ACPI: pci_root: simplify list traversals
[linux-2.6/linux-acpi-2.6.git] / drivers / firewire / fw-card.c
blob8b8c8c22f0fce384229eab085210a1aea4353cc8
1 /*
2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 #include <linux/completion.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/delay.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/kref.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
28 #include "fw-transaction.h"
29 #include "fw-topology.h"
30 #include "fw-device.h"
32 int fw_compute_block_crc(u32 *block)
34 __be32 be32_block[256];
35 int i, length;
37 length = (*block >> 16) & 0xff;
38 for (i = 0; i < length; i++)
39 be32_block[i] = cpu_to_be32(block[i + 1]);
40 *block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
42 return length;
45 static DEFINE_MUTEX(card_mutex);
46 static LIST_HEAD(card_list);
48 static LIST_HEAD(descriptor_list);
49 static int descriptor_count;
51 #define BIB_CRC(v) ((v) << 0)
52 #define BIB_CRC_LENGTH(v) ((v) << 16)
53 #define BIB_INFO_LENGTH(v) ((v) << 24)
55 #define BIB_LINK_SPEED(v) ((v) << 0)
56 #define BIB_GENERATION(v) ((v) << 4)
57 #define BIB_MAX_ROM(v) ((v) << 8)
58 #define BIB_MAX_RECEIVE(v) ((v) << 12)
59 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
60 #define BIB_PMC ((1) << 27)
61 #define BIB_BMC ((1) << 28)
62 #define BIB_ISC ((1) << 29)
63 #define BIB_CMC ((1) << 30)
64 #define BIB_IMC ((1) << 31)
66 static u32 *generate_config_rom(struct fw_card *card, size_t *config_rom_length)
68 struct fw_descriptor *desc;
69 static u32 config_rom[256];
70 int i, j, length;
73 * Initialize contents of config rom buffer. On the OHCI
74 * controller, block reads to the config rom accesses the host
75 * memory, but quadlet read access the hardware bus info block
76 * registers. That's just crack, but it means we should make
77 * sure the contents of bus info block in host memory matches
78 * the version stored in the OHCI registers.
81 memset(config_rom, 0, sizeof(config_rom));
82 config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
83 config_rom[1] = 0x31333934;
85 config_rom[2] =
86 BIB_LINK_SPEED(card->link_speed) |
87 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
88 BIB_MAX_ROM(2) |
89 BIB_MAX_RECEIVE(card->max_receive) |
90 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
91 config_rom[3] = card->guid >> 32;
92 config_rom[4] = card->guid;
94 /* Generate root directory. */
95 i = 5;
96 config_rom[i++] = 0;
97 config_rom[i++] = 0x0c0083c0; /* node capabilities */
98 j = i + descriptor_count;
100 /* Generate root directory entries for descriptors. */
101 list_for_each_entry (desc, &descriptor_list, link) {
102 if (desc->immediate > 0)
103 config_rom[i++] = desc->immediate;
104 config_rom[i] = desc->key | (j - i);
105 i++;
106 j += desc->length;
109 /* Update root directory length. */
110 config_rom[5] = (i - 5 - 1) << 16;
112 /* End of root directory, now copy in descriptors. */
113 list_for_each_entry (desc, &descriptor_list, link) {
114 memcpy(&config_rom[i], desc->data, desc->length * 4);
115 i += desc->length;
118 /* Calculate CRCs for all blocks in the config rom. This
119 * assumes that CRC length and info length are identical for
120 * the bus info block, which is always the case for this
121 * implementation. */
122 for (i = 0; i < j; i += length + 1)
123 length = fw_compute_block_crc(config_rom + i);
125 *config_rom_length = j;
127 return config_rom;
130 static void update_config_roms(void)
132 struct fw_card *card;
133 u32 *config_rom;
134 size_t length;
136 list_for_each_entry (card, &card_list, link) {
137 config_rom = generate_config_rom(card, &length);
138 card->driver->set_config_rom(card, config_rom, length);
142 int fw_core_add_descriptor(struct fw_descriptor *desc)
144 size_t i;
147 * Check descriptor is valid; the length of all blocks in the
148 * descriptor has to add up to exactly the length of the
149 * block.
