2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
41 #include <asm/uaccess.h>
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS \
48 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS \
52 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
54 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
55 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
59 * - enable syscall per default because its emulated by KVM
60 * - enable LME and LMA per default on 64 bit KVM
63 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
65 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
72 struct kvm_cpuid_entry2 __user
*entries
);
73 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
74 u32 function
, u32 index
);
76 struct kvm_x86_ops
*kvm_x86_ops
;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
79 struct kvm_stats_debugfs_item debugfs_entries
[] = {
80 { "pf_fixed", VCPU_STAT(pf_fixed
) },
81 { "pf_guest", VCPU_STAT(pf_guest
) },
82 { "tlb_flush", VCPU_STAT(tlb_flush
) },
83 { "invlpg", VCPU_STAT(invlpg
) },
84 { "exits", VCPU_STAT(exits
) },
85 { "io_exits", VCPU_STAT(io_exits
) },
86 { "mmio_exits", VCPU_STAT(mmio_exits
) },
87 { "signal_exits", VCPU_STAT(signal_exits
) },
88 { "irq_window", VCPU_STAT(irq_window_exits
) },
89 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
90 { "halt_exits", VCPU_STAT(halt_exits
) },
91 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
92 { "hypercalls", VCPU_STAT(hypercalls
) },
93 { "request_irq", VCPU_STAT(request_irq_exits
) },
94 { "irq_exits", VCPU_STAT(irq_exits
) },
95 { "host_state_reload", VCPU_STAT(host_state_reload
) },
96 { "efer_reload", VCPU_STAT(efer_reload
) },
97 { "fpu_reload", VCPU_STAT(fpu_reload
) },
98 { "insn_emulation", VCPU_STAT(insn_emulation
) },
99 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
100 { "irq_injections", VCPU_STAT(irq_injections
) },
101 { "nmi_injections", VCPU_STAT(nmi_injections
) },
102 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
103 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
104 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
105 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
106 { "mmu_flooded", VM_STAT(mmu_flooded
) },
107 { "mmu_recycled", VM_STAT(mmu_recycled
) },
108 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
109 { "mmu_unsync", VM_STAT(mmu_unsync
) },
110 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
111 { "largepages", VM_STAT(lpages
) },
115 unsigned long segment_base(u16 selector
)
117 struct descriptor_table gdt
;
118 struct desc_struct
*d
;
119 unsigned long table_base
;
125 asm("sgdt %0" : "=m"(gdt
));
126 table_base
= gdt
.base
;
128 if (selector
& 4) { /* from ldt */
131 asm("sldt %0" : "=g"(ldt_selector
));
132 table_base
= segment_base(ldt_selector
);
134 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
135 v
= d
->base0
| ((unsigned long)d
->base1
<< 16) |
136 ((unsigned long)d
->base2
<< 24);
138 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
139 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
143 EXPORT_SYMBOL_GPL(segment_base
);
145 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
147 if (irqchip_in_kernel(vcpu
->kvm
))
148 return vcpu
->arch
.apic_base
;
150 return vcpu
->arch
.apic_base
;
152 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
154 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
156 /* TODO: reserve bits check */
157 if (irqchip_in_kernel(vcpu
->kvm
))
158 kvm_lapic_set_base(vcpu
, data
);
160 vcpu
->arch
.apic_base
= data
;
162 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
164 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
166 WARN_ON(vcpu
->arch
.exception
.pending
);
167 vcpu
->arch
.exception
.pending
= true;
168 vcpu
->arch
.exception
.has_error_code
= false;
169 vcpu
->arch
.exception
.nr
= nr
;
171 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
173 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
176 ++vcpu
->stat
.pf_guest
;
178 if (vcpu
->arch
.exception
.pending
) {
179 if (vcpu
->arch
.exception
.nr
== PF_VECTOR
) {
180 printk(KERN_DEBUG
"kvm: inject_page_fault:"
181 " double fault 0x%lx\n", addr
);
182 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
183 vcpu
->arch
.exception
.error_code
= 0;
184 } else if (vcpu
->arch
.exception
.nr
== DF_VECTOR
) {
185 /* triple fault -> shutdown */
186 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
190 vcpu
->arch
.cr2
= addr
;
191 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
194 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
196 vcpu
->arch
.nmi_pending
= 1;
198 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
200 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
202 WARN_ON(vcpu
->arch
.exception
.pending
);
203 vcpu
->arch
.exception
.pending
= true;
204 vcpu
->arch
.exception
.has_error_code
= true;
205 vcpu
->arch
.exception
.nr
= nr
;
206 vcpu
->arch
.exception
.error_code
= error_code
;
208 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
210 static void __queue_exception(struct kvm_vcpu
*vcpu
)
212 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
213 vcpu
->arch
.exception
.has_error_code
,
214 vcpu
->arch
.exception
.error_code
);
218 * Load the pae pdptrs. Return true is they are all valid.
220 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
222 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
223 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
226 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
228 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
229 offset
* sizeof(u64
), sizeof(pdpte
));
234 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
235 if (is_present_pte(pdpte
[i
]) &&
236 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
243 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
248 EXPORT_SYMBOL_GPL(load_pdptrs
);
250 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
252 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
256 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
259 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
262 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
268 void kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
270 if (cr0
& CR0_RESERVED_BITS
) {
271 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
272 cr0
, vcpu
->arch
.cr0
);
273 kvm_inject_gp(vcpu
, 0);
277 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
278 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
279 kvm_inject_gp(vcpu
, 0);
283 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
284 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
285 "and a clear PE flag\n");
286 kvm_inject_gp(vcpu
, 0);
290 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
292 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
296 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
297 "in long mode while PAE is disabled\n");
298 kvm_inject_gp(vcpu
, 0);
301 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
303 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
304 "in long mode while CS.L == 1\n");
305 kvm_inject_gp(vcpu
, 0);
311 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
312 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
314 kvm_inject_gp(vcpu
, 0);
320 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
321 vcpu
->arch
.cr0
= cr0
;
323 kvm_mmu_reset_context(vcpu
);
326 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
328 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
330 kvm_set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
331 KVMTRACE_1D(LMSW
, vcpu
,
332 (u32
)((vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f)),
335 EXPORT_SYMBOL_GPL(kvm_lmsw
);
337 void kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
339 unsigned long old_cr4
= vcpu
->arch
.cr4
;
340 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
;
342 if (cr4
& CR4_RESERVED_BITS
) {
343 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
344 kvm_inject_gp(vcpu
, 0);
348 if (is_long_mode(vcpu
)) {
349 if (!(cr4
& X86_CR4_PAE
)) {
350 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
352 kvm_inject_gp(vcpu
, 0);
355 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
356 && ((cr4
^ old_cr4
) & pdptr_bits
)
357 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
358 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
359 kvm_inject_gp(vcpu
, 0);
363 if (cr4
& X86_CR4_VMXE
) {
364 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
365 kvm_inject_gp(vcpu
, 0);
368 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
369 vcpu
->arch
.cr4
= cr4
;
370 vcpu
->arch
.mmu
.base_role
.cr4_pge
= (cr4
& X86_CR4_PGE
) && !tdp_enabled
;
371 kvm_mmu_reset_context(vcpu
);
373 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
375 void kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
377 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
378 kvm_mmu_sync_roots(vcpu
);
379 kvm_mmu_flush_tlb(vcpu
);
383 if (is_long_mode(vcpu
)) {
384 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
385 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
386 kvm_inject_gp(vcpu
, 0);
391 if (cr3
& CR3_PAE_RESERVED_BITS
) {
393 "set_cr3: #GP, reserved bits\n");
394 kvm_inject_gp(vcpu
, 0);
397 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
398 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
400 kvm_inject_gp(vcpu
, 0);
405 * We don't check reserved bits in nonpae mode, because
406 * this isn't enforced, and VMware depends on this.
411 * Does the new cr3 value map to physical memory? (Note, we
412 * catch an invalid cr3 even in real-mode, because it would
413 * cause trouble later on when we turn on paging anyway.)
415 * A real CPU would silently accept an invalid cr3 and would
416 * attempt to use it - with largely undefined (and often hard
417 * to debug) behavior on the guest side.
419 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
420 kvm_inject_gp(vcpu
, 0);
422 vcpu
->arch
.cr3
= cr3
;
423 vcpu
->arch
.mmu
.new_cr3(vcpu
);
426 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
428 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
430 if (cr8
& CR8_RESERVED_BITS
) {
431 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
432 kvm_inject_gp(vcpu
, 0);
435 if (irqchip_in_kernel(vcpu
->kvm
))
436 kvm_lapic_set_tpr(vcpu
, cr8
);
438 vcpu
->arch
.cr8
= cr8
;
440 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
442 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
444 if (irqchip_in_kernel(vcpu
->kvm
))
445 return kvm_lapic_get_cr8(vcpu
);
447 return vcpu
->arch
.cr8
;
449 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
451 static inline u32
bit(int bitno
)
453 return 1 << (bitno
& 31);
457 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
458 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
460 * This list is modified at module load time to reflect the
461 * capabilities of the host cpu.
463 static u32 msrs_to_save
[] = {
464 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
467 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
469 MSR_IA32_TIME_STAMP_COUNTER
, MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
470 MSR_IA32_PERF_STATUS
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
473 static unsigned num_msrs_to_save
;
475 static u32 emulated_msrs
[] = {
476 MSR_IA32_MISC_ENABLE
,
479 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
481 if (efer
& efer_reserved_bits
) {
482 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
484 kvm_inject_gp(vcpu
, 0);
489 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
490 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
491 kvm_inject_gp(vcpu
, 0);
495 if (efer
& EFER_FFXSR
) {
496 struct kvm_cpuid_entry2
*feat
;
498 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
499 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
))) {
500 printk(KERN_DEBUG
"set_efer: #GP, enable FFXSR w/o CPUID capability\n");
501 kvm_inject_gp(vcpu
, 0);
506 if (efer
& EFER_SVME
) {
507 struct kvm_cpuid_entry2
*feat
;
509 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
510 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
))) {
511 printk(KERN_DEBUG
"set_efer: #GP, enable SVM w/o SVM\n");
512 kvm_inject_gp(vcpu
, 0);
517 kvm_x86_ops
->set_efer(vcpu
, efer
);
520 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
522 vcpu
->arch
.shadow_efer
= efer
;
524 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
525 kvm_mmu_reset_context(vcpu
);
528 void kvm_enable_efer_bits(u64 mask
)
530 efer_reserved_bits
&= ~mask
;
532 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
536 * Writes msr value into into the appropriate "register".
537 * Returns 0 on success, non-0 otherwise.
538 * Assumes vcpu_load() was already called.
540 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
542 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
546 * Adapt set_msr() to msr_io()'s calling convention
548 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
550 return kvm_set_msr(vcpu
, index
, *data
);
553 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
556 struct pvclock_wall_clock wc
;
557 struct timespec now
, sys
, boot
;
564 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
567 * The guest calculates current wall clock time by adding
568 * system time (updated by kvm_write_guest_time below) to the
569 * wall clock specified here. guest system time equals host
570 * system time for us, thus we must fill in host boot time here.
