list;
488 cpu_list = __va(tb->cpu_list_pa);
489 mondo = __va(tb->cpu_mondo_block_pa);
491 /* Unfortunately, someone at Sun had the brilliant idea to make the
492 * busy/nack fields hard-coded by ITID number for this Ultra-III
493 * derivative processor.
495 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
496 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
497 (ver >> 32) == __SERRANO_ID);
499 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
501 retry:
502 need_more = 0;
503 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
504 : : "r" (pstate), "i" (PSTATE_IE));
506 /* Setup the dispatch data registers. */
507 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
508 "stxa %1, [%4] %6\n\t"
509 "stxa %2, [%5] %6\n\t"
510 "membar #Sync\n\t"
511 : /* no outputs */
512 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
513 "r" (0x40), "r" (0x50), "r" (0x60),
514 "i" (ASI_INTR_W));
516 nack_busy_id = 0;
517 busy_mask = 0;
519 int i;
521 for (i = 0; i < cnt; i++) {
522 u64 target, nr;
524 nr = cpu_list[i];
525 if (nr == 0xffff)
526 continue;
528 target = (nr << 14) | 0x70;
529 if (is_jbus) {
530 busy_mask |= (0x1UL << (nr * 2));
531 } else {
532 target |= (nack_busy_id << 24);
533 busy_mask |= (0x1UL <<
534 (nack_busy_id * 2));
536 __asm__ __volatile__(
537 "stxa %%g0, [%0] %1\n\t"
538 "membar #Sync\n\t"
539 : /* no outputs */
540 : "r" (target), "i" (ASI_INTR_W));
541 nack_busy_id++;
542 if (nack_busy_id == 32) {
543 need_more = 1;
544 break;
549 /* Now, poll for completion. */
551 u64 dispatch_stat, nack_mask;
552 long stuck;
554 stuck = 100000 * nack_busy_id;
555 nack_mask = busy_mask << 1;
556 do {
557 __asm__ __volatile__("ldxa [%%g0] %1, %0"
558 : "=r" (dispatch_stat)
559 : "i" (ASI_INTR_DISPATCH_STAT));
560 if (!(dispatch_stat & (busy_mask | nack_mask))) {
561 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
562 : : "r" (pstate));
563 if (unlikely(need_more)) {
564 int i, this_cnt = 0;
565 for (i = 0; i < cnt; i++) {
566 if (cpu_list[i] == 0xffff)
567 continue;
568 cpu_list[i] = 0xffff;
569 this_cnt++;
570 if (this_cnt == 32)
571 break;
573 goto retry;
575 return;
577 if (!--stuck)
578 break;
579 } while (dispatch_stat & busy_mask);
581 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
582 : : "r" (pstate));
584 if (dispatch_stat & busy_mask) {
585 /* Busy bits will not clear, continue instead
586 * of freezing up on this cpu.
588 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
589 smp_processor_id(), dispatch_stat);
590 } else {
591 int i, this_busy_nack = 0;
593 /* Delay some random time with interrupts enabled
594 * to prevent deadlock.
596 udelay(2 * nack_busy_id);
598 /* Clear out the mask bits for cpus which did not
599 * NACK us.
601 for (i = 0; i < cnt; i++) {
602 u64 check_mask, nr;
604 nr = cpu_list[i];
605 if (nr == 0xffff)
606 continue;
608 if (is_jbus)
609 check_mask = (0x2UL << (2*nr));
610 else
611 check_mask = (0x2UL <<
612 this_busy_nack);
613 if ((dispatch_stat & check_mask) == 0)
614 cpu_list[i] = 0xffff;
615 this_busy_nack += 2;
616 if (this_busy_nack == 64)
617 break;
620 goto retry;
625 /* Multi-cpu list version. */
626 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
628 int retries, this_cpu, prev_sent, i, saw_cpu_error;
629 unsigned long status;
630 u16 *cpu_list;
632 this_cpu = smp_processor_id();
634 cpu_list = __va(tb->cpu_list_pa);
636 saw_cpu_error = 0;
637 retries = 0;
638 prev_sent = 0;
639 do {
640 int forward_progress, n_sent;
642 status = sun4v_cpu_mondo_send(cnt,
643 tb->cpu_list_pa,
644 tb->cpu_mondo_block_pa);
646 /* HV_EOK means all cpus received the xcall, we're done. */
647 if (likely(status == HV_EOK))
648 break;
650 /* First, see if we made any forward progress.