151 i = 0;
152 while (i < desc->length)
153 i += (desc->data[i] >> 16) + 1;
155 if (i != desc->length)
156 return -EINVAL;
158 mutex_lock(&card_mutex);
160 list_add_tail(&desc->link, &descriptor_list);
161 descriptor_count++;
162 if (desc->immediate > 0)
163 descriptor_count++;
164 update_config_roms();
166 mutex_unlock(&card_mutex);
168 return 0;
171 void fw_core_remove_descriptor(struct fw_descriptor *desc)
173 mutex_lock(&card_mutex);
175 list_del(&desc->link);
176 descriptor_count--;
177 if (desc->immediate > 0)
178 descriptor_count--;
179 update_config_roms();
181 mutex_unlock(&card_mutex);
184 static int set_broadcast_channel(struct device *dev, void *data)
186 fw_device_set_broadcast_channel(fw_device(dev), (long)data);
187 return 0;
190 static void allocate_broadcast_channel(struct fw_card *card, int generation)
192 int channel, bandwidth = 0;
194 fw_iso_resource_manage(card, generation, 1ULL << 31,
195 &channel, &bandwidth, true);
196 if (channel == 31) {
197 card->broadcast_channel_allocated = true;
198 device_for_each_child(card->device, (void *)(long)generation,
199 set_broadcast_channel);
203 static const char gap_count_table[] = {
204 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
207 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
209 int scheduled;
211 fw_card_get(card);
212 scheduled = schedule_delayed_work(&card->work, delay);
213 if (!scheduled)
214 fw_card_put(card);
217 static void fw_card_bm_work(struct work_struct *work)
219 struct fw_card *card = container_of(work, struct fw_card, work.work);
220 struct fw_device *root_device;
221 struct fw_node *root_node;
222 unsigned long flags;
223 int root_id, new_root_id, irm_id, local_id;
224 int gap_count, generation, grace, rcode;
225 bool do_reset = false;
226 bool root_device_is_running;
227 bool root_device_is_cmc;
228 __be32 lock_data[2];
230 spin_lock_irqsave(&card->lock, flags);
232 if (card->local_node == NULL) {
233 spin_unlock_irqrestore(&card->lock, flags);
234 goto out_put_card;
237 generation = card->generation;
238 root_node = card->root_node;
239 fw_node_get(root_node);
240 root_device = root_node->data;
241 root_device_is_running = root_device &&
242 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
243 root_device_is_cmc = root_device && root_device->cmc;
244 root_id = root_node->node_id;
245 irm_id = card->irm_node->node_id;
246 local_id = card->local_node->node_id;
248 grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
250 if (is_next_generation(generation, card->bm_generation) ||
251 (card->bm_generation != generation && grace)) {
253 * This first step is to figure out who is IRM and
254 * then try to become bus manager. If the IRM is not
255 * well defined (e.g. does not have an active link
256 * layer or does not responds to our lock request, we
257 * will have to do a little vigilante bus management.
258 * In that case, we do a goto into the gap count logic
259 * so that when we do the reset, we still optimize the
260 * gap count. That could well save a reset in the
261 * next generation.
264 if (!card->irm_node->link_on) {
265 new_root_id = local_id;
266 fw_notify("IRM has link off, making local node (%02x) root.\n",
267 new_root_id);
268 goto pick_me;
271 lock_data[0] = cpu_to_be32(0x3f);
272 lock_data[1] = cpu_to_be32(local_id);
274 spin_unlock_irqrestore(&card->lock, flags);
276 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
277 irm_id, generation, SCODE_100,
278 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
279 lock_data, sizeof(lock_data));
281 if (rcode == RCODE_GENERATION)
282 /* Another bus reset, BM work has been rescheduled. */
283 goto out;
285 if (rcode == RCODE_COMPLETE &&
286 lock_data[0] != cpu_to_be32(0x3f)) {
288 /* Somebody else is BM. Only act as IRM. */
289 if (local_id == irm_id)
290 allocate_broadcast_channel(card, generation);
292 goto out;
295 spin_lock_irqsave(&card->lock, flags);
297 if (rcode != RCODE_COMPLETE) {
299 * The lock request failed, maybe the IRM
300 * isn't really IRM capable after all. Let's
301 * do a bus reset and pick the local node as
302 * root, and thus, IRM.
304 new_root_id = local_id;
305 fw_notify("BM lock failed, making local node (%02x) root.\n",
306 new_root_id);
307 goto pick_me;
309 } else if (card->bm_generation != generation) {
311 * We weren't BM in the last generation, and the last
312 * bus reset is less than 125ms ago. Reschedule this job.
314 spin_unlock_irqrestore(&card->lock, flags);
315 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
316 goto out;
320 * We're bus manager for this generation, so next step is to
321 * make sure we have an active cycle master and do gap count
322 * optimization.
324 card->bm_generation = generation;
326 if (root_device == NULL) {
328 * Either link_on is false, or we failed to read the
329 * config rom. In either case, pick another root.
331 new_root_id = local_id;
332 } else if (!root_device_is_running) {
334 * If we haven't probed this device yet, bail out now
335 * and let's try again once that's done.
337 spin_unlock_irqrestore(&card->lock, flags);
338 goto out;
339 } else if (root_device_is_cmc) {
341 * FIXME: I suppose we should set the cmstr bit in the
342 * STATE_CLEAR register of this node, as described in
343 * 1394-1995, 8.4.2.6. Also, send out a force root
344 * packet for this node.
346 new_root_id = root_id;
347 } else {
349 * Current root has an active link layer and we
350 * successfully read the config rom, but it's not
351 * cycle master capable.
353 new_root_id = local_id;
356 pick_me:
358 * Pick a gap count from 1394a table E-1. The table doesn't cover
359 * the typically much larger 1394b beta repeater delays though.