572 now
= current_kernel_time();
574 boot
= ns_to_timespec(timespec_to_ns(&now
) - timespec_to_ns(&sys
));
576 wc
.sec
= boot
.tv_sec
;
577 wc
.nsec
= boot
.tv_nsec
;
578 wc
.version
= version
;
580 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
583 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
586 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
588 uint32_t quotient
, remainder
;
590 /* Don't try to replace with do_div(), this one calculates
591 * "(dividend << 32) / divisor" */
593 : "=a" (quotient
), "=d" (remainder
)
594 : "0" (0), "1" (dividend
), "r" (divisor
) );
598 static void kvm_set_time_scale(uint32_t tsc_khz
, struct pvclock_vcpu_time_info
*hv_clock
)
600 uint64_t nsecs
= 1000000000LL;
605 tps64
= tsc_khz
* 1000LL;
606 while (tps64
> nsecs
*2) {
611 tps32
= (uint32_t)tps64
;
612 while (tps32
<= (uint32_t)nsecs
) {
617 hv_clock
->tsc_shift
= shift
;
618 hv_clock
->tsc_to_system_mul
= div_frac(nsecs
, tps32
);
620 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
621 __func__
, tsc_khz
, hv_clock
->tsc_shift
,
622 hv_clock
->tsc_to_system_mul
);
625 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
627 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
631 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
633 unsigned long this_tsc_khz
;
635 if ((!vcpu
->time_page
))
638 this_tsc_khz
= get_cpu_var(cpu_tsc_khz
);
639 if (unlikely(vcpu
->hv_clock_tsc_khz
!= this_tsc_khz
)) {
640 kvm_set_time_scale(this_tsc_khz
, &vcpu
->hv_clock
);
641 vcpu
->hv_clock_tsc_khz
= this_tsc_khz
;
643 put_cpu_var(cpu_tsc_khz
);
645 /* Keep irq disabled to prevent changes to the clock */
646 local_irq_save(flags
);
647 kvm_get_msr(v
, MSR_IA32_TIME_STAMP_COUNTER
,
648 &vcpu
->hv_clock
.tsc_timestamp
);
650 local_irq_restore(flags
);
652 /* With all the info we got, fill in the values */
654 vcpu
->hv_clock
.system_time
= ts
.tv_nsec
+
655 (NSEC_PER_SEC
* (u64
)ts
.tv_sec
);
657 * The interface expects us to write an even number signaling that the
658 * update is finished. Since the guest won't see the intermediate
659 * state, we just increase by 2 at the end.
661 vcpu
->hv_clock
.version
+= 2;
663 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
665 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
666 sizeof(vcpu
->hv_clock
));
668 kunmap_atomic(shared_kaddr
, KM_USER0
);
670 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
673 static int kvm_request_guest_time_update(struct kvm_vcpu
*v
)
675 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
677 if (!vcpu
->time_page
)
679 set_bit(KVM_REQ_KVMCLOCK_UPDATE
, &v
->requests
);
683 static bool msr_mtrr_valid(unsigned msr
)
686 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
687 case MSR_MTRRfix64K_00000
:
688 case MSR_MTRRfix16K_80000
:
689 case MSR_MTRRfix16K_A0000
:
690 case MSR_MTRRfix4K_C0000
:
691 case MSR_MTRRfix4K_C8000
:
692 case MSR_MTRRfix4K_D0000
:
693 case MSR_MTRRfix4K_D8000
:
694 case MSR_MTRRfix4K_E0000
:
695 case MSR_MTRRfix4K_E8000
:
696 case MSR_MTRRfix4K_F0000
:
697 case MSR_MTRRfix4K_F8000
:
698 case MSR_MTRRdefType
:
699 case MSR_IA32_CR_PAT
:
707 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
709 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
711 if (!msr_mtrr_valid(msr
))
714 if (msr
== MSR_MTRRdefType
) {
715 vcpu
->arch
.mtrr_state
.def_type
= data
;
716 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
717 } else if (msr
== MSR_MTRRfix64K_00000
)
719 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
720 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
721 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
722 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
723 else if (msr
== MSR_IA32_CR_PAT
)
724 vcpu
->arch
.pat
= data
;
725 else { /* Variable MTRRs */
726 int idx
, is_mtrr_mask
;
729 idx
= (msr
- 0x200) / 2;
730 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
733 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
736 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
740 kvm_mmu_reset_context(vcpu
);
744 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
748 set_efer(vcpu
, data
);
750 case MSR_IA32_MC0_STATUS
:
751 pr_unimpl(vcpu
, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
754 case MSR_IA32_MCG_STATUS
:
755 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
758 case MSR_IA32_MCG_CTL
:
759 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
762 case MSR_IA32_DEBUGCTLMSR
:
764 /* We support the non-activated case already */
766 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
767 /* Values other than LBR and BTF are vendor-specific,
768 thus reserved and should throw a #GP */
771 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
774 case MSR_IA32_UCODE_REV
:
775 case MSR_IA32_UCODE_WRITE
:
776 case MSR_VM_HSAVE_PA
:
778 case 0x200 ... 0x2ff:
779 return set_msr_mtrr(vcpu
, msr
, data
);
780 case MSR_IA32_APICBASE
:
781 kvm_set_apic_base(vcpu
, data
);
783 case MSR_IA32_MISC_ENABLE
:
784 vcpu
->arch
.ia32_misc_enable_msr
= data
;
786 case MSR_KVM_WALL_CLOCK
:
787 vcpu
->kvm
->arch
.wall_clock
= data
;
788 kvm_write_wall_clock(vcpu
->kvm
, data
);
790 case MSR_KVM_SYSTEM_TIME
: {
791 if (vcpu
->arch
.time_page
) {
792 kvm_release_page_dirty(vcpu
->arch
.time_page
);
793 vcpu
->arch
.time_page
= NULL
;
796 vcpu
->arch
.time
= data
;
798 /* we verify if the enable bit is set... */
802 /* ...but clean it before doing the actual write */
803 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
805 vcpu
->arch
.time_page
=
806 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
808 if (is_error_page(vcpu
->arch
.time_page
)) {
809 kvm_release_page_clean(vcpu
->arch
.time_page
);
810 vcpu
->arch
.time_page
= NULL
;
813 kvm_request_guest_time_update(vcpu
);
817 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n", msr
, data
);
822 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
826 * Reads an msr value (of 'msr_index') into 'pdata'.
827 * Returns 0 on success, non-0 otherwise.
828 * Assumes vcpu_load() was already called.
830 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
832 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
835 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
837 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
839 if (!msr_mtrr_valid(msr
))
842 if (msr
== MSR_MTRRdefType
)
843 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
844 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
845 else if (msr
== MSR_MTRRfix64K_00000
)
847 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
848 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
849 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
850 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
851 else if (msr
== MSR_IA32_CR_PAT
)
852 *pdata
= vcpu
->arch
.pat
;
853 else { /* Variable MTRRs */
854 int idx
, is_mtrr_mask
;
857 idx
= (msr
- 0x200) / 2;
858 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
861 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
864 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
871 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
876 case 0xc0010010: /* SYSCFG */
877 case 0xc0010015: /* HWCR */
878 case MSR_IA32_PLATFORM_ID
:
879 case MSR_IA32_P5_MC_ADDR
:
880 case MSR_IA32_P5_MC_TYPE
:
881 case MSR_IA32_MC0_CTL
:
882 case MSR_IA32_MCG_STATUS
:
883 case MSR_IA32_MCG_CAP
:
884 case MSR_IA32_MCG_CTL
:
885 case MSR_IA32_MC0_MISC
:
886 case MSR_IA32_MC0_MISC
+4:
887 case MSR_IA32_MC0_MISC
+8:
888 case MSR_IA32_MC0_MISC
+12:
889 case MSR_IA32_MC0_MISC
+16:
890 case MSR_IA32_MC0_MISC
+20:
891 case MSR_IA32_UCODE_REV
:
892 case MSR_IA32_EBL_CR_POWERON
:
893 case MSR_IA32_DEBUGCTLMSR
:
894 case MSR_IA32_LASTBRANCHFROMIP
:
895 case MSR_IA32_LASTBRANCHTOIP
:
896 case MSR_IA32_LASTINTFROMIP
:
897 case MSR_IA32_LASTINTTOIP
:
898 case MSR_VM_HSAVE_PA
:
899 case MSR_P6_EVNTSEL0
:
900 case MSR_P6_EVNTSEL1
:
901 case MSR_K7_EVNTSEL0
:
905 data
= 0x500 | KVM_NR_VAR_MTRR
;
907 case 0x200 ... 0x2ff:
908 return get_msr_mtrr(vcpu
, msr
, pdata
);
909 case 0xcd: /* fsb frequency */
912 case MSR_IA32_APICBASE
:
913 data
= kvm_get_apic_base(vcpu
);
915 case MSR_IA32_MISC_ENABLE
:
916 data
= vcpu
->arch
.ia32_misc_enable_msr
;
918 case MSR_IA32_PERF_STATUS
:
919 /* TSC increment by tick */
922 data
|= (((uint64_t)4ULL) << 40);
925 data
= vcpu
->arch
.shadow_efer
;
927 case MSR_KVM_WALL_CLOCK
:
928 data
= vcpu
->kvm
->arch
.wall_clock
;
930 case MSR_KVM_SYSTEM_TIME
:
931 data
= vcpu
->arch
.time
;
934 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
940 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
943 * Read or write a bunch of msrs. All parameters are kernel addresses.
945 * @return number of msrs set successfully.
947 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
948 struct kvm_msr_entry
*entries
,
949 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
950 unsigned index
, u64
*data
))
956 down_read(&vcpu
->kvm
->slots_lock
);
957 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
958 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
960 up_read(&vcpu
->kvm
->slots_lock
);
968 * Read or write a bunch of msrs. Parameters are user addresses.
970 * @return number of msrs set successfully.