652 * The hypervisor indicates successful sends by setting
653 * cpu list entries to the value 0xffff.
655 n_sent = 0;
656 for (i = 0; i < cnt; i++) {
657 if (likely(cpu_list[i] == 0xffff))
658 n_sent++;
661 forward_progress = 0;
662 if (n_sent > prev_sent)
663 forward_progress = 1;
665 prev_sent = n_sent;
667 /* If we get a HV_ECPUERROR, then one or more of the cpus
668 * in the list are in error state. Use the cpu_state()
669 * hypervisor call to find out which cpus are in error state.
671 if (unlikely(status == HV_ECPUERROR)) {
672 for (i = 0; i < cnt; i++) {
673 long err;
674 u16 cpu;
676 cpu = cpu_list[i];
677 if (cpu == 0xffff)
678 continue;
680 err = sun4v_cpu_state(cpu);
681 if (err == HV_CPU_STATE_ERROR) {
682 saw_cpu_error = (cpu + 1);
683 cpu_list[i] = 0xffff;
686 } else if (unlikely(status != HV_EWOULDBLOCK))
687 goto fatal_mondo_error;
689 /* Don't bother rewriting the CPU list, just leave the
690 * 0xffff and non-0xffff entries in there and the
691 * hypervisor will do the right thing.
693 * Only advance timeout state if we didn't make any
694 * forward progress.
696 if (unlikely(!forward_progress)) {
697 if (unlikely(++retries > 10000))
698 goto fatal_mondo_timeout;
700 /* Delay a little bit to let other cpus catch up
701 * on their cpu mondo queue work.
703 udelay(2 * cnt);
705 } while (1);
707 if (unlikely(saw_cpu_error))
708 goto fatal_mondo_cpu_error;
710 return;
712 fatal_mondo_cpu_error:
713 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
714 "(including %d) were in error state\n",
715 this_cpu, saw_cpu_error - 1);
716 return;
718 fatal_mondo_timeout:
719 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
720 " progress after %d retries.\n",
721 this_cpu, retries);
722 goto dump_cpu_list_and_out;
724 fatal_mondo_error:
725 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
726 this_cpu, status);
727 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
728 "mondo_block_pa(%lx)\n",
729 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
731 dump_cpu_list_and_out:
732 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
733 for (i = 0; i < cnt; i++)
734 printk("%u ", cpu_list[i]);
735 printk("]\n");
738 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
740 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
742 struct trap_per_cpu *tb;
743 int this_cpu, i, cnt;
744 unsigned long flags;
745 u16 *cpu_list;
746 u64 *mondo;
748 /* We have to do this whole thing with interrupts fully disabled.
749 * Otherwise if we send an xcall from interrupt context it will
750 * corrupt both our mondo block and cpu list state.
752 * One consequence of this is that we cannot use timeout mechanisms
753 * that depend upon interrupts being delivered locally. So, for
754 * example, we cannot sample jiffies and expect it to advance.
756 * Fortunately, udelay() uses %stick/%tick so we can use that.
758 local_irq_save(flags);
760 this_cpu = smp_processor_id();
761 tb = &trap_block[this_cpu];
763 mondo = __va(tb->cpu_mondo_block_pa);
764 mondo[0] = data0;
765 mondo[1] = data1;
766 mondo[2] = data2;
767 wmb();
769 cpu_list = __va(tb->cpu_list_pa);
771 /* Setup the initial cpu list. */
772 cnt = 0;
773 for_each_cpu(i, mask) {
774 if (i == this_cpu || !cpu_online(i))
775 continue;
776 cpu_list[cnt++] = i;
779 if (cnt)
780 xcall_deliver_impl(tb, cnt);
782 local_irq_restore(flags);
785 /* Send cross call to all processors mentioned in MASK_P
786 * except self. Really, there are only two cases currently,
787 * "&cpu_online_map" and "&mm->cpu_vm_mask".
