1 /* visemul.c: Emulation of VIS instructions.
3 * Copyright (C) 2006 David S. Miller (davem@davemloft.net)
5 #include <linux/kernel.h>
6 #include <linux/errno.h>
7 #include <linux/thread_info.h>
9 #include <asm/ptrace.h>
10 #include <asm/pstate.h>
11 #include <asm/system.h>
12 #include <asm/fpumacro.h>
13 #include <asm/uaccess.h>
15 /* OPF field of various VIS instructions. */
17 /* 000111011 - four 16-bit packs */
18 #define FPACK16_OPF 0x03b
20 /* 000111010 - two 32-bit packs */
21 #define FPACK32_OPF 0x03a
23 /* 000111101 - four 16-bit packs */
24 #define FPACKFIX_OPF 0x03d
26 /* 001001101 - four 16-bit expands */
27 #define FEXPAND_OPF 0x04d
29 /* 001001011 - two 32-bit merges */
30 #define FPMERGE_OPF 0x04b
32 /* 000110001 - 8-by-16-bit partitoned product */
33 #define FMUL8x16_OPF 0x031
35 /* 000110011 - 8-by-16-bit upper alpha partitioned product */
36 #define FMUL8x16AU_OPF 0x033
38 /* 000110101 - 8-by-16-bit lower alpha partitioned product */
39 #define FMUL8x16AL_OPF 0x035
41 /* 000110110 - upper 8-by-16-bit partitioned product */
42 #define FMUL8SUx16_OPF 0x036
44 /* 000110111 - lower 8-by-16-bit partitioned product */
45 #define FMUL8ULx16_OPF 0x037
47 /* 000111000 - upper 8-by-16-bit partitioned product */
48 #define FMULD8SUx16_OPF 0x038
50 /* 000111001 - lower unsigned 8-by-16-bit partitioned product */
51 #define FMULD8ULx16_OPF 0x039
53 /* 000101000 - four 16-bit compare; set rd if src1 > src2 */
54 #define FCMPGT16_OPF 0x028
56 /* 000101100 - two 32-bit compare; set rd if src1 > src2 */
57 #define FCMPGT32_OPF 0x02c
59 /* 000100000 - four 16-bit compare; set rd if src1 <= src2 */
60 #define FCMPLE16_OPF 0x020
62 /* 000100100 - two 32-bit compare; set rd if src1 <= src2 */
63 #define FCMPLE32_OPF 0x024
65 /* 000100010 - four 16-bit compare; set rd if src1 != src2 */
66 #define FCMPNE16_OPF 0x022
68 /* 000100110 - two 32-bit compare; set rd if src1 != src2 */
69 #define FCMPNE32_OPF 0x026
71 /* 000101010 - four 16-bit compare; set rd if src1 == src2 */
72 #define FCMPEQ16_OPF 0x02a
74 /* 000101110 - two 32-bit compare; set rd if src1 == src2 */
75 #define FCMPEQ32_OPF 0x02e
77 /* 000000000 - Eight 8-bit edge boundary processing */
78 #define EDGE8_OPF 0x000
80 /* 000000001 - Eight 8-bit edge boundary processing, no CC */
81 #define EDGE8N_OPF 0x001
83 /* 000000010 - Eight 8-bit edge boundary processing, little-endian */
84 #define EDGE8L_OPF 0x002
86 /* 000000011 - Eight 8-bit edge boundary processing, little-endian, no CC */
87 #define EDGE8LN_OPF 0x003
89 /* 000000100 - Four 16-bit edge boundary processing */
90 #define EDGE16_OPF 0x004
92 /* 000000101 - Four 16-bit edge boundary processing, no CC */
93 #define EDGE16N_OPF 0x005
95 /* 000000110 - Four 16-bit edge boundary processing, little-endian */
96 #define EDGE16L_OPF 0x006
98 /* 000000111 - Four 16-bit edge boundary processing, little-endian, no CC */