972 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
973 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
974 unsigned index
, u64
*data
),
977 struct kvm_msrs msrs
;
978 struct kvm_msr_entry
*entries
;
983 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
987 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
991 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
992 entries
= vmalloc(size
);
997 if (copy_from_user(entries
, user_msrs
->entries
, size
))
1000 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
1005 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
1016 int kvm_dev_ioctl_check_extension(long ext
)
1021 case KVM_CAP_IRQCHIP
:
1023 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
1024 case KVM_CAP_SET_TSS_ADDR
:
1025 case KVM_CAP_EXT_CPUID
:
1026 case KVM_CAP_CLOCKSOURCE
:
1028 case KVM_CAP_NOP_IO_DELAY
:
1029 case KVM_CAP_MP_STATE
:
1030 case KVM_CAP_SYNC_MMU
:
1031 case KVM_CAP_REINJECT_CONTROL
:
1032 case KVM_CAP_IRQ_INJECT_STATUS
:
1033 case KVM_CAP_ASSIGN_DEV_IRQ
:
1036 case KVM_CAP_COALESCED_MMIO
:
1037 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1040 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
1042 case KVM_CAP_NR_VCPUS
:
1045 case KVM_CAP_NR_MEMSLOTS
:
1046 r
= KVM_MEMORY_SLOTS
;
1048 case KVM_CAP_PV_MMU
:
1062 long kvm_arch_dev_ioctl(struct file
*filp
,
1063 unsigned int ioctl
, unsigned long arg
)
1065 void __user
*argp
= (void __user
*)arg
;
1069 case KVM_GET_MSR_INDEX_LIST
: {
1070 struct kvm_msr_list __user
*user_msr_list
= argp
;
1071 struct kvm_msr_list msr_list
;
1075 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
1078 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
1079 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
1082 if (n
< num_msrs_to_save
)
1085 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
1086 num_msrs_to_save
* sizeof(u32
)))
1088 if (copy_to_user(user_msr_list
->indices
1089 + num_msrs_to_save
* sizeof(u32
),
1091 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
1096 case KVM_GET_SUPPORTED_CPUID
: {
1097 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1098 struct kvm_cpuid2 cpuid
;
1101 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1103 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
1104 cpuid_arg
->entries
);
1109 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1121 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1123 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
1124 kvm_request_guest_time_update(vcpu
);
1127 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
1129 kvm_x86_ops
->vcpu_put(vcpu
);
1130 kvm_put_guest_fpu(vcpu
);
1133 static int is_efer_nx(void)
1135 unsigned long long efer
= 0;
1137 rdmsrl_safe(MSR_EFER
, &efer
);
1138 return efer
& EFER_NX
;
1141 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
1144 struct kvm_cpuid_entry2
*e
, *entry
;
1147 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
1148 e
= &vcpu
->arch
.cpuid_entries
[i
];
1149 if (e
->function
== 0x80000001) {
1154 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
1155 entry
->edx
&= ~(1 << 20);
1156 printk(KERN_INFO
"kvm: guest NX capability removed\n");
1160 /* when an old userspace process fills a new kernel module */
1161 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
1162 struct kvm_cpuid
*cpuid
,
1163 struct kvm_cpuid_entry __user
*entries
)
1166 struct kvm_cpuid_entry
*cpuid_entries
;
1169 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1172 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
1176 if (copy_from_user(cpuid_entries
, entries
,
1177 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
1179 for (i
= 0; i
< cpuid
->nent
; i
++) {
1180 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
1181 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
1182 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
1183 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
1184 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
1185 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
1186 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
1187 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
1188 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
1189 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
1191 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1192 cpuid_fix_nx_cap(vcpu
);
1196 vfree(cpuid_entries
);
1201 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
1202 struct kvm_cpuid2
*cpuid
,
1203 struct kvm_cpuid_entry2 __user
*entries
)
1208 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1211 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
1212 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
1214 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1221 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1222 struct kvm_cpuid2
*cpuid
,
1223 struct kvm_cpuid_entry2 __user
*entries
)
1228 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1231 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1232 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1237 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1241 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1244 entry
->function
= function
;
1245 entry
->index
= index
;
1246 cpuid_count(entry
->function
, entry
->index
,
1247 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1251 #define F(x) bit(X86_FEATURE_##x)
1253 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1254 u32 index
, int *nent
, int maxnent
)
1256 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
1257 #ifdef CONFIG_X86_64
1258 unsigned f_lm
= F(LM
);
1264 const u32 kvm_supported_word0_x86_features
=
1265 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1266 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1267 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
1268 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1269 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
1270 0 /* Reserved, DS, ACPI */ | F(MMX
) |
1271 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
1272 0 /* HTT, TM, Reserved, PBE */;
1273 /* cpuid 0x80000001.edx */
1274 const u32 kvm_supported_word1_x86_features
=
1275 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1276 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1277 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
1278 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1279 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
1280 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
1281 F(FXSR
) | F(FXSR_OPT
) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1282 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
1284 const u32 kvm_supported_word4_x86_features
=
1285 F(XMM3
) | 0 /* Reserved, DTES64, MONITOR */ |
1286 0 /* DS-CPL, VMX, SMX, EST */ |
1287 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1288 0 /* Reserved */ | F(CX16
) | 0 /* xTPR Update, PDCM */ |
1289 0 /* Reserved, DCA */ | F(XMM4_1
) |
1290 F(XMM4_2
) | 0 /* x2APIC */ | F(MOVBE
) | F(POPCNT
) |
1291 0 /* Reserved, XSAVE, OSXSAVE */;
1292 /* cpuid 0x80000001.ecx */
1293 const u32 kvm_supported_word6_x86_features
=
1294 F(LAHF_LM
) | F(CMP_LEGACY
) | F(SVM
) | 0 /* ExtApicSpace */ |
1295 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
1296 F(3DNOWPREFETCH
) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5
) |
1297 0 /* SKINIT */ | 0 /* WDT */;
1299 /* all calls to cpuid_count() should be made on the same cpu */
1301 do_cpuid_1_ent(entry
, function
, index
);
1306 entry
->eax
= min(entry
->eax
, (u32
)0xb);
1309 entry
->edx
&= kvm_supported_word0_x86_features
;
1310 entry
->ecx
&= kvm_supported_word4_x86_features
;
1312 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1313 * may return different values. This forces us to get_cpu() before
1314 * issuing the first command, and also to emulate this annoying behavior
1315 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1317 int t
, times
= entry
->eax
& 0xff;
1319 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1320 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
1321 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
1322 do_cpuid_1_ent(&entry
[t
], function
, 0);
1323 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1328 /* function 4 and 0xb have additional index. */
1332 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1333 /* read more entries until cache_type is zero */
1334 for (i
= 1; *nent
< maxnent
; ++i
) {
1335 cache_type
= entry
[i
- 1].eax
& 0x1f;
1338 do_cpuid_1_ent(&entry
[i
], function
, i
);
1340 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1348 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1349 /* read more entries until level_type is zero */
1350 for (i
= 1; *nent
< maxnent
; ++i
) {
1351 level_type
= entry
[i
- 1].ecx
& 0xff00;
1354 do_cpuid_1_ent(&entry
[i
], function
, i
);
1356 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1362 entry
->eax
= min(entry
->eax
, 0x8000001a);
1365 entry
->edx
&= kvm_supported_word1_x86_features
;
1366 entry
->ecx
&= kvm_supported_word6_x86_features
;
1374 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1375 struct kvm_cpuid_entry2 __user
*entries
)
1377 struct kvm_cpuid_entry2
*cpuid_entries
;
1378 int limit
, nent
= 0, r
= -E2BIG
;
1381 if (cpuid
->nent
< 1)
1384 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1388 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1389 limit
= cpuid_entries
[0].eax
;
1390 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1391 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1392 &nent
, cpuid
->nent
);
1394 if (nent
>= cpuid
->nent
)
1397 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1398 limit
= cpuid_entries
[nent
- 1].eax
;
1399 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1400 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1401 &nent
, cpuid
->nent
);
1403 if (copy_to_user(entries
, cpuid_entries
,
1404 nent
* sizeof(struct kvm_cpuid_entry2
)))
1410 vfree(cpuid_entries
);
1415 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1416 struct kvm_lapic_state
*s
)
1419 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1425 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1426 struct kvm_lapic_state
*s
)
1429 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1430 kvm_apic_post_state_restore(vcpu
);
1436 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1437 struct kvm_interrupt
*irq
)
1439 if (irq
->irq
< 0 || irq
->irq
>= 256)
1441 if (irqchip_in_kernel(vcpu
->kvm
))
1445 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
1452 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
1455 kvm_inject_nmi(vcpu
);
1461 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1462 struct kvm_tpr_access_ctl
*tac
)
1466 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1470 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1471 unsigned int ioctl
, unsigned long arg
)
1473 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1474 void __user
*argp
= (void __user
*)arg
;
1476 struct kvm_lapic_state
*lapic
= NULL
;
1479 case KVM_GET_LAPIC
: {
1480 lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1485 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, lapic
);
1489 if (copy_to_user(argp
, lapic
, sizeof(struct kvm_lapic_state
)))
1494 case KVM_SET_LAPIC
: {
1495 lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1500 if (copy_from_user(lapic
, argp
, sizeof(struct kvm_lapic_state
)))
1502 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, lapic
);
1508 case KVM_INTERRUPT
: {
1509 struct kvm_interrupt irq
;
1512 if (copy_from_user(&irq
, argp
, sizeof irq
))
1514 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1521 r
= kvm_vcpu_ioctl_nmi(vcpu
);
1527 case KVM_SET_CPUID
: {
1528 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1529 struct kvm_cpuid cpuid
;
1532 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1534 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1539 case KVM_SET_CPUID2
: {
1540 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1541 struct kvm_cpuid2 cpuid
;
1544 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1546 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1547 cpuid_arg
->entries
);
1552 case KVM_GET_CPUID2
: {
1553 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1554 struct kvm_cpuid2 cpuid
;
1557 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1559 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1560 cpuid_arg
->entries
);
1564 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1570 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1573 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1575 case KVM_TPR_ACCESS_REPORTING
: {
1576 struct kvm_tpr_access_ctl tac
;
1579 if (copy_from_user(&tac
, argp
, sizeof tac
))
1581 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1585 if (copy_to_user(argp
, &tac
, sizeof tac
))
1590 case KVM_SET_VAPIC_ADDR
: {
1591 struct kvm_vapic_addr va
;
1594 if (!irqchip_in_kernel(vcpu
->kvm
))
1597 if (copy_from_user(&va
, argp
, sizeof va
))
1600 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1611 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1615 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1617 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1621 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1622 u32 kvm_nr_mmu_pages
)
1624 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1627 down_write(&kvm
->slots_lock
);
1628 spin_lock(&kvm
->mmu_lock
);
1630 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1631 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1633 spin_unlock(&kvm
->mmu_lock
);
1634 up_write(&kvm
->slots_lock
);
1638 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1640 return kvm
->arch
.n_alloc_mmu_pages
;
1643 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1646 struct kvm_mem_alias
*alias
;
1648 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1649 alias
= &kvm
->arch
.aliases
[i
];
1650 if (gfn
>= alias
->base_gfn
1651 && gfn
< alias
->base_gfn
+ alias
->npages
)
1652 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1658 * Set a new alias region. Aliases map a portion of physical memory into
1659 * another portion. This is useful for memory windows, for example the PC
1662 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1663 struct kvm_memory_alias
*alias
)
1666 struct kvm_mem_alias
*p
;
1669 /* General sanity checks */
1670 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1672 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1674 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1676 if (alias
->guest_phys_addr
+ alias
->memory_size
1677 < alias
->guest_phys_addr
)
1679 if (alias
->target_phys_addr
+ alias
->memory_size
1680 < alias
->target_phys_addr
)
1683 down_write(&kvm
->slots_lock
);
1684 spin_lock(&kvm
->mmu_lock
);
1686 p
= &kvm
->arch
.aliases
[alias
->slot
];
1687 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
1688 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
1689 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
1691 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
1692 if (kvm
->arch
.aliases
[n
- 1].npages
)
1694 kvm
->arch
.naliases
= n
;
1696 spin_unlock(&kvm
->mmu_lock
);
1697 kvm_mmu_zap_all(kvm
);
1699 up_write(&kvm
->slots_lock
);
1707 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1712 switch (chip
->chip_id
) {
1713 case KVM_IRQCHIP_PIC_MASTER
:
1714 memcpy(&chip
->chip
.pic
,
1715 &pic_irqchip(kvm
)->pics
[0],
1716 sizeof(struct kvm_pic_state
));
1718 case KVM_IRQCHIP_PIC_SLAVE
:
1719 memcpy(&chip
->chip
.pic
,
1720 &pic_irqchip(kvm
)->pics
[1],
1721 sizeof(struct kvm_pic_state
));
1723 case KVM_IRQCHIP_IOAPIC
:
1724 memcpy(&chip
->chip
.ioapic
,
1725 ioapic_irqchip(kvm
),
1726 sizeof(struct kvm_ioapic_state
));
1735 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1740 switch (chip
->chip_id
) {
1741 case KVM_IRQCHIP_PIC_MASTER
:
1742 memcpy(&pic_irqchip(kvm
)->pics
[0],
1744 sizeof(struct kvm_pic_state
));
1746 case KVM_IRQCHIP_PIC_SLAVE
:
1747 memcpy(&pic_irqchip(kvm
)->pics
[1],
1749 sizeof(struct kvm_pic_state
));
1751 case KVM_IRQCHIP_IOAPIC
:
1752 memcpy(ioapic_irqchip(kvm
),
1754 sizeof(struct kvm_ioapic_state
));
1760 kvm_pic_update_irq(pic_irqchip(kvm
));
1764 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1768 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
1772 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1776 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
1777 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
);
1781 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
1782 struct kvm_reinject_control
*control
)
1784 if (!kvm
->arch
.vpit
)
1786 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
1791 * Get (and clear) the dirty memory log for a memory slot.
1793 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
1794 struct kvm_dirty_log
*log
)
1798 struct kvm_memory_slot
*memslot
;
1801 down_write(&kvm
->slots_lock
);
1803 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
1807 /* If nothing is dirty, don't bother messing with page tables. */
1809 spin_lock(&kvm
->mmu_lock
);
1810 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
1811 spin_unlock(&kvm
->mmu_lock
);
1812 kvm_flush_remote_tlbs(kvm
);
1813 memslot
= &kvm
->memslots
[log
->slot
];
1814 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
1815 memset(memslot
->dirty_bitmap
, 0, n
);
1819 up_write(&kvm
->slots_lock
);
1823 long kvm_arch_vm_ioctl(struct file
*filp
,
1824 unsigned int ioctl
, unsigned long arg
)
1826 struct kvm
*kvm
= filp
->private_data
;
1827 void __user
*argp
= (void __user
*)arg
;
1830 * This union makes it completely explicit to gcc-3.x
1831 * that these two variables' stack usage should be
1832 * combined, not added together.