789 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
791 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
793 xcall_deliver(data0, data1, data2, mask);
796 /* Send cross call to all processors except self. */
797 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
799 smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
802 extern unsigned long xcall_sync_tick;
804 static void smp_start_sync_tick_client(int cpu)
806 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
807 &cpumask_of_cpu(cpu));
810 extern unsigned long xcall_call_function;
812 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
814 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
817 extern unsigned long xcall_call_function_single;
819 void arch_send_call_function_single_ipi(int cpu)
821 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
822 &cpumask_of_cpu(cpu));
825 void smp_call_function_client(int irq, struct pt_regs *regs)
827 clear_softint(1 << irq);
828 generic_smp_call_function_interrupt();
831 void smp_call_function_single_client(int irq, struct pt_regs *regs)
833 clear_softint(1 << irq);
834 generic_smp_call_function_single_interrupt();
837 static void tsb_sync(void *info)
839 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
840 struct mm_struct *mm = info;
842 /* It is not valid to test "currrent->active_mm == mm" here.
844 * The value of "current" is not changed atomically with
845 * switch_mm(). But that's OK, we just need to check the
846 * current cpu's trap block PGD physical address.
848 if (tp->pgd_paddr == __pa(mm->pgd))
849 tsb_context_switch(mm);
852 void smp_tsb_sync(struct mm_struct *mm)
854 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
857 extern unsigned long xcall_flush_tlb_mm;
858 extern unsigned long xcall_flush_tlb_pending;
859 extern unsigned long xcall_flush_tlb_kernel_range;
860 extern unsigned long xcall_fetch_glob_regs;
861 extern unsigned long xcall_receive_signal;
862 extern unsigned long xcall_new_mmu_context_version;
863 #ifdef CONFIG_KGDB
864 extern unsigned long xcall_kgdb_capture;
865 #endif
867 #ifdef DCACHE_ALIASING_POSSIBLE
868 extern unsigned long xcall_flush_dcache_page_cheetah;
869 #endif
870 extern unsigned long xcall_flush_dcache_page_spitfire;
872 #ifdef CONFIG_DEBUG_DCFLUSH
873 extern atomic_t dcpage_flushes;
874 extern atomic_t dcpage_flushes_xcall;
875 #endif
877 static inline void __local_flush_dcache_page(struct page *page)
879 #ifdef DCACHE_ALIASING_POSSIBLE
880 __flush_dcache_page(page_address(page),
881 ((tlb_type == spitfire) &&
882 page_mapping(page) != NULL));
883 #else
884 if (page_mapping(page) != NULL &&
885 tlb_type == spitfire)
886 __flush_icache_page(__pa(page_address(page)));
887 #endif
890 void smp_flush_dcache_page_impl(struct page *page, int cpu)
892 int this_cpu;
894 if (tlb_type == hypervisor)
895 return;
897 #ifdef CONFIG_DEBUG_DCFLUSH
898 atomic_inc(&dcpage_flushes);
899 #endif
901 this_cpu = get_cpu();
903 if (cpu == this_cpu) {
904 __local_flush_dcache_page(page);
905 } else if (cpu_online(cpu)) {
906 void *pg_addr = page_address(page);
907 u64 data0 = 0;
909 if (tlb_type == spitfire) {
910 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
911 if (page_mapping(page) != NULL)
912 data0 |= ((u64)1 << 32);
913 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
914 #ifdef DCACHE_ALIASING_POSSIBLE
915 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
916 #endif
918 if (data0) {
919 xcall_deliver(data0, __pa(pg_addr),
920 (u64) pg_addr, &cpumask_of_cpu(cpu));
921 #ifdef CONFIG_DEBUG_DCFLUSH
922 atomic_inc(&dcpage_flushes_xcall);
923 #endif
927 put_cpu();
930 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
932 void *pg_addr;
933 int this_cpu;
934 u64 data0;
936 if (tlb_type == hypervisor)
937 return;
939 this_cpu = get_cpu();
941 #ifdef CONFIG_DEBUG_DCFLUSH
942 atomic_inc(&dcpage_flushes);
943 #endif
944 data0 = 0;
945 pg_addr = page_address(page);
946 if (tlb_type == spitfire) {
947 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
948 if (page_mapping(page) != NULL)
949 data0 |= ((u64)1 << 32);
950 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
951 #ifdef DCACHE_ALIASING_POSSIBLE
952 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
953 #endif
955 if (data0) {
956 xcall_deliver(data0, __pa(pg_addr),
957 (u64) pg_addr, &cpu_online_map);
958 #ifdef CONFIG_DEBUG_DCFLUSH
959 atomic_inc(&dcpage_flushes_xcall);
960 #endif
962 __local_flush_dcache_page(page);
964 put_cpu();
967 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
969 struct mm_struct *mm;
970 unsigned long flags;
972 clear_softint(1 << irq);
974 /* See if we need to allocate a new TLB context because
975 * the version of the one we are using is now out of date.