99 #define EDGE16LN_OPF 0x007
101 /* 000001000 - Two 32-bit edge boundary processing */
102 #define EDGE32_OPF 0x008
104 /* 000001001 - Two 32-bit edge boundary processing, no CC */
105 #define EDGE32N_OPF 0x009
107 /* 000001010 - Two 32-bit edge boundary processing, little-endian */
108 #define EDGE32L_OPF 0x00a
110 /* 000001011 - Two 32-bit edge boundary processing, little-endian, no CC */
111 #define EDGE32LN_OPF 0x00b
113 /* 000111110 - distance between 8 8-bit components */
114 #define PDIST_OPF 0x03e
116 /* 000010000 - convert 8-bit 3-D address to blocked byte address */
117 #define ARRAY8_OPF 0x010
119 /* 000010010 - convert 16-bit 3-D address to blocked byte address */
120 #define ARRAY16_OPF 0x012
122 /* 000010100 - convert 32-bit 3-D address to blocked byte address */
123 #define ARRAY32_OPF 0x014
125 /* 000011001 - Set the GSR.MASK field in preparation for a BSHUFFLE */
126 #define BMASK_OPF 0x019
128 /* 001001100 - Permute bytes as specified by GSR.MASK */
129 #define BSHUFFLE_OPF 0x04c
131 #define VIS_OPF_SHIFT 5
132 #define VIS_OPF_MASK (0x1ff << VIS_OPF_SHIFT)
134 #define RS1(INSN) (((INSN) >> 14) & 0x1f)
135 #define RS2(INSN) (((INSN) >> 0) & 0x1f)
136 #define RD(INSN) (((INSN) >> 25) & 0x1f)
138 static inline void maybe_flush_windows(unsigned int rs1
, unsigned int rs2
,
139 unsigned int rd
, int from_kernel
)
141 if (rs2
>= 16 || rs1
>= 16 || rd
>= 16) {
142 if (from_kernel
!= 0)
143 __asm__
__volatile__("flushw");
149 static unsigned long fetch_reg(unsigned int reg
, struct pt_regs
*regs
)
154 return (!reg
? 0 : regs
->u_regs
[reg
]);
155 if (regs
->tstate
& TSTATE_PRIV
) {
156 struct reg_window
*win
;
157 win
= (struct reg_window
*)(regs
->u_regs
[UREG_FP
] + STACK_BIAS
);
158 value
= win
->locals
[reg
- 16];
159 } else if (test_thread_flag(TIF_32BIT
)) {
160 struct reg_window32 __user
*win32
;
161 win32
= (struct reg_window32 __user
*)((unsigned long)((u32
)regs
->u_regs
[UREG_FP
]));
162 get_user(value
, &win32
->locals
[reg
- 16]);
164 struct reg_window __user
*win
;
165 win
= (struct reg_window __user
*)(regs
->u_regs
[UREG_FP
] + STACK_BIAS
);
166 get_user(value
, &win
->locals
[reg
- 16]);
171 static inline unsigned long __user
*__fetch_reg_addr_user(unsigned int reg
,
172 struct pt_regs
*regs
)
175 BUG_ON(regs
->tstate
& TSTATE_PRIV
);
177 if (test_thread_flag(TIF_32BIT
)) {
178 struct reg_window32 __user
*win32
;
179 win32
= (struct reg_window32 __user
*)((unsigned long)((u32
)regs
->u_regs
[UREG_FP
]));
180 return (unsigned long __user
*)&win32
->locals
[reg
- 16];
182 struct reg_window __user
*win
;
183 win
= (struct reg_window __user
*)(regs
->u_regs
[UREG_FP
] + STACK_BIAS
);
184 return &win
->locals
[reg
- 16];
188 static inline unsigned long *__fetch_reg_addr_kern(unsigned int reg
,
189 struct pt_regs
*regs
)
192 BUG_ON(regs
->tstate
& TSTATE_PRIV
