acpi_pad: build only on X86
[linux-2.6/linux-acpi-2.6.git] / arch / x86 / kernel / tlb_uv.c
blob8ccabb8a2f6a617ba512574ec2272e1d5ed5b622
1 /*
2 * SGI UltraViolet TLB flush routines.
4 * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/kernel.h>
13 #include <asm/mmu_context.h>
14 #include <asm/uv/uv.h>
15 #include <asm/uv/uv_mmrs.h>
16 #include <asm/uv/uv_hub.h>
17 #include <asm/uv/uv_bau.h>
18 #include <asm/apic.h>
19 #include <asm/idle.h>
20 #include <asm/tsc.h>
21 #include <asm/irq_vectors.h>
23 static struct bau_control **uv_bau_table_bases __read_mostly;
24 static int uv_bau_retry_limit __read_mostly;
26 /* position of pnode (which is nasid>>1): */
27 static int uv_nshift __read_mostly;
28 /* base pnode in this partition */
29 static int uv_partition_base_pnode __read_mostly;
31 static unsigned long uv_mmask __read_mostly;
33 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
34 static DEFINE_PER_CPU(struct bau_control, bau_control);
37 * Determine the first node on a blade.
39 static int __init blade_to_first_node(int blade)
41 int node, b;
43 for_each_online_node(node) {
44 b = uv_node_to_blade_id(node);
45 if (blade == b)
46 return node;
48 return -1; /* shouldn't happen */
52 * Determine the apicid of the first cpu on a blade.
54 static int __init blade_to_first_apicid(int blade)
56 int cpu;
58 for_each_present_cpu(cpu)
59 if (blade == uv_cpu_to_blade_id(cpu))
60 return per_cpu(x86_cpu_to_apicid, cpu);
61 return -1;
65 * Free a software acknowledge hardware resource by clearing its Pending
66 * bit. This will return a reply to the sender.
67 * If the message has timed out, a reply has already been sent by the
68 * hardware but the resource has not been released. In that case our
69 * clear of the Timeout bit (as well) will free the resource. No reply will
70 * be sent (the hardware will only do one reply per message).
72 static void uv_reply_to_message(int resource,
73 struct bau_payload_queue_entry *msg,
74 struct bau_msg_status *msp)
76 unsigned long dw;
78 dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
79 msg->replied_to = 1;
80 msg->sw_ack_vector = 0;
81 if (msp)
82 msp->seen_by.bits = 0;
83 uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
87 * Do all the things a cpu should do for a TLB shootdown message.
88 * Other cpu's may come here at the same time for this message.
90 static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
91 int msg_slot, int sw_ack_slot)
93 unsigned long this_cpu_mask;
94 struct bau_msg_status *msp;
95 int cpu;
97 msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
98 cpu = uv_blade_processor_id();
99 msg->number_of_cpus =
100 uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
101 this_cpu_mask = 1UL << cpu;
102 if (msp->seen_by.bits & this_cpu_mask)
103 return;
104 atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
106 if (msg->replied_to == 1)
107 return;
109 if (msg->address == TLB_FLUSH_ALL) {
110 local_flush_tlb();
111 __get_cpu_var(ptcstats).alltlb++;
112 } else {
113 __flush_tlb_one(msg->address);
114 __get_cpu_var(ptcstats).onetlb++;
117 __get_cpu_var(ptcstats).requestee++;
119 atomic_inc_short(&msg->acknowledge_count);
120 if (msg->number_of_cpus == msg->acknowledge_count)
121 uv_reply_to_message(sw_ack_slot, msg, msp);
125 * Examine the payload queue on one distribution node to see
126 * which messages have not been seen, and which cpu(s) have not seen them.
128 * Returns the number of cpu's that have not responded.