977 mm = current->active_mm;
978 if (unlikely(!mm || (mm == &init_mm)))
979 return;
981 spin_lock_irqsave(&mm->context.lock, flags);
983 if (unlikely(!CTX_VALID(mm->context)))
984 get_new_mmu_context(mm);
986 spin_unlock_irqrestore(&mm->context.lock, flags);
988 load_secondary_context(mm);
989 __flush_tlb_mm(CTX_HWBITS(mm->context),
990 SECONDARY_CONTEXT);
993 void smp_new_mmu_context_version(void)
995 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
998 #ifdef CONFIG_KGDB
999 void kgdb_roundup_cpus(unsigned long flags)
1001 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1003 #endif
1005 void smp_fetch_global_regs(void)
1007 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1010 /* We know that the window frames of the user have been flushed
1011 * to the stack before we get here because all callers of us
1012 * are flush_tlb_*() routines, and these run after flush_cache_*()
1013 * which performs the flushw.
1015 * The SMP TLB coherency scheme we use works as follows:
1017 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1018 * space has (potentially) executed on, this is the heuristic
1019 * we use to avoid doing cross calls.
1021 * Also, for flushing from kswapd and also for clones, we
1022 * use cpu_vm_mask as the list of cpus to make run the TLB.
1024 * 2) TLB context numbers are shared globally across all processors
1025 * in the system, this allows us to play several games to avoid
1026 * cross calls.
1028 * One invariant is that when a cpu switches to a process, and
1029 * that processes tsk->active_mm->cpu_vm_mask does not have the
1030 * current cpu's bit set, that tlb context is flushed locally.
1032 * If the address space is non-shared (ie. mm->count == 1) we avoid
1033 * cross calls when we want to flush the currently running process's
1034 * tlb state. This is done by clearing all cpu bits except the current
1035 * processor's in current->mm->cpu_vm_mask and performing the
1036 * flush locally only. This will force any subsequent cpus which run
1037 * this task to flush the context from the local tlb if the process
1038 * migrates to another cpu (again).
1040 * 3) For shared address spaces (threads) and swapping we bite the
1041 * bullet for most cases and perform the cross call (but only to
1042 * the cpus listed in cpu_vm_mask).
1044 * The performance gain from "optimizing" away the cross call for threads is
1045 * questionable (in theory the big win for threads is the massive sharing of
1046 * address space state across processors).
1049 /* This currently is only used by the hugetlb arch pre-fault
1050 * hook on UltraSPARC-III+ and later when changing the pagesize
1051 * bits of the context register for an address space.