);
194 return ®s
->u_regs
[reg
];
197 static void store_reg(struct pt_regs
*regs
, unsigned long val
, unsigned long rd
)
200 unsigned long *rd_kern
= __fetch_reg_addr_kern(rd
, regs
);
204 unsigned long __user
*rd_user
= __fetch_reg_addr_user(rd
, regs
);
206 if (test_thread_flag(TIF_32BIT
))
207 __put_user((u32
)val
, (u32 __user
*)rd_user
);
209 __put_user(val
, rd_user
);
213 static inline unsigned long fpd_regval(struct fpustate
*f
,
214 unsigned int insn_regnum
)
216 insn_regnum
= (((insn_regnum
& 1) << 5) |
217 (insn_regnum
& 0x1e));
219 return *(unsigned long *) &f
->regs
[insn_regnum
];
222 static inline unsigned long *fpd_regaddr(struct fpustate
*f
,
223 unsigned int insn_regnum
)
225 insn_regnum
= (((insn_regnum
& 1) << 5) |
226 (insn_regnum
& 0x1e));
228 return (unsigned long *) &f
->regs
[insn_regnum
];
231 static inline unsigned int fps_regval(struct fpustate
*f
,
232 unsigned int insn_regnum
)
234 return f
->regs
[insn_regnum
];
237 static inline unsigned int *fps_regaddr(struct fpustate
*f
,
238 unsigned int insn_regnum
)
240 return &f
->regs
[insn_regnum
];
246 static struct edge_tab edge8_tab
[8] = {
256 static struct edge_tab edge8_tab_l
[8] = {
266 static struct edge_tab edge16_tab
[4] = {
272 static struct edge_tab edge16_tab_l
[4] = {
278 static struct edge_tab edge32_tab
[2] = {
282 static struct edge_tab edge32_tab_l
[2] = {
287 static void edge(struct pt_regs
*regs
, unsigned int insn
, unsigned int opf
)
289 unsigned long orig_rs1
, rs1
, orig_rs2
, rs2
, rd_val
;
292 maybe_flush_windows(RS1(insn
), RS2(insn
), RD(insn
), 0);
293 orig_rs1
= rs1
= fetch_reg(RS1(insn
), regs
);
294 orig_rs2
= rs2
= fetch_reg(RS2(insn
), regs
);
296 if (test_thread_flag(TIF_32BIT
)) {
297 rs1
= rs1
& 0xffffffff;
298 rs2
= rs2
& 0xffffffff;
304 left
= edge8_tab
[rs1
& 0x7].left
;
305 right
= edge8_tab
[rs2
& 0x7].right
;
309 left
= edge8_tab_l
[rs1
& 0x7].left
;
310 right
= edge8_tab_l
[rs2
& 0x7].right
;
315 left
= edge16_tab
[(rs1
>> 1) & 0x3].left
;
316 right
= edge16_tab
[(rs2
>> 1) & 0x3].right
;
321 left
= edge16_tab_l
[(rs1
>> 1) & 0x3].left
;
322 right
= edge16_tab_l
[(rs2
>> 1) & 0x3].right
;
327 left
= edge32_tab
[(rs1
>> 2) & 0x1].left
;
328 right
= edge32_tab
[(rs2
>> 2) & 0x1].right
;
333 left
= edge32_tab_l
[(rs1
>> 2) & 0x1].left
;
334 right
= edge32_tab_l
[(rs2
>> 2) & 0x1].right
;
338 if ((rs1
& ~0x7UL
) == (rs2
& ~0x7UL
))
339 rd_val
= right
& left
;
343 store_reg(regs
, rd_val
, RD(insn
));
352 unsigned long ccr
, tstate
;
354 __asm__
__volatile__("subcc %1, %2, %%g0\n\t"
357 : "r" (orig_rs1
), "r" (orig_rs2
)
359 tstate
= regs
->tstate
& ~(TSTATE_XCC
| TSTATE_ICC
);
360 regs
->tstate
= tstate
| (ccr
<< 32UL);
365 static void array(struct pt_regs
*regs
, unsigned int insn
, unsigned int opf
)
367 unsigned long rs1
, rs2
, rd_val
;
368 unsigned int bits
, bits_mask
;