130 static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
132 struct bau_payload_queue_entry *msg;
133 struct bau_msg_status *msp;
134 int count = 0;
135 int i;
136 int j;
138 for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
139 msg++, i++) {
140 if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
141 msp = bau_tablesp->msg_statuses + i;
142 printk(KERN_DEBUG
143 "blade %d: address:%#lx %d of %d, not cpu(s): ",
144 i, msg->address, msg->acknowledge_count,
145 msg->number_of_cpus);
146 for (j = 0; j < msg->number_of_cpus; j++) {
147 if (!((1L << j) & msp->seen_by.bits)) {
148 count++;
149 printk("%d ", j);
152 printk("\n");
155 return count;
159 * Examine the payload queue on all the distribution nodes to see
160 * which messages have not been seen, and which cpu(s) have not seen them.
162 * Returns the number of cpu's that have not responded.
164 static int uv_examine_destinations(struct bau_target_nodemask *distribution)
166 int sender;
167 int i;
168 int count = 0;
170 sender = smp_processor_id();
171 for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
172 if (!bau_node_isset(i, distribution))
173 continue;
174 count += uv_examine_destination(uv_bau_table_bases[i], sender);
176 return count;
180 * wait for completion of a broadcast message
182 * return COMPLETE, RETRY or GIVEUP
184 static int uv_wait_completion(struct bau_desc *bau_desc,
185 unsigned long mmr_offset, int right_shift)
187 int exams = 0;
188 long destination_timeouts = 0;
189 long source_timeouts = 0;
190 unsigned long descriptor_status;
192 while ((descriptor_status = (((unsigned long)
193 uv_read_local_mmr(mmr_offset) >>
194 right_shift) & UV_ACT_STATUS_MASK)) !=
195 DESC_STATUS_IDLE) {
196 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
197 source_timeouts++;
198 if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
199 source_timeouts = 0;
200 __get_cpu_var(ptcstats).s_retry++;
201 return FLUSH_RETRY;
204 * spin here looking for progress at the destinations
206 if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
207 destination_timeouts++;
208 if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
210 * returns number of cpus not responding
212 if (uv_examine_destinations
213 (&bau_desc->distribution) == 0) {
214 __get_cpu_var(ptcstats).d_retry++;
215 return FLUSH_RETRY;
217 exams++;
218 if (exams >= uv_bau_retry_limit) {
219 printk(KERN_DEBUG
220 "uv_flush_tlb_others");
221 printk("giving up on cpu %d\n",
222 smp_processor_id());
223 return FLUSH_GIVEUP;
226 * delays can hang the simulator
227 udelay(1000);
229 destination_timeouts = 0;
232 cpu_relax();
234 return FLUSH_COMPLETE;
238 * uv_flush_send_and_wait
240 * Send a broadcast and wait for a broadcast message to complete.
242 * The flush_mask contains the cpus the broadcast was sent to.
244 * Returns NULL if all remote flushing was done. The mask is zeroed.
245 * Returns @flush_mask if some remote flushing remains to be done. The
246 * mask will have some bits still set.
248 const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
249 struct bau_desc *bau_desc,
250 struct cpumask *flush_mask)
252 int completion_status = 0;
253 int right_shift;
254 int tries = 0;
255 int pnode;
256 int bit;
257 unsigned long mmr_offset;
258 unsigned long index;
259 cycles_t time1;
260 cycles_t time2;
262 if (cpu < UV_CPUS_PER_ACT_STATUS) {
263 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
264 right_shift = cpu * UV_ACT_STATUS_SIZE;
265 } else {
266 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
267 right_shift =
268 ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
270 time1 = get_cycles();
271 do {
272 tries++;
273 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
274 cpu;
275 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
276 completion_status = uv_wait_completion(bau_desc, mmr_offset,
277 right_shift);
278 } while (completion_status == FLUSH_RETRY);
279 time2 = get_cycles();
280 __get_cpu_var(ptcstats).sflush += (time2 - time1);
281 if (tries > 1)
282 __get_cpu_var(ptcstats).retriesok++;
284 if (completion_status == FLUSH_GIVEUP) {
286 * Cause the caller to do an IPI-style TLB shootdown on
287 * the cpu's, all of which are still in the mask.
289 __get_cpu_var(ptcstats).ptc_i++;
290 return flush_mask;
294 * Success, so clear the remote cpu's from the mask so we don't
295 * use the IPI method of shootdown on them.