1053 void smp_flush_tlb_mm(struct mm_struct *mm)
1055 u32 ctx = CTX_HWBITS(mm->context);
1056 int cpu = get_cpu();
1058 if (atomic_read(&mm->mm_users) == 1) {
1059 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1060 goto local_flush_and_out;
1063 smp_cross_call_masked(&xcall_flush_tlb_mm,
1064 ctx, 0, 0,
1065 mm_cpumask(mm));
1067 local_flush_and_out:
1068 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1070 put_cpu();
1073 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1075 u32 ctx = CTX_HWBITS(mm->context);
1076 int cpu = get_cpu();
1078 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1079 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1080 else
1081 smp_cross_call_masked(&xcall_flush_tlb_pending,
1082 ctx, nr, (unsigned long) vaddrs,
1083 mm_cpumask(mm));
1085 __flush_tlb_pending(ctx, nr, vaddrs);
1087 put_cpu();
1090 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1092 start &= PAGE_MASK;
1093 end = PAGE_ALIGN(end);
1094 if (start != end) {
1095 smp_cross_call(&xcall_flush_tlb_kernel_range,
1096 0, start, end);
1098 __flush_tlb_kernel_range(start, end);
1102 /* CPU capture. */
1103 /* #define CAPTURE_DEBUG */
1104 extern unsigned long xcall_capture;
1106 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1107 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1108 static unsigned long penguins_are_doing_time;
1110 void smp_capture(void)
1112 int result = atomic_add_ret(1, &smp_capture_depth);
1114 if (result == 1) {
1115 int ncpus = num_online_cpus();
1117 #ifdef CAPTURE_DEBUG
1118 printk("CPU[%d]: Sending penguins to jail...",
1119 smp_processor_id());
1120 #endif
1121 penguins_are_doing_time = 1;
1122 atomic_inc(&smp_capture_registry);
1123 smp_cross_call(&xcall_capture, 0, 0, 0);
1124 while (atomic_read(&smp_capture_registry) != ncpus)
1125 rmb();
1126 #ifdef CAPTURE_DEBUG
1127 printk("done\n");
1128 #endif
1132 void smp_release(void)
1134 if (atomic_dec_and_test(&smp_capture_depth)) {
1135 #ifdef CAPTURE_DEBUG
1136 printk("CPU[%d]: Giving pardon to "
1137 "imprisoned penguins\n",
1138 smp_processor_id());
1139 #endif
1140 penguins_are_doing_time = 0;
1141 membar_safe("#StoreLoad");
1142 atomic_dec(&smp_capture_registry);
1146 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1147 * set, so they can service tlb flush xcalls...
1149 extern void prom_world(int);
1151 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1153 clear_softint(1 << irq);
1155 preempt_disable();
1157 __asm__ __volatile__("flushw");
1158 prom_world(1);
1159 atomic_inc(&smp_capture_registry);
1160 membar_safe("#StoreLoad");
1161 while (penguins_are_doing_time)
1162 rmb();
1163 atomic_dec(&smp_capture_registry);
1164 prom_world(0);
1166 preempt_enable();
1169 /* /proc/profile writes can call this, don't __init it please. */
1170 int setup_profiling_timer(unsigned int multiplier)
1172 return -EINVAL;
1175 void __init smp_prepare_cpus(unsigned int max_cpus)
1179 void __devinit smp_prepare_boot_cpu(void)
1183 void __init smp_setup_processor_id(void)
1185 if (tlb_type == spitfire)
1186 xcall_deliver_impl = spitfire_xcall_deliver;
1187 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1188 xcall_deliver_impl = cheetah_xcall_deliver;
1189 else
1190 xcall_deliver_impl = hypervisor_xcall_deliver;
1193 void __devinit smp_fill_in_sib_core_maps(void)
1195 unsigned int i;
1197 for_each_present_cpu(i) {
1198 unsigned int j;
1200 cpus_clear(cpu_core_map[i]);
1201 if (cpu_data(i).core_id == 0) {
1202 cpu_set(i, cpu_core_map[i]);
1203 continue;
1206 for_each_present_cpu(j) {
1207 if (cpu_data(i).core_id ==
1208 cpu_data(j).core_id)
1209 cpu_set(j, cpu_core_map[i]);
1213 for_each_present_cpu(i) {
1214 unsigned int j;
1216 cpus_clear(per_cpu(cpu_sibling_map, i));
1217 if (cpu_data(i).proc_id == -1) {
1218 cpu_set(i, per_cpu(cpu_sibling_map, i));
1219 continue;
1222 for_each_present_cpu(j) {
1223 if (cpu_data(i).proc_id ==
1224 cpu_data(j).proc_id)
1225 cpu_set(j, per_cpu(cpu_sibling_map, i));
1230 int __cpuinit __cpu_up(unsigned int cpu)
1232 int ret = smp_boot_one_cpu(cpu);
1234 if (!ret) {
1235 cpu_set(cpu, smp_commenced_mask);
1236 while (!cpu_isset(cpu, cpu_online_map))
1237 mb();
1238 if (!cpu_isset(cpu, cpu_online_map)) {
1239 ret = -ENODEV;
1240 } else {
1241 /* On SUN4V, writes to %tick and %stick are
1242 * not allowed.