1835 struct kvm_pit_state ps
;
1836 struct kvm_memory_alias alias
;
1840 case KVM_SET_TSS_ADDR
:
1841 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
1845 case KVM_SET_MEMORY_REGION
: {
1846 struct kvm_memory_region kvm_mem
;
1847 struct kvm_userspace_memory_region kvm_userspace_mem
;
1850 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
1852 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
1853 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
1854 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
1855 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
1856 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
1861 case KVM_SET_NR_MMU_PAGES
:
1862 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
1866 case KVM_GET_NR_MMU_PAGES
:
1867 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
1869 case KVM_SET_MEMORY_ALIAS
:
1871 if (copy_from_user(&u
.alias
, argp
, sizeof(struct kvm_memory_alias
)))
1873 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &u
.alias
);
1877 case KVM_CREATE_IRQCHIP
:
1879 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
1880 if (kvm
->arch
.vpic
) {
1881 r
= kvm_ioapic_init(kvm
);
1883 kfree(kvm
->arch
.vpic
);
1884 kvm
->arch
.vpic
= NULL
;
1889 r
= kvm_setup_default_irq_routing(kvm
);
1891 kfree(kvm
->arch
.vpic
);
1892 kfree(kvm
->arch
.vioapic
);
1896 case KVM_CREATE_PIT
:
1897 mutex_lock(&kvm
->lock
);
1900 goto create_pit_unlock
;
1902 kvm
->arch
.vpit
= kvm_create_pit(kvm
);
1906 mutex_unlock(&kvm
->lock
);
1908 case KVM_IRQ_LINE_STATUS
:
1909 case KVM_IRQ_LINE
: {
1910 struct kvm_irq_level irq_event
;
1913 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
1915 if (irqchip_in_kernel(kvm
)) {
1917 mutex_lock(&kvm
->lock
);
1918 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
1919 irq_event
.irq
, irq_event
.level
);
1920 mutex_unlock(&kvm
->lock
);
1921 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
1922 irq_event
.status
= status
;
1923 if (copy_to_user(argp
, &irq_event
,
1931 case KVM_GET_IRQCHIP
: {
1932 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1933 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
1939 if (copy_from_user(chip
, argp
, sizeof *chip
))
1940 goto get_irqchip_out
;
1942 if (!irqchip_in_kernel(kvm
))
1943 goto get_irqchip_out
;
1944 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
1946 goto get_irqchip_out
;
1948 if (copy_to_user(argp
, chip
, sizeof *chip
))
1949 goto get_irqchip_out
;
1957 case KVM_SET_IRQCHIP
: {
1958 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1959 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
1965 if (copy_from_user(chip
, argp
, sizeof *chip
))
1966 goto set_irqchip_out
;
1968 if (!irqchip_in_kernel(kvm
))
1969 goto set_irqchip_out
;
1970 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
1972 goto set_irqchip_out
;
1982 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
1985 if (!kvm
->arch
.vpit
)
1987 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
1991 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
1998 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
2001 if (!kvm
->arch
.vpit
)
2003 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
2009 case KVM_REINJECT_CONTROL
: {
2010 struct kvm_reinject_control control
;
2012 if (copy_from_user(&control
, argp
, sizeof(control
)))
2014 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
2027 static void kvm_init_msr_list(void)
2032 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
2033 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
2036 msrs_to_save
[j
] = msrs_to_save
[i
];
2039 num_msrs_to_save
= j
;
2043 * Only apic need an MMIO device hook, so shortcut now..
2045 static struct kvm_io_device
*vcpu_find_pervcpu_dev(struct kvm_vcpu
*vcpu
,
2046 gpa_t addr
, int len
,
2049 struct kvm_io_device
*dev
;
2051 if (vcpu
->arch
.apic
) {
2052 dev
= &vcpu
->arch
.apic
->dev
;
2053 if (dev
->in_range(dev
, addr
, len
, is_write
))
2060 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
2061 gpa_t addr
, int len
,
2064 struct kvm_io_device
*dev
;
2066 dev
= vcpu_find_pervcpu_dev(vcpu
, addr
, len
, is_write
);
2068 dev
= kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
, len
,
2073 static int kvm_read_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2074 struct kvm_vcpu
*vcpu
)
2077 int r
= X86EMUL_CONTINUE
;
2080 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2081 unsigned offset
= addr
& (PAGE_SIZE
-1);
2082 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2085 if (gpa
== UNMAPPED_GVA
) {
2086 r
= X86EMUL_PROPAGATE_FAULT
;
2089 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
2091 r
= X86EMUL_UNHANDLEABLE
;
2103 static int kvm_write_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2104 struct kvm_vcpu
*vcpu
)
2107 int r
= X86EMUL_CONTINUE
;
2110 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2111 unsigned offset
= addr
& (PAGE_SIZE
-1);
2112 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2115 if (gpa
== UNMAPPED_GVA
) {
2116 r
= X86EMUL_PROPAGATE_FAULT
;
2119 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
2121 r
= X86EMUL_UNHANDLEABLE
;
2134 static int emulator_read_emulated(unsigned long addr
,
2137 struct kvm_vcpu
*vcpu
)
2139 struct kvm_io_device
*mmio_dev
;
2142 if (vcpu
->mmio_read_completed
) {
2143 memcpy(val
, vcpu
->mmio_data
, bytes
);
2144 vcpu
->mmio_read_completed
= 0;
2145 return X86EMUL_CONTINUE
;
2148 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2150 /* For APIC access vmexit */
2151 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2154 if (kvm_read_guest_virt(addr
, val
, bytes
, vcpu
)
2155 == X86EMUL_CONTINUE
)
2156 return X86EMUL_CONTINUE
;
2157 if (gpa
== UNMAPPED_GVA
)
2158 return X86EMUL_PROPAGATE_FAULT
;
2162 * Is this MMIO handled locally?
2164 mutex_lock(&vcpu
->kvm
->lock
);
2165 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 0);
2167 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
2168 mutex_unlock(&vcpu
->kvm
->lock
);
2169 return X86EMUL_CONTINUE
;
2171 mutex_unlock(&vcpu
->kvm
->lock
);
2173 vcpu
->mmio_needed
= 1;
2174 vcpu
->mmio_phys_addr
= gpa
;
2175 vcpu
->mmio_size
= bytes
;
2176 vcpu
->mmio_is_write
= 0;
2178 return X86EMUL_UNHANDLEABLE
;
2181 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2182 const void *val
, int bytes
)
2186 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
2189 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
2193 static int emulator_write_emulated_onepage(unsigned long addr
,
2196 struct kvm_vcpu
*vcpu
)
2198 struct kvm_io_device
*mmio_dev
;
2201 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2203 if (gpa
== UNMAPPED_GVA
) {
2204 kvm_inject_page_fault(vcpu
, addr
, 2);
2205 return X86EMUL_PROPAGATE_FAULT
;
2208 /* For APIC access vmexit */
2209 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2212 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
2213 return X86EMUL_CONTINUE
;
2217 * Is this MMIO handled locally?
2219 mutex_lock(&vcpu
->kvm
->lock
);
2220 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 1);
2222 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
2223 mutex_unlock(&vcpu
->kvm
->lock
);
2224 return X86EMUL_CONTINUE
;
2226 mutex_unlock(&vcpu
->kvm
->lock
);
2228 vcpu
->mmio_needed
= 1;
2229 vcpu
->mmio_phys_addr
= gpa
;
2230 vcpu
->mmio_size
= bytes
;
2231 vcpu
->mmio_is_write
= 1;
2232 memcpy(vcpu
->mmio_data
, val
, bytes
);
2234 return X86EMUL_CONTINUE
;
2237 int emulator_write_emulated(unsigned long addr
,
2240 struct kvm_vcpu
*vcpu
)
2242 /* Crossing a page boundary? */
2243 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
2246 now
= -addr
& ~PAGE_MASK
;
2247 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
2248 if (rc
!= X86EMUL_CONTINUE
)
2254 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
2256 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
2258 static int emulator_cmpxchg_emulated(unsigned long addr
,
2262 struct kvm_vcpu
*vcpu
)
2264 static int reported
;
2268 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
2270 #ifndef CONFIG_X86_64
2271 /* guests cmpxchg8b have to be emulated atomically */
2278 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2280 if (gpa
== UNMAPPED_GVA
||
2281 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2284 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
2289 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2291 kaddr
= kmap_atomic(page
, KM_USER0
);
2292 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
2293 kunmap_atomic(kaddr
, KM_USER0
);
2294 kvm_release_page_dirty(page
);
2299 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
2302 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2304 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
2307 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
2309 kvm_mmu_invlpg(vcpu
, address
);
2310 return X86EMUL_CONTINUE
;
2313 int emulate_clts(struct kvm_vcpu
*vcpu
)
2315 KVMTRACE_0D(CLTS
, vcpu
, handler
);
2316 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
2317 return X86EMUL_CONTINUE
;
2320 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
2322 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
2326 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
2327 return X86EMUL_CONTINUE
;
2329 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __func__
, dr
);
2330 return X86EMUL_UNHANDLEABLE
;
2334 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
2336 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
2339 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
2341 /* FIXME: better handling */
2342 return X86EMUL_UNHANDLEABLE
;
2344 return X86EMUL_CONTINUE
;
2347 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
2350 unsigned long rip
= kvm_rip_read(vcpu
);
2351 unsigned long rip_linear
;
2353 if (!printk_ratelimit())
2356 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
2358 kvm_read_guest_virt(rip_linear
, (void *)opcodes
, 4, vcpu
);
2360 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2361 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
2363 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
2365 static struct x86_emulate_ops emulate_ops
= {
2366 .read_std
= kvm_read_guest_virt
,
2367 .read_emulated
= emulator_read_emulated
,
2368 .write_emulated
= emulator_write_emulated
,
2369 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
2372 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
2374 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2375 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
2376 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
2377 vcpu
->arch
.regs_dirty
= ~0;
2380 int emulate_instruction(struct kvm_vcpu
*vcpu
,
2381 struct kvm_run
*run
,
2387 struct decode_cache
*c
;
2389 kvm_clear_exception_queue(vcpu
);
2390 vcpu
->arch
.mmio_fault_cr2
= cr2
;
2392 * TODO: fix x86_emulate.c to use guest_read/write_register
2393 * instead of direct ->regs accesses, can save hundred cycles
2394 * on Intel for instructions that don't read/change RSP, for
2397 cache_all_regs(vcpu
);
2399 vcpu
->mmio_is_write
= 0;
2400 vcpu
->arch
.pio
.string
= 0;
2402 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
2404 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
2406 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
2407 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
2408 vcpu
->arch
.emulate_ctxt
.mode
=
2409 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
2410 ? X86EMUL_MODE_REAL
: cs_l
2411 ? X86EMUL_MODE_PROT64
: cs_db
2412 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
2414 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2416 /* Reject the instructions other than VMCALL/VMMCALL when
2417 * try to emulate invalid opcode */
2418 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
2419 if ((emulation_type
& EMULTYPE_TRAP_UD
) &&
2420 (!(c
->twobyte
&& c
->b
== 0x01 &&
2421 (c
->modrm_reg
== 0 || c
->modrm_reg
== 3) &&
2422 c
->modrm_mod
== 3 && c
->modrm_rm
== 1)))
2423 return EMULATE_FAIL
;
2425 ++vcpu
->stat
.insn_emulation
;
2427 ++vcpu
->stat
.insn_emulation_fail
;
2428 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2429 return EMULATE_DONE
;
2430 return EMULATE_FAIL
;
2434 if (emulation_type
& EMULTYPE_SKIP
) {
2435 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.decode
.eip
);
2436 return EMULATE_DONE
;
2439 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2440 shadow_mask
= vcpu
->arch
.emulate_ctxt
.interruptibility
;
2443 kvm_x86_ops
->set_interrupt_shadow(vcpu
, shadow_mask
);
2445 if (vcpu
->arch
.pio
.string
)
2446 return EMULATE_DO_MMIO
;
2448 if ((r
|| vcpu
->mmio_is_write
) && run
) {
2449 run
->exit_reason
= KVM_EXIT_MMIO
;
2450 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
2451 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
2452 run
->mmio
.len
= vcpu
->mmio_size
;
2453 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
2457 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2458 return EMULATE_DONE
;
2459 if (!vcpu
->mmio_needed
) {
2460 kvm_report_emulation_failure(vcpu
, "mmio");
2461 return EMULATE_FAIL
;
2463 return EMULATE_DO_MMIO
;
2466 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
2468 if (vcpu
->mmio_is_write
) {
2469 vcpu
->mmio_needed
= 0;
2470 return EMULATE_DO_MMIO
;
2473 return EMULATE_DONE
;
2475 EXPORT_SYMBOL_GPL(emulate_instruction
);
2477 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
2479 void *p
= vcpu
->arch
.pio_data
;
2480 gva_t q
= vcpu
->arch
.pio
.guest_gva
;
2484 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
2485 if (vcpu
->arch
.pio
.in
)
2486 ret
= kvm_write_guest_virt(q
, p
, bytes
, vcpu
);
2488 ret
= kvm_read_guest_virt(q
, p
, bytes
, vcpu
);
2492 int complete_pio(struct kvm_vcpu
*vcpu
)
2494 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2501 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2502 memcpy(&val
, vcpu
->arch
.pio_data
, io
->size
);
2503 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
2507 r
= pio_copy_data(vcpu
);
2514 delta
*= io
->cur_count
;
2516 * The size of the register should really depend on
2517 * current address size.