370 maybe_flush_windows(RS1(insn
), RS2(insn
), RD(insn
), 0);
371 rs1
= fetch_reg(RS1(insn
), regs
);
372 rs2
= fetch_reg(RS2(insn
), regs
);
374 bits
= (rs2
> 5 ? 5 : rs2
);
375 bits_mask
= (1UL << bits
) - 1UL;
377 rd_val
= ((((rs1
>> 11) & 0x3) << 0) |
378 (((rs1
>> 33) & 0x3) << 2) |
379 (((rs1
>> 55) & 0x1) << 4) |
380 (((rs1
>> 13) & 0xf) << 5) |
381 (((rs1
>> 35) & 0xf) << 9) |
382 (((rs1
>> 56) & 0xf) << 13) |
383 (((rs1
>> 17) & bits_mask
) << 17) |
384 (((rs1
>> 39) & bits_mask
) << (17 + bits
)) |
385 (((rs1
>> 60) & 0xf) << (17 + (2*bits
))));
396 store_reg(regs
, rd_val
, RD(insn
));
399 static void bmask(struct pt_regs
*regs
, unsigned int insn
)
401 unsigned long rs1
, rs2
, rd_val
, gsr
;
403 maybe_flush_windows(RS1(insn
), RS2(insn
), RD(insn
), 0);
404 rs1
= fetch_reg(RS1(insn
), regs
);
405 rs2
= fetch_reg(RS2(insn
), regs
);
408 store_reg(regs
, rd_val
, RD(insn
));
410 gsr
= current_thread_info()->gsr
[0] & 0xffffffff;
411 gsr
|= rd_val
<< 32UL;
412 current_thread_info()->gsr
[0] = gsr
;
415 static void bshuffle(struct pt_regs
*regs
, unsigned int insn
)
417 struct fpustate
*f
= FPUSTATE
;
418 unsigned long rs1
, rs2
, rd_val
;
419 unsigned long bmask
, i
;
421 bmask
= current_thread_info()->gsr
[0] >> 32UL;
423 rs1
= fpd_regval(f
, RS1(insn
));
424 rs2
= fpd_regval(f
, RS2(insn
));
427 for (i
= 0; i
< 8; i
++) {
428 unsigned long which
= (bmask
>> (i
* 4)) & 0xf;
432 byte
= (rs1
>> (which
* 8)) & 0xff;
434 byte
= (rs2
>> ((which
-8)*8)) & 0xff;
435 rd_val
|= (byte
<< (i
* 8));
438 *fpd_regaddr(f
, RD(insn
)) = rd_val
;
441 static void pdist(struct pt_regs
*regs
, unsigned int insn
)
443 struct fpustate
*f
= FPUSTATE
;
444 unsigned long rs1
, rs2
, *rd
, rd_val
;
447 rs1
= fpd_regval(f
, RS1(insn
));
448 rs2
= fpd_regval(f
, RS2(insn
));
449 rd
= fpd_regaddr(f
, RD(insn
));
453 for (i
= 0; i
< 8; i
++) {
456 s1
= (rs1
>> (56 - (i
* 8))) & 0xff;
457 s2
= (rs2
>> (56 - (i
* 8))) & 0xff;
459 /* Absolute value of difference. */
470 static void pformat(struct pt_regs
*regs
, unsigned int insn
, unsigned int opf
)
472 struct fpustate
*f
= FPUSTATE
;
473 unsigned long rs1
, rs2
, gsr
, scale
, rd_val
;
475 gsr
= current_thread_info()->gsr
[0];
476 scale
= (gsr
>> 3) & (opf
== FPACK16_OPF
? 0xf : 0x1f);
481 rs2
= fpd_regval(f
, RS2(insn
));
483 for (byte
= 0; byte
< 4; byte
++) {
485 s16 src
= (rs2
>> (byte
* 16UL)) & 0xffffUL
;
486 int scaled
= src
<< scale
;
487 int from_fixed
= scaled
>> 7;
489 val
= ((from_fixed
< 0) ?
494 rd_val
|= (val
<< (8 * byte
));
496 *fps_regaddr(f
, RD(insn
)) = rd_val
;
503 rs1
= fpd_regval(f
, RS1(insn
));
504 rs2
= fpd_regval(f
, RS2(insn
));
505 rd_val
= (rs1
<< 8) & ~(0x000000ff000000ffUL
);
506 for (word
= 0; word
< 2; word
++) {
508 s32 src
= (rs2
>> (word
* 32UL));
509 s64 scaled
= src
<< scale
;
510 s64 from_fixed
= scaled
>> 23;
512 val
= ((from_fixed
< 0) ?