361 if (!card->beta_repeaters_present &&
362 root_node->max_hops < ARRAY_SIZE(gap_count_table))
363 gap_count = gap_count_table[root_node->max_hops];
364 else
365 gap_count = 63;
368 * Finally, figure out if we should do a reset or not. If we have
369 * done less than 5 resets with the same physical topology and we
370 * have either a new root or a new gap count setting, let's do it.
373 if (card->bm_retries++ < 5 &&
374 (card->gap_count != gap_count || new_root_id != root_id))
375 do_reset = true;
377 spin_unlock_irqrestore(&card->lock, flags);
379 if (do_reset) {
380 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
381 card->index, new_root_id, gap_count);
382 fw_send_phy_config(card, new_root_id, generation, gap_count);
383 fw_core_initiate_bus_reset(card, 1);
384 /* Will allocate broadcast channel after the reset. */
385 } else {
386 if (local_id == irm_id)
387 allocate_broadcast_channel(card, generation);
390 out:
391 fw_node_put(root_node);
392 out_put_card:
393 fw_card_put(card);
396 static void flush_timer_callback(unsigned long data)
398 struct fw_card *card = (struct fw_card *)data;
400 fw_flush_transactions(card);
403 void fw_card_initialize(struct fw_card *card,
404 const struct fw_card_driver *driver,
405 struct device *device)
407 static atomic_t index = ATOMIC_INIT(-1);
409 card->index = atomic_inc_return(&index);
410 card->driver = driver;
411 card->device = device;
412 card->current_tlabel = 0;
413 card->tlabel_mask = 0;
414 card->color = 0;
415 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
417 kref_init(&card->kref);
418 init_completion(&card->done);
419 INIT_LIST_HEAD(&card->transaction_list);
420 spin_lock_init(&card->lock);
421 setup_timer(&card->flush_timer,
422 flush_timer_callback, (unsigned long)card);
424 card->local_node = NULL;
426 INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
428 EXPORT_SYMBOL(fw_card_initialize);
430 int fw_card_add(struct fw_card *card,
431 u32 max_receive, u32 link_speed, u64 guid)
433 u32 *config_rom;
434 size_t length;
435 int ret;
437 card->max_receive = max_receive;
438 card->link_speed = link_speed;
439 card->guid = guid;
441 mutex_lock(&card_mutex);
442 config_rom = generate_config_rom(card, &length);
443 list_add_tail(&card->link, &card_list);
444 mutex_unlock(&card_mutex);
446 ret = card->driver->enable(card, config_rom, length);
447 if (ret < 0) {
448 mutex_lock(&card_mutex);
449 list_del(&card->link);
450 mutex_unlock(&card_mutex);
453 return ret;
455 EXPORT_SYMBOL(fw_card_add);
459 * The next few functions implements a dummy driver that use once a
460 * card driver shuts down an fw_card. This allows the driver to
461 * cleanly unload, as all IO to the card will be handled by the dummy
462 * driver instead of calling into the (possibly) unloaded module. The
463 * dummy driver just fails all IO.
466 static int dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
468 BUG();
469 return -1;
472 static int dummy_update_phy_reg(struct fw_card *card, int address,
473 int clear_bits, int set_bits)
475 return -ENODEV;
478 static int dummy_set_config_rom(struct fw_card *card,
479 u32 *config_rom, size_t length)
482 * We take the card out of card_list before setting the dummy
483 * driver, so this should never get called.
485 BUG();
486 return -1;
489 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
491 packet->callback(packet, card, -ENODEV);
494 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
496 packet->callback(packet, card, -ENODEV);
499 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
501 return -ENOENT;
504 static int dummy_enable_phys_dma(struct fw_card *card,
505 int node_id, int generation)
507 return -ENODEV;
510 static struct fw_card_driver dummy_driver = {
511 .enable = dummy_enable,
512 .update_phy_reg = dummy_update_phy_reg,
513 .set_config_rom = dummy_set_config_rom,
514 .send_request = dummy_send_request,
515 .cancel_packet = dummy_cancel_packet,
516 .send_response = dummy_send_response,
517 .enable_phys_dma = dummy_enable_phys_dma,
520 void fw_card_release(struct kref *kref)
522 struct fw_card *card = container_of(kref, struct fw_card, kref);
524 complete(&card->done);
527 void fw_core_remove_card(struct fw_card *card)
529 card->driver->update_phy_reg(card, 4,
530 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
531 fw_core_initiate_bus_reset(card, 1);
533 mutex_lock(&card_mutex);
534 list_del_init(&card->link);
535 mutex_unlock(&card_mutex);
537 /* Set up the dummy driver. */
538 card->driver = &dummy_driver;
540 fw_destroy_nodes(card);
542 /* Wait for all users, especially device workqueue jobs, to finish. */
543 fw_card_put(card);
544 wait_for_completion(&card->done);
546 WARN_ON(!list_empty(&card->transaction_list));
547 del_timer_sync(&card->flush_timer);
549 EXPORT_SYMBOL(fw_core_remove_card);
551 int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
553 int reg = short_reset ? 5 : 1;
554 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
556 return card->driver->update_phy_reg(card, reg, 0, bit);
558 EXPORT_SYMBOL(fw_core_initiate_bus_reset);