2519 val
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2521 kvm_register_write(vcpu
, VCPU_REGS_RCX
, val
);
2527 val
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
2529 kvm_register_write(vcpu
, VCPU_REGS_RDI
, val
);
2531 val
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2533 kvm_register_write(vcpu
, VCPU_REGS_RSI
, val
);
2537 io
->count
-= io
->cur_count
;
2543 static void kernel_pio(struct kvm_io_device
*pio_dev
,
2544 struct kvm_vcpu
*vcpu
,
2547 /* TODO: String I/O for in kernel device */
2549 mutex_lock(&vcpu
->kvm
->lock
);
2550 if (vcpu
->arch
.pio
.in
)
2551 kvm_iodevice_read(pio_dev
, vcpu
->arch
.pio
.port
,
2552 vcpu
->arch
.pio
.size
,
2555 kvm_iodevice_write(pio_dev
, vcpu
->arch
.pio
.port
,
2556 vcpu
->arch
.pio
.size
,
2558 mutex_unlock(&vcpu
->kvm
->lock
);
2561 static void pio_string_write(struct kvm_io_device
*pio_dev
,
2562 struct kvm_vcpu
*vcpu
)
2564 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2565 void *pd
= vcpu
->arch
.pio_data
;
2568 mutex_lock(&vcpu
->kvm
->lock
);
2569 for (i
= 0; i
< io
->cur_count
; i
++) {
2570 kvm_iodevice_write(pio_dev
, io
->port
,
2575 mutex_unlock(&vcpu
->kvm
->lock
);
2578 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
2579 gpa_t addr
, int len
,
2582 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
, len
, is_write
);
2585 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2586 int size
, unsigned port
)
2588 struct kvm_io_device
*pio_dev
;
2591 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2592 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2593 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2594 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2595 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2596 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2597 vcpu
->arch
.pio
.in
= in
;
2598 vcpu
->arch
.pio
.string
= 0;
2599 vcpu
->arch
.pio
.down
= 0;
2600 vcpu
->arch
.pio
.rep
= 0;
2602 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2603 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2606 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2609 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2610 memcpy(vcpu
->arch
.pio_data
, &val
, 4);
2612 pio_dev
= vcpu_find_pio_dev(vcpu
, port
, size
, !in
);
2614 kernel_pio(pio_dev
, vcpu
, vcpu
->arch
.pio_data
);
2620 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
2622 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2623 int size
, unsigned long count
, int down
,
2624 gva_t address
, int rep
, unsigned port
)
2626 unsigned now
, in_page
;
2628 struct kvm_io_device
*pio_dev
;
2630 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2631 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2632 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2633 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2634 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
2635 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2636 vcpu
->arch
.pio
.in
= in
;
2637 vcpu
->arch
.pio
.string
= 1;
2638 vcpu
->arch
.pio
.down
= down
;
2639 vcpu
->arch
.pio
.rep
= rep
;
2641 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2642 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2645 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2649 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2654 in_page
= PAGE_SIZE
- offset_in_page(address
);
2656 in_page
= offset_in_page(address
) + size
;
2657 now
= min(count
, (unsigned long)in_page
/ size
);
2662 * String I/O in reverse. Yuck. Kill the guest, fix later.
2664 pr_unimpl(vcpu
, "guest string pio down\n");
2665 kvm_inject_gp(vcpu
, 0);
2668 vcpu
->run
->io
.count
= now
;
2669 vcpu
->arch
.pio
.cur_count
= now
;
2671 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
2672 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2674 vcpu
->arch
.pio
.guest_gva
= address
;
2676 pio_dev
= vcpu_find_pio_dev(vcpu
, port
,
2677 vcpu
->arch
.pio
.cur_count
,
2678 !vcpu
->arch
.pio
.in
);
2679 if (!vcpu
->arch
.pio
.in
) {
2680 /* string PIO write */
2681 ret
= pio_copy_data(vcpu
);
2682 if (ret
== X86EMUL_PROPAGATE_FAULT
) {
2683 kvm_inject_gp(vcpu
, 0);
2686 if (ret
== 0 && pio_dev
) {
2687 pio_string_write(pio_dev
, vcpu
);
2689 if (vcpu
->arch
.pio
.count
== 0)
2693 pr_unimpl(vcpu
, "no string pio read support yet, "
2694 "port %x size %d count %ld\n",
2699 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
2701 static void bounce_off(void *info
)
2706 static unsigned int ref_freq
;
2707 static unsigned long tsc_khz_ref
;
2709 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
2712 struct cpufreq_freqs
*freq
= data
;
2714 struct kvm_vcpu
*vcpu
;
2715 int i
, send_ipi
= 0;
2718 ref_freq
= freq
->old
;
2720 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
2722 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
2724 per_cpu(cpu_tsc_khz
, freq
->cpu
) = cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
2726 spin_lock(&kvm_lock
);
2727 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
2728 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
2729 vcpu
= kvm
->vcpus
[i
];
2732 if (vcpu
->cpu
!= freq
->cpu
)
2734 if (!kvm_request_guest_time_update(vcpu
))
2736 if (vcpu
->cpu
!= smp_processor_id())
2740 spin_unlock(&kvm_lock
);
2742 if (freq
->old
< freq
->new && send_ipi
) {
2744 * We upscale the frequency. Must make the guest
2745 * doesn't see old kvmclock values while running with
2746 * the new frequency, otherwise we risk the guest sees
2747 * time go backwards.
2749 * In case we update the frequency for another cpu
2750 * (which might be in guest context) send an interrupt
2751 * to kick the cpu out of guest context. Next time
2752 * guest context is entered kvmclock will be updated,
2753 * so the guest will not see stale values.
2755 smp_call_function_single(freq
->cpu
, bounce_off
, NULL
, 1);
2760 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
2761 .notifier_call
= kvmclock_cpufreq_notifier
2764 int kvm_arch_init(void *opaque
)
2767 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
2770 printk(KERN_ERR
"kvm: already loaded the other module\n");
2775 if (!ops
->cpu_has_kvm_support()) {
2776 printk(KERN_ERR
"kvm: no hardware support\n");
2780 if (ops
->disabled_by_bios()) {
2781 printk(KERN_ERR
"kvm: disabled by bios\n");
2786 r
= kvm_mmu_module_init();
2790 kvm_init_msr_list();
2793 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2794 kvm_mmu_set_base_ptes(PT_PRESENT_MASK
);
2795 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
2796 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
2798 for_each_possible_cpu(cpu
)
2799 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
2800 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
2801 tsc_khz_ref
= tsc_khz
;
2802 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
2803 CPUFREQ_TRANSITION_NOTIFIER
);
2812 void kvm_arch_exit(void)
2814 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
2815 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
2816 CPUFREQ_TRANSITION_NOTIFIER
);
2818 kvm_mmu_module_exit();
2821 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
2823 ++vcpu
->stat
.halt_exits
;
2824 KVMTRACE_0D(HLT
, vcpu
, handler
);
2825 if (irqchip_in_kernel(vcpu
->kvm
)) {
2826 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
2829 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
2833 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
2835 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
2838 if (is_long_mode(vcpu
))
2841 return a0
| ((gpa_t
)a1
<< 32);
2844 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
2846 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
2849 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2850 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
2851 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2852 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
2853 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2855 KVMTRACE_1D(VMMCALL
, vcpu
, (u32
)nr
, handler
);
2857 if (!is_long_mode(vcpu
)) {
2866 case KVM_HC_VAPIC_POLL_IRQ
:
2870 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
2876 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
2877 ++vcpu
->stat
.hypercalls
;
2880 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
2882 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
2884 char instruction
[3];
2886 unsigned long rip
= kvm_rip_read(vcpu
);
2890 * Blow out the MMU to ensure that no other VCPU has an active mapping
2891 * to ensure that the updated hypercall appears atomically across all
2894 kvm_mmu_zap_all(vcpu
->kvm
);
2896 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
2897 if (emulator_write_emulated(rip
, instruction
, 3, vcpu
)
2898 != X86EMUL_CONTINUE
)
2904 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
2906 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
2909 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2911 struct descriptor_table dt
= { limit
, base
};
2913 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2916 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2918 struct descriptor_table dt
= { limit
, base
};
2920 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2923 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
2924 unsigned long *rflags
)
2926 kvm_lmsw(vcpu
, msw
);
2927 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2930 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
2932 unsigned long value
;
2934 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2937 value
= vcpu
->arch
.cr0
;
2940 value
= vcpu
->arch
.cr2
;
2943 value
= vcpu
->arch
.cr3
;
2946 value
= vcpu
->arch
.cr4
;
2949 value
= kvm_get_cr8(vcpu
);
2952 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2955 KVMTRACE_3D(CR_READ
, vcpu
, (u32
)cr
, (u32
)value
,
2956 (u32
)((u64
)value
>> 32), handler
);
2961 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
2962 unsigned long *rflags
)
2964 KVMTRACE_3D(CR_WRITE
, vcpu
, (u32
)cr
, (u32
)val
,
2965 (u32
)((u64
)val
>> 32), handler
);
2969 kvm_set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
2970 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2973 vcpu
->arch
.cr2
= val
;
2976 kvm_set_cr3(vcpu
, val
);
2979 kvm_set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
2982 kvm_set_cr8(vcpu
, val
& 0xfUL
);
2985 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2989 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
2991 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
2992 int j
, nent
= vcpu
->arch
.cpuid_nent
;
2994 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
2995 /* when no next entry is found, the current entry[i] is reselected */
2996 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
2997 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
2998 if (ej
->function
== e
->function
) {
2999 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
3003 return 0; /* silence gcc, even though control never reaches here */
3006 /* find an entry with matching function, matching index (if needed), and that
3007 * should be read next (if it's stateful) */
3008 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
3009 u32 function
, u32 index
)
3011 if (e
->function
!= function
)
3013 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
3015 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
3016 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
3021 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
3022 u32 function
, u32 index
)
3025 struct kvm_cpuid_entry2
*best
= NULL
;
3027 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
3028 struct kvm_cpuid_entry2
*e
;
3030 e
= &vcpu
->arch
.cpuid_entries
[i
];
3031 if (is_matching_cpuid_entry(e
, function
, index
)) {
3032 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
3033 move_to_next_stateful_cpuid_entry(vcpu
, i
);
3038 * Both basic or both extended?