297 for_each_cpu(bit, flush_mask) {
298 pnode = uv_cpu_to_pnode(bit);
299 if (pnode == this_pnode)
300 continue;
301 cpumask_clear_cpu(bit, flush_mask);
303 if (!cpumask_empty(flush_mask))
304 return flush_mask;
305 return NULL;
308 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
311 * uv_flush_tlb_others - globally purge translation cache of a virtual
312 * address or all TLB's
313 * @cpumask: mask of all cpu's in which the address is to be removed
314 * @mm: mm_struct containing virtual address range
315 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
316 * @cpu: the current cpu
318 * This is the entry point for initiating any UV global TLB shootdown.
320 * Purges the translation caches of all specified processors of the given
321 * virtual address, or purges all TLB's on specified processors.
323 * The caller has derived the cpumask from the mm_struct. This function
324 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
326 * The cpumask is converted into a nodemask of the nodes containing
327 * the cpus.
329 * Note that this function should be called with preemption disabled.
331 * Returns NULL if all remote flushing was done.
332 * Returns pointer to cpumask if some remote flushing remains to be
333 * done. The returned pointer is valid till preemption is re-enabled.
335 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
336 struct mm_struct *mm,
337 unsigned long va, unsigned int cpu)
339 struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask);
340 int i;
341 int bit;
342 int pnode;
343 int uv_cpu;
344 int this_pnode;
345 int locals = 0;
346 struct bau_desc *bau_desc;
348 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
350 uv_cpu = uv_blade_processor_id();
351 this_pnode = uv_hub_info->pnode;
352 bau_desc = __get_cpu_var(bau_control).descriptor_base;
353 bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
355 bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
357 i = 0;
358 for_each_cpu(bit, flush_mask) {
359 pnode = uv_cpu_to_pnode(bit);
360 BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
361 if (pnode == this_pnode) {
362 locals++;
363 continue;
365 bau_node_set(pnode - uv_partition_base_pnode,
366 &bau_desc->distribution);
367 i++;
369 if (i == 0) {
371 * no off_node flushing; return status for local node
373 if (locals)
374 return flush_mask;
375 else
376 return NULL;
378 __get_cpu_var(ptcstats).requestor++;
379 __get_cpu_var(ptcstats).ntargeted += i;
381 bau_desc->payload.address = va;
382 bau_desc->payload.sending_cpu = cpu;
384 return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
388 * The BAU message interrupt comes here. (registered by set_intr_gate)
389 * See entry_64.S
391 * We received a broadcast assist message.
393 * Interrupts may have been disabled; this interrupt could represent
394 * the receipt of several messages.
396 * All cores/threads on this node get this interrupt.
397 * The last one to see it does the s/w ack.
398 * (the resource will not be freed until noninterruptable cpus see this
399 * interrupt; hardware will timeout the s/w ack and reply ERROR)
401 void uv_bau_message_interrupt(struct pt_regs *regs)
403 struct bau_payload_queue_entry *va_queue_first;
404 struct bau_payload_queue_entry *va_queue_last;
405 struct bau_payload_queue_entry *msg;
406 struct pt_regs *old_regs = set_irq_regs(regs);
407 cycles_t time1;
408 cycles_t time2;
409 int msg_slot;
410 int sw_ack_slot;
411 int fw;
412 int count = 0;
413 unsigned long local_pnode;
415 ack_APIC_irq();
416 exit_idle();
417 irq_enter();
419 time1 = get_cycles();
421 local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
423 va_queue_first = __get_cpu_var(bau_control).va_queue_first;
424 va_queue_last = __get_cpu_var(bau_control).va_queue_last;
426 msg = __get_cpu_var(bau_control).bau_msg_head;
427 while (msg->sw_ack_vector) {
428 count++;
429 fw = msg->sw_ack_vector;
430 msg_slot = msg - va_queue_first;
431 sw_ack_slot = ffs(fw) - 1;
433 uv_bau_process_message(msg, msg_slot, sw_ack_slot);
435 msg++;
436 if (msg > va_queue_last)
437 msg = va_queue_first;
438 __get_cpu_var(bau_control).bau_msg_head = msg;
440 if (!count)
441 __get_cpu_var(ptcstats).nomsg++;
442 else if (count > 1)
443 __get_cpu_var(ptcstats).multmsg++;
445 time2 = get_cycles();
446 __get_cpu_var(ptcstats).dflush += (time2 - time1);
448 irq_exit();
449 set_irq_regs(old_regs);
453 * uv_enable_timeouts
455 * Each target blade (i.e. blades that have cpu's) needs to have
456 * shootdown message timeouts enabled. The timeout does not cause
457 * an interrupt, but causes an error message to be returned to
458 * the sender.