517 rd_val
|= (val
<< (32 * word
));
519 *fpd_regaddr(f
, RD(insn
)) = rd_val
;
526 rs2
= fpd_regval(f
, RS2(insn
));
529 for (word
= 0; word
< 2; word
++) {
531 s32 src
= (rs2
>> (word
* 32UL));
532 s64 scaled
= src
<< scale
;
533 s64 from_fixed
= scaled
>> 16;
535 val
= ((from_fixed
< -32768) ?
537 (from_fixed
> 32767) ?
540 rd_val
|= ((val
& 0xffff) << (word
* 16));
542 *fps_regaddr(f
, RD(insn
)) = rd_val
;
549 rs2
= fps_regval(f
, RS2(insn
));
552 for (byte
= 0; byte
< 4; byte
++) {
554 u8 src
= (rs2
>> (byte
* 8)) & 0xff;
558 rd_val
|= (val
<< (byte
* 16));
560 *fpd_regaddr(f
, RD(insn
)) = rd_val
;
565 rs1
= fps_regval(f
, RS1(insn
));
566 rs2
= fps_regval(f
, RS2(insn
));
568 rd_val
= (((rs2
& 0x000000ff) << 0) |
569 ((rs1
& 0x000000ff) << 8) |
570 ((rs2
& 0x0000ff00) << 8) |
571 ((rs1
& 0x0000ff00) << 16) |
572 ((rs2
& 0x00ff0000) << 16) |
573 ((rs1
& 0x00ff0000) << 24) |
574 ((rs2
& 0xff000000) << 24) |
575 ((rs1
& 0xff000000) << 32));
576 *fpd_regaddr(f
, RD(insn
)) = rd_val
;
582 static void pmul(struct pt_regs
*regs
, unsigned int insn
, unsigned int opf
)
584 struct fpustate
*f
= FPUSTATE
;
585 unsigned long rs1
, rs2
, rd_val
;
591 rs1
= fps_regval(f
, RS1(insn
));
592 rs2
= fpd_regval(f
, RS2(insn
));
595 for (byte
= 0; byte
< 4; byte
++) {
596 u16 src1
= (rs1
>> (byte
* 8)) & 0x00ff;
597 s16 src2
= (rs2
>> (byte
* 16)) & 0xffff;
598 u32 prod
= src1
* src2
;
599 u16 scaled
= ((prod
& 0x00ffff00) >> 8);
604 rd_val
|= ((scaled
& 0xffffUL
) << (byte
* 16UL));
607 *fpd_regaddr(f
, RD(insn
)) = rd_val
;
612 case FMUL8x16AL_OPF
: {
616 rs1
= fps_regval(f
, RS1(insn
));
617 rs2
= fps_regval(f
, RS2(insn
));
620 src2
= (rs2
>> (opf
== FMUL8x16AU_OPF
) ? 16 : 0);
621 for (byte
= 0; byte
< 4; byte
++) {
622 u16 src1
= (rs1
>> (byte
* 8)) & 0x00ff;
623 u32 prod
= src1
* src2
;
624 u16 scaled
= ((prod
& 0x00ffff00) >> 8);
629 rd_val
|= ((scaled
& 0xffffUL
) << (byte
* 16UL));
632 *fpd_regaddr(f
, RD(insn
)) = rd_val
;
637 case FMUL8ULx16_OPF
: {
638 unsigned long byte
, ushift
;
640 rs1
= fpd_regval(f
, RS1(insn
));
641 rs2
= fpd_regval(f
, RS2(insn
));
644 ushift
= (opf
== FMUL8SUx16_OPF
) ? 8 : 0;
645 for (byte
= 0; byte
< 4; byte
++) {
651 src1
= ((rs1
>> ((16 * byte
) + ushift
)) & 0x00ff);
652 src2
= ((rs2
>> (16 * byte
)) & 0xffff);
654 scaled
= ((prod
& 0x00ffff00) >> 8);
659 rd_val
|= ((scaled
& 0xffffUL
) << (byte
* 16UL));
662 *fpd_regaddr(f
, RD(insn
)) = rd_val
;
666 case FMULD8SUx16_OPF
:
667 case FMULD8ULx16_OPF
: {
668 unsigned long byte
, ushift
;
670 rs1
= fps_regval(f
, RS1(insn