3040 if (((e
->function
^ function
) & 0x80000000) == 0)
3041 if (!best
|| e
->function
> best
->function
)
3047 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
3049 struct kvm_cpuid_entry2
*best
;
3051 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
3053 return best
->eax
& 0xff;
3057 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
3059 u32 function
, index
;
3060 struct kvm_cpuid_entry2
*best
;
3062 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3063 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3064 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
3065 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
3066 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
3067 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
3068 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
3070 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
3071 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
3072 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
3073 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
3075 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3076 KVMTRACE_5D(CPUID
, vcpu
, function
,
3077 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RAX
),
3078 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RBX
),
3079 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RCX
),
3080 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RDX
), handler
);
3082 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
3085 * Check if userspace requested an interrupt window, and that the
3086 * interrupt window is open.
3088 * No need to exit to userspace if we already have an interrupt queued.
3090 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
3091 struct kvm_run
*kvm_run
)
3093 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
3094 kvm_run
->request_interrupt_window
&&
3095 kvm_arch_interrupt_allowed(vcpu
));
3098 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
3099 struct kvm_run
*kvm_run
)
3101 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
3102 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
3103 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
3104 if (irqchip_in_kernel(vcpu
->kvm
))
3105 kvm_run
->ready_for_interrupt_injection
= 1;
3107 kvm_run
->ready_for_interrupt_injection
=
3108 kvm_arch_interrupt_allowed(vcpu
) &&
3109 !kvm_cpu_has_interrupt(vcpu
) &&
3110 !kvm_event_needs_reinjection(vcpu
);
3113 static void vapic_enter(struct kvm_vcpu
*vcpu
)
3115 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3118 if (!apic
|| !apic
->vapic_addr
)
3121 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3123 vcpu
->arch
.apic
->vapic_page
= page
;
3126 static void vapic_exit(struct kvm_vcpu
*vcpu
)
3128 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3130 if (!apic
|| !apic
->vapic_addr
)
3133 down_read(&vcpu
->kvm
->slots_lock
);
3134 kvm_release_page_dirty(apic
->vapic_page
);
3135 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3136 up_read(&vcpu
->kvm
->slots_lock
);
3139 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
3143 if (!kvm_x86_ops
->update_cr8_intercept
)
3146 if (!vcpu
->arch
.apic
->vapic_addr
)
3147 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
3154 tpr
= kvm_lapic_get_cr8(vcpu
);
3156 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
3159 static void inject_pending_irq(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3161 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3162 kvm_x86_ops
->set_interrupt_shadow(vcpu
, 0);
3164 /* try to reinject previous events if any */
3165 if (vcpu
->arch
.nmi_injected
) {
3166 kvm_x86_ops
->set_nmi(vcpu
);
3170 if (vcpu
->arch
.interrupt
.pending
) {
3171 kvm_x86_ops
->set_irq(vcpu
);
3175 /* try to inject new event if pending */
3176 if (vcpu
->arch
.nmi_pending
) {
3177 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
3178 vcpu
->arch
.nmi_pending
= false;
3179 vcpu
->arch
.nmi_injected
= true;
3180 kvm_x86_ops
->set_nmi(vcpu
);
3182 } else if (kvm_cpu_has_interrupt(vcpu
)) {
3183 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
3184 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
3186 kvm_x86_ops
->set_irq(vcpu
);
3191 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3194 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
3195 kvm_run
->request_interrupt_window
;
3198 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
))
3199 kvm_mmu_unload(vcpu
);
3201 r
= kvm_mmu_reload(vcpu
);
3205 if (vcpu
->requests
) {
3206 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
3207 __kvm_migrate_timers(vcpu
);
3208 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE
, &vcpu
->requests
))
3209 kvm_write_guest_time(vcpu
);
3210 if (test_and_clear_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
))
3211 kvm_mmu_sync_roots(vcpu
);
3212 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
3213 kvm_x86_ops
->tlb_flush(vcpu
);
3214 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
3216 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
3220 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
)) {
3221 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
3229 kvm_x86_ops
->prepare_guest_switch(vcpu
);
3230 kvm_load_guest_fpu(vcpu
);
3232 local_irq_disable();
3234 clear_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3235 smp_mb__after_clear_bit();
3237 if (vcpu
->requests
|| need_resched() || signal_pending(current
)) {
3244 if (vcpu
->arch
.exception
.pending
)
3245 __queue_exception(vcpu
);
3247 inject_pending_irq(vcpu
, kvm_run
);
3249 /* enable NMI/IRQ window open exits if needed */
3250 if (vcpu
->arch
.nmi_pending
)
3251 kvm_x86_ops
->enable_nmi_window(vcpu
);
3252 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
3253 kvm_x86_ops
->enable_irq_window(vcpu
);
3255 if (kvm_lapic_enabled(vcpu
)) {
3256 update_cr8_intercept(vcpu
);
3257 kvm_lapic_sync_to_vapic(vcpu
);
3260 up_read(&vcpu
->kvm
->slots_lock
);
3264 get_debugreg(vcpu
->arch
.host_dr6
, 6);
3265 get_debugreg(vcpu
->arch
.host_dr7
, 7);
3266 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3267 get_debugreg(vcpu
->arch
.host_db
[0], 0);
3268 get_debugreg(vcpu
->arch
.host_db
[1], 1);
3269 get_debugreg(vcpu
->arch
.host_db
[2], 2);
3270 get_debugreg(vcpu
->arch
.host_db
[3], 3);
3273 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
3274 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
3275 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
3276 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
3279 KVMTRACE_0D(VMENTRY
, vcpu
, entryexit
);
3280 kvm_x86_ops
->run(vcpu
, kvm_run
);
3282 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3284 set_debugreg(vcpu
->arch
.host_db
[0], 0);
3285 set_debugreg(vcpu
->arch
.host_db
[1], 1);
3286 set_debugreg(vcpu
->arch
.host_db
[2], 2);
3287 set_debugreg(vcpu
->arch
.host_db
[3], 3);
3289 set_debugreg(vcpu
->arch
.host_dr6
, 6);
3290 set_debugreg(vcpu
->arch
.host_dr7
, 7);
3292 set_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3298 * We must have an instruction between local_irq_enable() and
3299 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3300 * the interrupt shadow. The stat.exits increment will do nicely.
3301 * But we need to prevent reordering, hence this barrier():
3309 down_read(&vcpu
->kvm
->slots_lock
);
3312 * Profile KVM exit RIPs:
3314 if (unlikely(prof_on
== KVM_PROFILING
)) {
3315 unsigned long rip
= kvm_rip_read(vcpu
);
3316 profile_hit(KVM_PROFILING
, (void *)rip
);
3320 kvm_lapic_sync_from_vapic(vcpu
);
3322 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
3328 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3332 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
3333 pr_debug("vcpu %d received sipi with vector # %x\n",
3334 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
3335 kvm_lapic_reset(vcpu
);
3336 r
= kvm_arch_vcpu_reset(vcpu
);
3339 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3342 down_read(&vcpu
->kvm
->slots_lock
);
3347 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
)
3348 r
= vcpu_enter_guest(vcpu
, kvm_run
);
3350 up_read(&vcpu
->kvm
->slots_lock
);
3351 kvm_vcpu_block(vcpu
);
3352 down_read(&vcpu
->kvm
->slots_lock
);
3353 if (test_and_clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
))
3355 switch(vcpu
->arch
.mp_state
) {
3356 case KVM_MP_STATE_HALTED
:
3357 vcpu
->arch
.mp_state
=
3358 KVM_MP_STATE_RUNNABLE
;
3359 case KVM_MP_STATE_RUNNABLE
:
3361 case KVM_MP_STATE_SIPI_RECEIVED
:
3372 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
3373 if (kvm_cpu_has_pending_timer(vcpu
))
3374 kvm_inject_pending_timer_irqs(vcpu
);
3376 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
3378 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3379 ++vcpu
->stat
.request_irq_exits
;
3381 if (signal_pending(current
)) {
3383 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3384 ++vcpu
->stat
.signal_exits
;
3386 if (need_resched()) {
3387 up_read(&vcpu
->kvm
->slots_lock
);
3389 down_read(&vcpu
->kvm
->slots_lock
);
3393 up_read(&vcpu
->kvm
->slots_lock
);
3394 post_kvm_run_save(vcpu
, kvm_run
);
3401 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3408 if (vcpu
->sigset_active
)
3409 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
3411 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
3412 kvm_vcpu_block(vcpu
);
3413 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
3418 /* re-sync apic's tpr */
3419 if (!irqchip_in_kernel(vcpu
->kvm
))
3420 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
3422 if (vcpu
->arch
.pio
.cur_count
) {
3423 r
= complete_pio(vcpu
);
3427 #if CONFIG_HAS_IOMEM
3428 if (vcpu
->mmio_needed
) {
3429 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
3430 vcpu
->mmio_read_completed
= 1;
3431 vcpu
->mmio_needed
= 0;
3433 down_read(&vcpu
->kvm
->slots_lock
);
3434 r
= emulate_instruction(vcpu
, kvm_run
,
3435 vcpu
->arch
.mmio_fault_cr2
, 0,
3436 EMULTYPE_NO_DECODE
);
3437 up_read(&vcpu
->kvm
->slots_lock
);
3438 if (r
== EMULATE_DO_MMIO
) {
3440 * Read-modify-write. Back to userspace.