460 static void uv_enable_timeouts(void)
462 int blade;
463 int nblades;
464 int pnode;
465 unsigned long mmr_image;
467 nblades = uv_num_possible_blades();
469 for (blade = 0; blade < nblades; blade++) {
470 if (!uv_blade_nr_possible_cpus(blade))
471 continue;
473 pnode = uv_blade_to_pnode(blade);
474 mmr_image =
475 uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
477 * Set the timeout period and then lock it in, in three
478 * steps; captures and locks in the period.
480 * To program the period, the SOFT_ACK_MODE must be off.
482 mmr_image &= ~((unsigned long)1 <<
483 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
484 uv_write_global_mmr64
485 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
487 * Set the 4-bit period.
489 mmr_image &= ~((unsigned long)0xf <<
490 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
491 mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
492 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
493 uv_write_global_mmr64
494 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
496 * Subsequent reversals of the timebase bit (3) cause an
497 * immediate timeout of one or all INTD resources as
498 * indicated in bits 2:0 (7 causes all of them to timeout).
500 mmr_image |= ((unsigned long)1 <<
501 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
502 uv_write_global_mmr64
503 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
507 static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
509 if (*offset < num_possible_cpus())
510 return offset;
511 return NULL;
514 static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
516 (*offset)++;
517 if (*offset < num_possible_cpus())
518 return offset;
519 return NULL;
522 static void uv_ptc_seq_stop(struct seq_file *file, void *data)
527 * Display the statistics thru /proc
528 * data points to the cpu number
530 static int uv_ptc_seq_show(struct seq_file *file, void *data)
532 struct ptc_stats *stat;
533 int cpu;
535 cpu = *(loff_t *)data;
537 if (!cpu) {
538 seq_printf(file,
539 "# cpu requestor requestee one all sretry dretry ptc_i ");
540 seq_printf(file,
541 "sw_ack sflush dflush sok dnomsg dmult starget\n");
543 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
544 stat = &per_cpu(ptcstats, cpu);
545 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
546 cpu, stat->requestor,
547 stat->requestee, stat->onetlb, stat->alltlb,
548 stat->s_retry, stat->d_retry, stat->ptc_i);
549 seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
550 uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
551 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
552 stat->sflush, stat->dflush,
553 stat->retriesok, stat->nomsg,
554 stat->multmsg, stat->ntargeted);
557 return 0;
561 * 0: display meaning of the statistics
562 * >0: retry limit
564 static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
565 size_t count, loff_t *data)
567 long newmode;
568 char optstr[64];
570 if (count == 0 || count > sizeof(optstr))
571 return -EINVAL;
572 if (copy_from_user(optstr, user, count))
573 return -EFAULT;
574 optstr[count - 1] = '\0';
575 if (strict_strtoul(optstr, 10, &newmode) < 0) {
576 printk(KERN_DEBUG "%s is invalid\n", optstr);
577 return -EINVAL;
580 if (newmode == 0) {
581 printk(KERN_DEBUG "# cpu: cpu number\n");
582 printk(KERN_DEBUG
583 "requestor: times this cpu was the flush requestor\n");
584 printk(KERN_DEBUG
585 "requestee: times this cpu was requested to flush its TLBs\n");
586 printk(KERN_DEBUG
587 "one: times requested to flush a single address\n");
588 printk(KERN_DEBUG
589 "all: times requested to flush all TLB's\n");
590 printk(KERN_DEBUG
591 "sretry: number of retries of source-side timeouts\n");
592 printk(KERN_DEBUG
593 "dretry: number of retries of destination-side timeouts\n");