1244 if (tlb_type != hypervisor)
1245 smp_synchronize_one_tick(cpu);
1248 return ret;
1251 #ifdef CONFIG_HOTPLUG_CPU
1252 void cpu_play_dead(void)
1254 int cpu = smp_processor_id();
1255 unsigned long pstate;
1257 idle_task_exit();
1259 if (tlb_type == hypervisor) {
1260 struct trap_per_cpu *tb = &trap_block[cpu];
1262 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1263 tb->cpu_mondo_pa, 0);
1264 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1265 tb->dev_mondo_pa, 0);
1266 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1267 tb->resum_mondo_pa, 0);
1268 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1269 tb->nonresum_mondo_pa, 0);
1272 cpu_clear(cpu, smp_commenced_mask);
1273 membar_safe("#Sync");
1275 local_irq_disable();
1277 __asm__ __volatile__(
1278 "rdpr %%pstate, %0\n\t"
1279 "wrpr %0, %1, %%pstate"
1280 : "=r" (pstate)
1281 : "i" (PSTATE_IE));
1283 while (1)
1284 barrier();
1287 int __cpu_disable(void)
1289 int cpu = smp_processor_id();
1290 cpuinfo_sparc *c;
1291 int i;
1293 for_each_cpu_mask(i, cpu_core_map[cpu])
1294 cpu_clear(cpu, cpu_core_map[i]);
1295 cpus_clear(cpu_core_map[cpu]);
1297 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1298 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1299 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1301 c = &cpu_data(cpu);
1303 c->core_id = 0;
1304 c->proc_id = -1;
1306 smp_wmb();
1308 /* Make sure no interrupts point to this cpu. */
1309 fixup_irqs();
1311 local_irq_enable();
1312 mdelay(1);
1313 local_irq_disable();
1315 ipi_call_lock();
1316 cpu_clear(cpu, cpu_online_map);
1317 ipi_call_unlock();
1319 cpu_map_rebuild();
1321 return 0;
1324 void __cpu_die(unsigned int cpu)
1326 int i;
1328 for (i = 0; i < 100; i++) {
1329 smp_rmb();
1330 if (!cpu_isset(cpu, smp_commenced_mask))
1331 break;
1332 msleep(100);
1334 if (cpu_isset(cpu, smp_commenced_mask)) {
1335 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1336 } else {
1337 #if defined(CONFIG_SUN_LDOMS)
1338 unsigned long hv_err;
1339 int limit = 100;
1341 do {
1342 hv_err = sun4v_cpu_stop(cpu);
1343 if (hv_err == HV_EOK) {
1344 cpu_clear(cpu, cpu_present_map);
1345 break;
1347 } while (--limit > 0);
1348 if (limit <= 0) {
1349 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1350 hv_err);
1352 #endif
1355 #endif
1357 void __init smp_cpus_done(unsigned int max_cpus)
1361 void smp_send_reschedule(int cpu)
1363 xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1364 &cpumask_of_cpu(cpu));
1367 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1369 clear_softint(1 << irq);
1372 /* This is a nop because we capture all other cpus
1373 * anyways when making the PROM active.
1375 void smp_send_stop(void)
1380 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1381 * @cpu: cpu to allocate for
1382 * @size: size allocation in bytes
1383 * @align: alignment
1385 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1386 * does the right thing for NUMA regardless of the current
1387 * configuration.
1389 * RETURNS:
1390 * Pointer to the allocated area on success, NULL on failure.