3447 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
3448 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
3449 kvm_run
->hypercall
.ret
);
3451 r
= __vcpu_run(vcpu
, kvm_run
);
3454 if (vcpu
->sigset_active
)
3455 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
3461 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3465 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3466 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3467 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3468 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3469 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3470 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3471 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3472 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3473 #ifdef CONFIG_X86_64
3474 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
3475 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
3476 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
3477 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
3478 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
3479 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
3480 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
3481 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
3484 regs
->rip
= kvm_rip_read(vcpu
);
3485 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3488 * Don't leak debug flags in case they were set for guest debugging
3490 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3491 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3498 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3502 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
3503 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
3504 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
3505 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
3506 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
3507 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
3508 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
3509 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
3510 #ifdef CONFIG_X86_64
3511 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
3512 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
3513 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
3514 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
3515 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
3516 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
3517 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
3518 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
3522 kvm_rip_write(vcpu
, regs
->rip
);
3523 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
3526 vcpu
->arch
.exception
.pending
= false;
3533 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3534 struct kvm_segment
*var
, int seg
)
3536 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3539 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3541 struct kvm_segment cs
;
3543 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3547 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
3549 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
3550 struct kvm_sregs
*sregs
)
3552 struct descriptor_table dt
;
3556 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3557 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3558 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3559 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3560 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3561 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3563 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3564 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3566 kvm_x86_ops
->get_idt(vcpu
, &dt
);
3567 sregs
->idt
.limit
= dt
.limit
;
3568 sregs
->idt
.base
= dt
.base
;
3569 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
3570 sregs
->gdt
.limit
= dt
.limit
;
3571 sregs
->gdt
.base
= dt
.base
;
3573 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3574 sregs
->cr0
= vcpu
->arch
.cr0
;
3575 sregs
->cr2
= vcpu
->arch
.cr2
;
3576 sregs
->cr3
= vcpu
->arch
.cr3
;
3577 sregs
->cr4
= vcpu
->arch
.cr4
;
3578 sregs
->cr8
= kvm_get_cr8(vcpu
);
3579 sregs
->efer
= vcpu
->arch
.shadow_efer
;
3580 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
3582 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
3584 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
3585 set_bit(vcpu
->arch
.interrupt
.nr
,
3586 (unsigned long *)sregs
->interrupt_bitmap
);
3593 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
3594 struct kvm_mp_state
*mp_state
)
3597 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
3602 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
3603 struct kvm_mp_state
*mp_state
)
3606 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
3611 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3612 struct kvm_segment
*var
, int seg
)
3614 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3617 static void seg_desct_to_kvm_desct(struct desc_struct
*seg_desc
, u16 selector
,
3618 struct kvm_segment
*kvm_desct
)
3620 kvm_desct
->base
= seg_desc
->base0
;
3621 kvm_desct
->base
|= seg_desc
->base1
<< 16;
3622 kvm_desct
->base
|= seg_desc
->base2
<< 24;
3623 kvm_desct
->limit
= seg_desc
->limit0
;
3624 kvm_desct
->limit
|= seg_desc
->limit
<< 16;
3626 kvm_desct
->limit
<<= 12;
3627 kvm_desct
->limit
|= 0xfff;
3629 kvm_desct
->selector
= selector
;
3630 kvm_desct
->type
= seg_desc
->type
;
3631 kvm_desct
->present
= seg_desc
->p
;
3632 kvm_desct
->dpl
= seg_desc
->dpl
;
3633 kvm_desct
->db
= seg_desc
->d
;
3634 kvm_desct
->s
= seg_desc
->s
;
3635 kvm_desct
->l
= seg_desc
->l
;
3636 kvm_desct
->g
= seg_desc
->g
;
3637 kvm_desct
->avl
= seg_desc
->avl
;
3639 kvm_desct
->unusable
= 1;
3641 kvm_desct
->unusable
= 0;
3642 kvm_desct
->padding
= 0;
3645 static void get_segment_descriptor_dtable(struct kvm_vcpu
*vcpu
,
3647 struct descriptor_table
*dtable
)
3649 if (selector
& 1 << 2) {
3650 struct kvm_segment kvm_seg
;
3652 kvm_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_LDTR
);
3654 if (kvm_seg
.unusable
)
3657 dtable
->limit
= kvm_seg
.limit
;
3658 dtable
->base
= kvm_seg
.base
;
3661 kvm_x86_ops
->get_gdt(vcpu
, dtable
);
3664 /* allowed just for 8 bytes segments */
3665 static int load_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3666 struct desc_struct
*seg_desc
)
3669 struct descriptor_table dtable
;
3670 u16 index
= selector
>> 3;
3672 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3674 if (dtable
.limit
< index
* 8 + 7) {
3675 kvm_queue_exception_e(vcpu
, GP_VECTOR
, selector
& 0xfffc);
3678 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3680 return kvm_read_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3683 /* allowed just for 8 bytes segments */
3684 static int save_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3685 struct desc_struct
*seg_desc
)
3688 struct descriptor_table dtable
;
3689 u16 index
= selector
>> 3;
3691 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3693 if (dtable
.limit
< index
* 8 + 7)
3695 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3697 return kvm_write_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3700 static u32
get_tss_base_addr(struct kvm_vcpu
*vcpu
,
3701 struct desc_struct
*seg_desc
)
3705 base_addr
= seg_desc
->base0
;
3706 base_addr
|= (seg_desc
->base1
<< 16);
3707 base_addr
|= (seg_desc
->base2
<< 24);
3709 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, base_addr
);
3712 static u16
get_segment_selector(struct kvm_vcpu
*vcpu
, int seg
)
3714 struct kvm_segment kvm_seg
;
3716 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
3717 return kvm_seg
.selector
;
3720 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu
*vcpu
,
3722 struct kvm_segment
*kvm_seg
)
3724 struct desc_struct seg_desc
;
3726 if (load_guest_segment_descriptor(vcpu
, selector
, &seg_desc
))
3728 seg_desct_to_kvm_desct(&seg_desc
, selector
, kvm_seg
);
3732 static int kvm_load_realmode_segment(struct kvm_vcpu
*vcpu
, u16 selector
, int seg
)
3734 struct kvm_segment segvar
= {
3735 .base
= selector
<< 4,
3737 .selector
= selector
,
3748 kvm_x86_ops
->set_segment(vcpu
, &segvar
, seg
);
3752 int kvm_load_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3753 int type_bits
, int seg
)
3755 struct kvm_segment kvm_seg
;
3757 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
))
3758 return kvm_load_realmode_segment(vcpu
, selector
, seg
);
3759 if (load_segment_descriptor_to_kvm_desct(vcpu
, selector
, &kvm_seg
))
3761 kvm_seg
.type
|= type_bits
;
3763 if (seg
!= VCPU_SREG_SS
&& seg
!= VCPU_SREG_CS
&&
3764 seg
!= VCPU_SREG_LDTR
)
3766 kvm_seg
.unusable
= 1;
3768 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
3772 static void save_state_to_tss32(struct kvm_vcpu
*vcpu
,
3773 struct tss_segment_32
*tss
)
3775 tss
->cr3
= vcpu
->arch
.cr3
;
3776 tss
->eip
= kvm_rip_read(vcpu
);
3777 tss
->eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3778 tss
->eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3779 tss
->ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3780 tss
->edx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3781 tss
->ebx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3782 tss
->esp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3783 tss
->ebp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3784 tss
->esi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3785 tss
->edi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3786 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3787 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3788 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3789 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3790 tss
->fs
= get_segment_selector(vcpu
, VCPU_SREG_FS
);
3791 tss
->gs
= get_segment_selector(vcpu
, VCPU_SREG_GS
);
3792 tss
->ldt_selector
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3795 static int load_state_from_tss32(struct kvm_vcpu
*vcpu
,
3796 struct tss_segment_32
*tss
)
3798 kvm_set_cr3(vcpu
, tss
->cr3
);
3800 kvm_rip_write(vcpu
, tss
->eip
);
3801 kvm_x86_ops
->set_rflags(vcpu
, tss
->eflags
| 2);
3803 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->eax
);
3804 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->ecx
);
3805 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->edx
);
3806 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->ebx
);
3807 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->esp
);
3808 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->ebp
);
3809 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->esi
);
3810 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->edi
);
3812 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt_selector
, 0, VCPU_SREG_LDTR
))
3815 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3818 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3821 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3824 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3827 if (kvm_load_segment_descriptor(vcpu
, tss
->fs
, 1, VCPU_SREG_FS
))
3830 if (kvm_load_segment_descriptor(vcpu
, tss
->gs
, 1, VCPU_SREG_GS
))
3835 static void save_state_to_tss16(struct kvm_vcpu
*vcpu
,
3836 struct tss_segment_16
*tss
)
3838 tss
->ip
= kvm_rip_read(vcpu
);
3839 tss
->flag
= kvm_x86_ops
->get_rflags(vcpu
);
3840 tss
->ax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3841 tss
->cx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3842 tss
->dx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3843 tss
->bx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3844 tss
->sp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3845 tss
->bp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3846 tss
->si
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3847 tss
->di
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3849 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3850 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3851 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3852 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3853 tss
->ldt
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3854 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3857 static int load_state_from_tss16(struct kvm_vcpu
*vcpu
,
3858 struct tss_segment_16
*tss
)
3860 kvm_rip_write(vcpu
, tss
->ip
);
3861 kvm_x86_ops
->set_rflags(vcpu
, tss
->flag
| 2);
3862 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->ax
);
3863 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->cx
);
3864 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->dx
);
3865 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->bx
);
3866 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->sp
);
3867 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->bp
);
3868 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->si
);
3869 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->di
);
3871 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt
, 0, VCPU_SREG_LDTR
))
3874 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3877 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3880 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3883 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3888 static int kvm_task_switch_16(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3889 u16 old_tss_sel
, u32 old_tss_base
,
3890 struct desc_struct
*nseg_desc
)
3892 struct tss_segment_16 tss_segment_16
;
3895 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3896 sizeof tss_segment_16
))
3899 save_state_to_tss16(vcpu
, &tss_segment_16
);
3901 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3902 sizeof tss_segment_16
))
3905 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3906 &tss_segment_16
, sizeof tss_segment_16
))
3909 if (old_tss_sel
!= 0xffff) {
3910 tss_segment_16
.prev_task_link
= old_tss_sel
;
3912 if (kvm_write_guest(vcpu
->kvm
,
3913 get_tss_base_addr(vcpu
, nseg_desc
),
3914 &tss_segment_16
.prev_task_link
,
3915 sizeof tss_segment_16
.prev_task_link
))
3919 if (load_state_from_tss16(vcpu
, &tss_segment_16
))
3927 static int kvm_task_switch_32(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3928 u16 old_tss_sel
, u32 old_tss_base
,
3929 struct desc_struct
*nseg_desc
)
3931 struct tss_segment_32 tss_segment_32
;
3934 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3935 sizeof tss_segment_32
))
3938 save_state_to_tss32(vcpu
, &tss_segment_32
);
3940 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3941 sizeof tss_segment_32
))
3944 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3945 &tss_segment_32
, sizeof tss_segment_32
))
3948 if (old_tss_sel
!= 0xffff) {
3949 tss_segment_32
.prev_task_link
= old_tss_sel
;
3951 if (kvm_write_guest(vcpu
->kvm
,
3952 get_tss_base_addr(vcpu
, nseg_desc
),
3953 &tss_segment_32
.prev_task_link
,
3954 sizeof tss_segment_32
.prev_task_link
))
3958 if (load_state_from_tss32(vcpu
, &tss_segment_32
))
3966 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
)
3968 struct kvm_segment tr_seg
;
3969 struct desc_struct cseg_desc
;
3970 struct desc_struct nseg_desc
;
3972 u32 old_tss_base
= get_segment_base(vcpu
, VCPU_SREG_TR
);
3973 u16 old_tss_sel
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3975 old_tss_base
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, old_tss_base
);
3977 /* FIXME: Handle errors. Failure to read either TSS or their
3978 * descriptors should generate a pagefault.