594 printk(KERN_DEBUG
595 "ptc_i: times UV fell through to IPI-style flushes\n");
596 printk(KERN_DEBUG
597 "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
598 printk(KERN_DEBUG
599 "sflush_us: cycles spent in uv_flush_tlb_others()\n");
600 printk(KERN_DEBUG
601 "dflush_us: cycles spent in handling flush requests\n");
602 printk(KERN_DEBUG "sok: successes on retry\n");
603 printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
604 printk(KERN_DEBUG
605 "dmult: interrupts with multiple messages\n");
606 printk(KERN_DEBUG "starget: nodes targeted\n");
607 } else {
608 uv_bau_retry_limit = newmode;
609 printk(KERN_DEBUG "timeout retry limit:%d\n",
610 uv_bau_retry_limit);
613 return count;
616 static const struct seq_operations uv_ptc_seq_ops = {
617 .start = uv_ptc_seq_start,
618 .next = uv_ptc_seq_next,
619 .stop = uv_ptc_seq_stop,
620 .show = uv_ptc_seq_show
623 static int uv_ptc_proc_open(struct inode *inode, struct file *file)
625 return seq_open(file, &uv_ptc_seq_ops);
628 static const struct file_operations proc_uv_ptc_operations = {
629 .open = uv_ptc_proc_open,
630 .read = seq_read,
631 .write = uv_ptc_proc_write,
632 .llseek = seq_lseek,
633 .release = seq_release,
636 static int __init uv_ptc_init(void)
638 struct proc_dir_entry *proc_uv_ptc;
640 if (!is_uv_system())
641 return 0;
643 proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
644 if (!proc_uv_ptc) {
645 printk(KERN_ERR "unable to create %s proc entry\n",
646 UV_PTC_BASENAME);
647 return -EINVAL;
649 proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
650 return 0;
654 * begin the initialization of the per-blade control structures
656 static struct bau_control * __init uv_table_bases_init(int blade, int node)
658 int i;
659 struct bau_msg_status *msp;
660 struct bau_control *bau_tabp;
662 bau_tabp =
663 kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
664 BUG_ON(!bau_tabp);
666 bau_tabp->msg_statuses =
667 kmalloc_node(sizeof(struct bau_msg_status) *
668 DEST_Q_SIZE, GFP_KERNEL, node);
669 BUG_ON(!bau_tabp->msg_statuses);
671 for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
672 bau_cpubits_clear(&msp->seen_by, (int)
673 uv_blade_nr_possible_cpus(blade));
675 uv_bau_table_bases[blade] = bau_tabp;
677 return bau_tabp;
681 * finish the initialization of the per-blade control structures
683 static void __init
684 uv_table_bases_finish(int blade,
685 struct bau_control *bau_tablesp,
686 struct bau_desc *adp)
688 struct bau_control *bcp;
689 int cpu;
691 for_each_present_cpu(cpu) {
692 if (blade != uv_cpu_to_blade_id(cpu))
693 continue;
695 bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
696 bcp->bau_msg_head = bau_tablesp->va_queue_first;
697 bcp->va_queue_first = bau_tablesp->va_queue_first;
698 bcp->va_queue_last = bau_tablesp->va_queue_last;
699 bcp->msg_statuses = bau_tablesp->msg_statuses;
700 bcp->descriptor_base = adp;
705 * initialize the sending side's sending buffers
707 static struct bau_desc * __init
708 uv_activation_descriptor_init(int node, int pnode)
710 int i;
711 unsigned long pa;
712 unsigned long m;
713 unsigned long n;
714 struct bau_desc *adp;
715 struct bau_desc *ad2;
718 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
719 * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per blade
721 adp = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)*
722 UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
723 BUG_ON(!adp);
725 pa = uv_gpa(adp); /* need the real nasid*/
726 n = pa >> uv_nshift;
727 m = pa & uv_mmask;
729 uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
730 (n << UV_DESC_BASE_PNODE_SHIFT | m));
733 * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
734 * cpu even though we only use the first one; one descriptor can
735 * describe a broadcast to 256 nodes.