));
671 rs2
= fps_regval(f
, RS2(insn
));
674 ushift
= (opf
== FMULD8SUx16_OPF
) ? 8 : 0;
675 for (byte
= 0; byte
< 2; byte
++) {
681 src1
= ((rs1
>> ((16 * byte
) + ushift
)) & 0x00ff);
682 src2
= ((rs2
>> (16 * byte
)) & 0xffff);
684 scaled
= ((prod
& 0x00ffff00) >> 8);
689 rd_val
|= ((scaled
& 0xffffUL
) <<
690 ((byte
* 32UL) + 7UL));
692 *fpd_regaddr(f
, RD(insn
)) = rd_val
;
698 static void pcmp(struct pt_regs
*regs
, unsigned int insn
, unsigned int opf
)
700 struct fpustate
*f
= FPUSTATE
;
701 unsigned long rs1
, rs2
, rd_val
, i
;
703 rs1
= fpd_regval(f
, RS1(insn
));
704 rs2
= fpd_regval(f
, RS2(insn
));
710 for (i
= 0; i
< 4; i
++) {
711 s16 a
= (rs1
>> (i
* 16)) & 0xffff;
712 s16 b
= (rs2
>> (i
* 16)) & 0xffff;
720 for (i
= 0; i
< 2; i
++) {
721 s32 a
= (rs1
>> (i
* 32)) & 0xffff;
722 s32 b
= (rs2
>> (i
* 32)) & 0xffff;
730 for (i
= 0; i
< 4; i
++) {
731 s16 a
= (rs1
>> (i
* 16)) & 0xffff;
732 s16 b
= (rs2
>> (i
* 16)) & 0xffff;
740 for (i
= 0; i
< 2; i
++) {
741 s32 a
= (rs1
>> (i
* 32)) & 0xffff;
742 s32 b
= (rs2
>> (i
* 32)) & 0xffff;
750 for (i
= 0; i
< 4; i
++) {
751 s16 a
= (rs1
>> (i
* 16)) & 0xffff;
752 s16 b
= (rs2
>> (i
* 16)) & 0xffff;
760 for (i
= 0; i
< 2; i
++) {
761 s32 a
= (rs1
>> (i
* 32)) & 0xffff;
762 s32 b
= (rs2
>> (i
* 32)) & 0xffff;
770 for (i
= 0; i
< 4; i
++) {
771 s16 a
= (rs1
>> (i
* 16)) & 0xffff;
772 s16 b
= (rs2
>> (i
* 16)) & 0xffff;
780 for (i
= 0; i
< 2; i
++) {
781 s32 a
= (rs1
>> (i
* 32)) & 0xffff;
782 s32 b
= (rs2
>> (i
* 32)) & 0xffff;
790 maybe_flush_windows(0, 0, RD(insn
), 0);
791 store_reg(regs
, rd_val
, RD(insn
));
794 /* Emulate the VIS instructions which are not implemented in
795 * hardware on Niagara.
797 int vis_emul(struct pt_regs
*regs
, unsigned int insn
)
799 unsigned long pc
= regs
->tpc
;
802 BUG_ON(regs
->tstate
& TSTATE_PRIV
);
804 if (test_thread_flag(TIF_32BIT
))
807 if (get_user(insn
, (u32 __user
*) pc
))
810 save_and_clear_fpu();
812 opf
= (insn
& VIS_OPF_MASK
) >> VIS_OPF_SHIFT
;
817 /* Pixel Formatting Instructions. */
823 pformat(regs
, insn
, opf
);
826 /* Partitioned Multiply Instructions */
832 case FMULD8SUx16_OPF
:
833 case FMULD8ULx16_OPF
:
834 pmul(regs
, insn
, opf
);
837 /* Pixel Compare Instructions */
846 pcmp(regs
, insn
, opf
);
849 /* Edge Handling Instructions */
862 edge(regs
, insn
, opf
);
865 /* Pixel Component Distance */
870 /* Three-Dimensional Array Addressing Instructions */
874 array(regs
, insn
, opf
);
877 /* Byte Mask and Shuffle Instructions */
883 bshuffle(regs
, insn
);
887 regs
->tpc
= regs
->tnpc
;