1392 static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size,
1393 unsigned long align)
1395 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1396 #ifdef CONFIG_NEED_MULTIPLE_NODES
1397 int node = cpu_to_node(cpu);
1398 void *ptr;
1400 if (!node_online(node) || !NODE_DATA(node)) {
1401 ptr = __alloc_bootmem(size, align, goal);
1402 pr_info("cpu %d has no node %d or node-local memory\n",
1403 cpu, node);
1404 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1405 cpu, size, __pa(ptr));
1406 } else {
1407 ptr = __alloc_bootmem_node(NODE_DATA(node),
1408 size, align, goal);
1409 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1410 "%016lx\n", cpu, size, node, __pa(ptr));
1412 return ptr;
1413 #else
1414 return __alloc_bootmem(size, align, goal);
1415 #endif
1418 static size_t pcpur_size __initdata;
1419 static void **pcpur_ptrs __initdata;
1421 static struct page * __init pcpur_get_page(unsigned int cpu, int pageno)
1423 size_t off = (size_t)pageno << PAGE_SHIFT;
1425 if (off >= pcpur_size)
1426 return NULL;
1428 return virt_to_page(pcpur_ptrs[cpu] + off);
1431 #define PCPU_CHUNK_SIZE (4UL * 1024UL * 1024UL)
1433 static void __init pcpu_map_range(unsigned long start, unsigned long end,
1434 struct page *page)
1436 unsigned long pfn = page_to_pfn(page);
1437 unsigned long pte_base;
1439 BUG_ON((pfn<<PAGE_SHIFT)&(PCPU_CHUNK_SIZE - 1UL));
1441 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1442 _PAGE_CP_4U | _PAGE_CV_4U |
1443 _PAGE_P_4U | _PAGE_W_4U);
1444 if (tlb_type == hypervisor)
1445 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1446 _PAGE_CP_4V | _PAGE_CV_4V |
1447 _PAGE_P_4V | _PAGE_W_4V);
1449 while (start < end) {
1450 pgd_t *pgd = pgd_offset_k(start);
1451 unsigned long this_end;
1452 pud_t *pud;
1453 pmd_t *pmd;
1454 pte_t *pte;
1456 pud = pud_offset(pgd, start);
1457 if (pud_none(*pud)) {
1458 pmd_t *new;
1460 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1461 pud_populate(&init_mm, pud, new);
1464 pmd = pmd_offset(pud, start);
1465 if (!pmd_present(*pmd)) {
1466 pte_t *new;
1468 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1469 pmd_populate_kernel(&init_mm, pmd, new);
1472 pte = pte_offset_kernel(pmd, start);
1473 this_end = (start + PMD_SIZE) & PMD_MASK;
1474 if (this_end > end)
1475 this_end = end;
1477 while (start < this_end) {
1478 unsigned long paddr = pfn << PAGE_SHIFT;
1480 pte_val(*pte) = (paddr | pte_base);
1482 start += PAGE_SIZE;
1483 pte++;
1484 pfn++;
1489 void __init setup_per_cpu_areas(void)
1491 size_t dyn_size, static_size = __per_cpu_end - __per_cpu_start;
1492 static struct vm_struct vm;
1493 unsigned long delta, cpu;
1494 size_t pcpu_unit_size;
1495 size_t ptrs_size;
1497 pcpur_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE +
1498 PERCPU_DYNAMIC_RESERVE);
1499 dyn_size = pcpur_size - static_size - PERCPU_MODULE_RESERVE;
1502 ptrs_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpur_ptrs[0]));
1503 pcpur_ptrs = alloc_bootmem(ptrs_size);
1505 for_each_possible_cpu(cpu) {
1506 pcpur_ptrs[cpu] = pcpu_alloc_bootmem(cpu, PCPU_CHUNK_SIZE,
1507 PCPU_CHUNK_SIZE);
1509 free_bootmem(__pa(pcpur_ptrs[cpu] + pcpur_size),
1510 PCPU_CHUNK_SIZE - pcpur_size);
1512 memcpy(pcpur_ptrs[cpu], __per_cpu_load, static_size);
1515 /* allocate address and map */
1516 vm.flags = VM_ALLOC;
1517 vm.size = num_possible_cpus() * PCPU_CHUNK_SIZE;
1518 vm_area_register_early(&vm, PCPU_CHUNK_SIZE);
1520 for_each_possible_cpu(cpu) {
1521 unsigned long start = (unsigned long) vm.addr;
1522 unsigned long end;
1524 start += cpu * PCPU_CHUNK_SIZE;
1525 end = start + PCPU_CHUNK_SIZE;
1526 pcpu_map_range(start, end, virt_to_page(pcpur_ptrs[cpu]));
1529 pcpu_unit_size = pcpu_setup_first_chunk(pcpur_get_page, static_size,
1530 PERCPU_MODULE_RESERVE, dyn_size,
1531 PCPU_CHUNK_SIZE, vm.addr, NULL);
1533 free_bootmem(__pa(pcpur_ptrs), ptrs_size);
1535 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1536 for_each_possible_cpu(cpu) {
1537 __per_cpu_offset(cpu) = delta + cpu * pcpu_unit_size;
1540 /* Setup %g5 for the boot cpu. */
1541 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1543 of_fill_in_cpu_data();
1544 if (tlb_type == hypervisor)
1545 mdesc_fill_in_cpu_data(cpu_all_mask);