3980 if (load_guest_segment_descriptor(vcpu
, tss_selector
, &nseg_desc
))
3983 if (load_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
))
3986 if (reason
!= TASK_SWITCH_IRET
) {
3989 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
3990 if ((tss_selector
& 3) > nseg_desc
.dpl
|| cpl
> nseg_desc
.dpl
) {
3991 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
3996 if (!nseg_desc
.p
|| (nseg_desc
.limit0
| nseg_desc
.limit
<< 16) < 0x67) {
3997 kvm_queue_exception_e(vcpu
, TS_VECTOR
, tss_selector
& 0xfffc);
4001 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
4002 cseg_desc
.type
&= ~(1 << 1); //clear the B flag
4003 save_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
);
4006 if (reason
== TASK_SWITCH_IRET
) {
4007 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4008 kvm_x86_ops
->set_rflags(vcpu
, eflags
& ~X86_EFLAGS_NT
);
4011 /* set back link to prev task only if NT bit is set in eflags
4012 note that old_tss_sel is not used afetr this point */
4013 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4014 old_tss_sel
= 0xffff;
4016 /* set back link to prev task only if NT bit is set in eflags
4017 note that old_tss_sel is not used afetr this point */
4018 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4019 old_tss_sel
= 0xffff;
4021 if (nseg_desc
.type
& 8)
4022 ret
= kvm_task_switch_32(vcpu
, tss_selector
, old_tss_sel
,
4023 old_tss_base
, &nseg_desc
);
4025 ret
= kvm_task_switch_16(vcpu
, tss_selector
, old_tss_sel
,
4026 old_tss_base
, &nseg_desc
);
4028 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
) {
4029 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4030 kvm_x86_ops
->set_rflags(vcpu
, eflags
| X86_EFLAGS_NT
);
4033 if (reason
!= TASK_SWITCH_IRET
) {
4034 nseg_desc
.type
|= (1 << 1);
4035 save_guest_segment_descriptor(vcpu
, tss_selector
,
4039 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
| X86_CR0_TS
);
4040 seg_desct_to_kvm_desct(&nseg_desc
, tss_selector
, &tr_seg
);
4042 kvm_set_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
4046 EXPORT_SYMBOL_GPL(kvm_task_switch
);
4048 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
4049 struct kvm_sregs
*sregs
)
4051 int mmu_reset_needed
= 0;
4052 int pending_vec
, max_bits
;
4053 struct descriptor_table dt
;
4057 dt
.limit
= sregs
->idt
.limit
;
4058 dt
.base
= sregs
->idt
.base
;
4059 kvm_x86_ops
->set_idt(vcpu
, &dt
);
4060 dt
.limit
= sregs
->gdt
.limit
;
4061 dt
.base
= sregs
->gdt
.base
;
4062 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
4064 vcpu
->arch
.cr2
= sregs
->cr2
;
4065 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
4067 down_read(&vcpu
->kvm
->slots_lock
);
4068 if (gfn_to_memslot(vcpu
->kvm
, sregs
->cr3
>> PAGE_SHIFT
))
4069 vcpu
->arch
.cr3
= sregs
->cr3
;
4071 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
4072 up_read(&vcpu
->kvm
->slots_lock
);
4074 kvm_set_cr8(vcpu
, sregs
->cr8
);
4076 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
4077 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
4078 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
4080 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
4082 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
4083 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
4084 vcpu
->arch
.cr0
= sregs
->cr0
;
4086 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
4087 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
4088 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
4089 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
4091 if (mmu_reset_needed
)
4092 kvm_mmu_reset_context(vcpu
);
4094 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
4095 pending_vec
= find_first_bit(
4096 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
4097 if (pending_vec
< max_bits
) {
4098 kvm_queue_interrupt(vcpu
, pending_vec
, false);
4099 pr_debug("Set back pending irq %d\n", pending_vec
);
4100 if (irqchip_in_kernel(vcpu
->kvm
))
4101 kvm_pic_clear_isr_ack(vcpu
->kvm
);
4104 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
4105 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
4106 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
4107 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
4108 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
4109 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
4111 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
4112 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
4114 /* Older userspace won't unhalt the vcpu on reset. */
4115 if (vcpu
->vcpu_id
== 0 && kvm_rip_read(vcpu
) == 0xfff0 &&
4116 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
4117 !(vcpu
->arch
.cr0
& X86_CR0_PE
))
4118 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4125 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
4126 struct kvm_guest_debug
*dbg
)
4132 if ((dbg
->control
& (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) ==
4133 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) {
4134 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
4135 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
4136 vcpu
->arch
.switch_db_regs
=
4137 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
4139 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
4140 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
4141 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
4144 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
4146 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
4147 kvm_queue_exception(vcpu
, DB_VECTOR
);
4148 else if (dbg
->control
& KVM_GUESTDBG_INJECT_BP
)
4149 kvm_queue_exception(vcpu
, BP_VECTOR
);
4157 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4158 * we have asm/x86/processor.h
4169 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4170 #ifdef CONFIG_X86_64
4171 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4173 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4178 * Translate a guest virtual address to a guest physical address.
4180 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
4181 struct kvm_translation
*tr
)
4183 unsigned long vaddr
= tr
->linear_address
;
4187 down_read(&vcpu
->kvm
->slots_lock
);
4188 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
4189 up_read(&vcpu
->kvm
->slots_lock
);
4190 tr
->physical_address
= gpa
;
4191 tr
->valid
= gpa
!= UNMAPPED_GVA
;
4199 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4201 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4205 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
4206 fpu
->fcw
= fxsave
->cwd
;
4207 fpu
->fsw
= fxsave
->swd
;
4208 fpu
->ftwx
= fxsave
->twd
;
4209 fpu
->last_opcode
= fxsave
->fop
;
4210 fpu
->last_ip
= fxsave
->rip
;
4211 fpu
->last_dp
= fxsave
->rdp
;
4212 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
4219 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4221 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4225 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
4226 fxsave
->cwd
= fpu
->fcw
;
4227 fxsave
->swd
= fpu
->fsw
;
4228 fxsave
->twd
= fpu
->ftwx
;
4229 fxsave
->fop
= fpu
->last_opcode
;
4230 fxsave
->rip
= fpu
->last_ip
;
4231 fxsave
->rdp
= fpu
->last_dp
;
4232 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
4239 void fx_init(struct kvm_vcpu
*vcpu
)
4241 unsigned after_mxcsr_mask
;
4244 * Touch the fpu the first time in non atomic context as if
4245 * this is the first fpu instruction the exception handler
4246 * will fire before the instruction returns and it'll have to
4247 * allocate ram with GFP_KERNEL.
4250 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4252 /* Initialize guest FPU by resetting ours and saving into guest's */
4254 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4256 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4257 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4260 vcpu
->arch
.cr0
|= X86_CR0_ET
;
4261 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
4262 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
4263 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
4264 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
4266 EXPORT_SYMBOL_GPL(fx_init
);
4268 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
4270 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
4273 vcpu
->guest_fpu_loaded
= 1;
4274 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4275 kvm_fx_restore(&vcpu
->arch
.guest_fx_image
);
4277 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
4279 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
4281 if (!vcpu
->guest_fpu_loaded
)
4284 vcpu
->guest_fpu_loaded
= 0;
4285 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4286 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4287 ++vcpu
->stat
.fpu_reload
;
4289 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
4291 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
4293 if (vcpu
->arch
.time_page
) {
4294 kvm_release_page_dirty(vcpu
->arch
.time_page
);
4295 vcpu
->arch
.time_page
= NULL
;
4298 kvm_x86_ops
->vcpu_free(vcpu
);
4301 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
4304 return kvm_x86_ops
->vcpu_create(kvm
, id
);
4307 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
4311 /* We do fxsave: this must be aligned. */
4312 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
4314 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
4316 r
= kvm_arch_vcpu_reset(vcpu
);
4318 r
= kvm_mmu_setup(vcpu
);
4325 kvm_x86_ops
->vcpu_free(vcpu
);
4329 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
4332 kvm_mmu_unload(vcpu
);
4335 kvm_x86_ops
->vcpu_free(vcpu
);
4338 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
4340 vcpu
->arch
.nmi_pending
= false;
4341 vcpu
->arch
.nmi_injected
= false;
4343 vcpu
->arch
.switch_db_regs
= 0;
4344 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
4345 vcpu
->arch
.dr6
= DR6_FIXED_1
;
4346 vcpu
->arch
.dr7
= DR7_FIXED_1
;
4348 return kvm_x86_ops
->vcpu_reset(vcpu
);
4351 void kvm_arch_hardware_enable(void *garbage
)
4353 kvm_x86_ops
->hardware_enable(garbage
);
4356 void kvm_arch_hardware_disable(void *garbage
)
4358 kvm_x86_ops
->hardware_disable(garbage
);
4361 int kvm_arch_hardware_setup(void)
4363 return kvm_x86_ops
->hardware_setup();
4366 void kvm_arch_hardware_unsetup(void)
4368 kvm_x86_ops
->hardware_unsetup();
4371 void kvm_arch_check_processor_compat(void *rtn
)
4373 kvm_x86_ops
->check_processor_compatibility(rtn
);
4376 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
4382 BUG_ON(vcpu
->kvm
== NULL
);
4385 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4386 if (!irqchip_in_kernel(kvm
) || vcpu
->vcpu_id
== 0)
4387 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4389 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
4391 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
4396 vcpu
->arch
.pio_data
= page_address(page
);
4398 r
= kvm_mmu_create(vcpu
);
4400 goto fail_free_pio_data
;
4402 if (irqchip_in_kernel(kvm
)) {
4403 r
= kvm_create_lapic(vcpu
);
4405 goto fail_mmu_destroy
;
4411 kvm_mmu_destroy(vcpu
);
4413 free_page((unsigned long)vcpu
->arch
.pio_data
);
4418 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
4420 kvm_free_lapic(vcpu
);
4421 down_read(&vcpu
->kvm
->slots_lock
);
4422 kvm_mmu_destroy(vcpu
);
4423 up_read(&vcpu
->kvm
->slots_lock
);
4424 free_page((unsigned long)vcpu
->arch
.pio_data
);
4427 struct kvm
*kvm_arch_create_vm(void)
4429 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
4432 return ERR_PTR(-ENOMEM
);
4434 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
4435 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
4437 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4438 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
4440 rdtscll(kvm
->arch
.vm_init_tsc
);
4445 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
4448 kvm_mmu_unload(vcpu
);
4452 static void kvm_free_vcpus(struct kvm
*kvm
)
4457 * Unpin any mmu pages first.
4459 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
4461 kvm_unload_vcpu_mmu(kvm
->vcpus
[i
]);
4462 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
4463 if (kvm
->vcpus
[i
]) {
4464 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
4465 kvm
->vcpus
[i
] = NULL
;
4471 void kvm_arch_sync_events(struct kvm
*kvm
)
4473 kvm_free_all_assigned_devices(kvm
);
4476 void kvm_arch_destroy_vm(struct kvm
*kvm
)
4478 kvm_iommu_unmap_guest(kvm
);
4480 kfree(kvm
->arch
.vpic
);
4481 kfree(kvm
->arch
.vioapic
);
4482 kvm_free_vcpus(kvm
);
4483 kvm_free_physmem(kvm
);
4484 if (kvm
->arch
.apic_access_page
)
4485 put_page(kvm
->arch
.apic_access_page
);
4486 if (kvm
->arch
.ept_identity_pagetable
)
4487 put_page(kvm
->arch
.ept_identity_pagetable
);
4491 int kvm_arch_set_memory_region(struct kvm
*kvm
,
4492 struct kvm_userspace_memory_region
*mem
,
4493 struct kvm_memory_slot old
,
4496 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
4497 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
4499 /*To keep backward compatibility with older userspace,
4500 *x86 needs to hanlde !user_alloc case.
4503 if (npages
&& !old
.rmap
) {
4504 unsigned long userspace_addr
;
4506 down_write(¤t
->mm
->mmap_sem
);
4507 userspace_addr
= do_mmap(NULL
, 0,
4509 PROT_READ
| PROT_WRITE
,
4510 MAP_PRIVATE
| MAP_ANONYMOUS
,
4512 up_write(¤t
->mm
->mmap_sem
);
4514 if (IS_ERR((void *)userspace_addr
))
4515 return PTR_ERR((void *)userspace_addr
);
4517 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4518 spin_lock(&kvm
->mmu_lock
);
4519 memslot
->userspace_addr
= userspace_addr
;
4520 spin_unlock(&kvm
->mmu_lock
);
4522 if (!old
.user_alloc
&& old
.rmap
) {
4525 down_write(¤t
->mm
->mmap_sem
);
4526 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
4527 old
.npages
* PAGE_SIZE
);
4528 up_write(¤t
->mm
->mmap_sem
);
4531 "kvm_vm_ioctl_set_memory_region: "
4532 "failed to munmap memory\n");
4537 spin_lock(&kvm
->mmu_lock
);
4538 if (!kvm
->arch
.n_requested_mmu_pages
) {
4539 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
4540 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
4543 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
4544 spin_unlock(&kvm
->mmu_lock
);
4545 kvm_flush_remote_tlbs(kvm
);
4550 void kvm_arch_flush_shadow(struct kvm
*kvm
)
4552 kvm_mmu_zap_all(kvm
);
4553 kvm_reload_remote_mmus(kvm
);
4556 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
4558 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
4559 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
4560 || vcpu
->arch
.nmi_pending
;
4563 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
4566 int cpu
= vcpu
->cpu
;
4568 if (waitqueue_active(&vcpu
->wq
)) {
4569 wake_up_interruptible(&vcpu
->wq
);
4570 ++vcpu
->stat
.halt_wakeup
;
4574 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
4575 if (!test_and_set_bit(KVM_REQ_KICK
, &vcpu
->requests
))
4576 smp_send_reschedule(cpu
);
4580 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
4582 return kvm_x86_ops
->interrupt_allowed(vcpu
);