737 for (i = 0, ad2 = adp; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
738 i++, ad2++) {
739 memset(ad2, 0, sizeof(struct bau_desc));
740 ad2->header.sw_ack_flag = 1;
742 * base_dest_nodeid is the first node in the partition, so
743 * the bit map will indicate partition-relative node numbers.
744 * note that base_dest_nodeid is actually a nasid.
746 ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
747 ad2->header.command = UV_NET_ENDPOINT_INTD;
748 ad2->header.int_both = 1;
750 * all others need to be set to zero:
751 * fairness chaining multilevel count replied_to
754 return adp;
758 * initialize the destination side's receiving buffers
760 static struct bau_payload_queue_entry * __init
761 uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
763 struct bau_payload_queue_entry *pqp;
764 unsigned long pa;
765 int pn;
766 char *cp;
768 pqp = (struct bau_payload_queue_entry *) kmalloc_node(
769 (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
770 GFP_KERNEL, node);
771 BUG_ON(!pqp);
773 cp = (char *)pqp + 31;
774 pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
775 bau_tablesp->va_queue_first = pqp;
777 * need the pnode of where the memory was really allocated
779 pa = uv_gpa(pqp);
780 pn = pa >> uv_nshift;
781 uv_write_global_mmr64(pnode,
782 UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
783 ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
784 uv_physnodeaddr(pqp));
785 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
786 uv_physnodeaddr(pqp));
787 bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
788 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
789 (unsigned long)
790 uv_physnodeaddr(bau_tablesp->va_queue_last));
791 memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
793 return pqp;
797 * Initialization of each UV blade's structures
799 static int __init uv_init_blade(int blade)
801 int node;
802 int pnode;
803 unsigned long pa;
804 unsigned long apicid;
805 struct bau_desc *adp;
806 struct bau_payload_queue_entry *pqp;
807 struct bau_control *bau_tablesp;
809 node = blade_to_first_node(blade);
810 bau_tablesp = uv_table_bases_init(blade, node);
811 pnode = uv_blade_to_pnode(blade);
812 adp = uv_activation_descriptor_init(node, pnode);
813 pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
814 uv_table_bases_finish(blade, bau_tablesp, adp);
816 * the below initialization can't be in firmware because the
817 * messaging IRQ will be determined by the OS
819 apicid = blade_to_first_apicid(blade);
820 pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
821 if ((pa & 0xff) != UV_BAU_MESSAGE) {
822 uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
823 ((apicid << 32) | UV_BAU_MESSAGE));
825 return 0;
829 * Initialization of BAU-related structures
831 static int __init uv_bau_init(void)
833 int blade;
834 int nblades;
835 int cur_cpu;
837 if (!is_uv_system())
838 return 0;
840 for_each_possible_cpu(cur_cpu)
841 zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
842 GFP_KERNEL, cpu_to_node(cur_cpu));
844 uv_bau_retry_limit = 1;
845 uv_nshift = uv_hub_info->n_val;
846 uv_mmask = (1UL << uv_hub_info->n_val) - 1;
847 nblades = uv_num_possible_blades();
849 uv_bau_table_bases = (struct bau_control **)
850 kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
851 BUG_ON(!uv_bau_table_bases);
853 uv_partition_base_pnode = 0x7fffffff;
854 for (blade = 0; blade < nblades; blade++)
855 if (uv_blade_nr_possible_cpus(blade) &&
856 (uv_blade_to_pnode(blade) < uv_partition_base_pnode))
857 uv_partition_base_pnode = uv_blade_to_pnode(blade);
858 for (blade = 0; blade < nblades; blade++)
859 if (uv_blade_nr_possible_cpus(blade))
860 uv_init_blade(blade);
862 alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
863 uv_enable_timeouts();
865 return 0;
867 __initcall(uv_bau_init);
868 __initcall(uv_ptc_init);